501
|
Bagnato F, Wallin M. COVID-19 Vaccine in Veterans with Multiple Sclerosis: Protect the Vulnerable. Fed Pract 2021; 38:S28-S32. [PMID: 34177237 PMCID: PMC8221823 DOI: 10.12788/fp.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Older veterans with progressive MS and associated comorbidities are at higher risk of death should they be infected by COVID-19 and we urge health care providers to educate every veteran about the benefits of being vaccinated against COVID-19.
Collapse
Affiliation(s)
- Francesca Bagnato
- is the Associate Director of Research of the Multiple Sclerosis Center of Excellence East (MSCoE-East); a Neurologist at Nashville Veterans Affairs Medical Center (VAMC), and an Assistant Professor at Vanderbilt University Medical Center in Tennessee. is the Director of the MSCoE-East; a Neurologist at the Washington VAMC, and an Associate Professor at George Washington University in Washington, DC
| | - Mitchell Wallin
- is the Associate Director of Research of the Multiple Sclerosis Center of Excellence East (MSCoE-East); a Neurologist at Nashville Veterans Affairs Medical Center (VAMC), and an Assistant Professor at Vanderbilt University Medical Center in Tennessee. is the Director of the MSCoE-East; a Neurologist at the Washington VAMC, and an Associate Professor at George Washington University in Washington, DC
| |
Collapse
|
502
|
Álvarez-Pomar L, Rojas-Galeano S. Impact of Personal Protection Habits on the Spread of Pandemics: Insights from an Agent-Based Model. ScientificWorldJournal 2021; 2021:6616654. [PMID: 33859542 PMCID: PMC8028727 DOI: 10.1155/2021/6616654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND After several waves of spread of the COVID-19 pandemic, countries around the world are struggling to regain their economies by slowly lifting mobility restrictions and social distance measures applied during the crisis. Meanwhile, recent studies provide compelling evidence on how contact distancing, the use of face masks, and handwashing habits can reduce the risk of SARS-CoV-2 transmission. In this context, we investigated the effect that these personal protection habits can have in preventing new waves of contagion. METHODS We extended an agent-based COVID-19 epidemic model in a simulated community to incorporate the mechanisms of these aforementioned personal care habits and measure their incidence in person-to-person transmission. A full factorial experiment design was performed to illustrate the extent to which the interplay between these personal habits is effective in mitigating the spread of disease. A global sensitivity analysis was performed on the parameters that control these habits to further validate the results. RESULTS We found that observing physical distance is the dominant habit in reducing disease transmission, although adopting either or both of the other two habits is necessary to some extent to suppress a new outbreak entirely. When physical distance is not observed, adherence to the use of masks or handwashing has a significant decrease in infections and mortality, but the epidemic still unfolds. We also found that in all scenarios, the combined effect of adhering to the three habits is more powerful than adopting them separately. CONCLUSIONS Our findings suggest that a broad adherence of the population to voluntary self-care habits would help contain unfold of new outbreaks. The purpose of our model is illustrative and contributes to ratify the importance of urging citizens to adopt the amalgam of personal care habits as a primary collective protection measure to prevent communities from returning to confinements, while immunisation is carried out in late stages of the pandemic.
Collapse
|
503
|
Kallon S, Samir S, Goonetilleke N. Vaccines: Underlying Principles of Design and Testing. Clin Pharmacol Ther 2021; 109:987-999. [PMID: 33705574 PMCID: PMC8048882 DOI: 10.1002/cpt.2207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
In this paper, we review the key elements that should be considered to take a novel vaccine from the laboratory through to licensure in the modern era. This paper is divided into four sections. First, we discuss the host immune responses that we engage with vaccines. Second, we discuss how in vivo and in vitro studies can inform vaccine design. Third, we discuss different vaccine modalities that have been licensed or are in testing in humans. Last, we overview the basic principles of vaccine approvals. Throughout we provide real-world examples of vaccine development against infectious diseases, including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Sallay Kallon
- Department of Microbiology & ImmunologyUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Shahryar Samir
- Department of Microbiology & ImmunologyUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Nilu Goonetilleke
- Department of Microbiology & ImmunologyUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
- UNC HIV Cure CenterUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| |
Collapse
|
504
|
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA, Oliveira TY, Yang Z, Abernathy ME, Huey-Tubman KE, Hurley A, Turroja M, West KA, Gordon K, Millard KG, Ramos V, Da Silva J, Xu J, Colbert RA, Patel R, Dizon J, Unson-O'Brien C, Shimeliovich I, Gazumyan A, Caskey M, Bjorkman PJ, Casellas R, Hatziioannou T, Bieniasz PD, Nussenzweig MC. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592:616-622. [PMID: 33567448 PMCID: PMC8503938 DOI: 10.1038/s41586-021-03324-6] [Citation(s) in RCA: 1028] [Impact Index Per Article: 257.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-21-4. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5-8. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.
Collapse
MESH Headings
- 2019-nCoV Vaccine mRNA-1273
- Adult
- Aged
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- B-Lymphocytes/immunology
- BNT162 Vaccine
- COVID-19/immunology
- COVID-19/virology
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Cryoelectron Microscopy
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/ultrastructure
- Female
- Humans
- Immunization, Secondary
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin M/blood
- Immunoglobulin M/immunology
- Immunologic Memory/immunology
- Male
- Middle Aged
- Models, Molecular
- Mutation
- Neutralization Tests
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- mRNA Vaccines
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Jenna A Lieberman
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Morgan E Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Arlene Hurley
- Hospital Program Direction, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Kamille A West
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Kristie Gordon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Justin Da Silva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Jianliang Xu
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch and Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roshni Patel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD, USA.
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
505
|
Wie lange sind Antikörper nach Corona-Impfung nachweisbar? Pneumologie 2021. [DOI: 10.1055/a-1370-2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
506
|
Moghadas SM, Vilches TN, Zhang K, Nourbakhsh S, Sah P, Fitzpatrick MC, Galvani AP. Evaluation of COVID-19 vaccination strategies with a delayed second dose. PLoS Biol 2021; 19:e3001211. [PMID: 33882066 PMCID: PMC8092656 DOI: 10.1371/journal.pbio.3001211] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8-29.7) infections, 0.69 (95% CrI: 0.52-0.97) hospitalizations, and 0.34 (95% CrI: 0.25-0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37-0.89) hospitalizations and 0.32 (95% CrI: 0.23-0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses.
Collapse
Affiliation(s)
- Seyed M. Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada
| | - Thomas N. Vilches
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Kevin Zhang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Pratha Sah
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Meagan C. Fitzpatrick
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut, United States of America
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
507
|
Eguia RT, Crawford KHD, Stevens-Ayers T, Kelnhofer-Millevolte L, Greninger AL, Englund JA, Boeckh MJ, Bloom JD. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog 2021; 17:e1009453. [PMID: 33831132 PMCID: PMC8031418 DOI: 10.1371/journal.ppat.1009453] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
There is intense interest in antibody immunity to coronaviruses. However, it is unknown if coronaviruses evolve to escape such immunity, and if so, how rapidly. Here we address this question by characterizing the historical evolution of human coronavirus 229E. We identify human sera from the 1980s and 1990s that have neutralizing titers against contemporaneous 229E that are comparable to the anti-SARS-CoV-2 titers induced by SARS-CoV-2 infection or vaccination. We test these sera against 229E strains isolated after sera collection, and find that neutralizing titers are lower against these "future" viruses. In some cases, sera that neutralize contemporaneous 229E viral strains with titers >1:100 do not detectably neutralize strains isolated 8-17 years later. The decreased neutralization of "future" viruses is due to antigenic evolution of the viral spike, especially in the receptor-binding domain. If these results extrapolate to other coronaviruses, then it may be advisable to periodically update SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Rachel T. Eguia
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Katharine H. D. Crawford
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Terry Stevens-Ayers
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Alexander L. Greninger
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Janet A. Englund
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Michael J. Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
508
|
Abstract
As one of the most important weapons against infectious diseases, vaccines have saved countless lives since their first use in the late eighteenth century. Antibodies produced by effector B cells upon vaccination play a critical role in mediating protection. The past several decades of research have led to a revolution in our understanding of B cell response to vaccination. Vaccines against SARS-CoV-2 coronavirus were developed at an unprecedented speed to power our global fight against COVID-19 pandemic. Nevertheless, we still face many challenges in the development of vaccines against many other deadly viruses, such as human immunodeficiency virus (HIV) and influenza virus. In this review, we summarize the latest findings on B cell response to vaccination and pathogen infection. We also discuss the current challenges in the field and the potential strategies targeting B cell response to improve vaccine efficacy.Key abbreviations box: BCR: B cell receptor; bNAb: broadly neutralizing antibody; DC: dendritic cells; DZ: dark zone; EF response: extrafollicular response; FDC: follicular dendritic cell; GC: germinal center; HIV: human immunodeficiency virus; IC: immune complex; LLPC: long-lived plasma cell; LZ: light zone; MBC: memory B cell; SLPB: short-lived plasmablast; TFH: T follicular helper cells; TLR: Toll-like receptor.
Collapse
Affiliation(s)
- Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qian Yin
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
509
|
Moghadas SM, Vilches TN, Zhang K, Nourbakhsh S, Sah P, Fitzpatrick MC, Galvani AP. Evaluation of COVID-19 vaccination strategies with a delayed second dose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.27.21250619. [PMID: 33532805 PMCID: PMC7852256 DOI: 10.1101/2021.01.27.21250619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Two of the COVID-19 vaccines currently approved in the United States require two doses, administered three to four weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious SARS-CoV-2 variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose, or to continue with the recommended two-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these two vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of pre-existing immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% CrI: 7.8 - 29.7) infections, 0.71 (95% CrI: 0.52 - 0.97) hospitalizations, and 0.34 (95% CrI: 0.25 - 0.44) deaths per 10,000 population compared to the recommended 4-week interval between the two doses. Pfizer-BioNTech vaccines also averted an additional 0.61 (95% CrI: 0.37 - 0.89) hospitalizations and 0.31 (95% CrI: 0.23 - 0.45) deaths per 10,000 population in a 9-week delayed second dose strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the two doses.
Collapse
Affiliation(s)
- Seyed M. Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Thomas N. Vilches
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas SP, Brazil
| | - Kevin Zhang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | - Shokoofeh Nourbakhsh
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Pratha Sah
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, Connecticut, USA
| | - Meagan C. Fitzpatrick
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, Connecticut, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W Baltimore St, Baltimore, MD 21201 USA
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
510
|
Brockman MA, Mwimanzi F, Sang Y, Ng K, Agafitei O, Ennis S, Lapointe H, Young L, Umviligihozo G, Burns L, Brumme C, Leung V, Montaner JS, Holmes D, DeMarco M, Simons J, Niikura M, Pantophlet R, Romney MG, Brumme ZL. Weak humoral immune reactivity among residents of long-term care facilities following one dose of the BNT162b2 mRNA COVID-19 vaccine. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.17.21253773. [PMID: 33791737 PMCID: PMC8010769 DOI: 10.1101/2021.03.17.21253773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Several Canadian provinces are extending the interval between COVID-19 vaccine doses to increase population vaccine coverage more rapidly. However, immunogenicity of these vaccines after one dose is incompletely characterized, particularly among the elderly, who are at greatest risk of severe COVID-19. Methods We assessed SARS-CoV-2 humoral responses pre-vaccine and one month following the first dose of BNT162b2 mRNA vaccine, in 12 COVID-19 seronegative residents of long-term care facilities (median age, 82 years), 18 seronegative healthcare workers (HCW; median age, 36 years) and 4 convalescent HCW. Total antibody responses to SARS-CoV-2 nucleocapsid (N) and spike protein receptor binding domain (S/RBD) were assessed using commercial immunoassays. We quantified IgG and IgM responses to S/RBD and determined the ability of antibodies to block S/RBD binding to ACE2 receptor using ELISA. Neutralizing antibody activity was also assessed using pseudovirus and live SARS-CoV-2. Results After one vaccine dose, binding antibodies against S/RBD were ~4-fold lower in residents compared to HCW (p<0.001). Inhibition of ACE2 binding was 3-fold lower in residents compared to HCW (p=0.01) and pseudovirus neutralizing activity was 2-fold lower (p=0.003). While six (33%) seronegative HCW neutralized live SARS-CoV-2, only one (8%) resident did (p=0.19). In contrast, convalescent HCW displayed 7- to 20-fold higher levels of binding antibodies and substantial ability to neutralize live virus after one dose. Interpretation Extending the interval between COVID-19 vaccine doses may pose a risk to the elderly due to lower vaccine immunogenicity in this group. We recommend that second doses not be delayed in elderly individuals.
Collapse
Affiliation(s)
- Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver BC, Canada
| | - Francis Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Yurou Sang
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Kurtis Ng
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Olga Agafitei
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Hope Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver BC, Canada
| | - Landon Young
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver BC, Canada
| | | | - Laura Burns
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver BC, Canada
| | - Chanson Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver BC, Canada
- Department of Medicine, University of British Columbia, Vancouver BC, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada
| | - Julio S.G. Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver BC, Canada
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver BC, Canada
| | - Daniel Holmes
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada
| | - Mari DeMarco
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada
| | - Janet Simons
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada
| | - Masa Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, Canada
| | - Marc G. Romney
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada
| | - Zabrina L. Brumme
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver BC, Canada
| |
Collapse
|
511
|
Abstract
In the year since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and with understanding of the etiology of the coronavirus disease 2019 (COVID-19) pandemic, it has become clear that most infected individuals achieve some form of immunity against the virus with relatively few reported reinfections. A number of vaccines have already achieved emergency use authorization based on data from large phase 3 field efficacy clinical trials. However, our knowledge about the extent and durability of this immunity, and the breadth of vaccine coverage against SARS-CoV-2 variants is still evolving. In this narrative review, we summarize the latest and rapidly developing understanding of immunity to SARS-CoV-2 infection, including what we have learned about the key antigens of SARS-CoV-2 (i.e., the spike protein and its receptor-binding domain), their importance in vaccine development, the immediate immune response to SARS-CoV-2, breadth of coverage of emerging SARS-CoV-2 variants, contributions of preexisting immunity to related coronaviruses, and duration of immunity. We also discuss lessons from newer approaches, such as systems serology, that provide insights into molecular and cellular immune responses elicited and how they relate to the trajectory of infection, and potentially inform immune correlates of protection. We also briefly examine the limited research literature on immune responses in special populations, such as pregnant women and children.
Collapse
Affiliation(s)
- Jaime Fergie
- Department of Pediatric Infectious Diseases, Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Amit Srivastava
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, United States
| |
Collapse
|
512
|
Chen J, Lu H. New challenges to fighting COVID-19: Virus variants, potential vaccines, and development of antivirals. Biosci Trends 2021; 15:126-128. [PMID: 33746183 DOI: 10.5582/bst.2021.01092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite strict control measures implemented worldwide, the COVID-19 pandemic continues to rage. Several drugs, including lopinavir/ritonavir, hydroxychloroquine, dexamethasone, and remdesivir, have been evaluated for the treatment of COVID-19 during the past year. While most of the drugs failed to display efficacy in treating COVID-19, scientists have encouraged herd immunity to control the pandemic. Immunity generated after natural infection with SARS-CoV-2 is precarious, as indicated by real-world evidence in the form of epidemiological data from Manaus, Brazil. Vaccines using different platforms are therefore the most promising approach to help us return to normality. Although several vaccines have been authorized for emergency use, there are still many concerns regarding their accessibility, the vaccination rate, and most importantly, their efficacy in preventing infection with emerging virus variants. Continued virus surveillance and rapid redesign of new vaccines to counter new variants are crucial to fighting COVID-19. Rapid production and extensive vaccination are also essential to preventing the emergence of new variants. Nevertheless, antivirals including monoclonal antibodies and oral medicines need to be developed in light of uncertainties with regard to vaccination. In the battle between humans and SARS-CoV-2, the speed with which we fight the virus, and especially its emerging variants, is the key to winning.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
513
|
Abstract
Background As COVID-19 vaccines become available, screening individuals for prior COVID-19 infection and vaccine response in point-of-care (POC) settings has renewed interest. We prospectively screened at-risk individuals for SARS-CoV-2 spike and nucleocapsid protein antibodies in a POC setting to determine if it was a feasible method to identify antibody from prior infection. Methods Three EUA-approved lateral flow antibody assays were performed on POC finger-stick blood and compared with serum and a CLIA nucleocapsid antibody immunoassay. Variables including antibody class, time since PCR, and the assay antigen used were evaluated. Results 512 subjects enrolled, of which 104 had a COVID-19 history and positive PCR. Only three PCR-positive subjects required hospitalization, with one requiring mechanical ventilation. The POC results correlated well with the immunoassay (93–97% sensitivity) and using serum did not improve the sensitivity or specificity. Conclusions Finger-stick, POC COVID-19 antibody testing was highly effective in identifying antibody resulting from prior infections in mildly symptomatic subjects. Using high-complexity serum immunoassays did not improve the screening outcome. Almost all individuals with COVID-19 infection produced detectable antibodies to the virus. POC antibody testing is useful as a screen for prior COVID-19 infection, and should be useful in assessing vaccine response.
Collapse
|
514
|
Loo KY, Letchumanan V, Ser HL, Teoh SL, Law JWF, Tan LTH, Ab Mutalib NS, Chan KG, Lee LH. COVID-19: Insights into Potential Vaccines. Microorganisms 2021; 9:605. [PMID: 33804162 PMCID: PMC8001762 DOI: 10.3390/microorganisms9030605] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
People around the world ushered in the new year 2021 with a fear of COVID-19, as family members have lost their loved ones to the disease. Millions of people have been infected, and the livelihood of many has been jeopardized due to the pandemic. Pharmaceutical companies are racing against time to develop an effective vaccine to protect against COVID-19. Researchers have developed various types of candidate vaccines with the release of the genetic sequence of the SARS-CoV-2 virus in January. These include inactivated viral vaccines, protein subunit vaccines, mRNA vaccines, and recombinant viral vector vaccines. To date, several vaccines have been authorized for emergency use and they have been administered in countries across the globe. Meanwhile, there are also vaccine candidates in Phase III clinical trials awaiting results and approval from authorities. These candidates have shown positive results in the previous stages of the trials, whereby they could induce an immune response with minimal side effects in the participants. This review aims to discuss the different vaccine platforms and the clinical trials of the candidate vaccines.
Collapse
Affiliation(s)
- Ke-Yan Loo
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| |
Collapse
|
515
|
Gisondi P, Geat D, Naldi L, Piaserico S. Insights into Sars-CoV-2 vaccination in patients with chronic plaque psoriasis on systemic treatments. J Eur Acad Dermatol Venereol 2021; 35:e361-e362. [PMID: 33650226 PMCID: PMC8014730 DOI: 10.1111/jdv.17200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Affiliation(s)
- P Gisondi
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - D Geat
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - L Naldi
- Division of Dermatology, San Bortolo Hospital, Vicenza, Italy.,Centro Studi GISED, Bergamo, Italy
| | - S Piaserico
- Department of Medicine, Section of Dermatology, University of Padua, Padua, Italy
| |
Collapse
|
516
|
Lombardi A, Bozzi G, Ungaro R, Villa S, Castelli V, Mangioni D, Muscatello A, Gori A, Bandera A. Mini Review Immunological Consequences of Immunization With COVID-19 mRNA Vaccines: Preliminary Results. Front Immunol 2021; 12:657711. [PMID: 33777055 PMCID: PMC7994748 DOI: 10.3389/fimmu.2021.657711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: BNT162b2 and mRNA-1273 are the two recently approved mRNA-based vaccines against COVID-19 which has shown excellent safety and efficacy. Preliminary data about specific and neutralizing antibodies is available covering the first 100 days after vaccination. Methods: We reviewed all the publications regarding the immunologic consequences of BNT162b2 and mRNA-1273 vaccination. A summary of specific antibodies concentration and neutralizing antibodies titers elicited by each vaccine is provided. Results: BNT162b2 and mRNA-1273 displayed a reassuring safety and efficacy profile, with the latter above 94%. They can elicit specific antibodies titers and neutralizing antibodies concentrations that are far superior from those observed among COVID-19 human convalescent serum, across a wide span of age, for at least 100 days after vaccination. Moreover, the vaccine-induced T cellular response is oriented toward a TH1 response and no evidence of vaccine-enhanced disease have been reported. Discussion: BNT162b2 and mRNA-1273 can elicit specific antibodies titers and neutralizing antibodies concentrations above those observed among COVID-19 human convalescent serum in the first 100 days after vaccination. Data about vaccine efficacy in those with previous COVID-19 or immunocompromised is still limited.
Collapse
Affiliation(s)
- Andrea Lombardi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Giorgio Bozzi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Villa
- Center for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Valeria Castelli
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Mangioni
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Center for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Center for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| |
Collapse
|
517
|
Doulberis M, Papaefthymiou A, Kotronis G, Gialamprinou D, Soteriades ES, Kyriakopoulos A, Chatzimichael E, Kafafyllidou K, Liatsos C, Chatzistefanou I, Anagnostis P, Semenin V, Ntona S, Gkolia I, Papazoglou DD, Tsinonis N, Papamichos S, Kirbas H, Zikos P, Niafas D, Kountouras J. Does COVID-19 Vaccination Warrant the Classical Principle " ofelein i mi vlaptin"? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:253. [PMID: 33803295 PMCID: PMC7999356 DOI: 10.3390/medicina57030253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic warrants an imperative necessity for effective and safe vaccination, to restrain Coronavirus disease 2019 (COVID-19) including transmissibility, morbidity, and mortality. In this regard, intensive medical and biological research leading to the development of an arsenal of vaccines, albeit incomplete preconditioned evaluation, due to emergency. The subsequent scientific gap raises some concerns in the medical community and the general public. More specifically, the accelerated vaccine development downgraded the value of necessary pre-clinical studies to elicit medium- and long-term beneficial or harmful consequences. Previous experience and pathophysiological background of coronaviruses' infections and vaccine technologies, combined with the global vaccines' application, underlined the obligation of a cautious and qualitative approach, to illuminate potential vaccination-related adverse events. Moreover, the high SARS-CoV-2 mutation potential and the already aggregated genetical alterations provoke a rational vagueness and uncertainty concerning vaccines' efficacy against dominant strains and the respective clinical immunity. This review critically summarizes existing evidence and queries regarding SARS-CoV-2 vaccines, to motivate scientists' and clinicians' interest for an optimal, individualized, and holistic management of this unprecedented pandemic.
Collapse
Affiliation(s)
- Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
- Department of Gastroenterology, University Hospital of Larisa, Mezourlo, 41110 Larisa, Greece
| | - Georgios Kotronis
- Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134 Thessaloniki, Greece;
| | - Dimitra Gialamprinou
- Second Neonatal Department and NICU, Aristotle University of Thessaloniki, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia 2252, Cyprus;
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology (EOME), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anthony Kyriakopoulos
- Nasco AD Biotechnology Laboratory, Department of Research and Development, 18536 Piraeus, Greece;
| | - Eleftherios Chatzimichael
- Center for Integrative Psychiatry, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital of Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Kyriaki Kafafyllidou
- Department of Pediatrics, University Children’s Hospital of Zurich, 8032 Zurich, Switzerland;
| | - Christos Liatsos
- Department of Gastroenterology, 401 Army General Hospital of Athens, 11525 Athens, Greece;
| | - Ioannis Chatzistefanou
- Department of Maxillofacial Surgery, 424 General Military Hospital, Ring Road Efkarpia, 56429 Thessaloniki, Greece;
| | - Paul Anagnostis
- ORL and Psychiatry Private Practice, 8032 Zurich, Switzerland;
| | - Vitalii Semenin
- Neurology and Psychiatry Private Practice, 2502 Biel, Switzerland;
| | - Smaragda Ntona
- Alexandrovska University Hospital, Medical University Sofia, 1431 Sofia, Bulgaria;
| | - Ioanna Gkolia
- Psychiatric Hospital of Thessaloniki, Stavroupolis, 56429 Thessaloniki, Greece;
| | - Dimitrios David Papazoglou
- Department of General, Visceral and Thoracic Surgery, Bürgerspital Solothurn, 4500 Solothurn, Switzerland;
| | | | - Spyros Papamichos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
| | - Hristos Kirbas
- Department of Nuclear Medicine, “Thegeneio” Cancer Hospital, 54007 Thessaloniki, Greece;
| | - Petros Zikos
- Department of Oral and Maxillofacial Surgery, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | | | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
| |
Collapse
|
518
|
Muecksch F, Weisblum Y, Barnes CO, Schmidt F, Schaefer-Babajew D, Lorenzi JCC, Flyak AI, DeLaitsch AT, Huey-Tubman KE, Hou S, Schiffer CA, Gaebler C, Wang Z, Da Silva J, Poston D, Finkin S, Cho A, Cipolla M, Oliveira TY, Millard KG, Ramos V, Gazumyan A, Rutkowska M, Caskey M, Nussenzweig MC, Bjorkman PJ, Hatziioannou T, Bieniasz PD. Development of potency, breadth and resilience to viral escape mutations in SARS-CoV-2 neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.07.434227. [PMID: 33758864 PMCID: PMC7987023 DOI: 10.1101/2021.03.07.434227] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies elicited in response to infection undergo somatic mutation in germinal centers that can result in higher affinity for the cognate antigen. To determine the effects of somatic mutation on the properties of SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibodies, we analyzed six independent antibody lineages. As well as increased neutralization potency, antibody evolution changed pathways for acquisition of resistance and, in some cases, restricted the range of neutralization escape options. For some antibodies, maturation apparently imposed a requirement for multiple spike mutations to enable escape. For certain antibody lineages, maturation enabled neutralization of circulating SARS-CoV-2 variants of concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these properties resulted from substitutions that allowed additional variability at the interface with the RBD. These findings suggest that increasing antibody diversity through prolonged or repeated antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and perhaps against other pandemic threat coronaviruses.
Collapse
Affiliation(s)
- Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | | | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Andrew T DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Justin Da Silva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Katrina G. Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
519
|
Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, Gouma S, Kuri-Cervantes L, Meng W, Adamski S, Baxter AE, Giles JR, Weirick ME, McAllister CM, Hicks A, Korte S, Dougherty J, Long S, D’Andrea K, Hamilton JT, Prak ETL, Betts MR, Bates P, Hensley SE, Greenplate AR, Wherry EJ. Longitudinal Analysis Reveals Distinct Antibody and Memory B Cell Responses in SARS-CoV2 Naïve and Recovered Individuals Following mRNA Vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.03.21252872. [PMID: 33688691 PMCID: PMC7941668 DOI: 10.1101/2021.03.03.21252872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel mRNA vaccines for SARS-CoV2 have been authorized for emergency use and are currently being administered to millions of individuals worldwide. Despite their efficacy in clinical trials, there is limited data on vaccine-induced immune responses in individuals with a prior SARS-CoV2 infection compared to SARS-CoV2 naïve subjects. Moreover, how mRNA vaccines impact the development of antibodies as well as memory B cells in COVID-19 experienced versus COVID-19 naïve subjects remains poorly understood. In this study, we evaluated antibody responses and antigen-specific memory B cell responses over time in 33 SARS-CoV2 naïve and 11 SARS-CoV2 recovered subjects. mRNA vaccination induced significant antibody and memory B cell responses against full-length SARS-CoV2 spike protein and the spike receptor binding domain (RBD). SARS-CoV2 naïve individuals benefitted from both doses of mRNA vaccine with additional increases in antibodies and memory B cells following booster immunization. In contrast, SARS-CoV2 recovered individuals had a significant immune response after the first dose with no increase in circulating antibodies or antigen-specific memory B cells after the second dose. Moreover, the magnitude of the memory B cell response induced by vaccination was lower in older individuals, revealing an age-dependence to mRNA vaccine-induced B cell memory. Side effects also tended to associate with post-boost antibody levels, but not with post-boost memory B cells, suggesting that side effect severity may be a surrogate of short-term antibody responses. The frequency of pre-vaccine antigen-specific memory B cells in SARS-CoV2 recovered individuals strongly correlated with post-vaccine antibody levels, supporting a key role for memory B cells in humoral recall responses to SARS-CoV2. This observation may have relevance for future booster vaccines and for responses to viral variants that partially escape pre-existing antibodies and require new humoral responses to be generated from memory B cells. Finally, post-boost antibody levels were not correlated with post-boost memory responses in SARS-CoV2 naïve individuals, indicating that short-term antibody levels and memory B cells are complementary immunological endpoints that should be examined in tandem when evaluating vaccine response. Together, our data provide evidence of both serological response and immunological memory following mRNA vaccination that is distinct based on prior SARS-CoV2 exposure. These findings may inform vaccine distribution in a resource-limited setting.
Collapse
Affiliation(s)
- Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R. Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E. Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M. McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob T. Hamilton
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R. Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E. Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
520
|
Robertson JFR, Sewell HF, Stewart M. Delayed second dose of the BNT162b2 vaccine: innovation or misguided conjecture? Lancet 2021; 397:879-880. [PMID: 33617766 PMCID: PMC7906658 DOI: 10.1016/s0140-6736(21)00455-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Affiliation(s)
- John F R Robertson
- Graduate Entry Medicine Division, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK.
| | - Herb F Sewell
- Graduate Entry Medicine Division, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK
| | | |
Collapse
|
521
|
Klasse PJ, Nixon DF, Moore JP. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. SCIENCE ADVANCES 2021; 7:eabe8065. [PMID: 33608249 PMCID: PMC7978427 DOI: 10.1126/sciadv.abe8065] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/22/2021] [Indexed: 05/17/2023]
Abstract
Multiple preventive vaccines are being developed to counter the coronavirus disease 2019 pandemic. The leading candidates have now been evaluated in nonhuman primates (NHPs) and human phase 1 and/or phase 2 clinical trials. Several vaccines have already advanced into phase 3 efficacy trials, while others will do so before the end of 2020. Here, we summarize what is known of the antibody and T cell immunogenicity of these vaccines in NHPs and humans. To the extent possible, we compare how the vaccines have performed, taking into account the use of different assays to assess immunogenicity and inconsistencies in how the resulting data are presented. We also review the outcome of challenge experiments with severe acute respiratory syndrome coronavirus 2 in immunized macaques, while noting variations in the protocols used, including but not limited to the virus challenge doses. Press releases on the outcomes of vaccine efficacy trials are also summarized.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
522
|
Khayat-Khoei M, Conway S, Rubinson DA, Jarolim P, Houtchens MK. Negative anti-SARS-CoV-2 S antibody response following Pfizer SARS-CoV-2 vaccination in a patient on ocrelizumab. J Neurol 2021; 268:3592-3594. [PMID: 33638680 PMCID: PMC7910800 DOI: 10.1007/s00415-021-10463-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Mahsa Khayat-Khoei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Conway
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Maria K Houtchens
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
523
|
Hwang JK, Zhang T, Wang AZ, Li Z. COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. J Hematol Oncol 2021; 14:38. [PMID: 33640005 PMCID: PMC7910769 DOI: 10.1186/s13045-021-01046-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023] Open
Abstract
Less than a year since the start of the COVID-19 pandemic, ten vaccines against SARS-CoV-2 have been approved for at least limited use, with over sixty others in clinical trials. This swift achievement has generated excitement and arrives at a time of great need, as the number of COVID-19 cases worldwide continues to rapidly increase. Two vaccines are currently approved for full use, both built on mRNA and lipid nanotechnology platforms, a success story of mRNA technology 20 years in the making. For patients with cancer, questions arise around the safety and efficacy of these vaccines in the setting of immune alterations engendered by their malignancy and/or therapies. We summarize the current data on leading COVID-19 vaccine candidates and vaccination of patients undergoing immunomodulatory cancer treatments. Most current cancer therapeutics should not prevent the generation of protective immunity. We call for more research in this area and recommend that the majority of patients with cancer receive COVID vaccinations when possible.
Collapse
Affiliation(s)
| | - Tian Zhang
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, DUMC Box 103861, Durham, NC, 27710, USA.
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA.
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The OH State University Comprehensive Cancer Center - James, Columbus, OH, USA
| |
Collapse
|
524
|
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 Vaccines. Vaccines (Basel) 2021; 9:vaccines9030199. [PMID: 33673595 PMCID: PMC7997495 DOI: 10.3390/vaccines9030199] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a major causative agent of hand, foot, and mouth disease (HFMD) and herpangina. Moreover, EV-A71 infection can lead to neurological complications and death. Vaccination is the most efficient way to control virus infection. There are currently three inactivated, whole EV-A71 vaccines licensed by the China NMPA (National Medical Products Administration). Several other types of vaccines, such as virus-like particles and recombinant VP1 (capsid protein), are also under development. In this review, we discuss recent advances in the development of EV-A71 vaccines.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Correspondence:
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
525
|
Abstract
Less than a year since the start of the COVID-19 pandemic, ten vaccines against SARS-CoV-2 have been approved for at least limited use, with over sixty others in clinical trials. This swift achievement has generated excitement and arrives at a time of great need, as the number of COVID-19 cases worldwide continues to rapidly increase. Two vaccines are currently approved for full use, both built on mRNA and lipid nanotechnology platforms, a success story of mRNA technology 20 years in the making. For patients with cancer, questions arise around the safety and efficacy of these vaccines in the setting of immune alterations engendered by their malignancy and/or therapies. We summarize the current data on leading COVID-19 vaccine candidates and vaccination of patients undergoing immunomodulatory cancer treatments. Most current cancer therapeutics should not prevent the generation of protective immunity. We call for more research in this area and recommend that the majority of patients with cancer receive COVID vaccinations when possible.
Collapse
|
526
|
Global COVID-19 vaccine equity should precede requiring travelers proof of vaccination. Int J Infect Dis 2021; 105:243-244. [PMID: 33640569 PMCID: PMC7906856 DOI: 10.1016/j.ijid.2021.02.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
|
527
|
Edara VV, Norwood C, Floyd K, Lai L, Davis-Gardner ME, Hudson WH, Mantus G, Nyhoff LE, Adelman MW, Fineman R, Patel S, Byram R, Gomes DN, Michael G, Abdullahi H, Beydoun N, Panganiban B, McNair N, Hellmeister K, Pitts J, Winters J, Kleinhenz J, Usher J, O'Keefe JB, Piantadosi A, Waggoner JJ, Babiker A, Stephens DS, Anderson EJ, Edupuganti S, Rouphael N, Ahmed R, Wrammert J, Suthar MS. Reduced binding and neutralization of infection- and vaccine-induced antibodies to the B.1.351 (South African) SARS-CoV-2 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33655254 DOI: 10.1101/2021.02.20.432046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies to neutralize these variants. We compared antibody binding and live virus neutralization of sera from naturally infected and spike mRNA vaccinated individuals against a circulating SARS-CoV-2 B.1 variant and the emerging B.1.351 variant. In acutely-infected (5-19 days post-symptom onset), convalescent COVID-19 individuals (through 8 months post-symptom onset) and mRNA-1273 vaccinated individuals (day 14 post-second dose), we observed an average 4.3-fold reduction in antibody titers to the B.1.351-derived receptor binding domain of the spike protein and an average 3.5-fold reduction in neutralizing antibody titers to the SARS-CoV-2 B.1.351 variant as compared to the B.1 variant (spike D614G). However, most acute and convalescent sera from infected and all vaccinated individuals neutralize the SARS-CoV-2 B.1.351 variant, suggesting that protective immunity is retained against COVID-19.
Collapse
|
528
|
Huang Q, Zeng J, Yan J. COVID-19 mRNA vaccines. J Genet Genomics 2021; 48:107-114. [PMID: 34006471 PMCID: PMC7959685 DOI: 10.1016/j.jgg.2021.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic and its unprecedented global societal and economic disruptive impact highlight the urgent need for safe and effective vaccines. Taking substantial advantages of versatility and rapid development, two mRNA vaccines against COVID-19 have completed late-stage clinical assessment at an unprecedented speed and reported positive results. In this review, we outline keynotes in mRNA vaccine development, discuss recently published data on COVID-19 mRNA vaccine candidates, focusing on those in clinical trials and analyze future potential challenges.
Collapse
Affiliation(s)
- Qingrui Huang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Zeng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
529
|
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184:861-880. [PMID: 33497610 PMCID: PMC7803150 DOI: 10.1016/j.cell.2021.01.007] [Citation(s) in RCA: 1249] [Impact Index Per Article: 312.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The adaptive immune system is important for control of most viral infections. The three fundamental components of the adaptive immune system are B cells (the source of antibodies), CD4+ T cells, and CD8+ T cells. The armamentarium of B cells, CD4+ T cells, and CD8+ T cells has differing roles in different viral infections and in vaccines, and thus it is critical to directly study adaptive immunity to SARS-CoV-2 to understand COVID-19. Knowledge is now available on relationships between antigen-specific immune responses and SARS-CoV-2 infection. Although more studies are needed, a picture has begun to emerge that reveals that CD4+ T cells, CD8+ T cells, and neutralizing antibodies all contribute to control of SARS-CoV-2 in both non-hospitalized and hospitalized cases of COVID-19. The specific functions and kinetics of these adaptive immune responses are discussed, as well as their interplay with innate immunity and implications for COVID-19 vaccines and immune memory against re-infection.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
530
|
Kuderer NM, Hill JA, Carpenter PA, Lyman GH. Challenges and Opportunities for COVID-19 Vaccines in Patients with Cancer. Cancer Invest 2021; 39:205-213. [PMID: 33534645 DOI: 10.1080/07357907.2021.1885596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Given the rapidly expanding global spread of the SARS-Co-V-2 virus and the expanding number of individuals with the serious and potentially fatal illness, COVID-19, there is an urgent need for safe and effective vaccines. Based on compelling evidence that patients with cancer are at increased risk for greater morbidity and mortality with COVID-19, several professional organizations have provided early guidance on the role of COVID-19 vaccines in patients with malignant disease. In this commentary we review the available data on the efficacy and safety of the approved and forthcoming vaccines in patients with cancer. Based on a review of the totality of available evidence, we recommend that most patients with cancer should receive the recommended dose and schedule of one of the COVID-19 vaccines when available. We encourage industry, regulators and professional research organizations to carefully track the efficacy and safety of COVID-19 vaccination in patients with cancer in the real world setting and routinely report unanticipated adverse events and signs of loss of efficacy. Particular attention is needed for patients on active cancer therapy to carefully evaluate efficacy and safety in relationship to the timing of vaccination relative to that of active cancer treatment and immunosuppression.
Collapse
Affiliation(s)
| | - Joshua A Hill
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Gary H Lyman
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
531
|
Harris T, Sauer K. Are T cell repertoires useful as diagnostics for SARS- CoV- 2 infection? Expert Rev Mol Diagn 2021; 21:137-139. [PMID: 33595410 PMCID: PMC7898294 DOI: 10.1080/14737159.2021.1882852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Tim Harris
- Repertoire Immune Medicines, Cambridge, MA, USA
| | | |
Collapse
|
532
|
Koff WC, Schenkelberg T, Williams T, Baric RS, McDermott A, Cameron CM, Cameron MJ, Friemann MB, Neumann G, Kawaoka Y, Kelvin AA, Ross TM, Schultz-Cherry S, Mastro TD, Priddy FH, Moore KA, Ostrowsky JT, Osterholm MT, Goudsmit J. Development and deployment of COVID-19 vaccines for those most vulnerable. Sci Transl Med 2021; 13:13/579/eabd1525. [PMID: 33536277 DOI: 10.1126/scitranslmed.abd1525] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.
Collapse
Affiliation(s)
- Wayne C Koff
- Human Vaccines Project, New York, NY 10119, USA. .,Human Immunomics Initiative, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Theodore Schenkelberg
- Human Vaccines Project, New York, NY 10119, USA.,Human Immunomics Initiative, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adrian McDermott
- Vaccine Immunology Program, Vaccine Research Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Cheryl M Cameron
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark J Cameron
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthew B Friemann
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD School of Medicine, Baltimore, MD 21201, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.,Institute of Medical Science, University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Alyson A Kelvin
- Departments of Pediatrics, Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ted M Ross
- Animal Health Research Center, Center for Vaccines, Immunology and Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Stacey Schultz-Cherry
- Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Frances H Priddy
- Vaccine Alliance Aotearoa New Zealand, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kristine A Moore
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis MN 55455, USA
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis MN 55455, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis MN 55455, USA
| | - Jaap Goudsmit
- Human Vaccines Project, New York, NY 10119, USA.,Human Immunomics Initiative, Departments of Epidemiology, Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
533
|
Bettini E, Locci M. SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines (Basel) 2021; 9:147. [PMID: 33673048 PMCID: PMC7918810 DOI: 10.3390/vaccines9020147] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022] Open
Abstract
To successfully protect against pathogen infection, a vaccine must elicit efficient adaptive immunity, including B and T cell responses. While B cell responses are key, as they can mediate antibody-dependent protection, T cells can modulate B cell activity and directly contribute to the elimination of pathogen-infected cells. In the unprecedented race to develop an effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the respiratory disease coronavirus disease 2019 (COVID-19), messenger RNA (mRNA) vaccines have emerged as front runners thanks to their capacity for rapid development and ability to drive potent adaptive immune responses. In this review article, we provide an overview of the results from pre-clinical studies in animal models as well as clinical studies in humans that assessed the efficacy of SARS-CoV-2 mRNA vaccines, with a primary focus on adaptive immune responses post vaccination.
Collapse
Affiliation(s)
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
534
|
Liontos M, Kastritis E, Markellos C, Migkou M, Eleftherakis-Papaiakovou E, Koutsoukos K, Gavriatopoulou M, Zagouri F, Psaltopoulou T, Terpos E, Dimopoulos MA. Continuing Cancer Therapy through the Pandemic While Protecting Our Patients: Results of the Implementation of Preventive Strategies in a Referral Oncology Unit. Cancers (Basel) 2021; 13:763. [PMID: 33673120 PMCID: PMC7918613 DOI: 10.3390/cancers13040763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer patients infected with SARS-CoV-2 have worse outcomes, including higher morbidity and mortality than the general population. Protecting this vulnerable group of patients from COVID-19 is of the utmost importance for the continuous operation of an oncology unit. Preventive strategies have been proposed by various societies, and centers around the world have implemented these or modified measures; however, the efficacy of these measures has not been evaluated. In our center, a referral oncology/hematology unit in Athens, Greece, we implemented strict protective measures from the outset of the pandemic in the country and we have prospectively recorded the epidemiological characteristics of COVID-19. Among 11,618 patient visits performed in our unit, 26 patients (case-to-visit ratio of 0.22%) were found positive for SARS-CoV-2, including 4 (1%) among 392 patients that were screened before starting primary systemic treatment. Among patients tested positive for SARS-CoV-2, 22 were symptomatic at the time of diagnosis; subsequently, 12 required hospitalization and 5 died due to COVID-19. Detailed contact tracing indicated that there was no in-unit transmission of the infection. Thus, strict implementation of multilevel protective strategies along with a modestly intense screening program allowed us to continue cancer care in our unit through the pandemic.
Collapse
Affiliation(s)
- Michalis Liontos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Alexandra Hospital, Athens 11528, Greece; (E.K.); (C.M.); (M.M.); (E.E.-P.); (K.K.); (M.G.); (F.Z.); (T.P.); (E.T.); (M.-A.D.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Adjuvanting a subunit SARS-CoV-2 nanoparticle vaccine to induce protective immunity in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33594366 DOI: 10.1101/2021.02.10.430696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.
Collapse
|
536
|
Yoo JH. What We Do Know and Do Not Yet Know about COVID-19 Vaccines as of the Beginning of the Year 2021. J Korean Med Sci 2021; 36:e54. [PMID: 33559409 PMCID: PMC7870421 DOI: 10.3346/jkms.2021.36.e54] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which started at the end of 2019 and has spread worldwide, has remained unabated in 2021. Since non-pharmaceutical interventions including social distancing are facing limitations in controlling COVID-19, additional absolute means to change the trend are necessary. To this end, coronavirus-specific antiviral drugs and vaccines are urgently needed, but for now, the priority is to promote herd immunity through extensive nationwide vaccination campaign. In addition to the vaccines based on the conventional technology such inactivated or killed virus or protein subunit vaccines, several vaccines on the new technological platforms, for example, nucleic acids-based vaccines delivered by viral carriers, nanoparticles, or plasmids as a medium were introduced in this pandemic. In addition to achieving sufficient herd immunity with vaccination, the development of antiviral treatments that work specifically against COVID-19 will also be necessary to terminate the epidemic completely.
Collapse
Affiliation(s)
- Jin Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
537
|
Infection and mRNA-1273 vaccine antibodies neutralize SARS-CoV-2 UK variant. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33564782 DOI: 10.1101/2021.02.02.21250799] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antibody responses against the SARS-CoV-2 Spike protein correlate with protection against COVID-19. Serum neutralizing antibodies appear early after symptom onset following SARS-CoV-2 infection and can last for several months. Similarly, the messenger RNA vaccine, mRNA-1273, generates serum neutralizing antibodies that are detected through at least day 119. However, the recent emergence of the B.1.1.7 variant has raised significant concerns about the breadth of these neutralizing antibody responses. In this study, we used a live virus neutralization assay to compare the neutralization potency of sera from infected and vaccinated individuals against a panel of SARS-CoV-2 variants, including SARS-CoV-2 B.1.1.7. We found that both infection- and vaccine-induced antibodies were effective at neutralizing the SARS-CoV-2 B.1.1.7 variant. These findings support the notion that in the context of the UK variant, vaccine-induced immunity can provide protection against COVID-19. As additional SARS-CoV-2 viral variants continue to emerge, it is crucial to monitor their impact on neutralizing antibody responses following infection and vaccination.
Collapse
|
538
|
Affiliation(s)
- Barton F Haynes
- From the Departments of Medicine and Immunology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| |
Collapse
|
539
|
Markmann AJ, Giallourou N, Bhowmik DR, Hou YJ, Lerner A, Martinez DR, Premkumar L, Root H, van Duin D, Napravnik S, Graham SD, Guerra Q, Raut R, Petropoulos CJ, Wrin T, Cornaby C, Schmitz J, Kuruc J, Weiss S, Park Y, Baric R, de Silva AM, Margolis DM, Bartelt LA. Sex disparities and neutralizing antibody durability to SARS-CoV-2 infection in convalescent individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.01.21250493. [PMID: 33564775 PMCID: PMC7872367 DOI: 10.1101/2021.02.01.21250493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2. Using convalescent sera collected from 101 COVID-19 recovered individuals 21-212 days after symptom onset with forty-eight additional longitudinal samples, we measured functionality and durability of serum antibodies. We also evaluated associations between individual demographic and clinical parameters with functional neutralizing antibody responses to COVID-19. We found robust antibody durability out to six months, as well as significant positive associations with the magnitude of the neutralizing antibody response and male sex. We also show that SARS-CoV-2 convalescent neutralizing antibodies are higher in individuals with cardio-metabolic comorbidities.
Collapse
Affiliation(s)
- Alena J. Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Natasa Giallourou
- Centre of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| | - D. Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron Lerner
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Heather Root
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - David van Duin
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Sonia Napravnik
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Graham
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Quique Guerra
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Rajendra Raut
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | | | - Terri Wrin
- LabCorp-Monogram Biosciences, South San Francisco, CA 94080
| | - Caleb Cornaby
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - John Schmitz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - JoAnn Kuruc
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Susan Weiss
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Yara Park
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - David M. Margolis
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Luther A. Bartelt
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| |
Collapse
|
540
|
Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, Li M, Jin H, Cui G, Chen P, Wang L, Zhao G, Ding Y, Zhao Y, Yin W. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:803-812. [PMID: 33548194 PMCID: PMC7906628 DOI: 10.1016/s1473-3099(20)30987-7] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND A vaccine against COVID-19 is urgently needed for older adults, in whom morbidity and mortality due to the disease are increased. We aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in adults aged 60 years and older. METHODS We did a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial of CoronaVac in healthy adults aged 60 years and older in Renqiu (Hebei, China). Vaccine or placebo was given by intramuscular injection in two doses (days 0 and 28). Phase 1 comprised a dose-escalation study, in which participants were allocated to two blocks: block 1 (3 μg inactivated virus in 0·5 mL of aluminium hydroxide solution per injection) and block 2 (6 μg per injection). Within each block, participants were randomly assigned (2:1) using block randomisation to receive CoronaVac or placebo (aluminium hydroxide solution only). In phase 2, participants were randomly assigned (2:2:2:1) using block randomisation to receive either CoronaVac at 1·5 μg, 3 μg, or 6 μg per dose, or placebo. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint was seroconversion rate at 28 days after the second injection (which was assessed in all participants who had received the two doses of vaccine according to their random assignment, had antibody results available, and did not violate the trial protocol). Seroconversion was defined as a change from seronegative at baseline to seropositive for neutralising antibodies to live SARS-CoV-2 (positive cutoff titre 1/8), or a four-fold titre increase if the participant was seropositive at baseline. This study is ongoing and is registered with ClinicalTrials.gov (NCT04383574). FINDINGS Between May 22 and June 1, 2020, 72 participants (24 in each intervention group and 24 in the placebo group; mean age 65·8 years [SD 4·8]) were enrolled in phase 1, and between June 12 and June 15, 2020, 350 participants were enrolled in phase 2 (100 in each intervention group and 50 in the placebo group; mean age 66·6 years [SD 4·7] in 349 participants). In the safety populations from both phases, any adverse reaction within 28 days after injection occurred in 20 (20%) of 100 participants in the 1·5 μg group, 25 (20%) of 125 in the 3 μg group, 27 (22%) of 123 in the 6 μg group, and 15 (21%) of 73 in the placebo group. All adverse reactions were mild or moderate in severity and injection site pain (39 [9%] of 421 participants) was the most frequently reported event. As of Aug 28, 2020, eight serious adverse events, considered unrelated to vaccination, have been reported by seven (2%) participants. In phase 1, seroconversion after the second dose was observed in 24 of 24 participants (100·0% [95% CI 85·8-100·0]) in the 3 μg group and 22 of 23 (95·7% [78·1-99·9]) in the 6 μg group. In phase 2, seroconversion was seen in 88 of 97 participants in the 1·5 μg group (90·7% [83·1-95·7]), 96 of 98 in the 3 μg group (98·0% [92·8-99·8]), and 97 of 98 (99·0% [94·5-100·0]) in the 6 μg group. There were no detectable antibody responses in the placebo groups. INTERPRETATION CoronaVac is safe and well tolerated in older adults. Neutralising antibody titres induced by the 3 μg dose were similar to those of the 6 μg dose, and higher than those of the 1·5 μg dose, supporting the use of the 3 μg dose CoronaVac in phase 3 trials to assess protection against COVID-19. FUNDING Chinese National Key Research and Development Program and Beijing Science and Technology Program.
Collapse
Affiliation(s)
- Zhiwei Wu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | | | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhen Chen
- National Institutes for Food and Drug Control, Beijing, China
| | | | - Zhiwei Jiang
- Beijing Key Tech Statistics Technology, Beijing, China
| | - Minjie Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Hui Jin
- Renqiu City Center for Disease Control and Prevention, Renqiu, Hebei, China
| | | | - Panpan Chen
- Renqiu City Center for Disease Control and Prevention, Renqiu, Hebei, China
| | | | - Guoqing Zhao
- Beijing Key Tech Statistics Technology, Beijing, China
| | - Yuzhu Ding
- Renqiu City Center for Disease Control and Prevention, Renqiu, Hebei, China
| | - Yuliang Zhao
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China.
| | | |
Collapse
|
541
|
Klimek L, Chaker AM, Cuevas M. Allergische Reaktionen auf COVID-19-Impfungen – Was HNO-Ärzte wissen sollten – Teil 1: Allgemeine Aspekte von Allergien auf Impfstoffe, immunologische Grundlagen von Allergien auf Impfstoffe, Immunmechanismen von allergischen und pseudoallergischen Reaktionen; Teil 2: Charakteristiken der mRNA-Impfstoffe BNT162b2 und mRNA-1273 zur Prophylaxe von COVID-19, weitere Impfstoff-Kandidaten und assoziierte Immunphänomene; Teil 3: Praktische Aspekte der Prophylaxe, Diagnostik und Therapie von Allergien auf COVID-19-Impfstoffe. Laryngorhinootologie 2021; 100:252-258. [PMID: 33524996 DOI: 10.1055/a-1372-3270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vaccinations are the gold-standard in order to prevent dangerous infectious diseases. Within 12 months since the RNA sequence of SARS-COV2 has been published already two RNA vaccines against COVID-19 have been licensed and are broadly used in many relevant parts of the world. Matching the challenge of an unprecedented global pandemic unique collaborative approaches have made available several vaccines based on a variety of technological platforms that are under current development. This article explains the characteristics, biology and pharmacology of subunit-vaccines, inactivated and attenuated vaccines, Virus-like-Particle vaccines, recombinant strategies based on adenoviral vectors and newly developed and first time in human licensed RNA-vaccines that came into scope recently. Allergic reactions against the vaccine and its components have been reported but are yet uncommon, however need good documentation such as other side-effects and immune-phenomena. In rare cases where allergy against vaccine components such as PEGs is considered, such PEGs can be tested using a skin-prick test. Development of innovative vaccine technology and antiviral medication is of strategic relevance in the best sense of "pandemic preparedness" for the future.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden
| | - A M Chaker
- Klinik für Hals-, Nasen- und Ohrenheilkunde & Zentrum für Allergie und Umwelt, Klinikum rechts der Isar, TU München
| | - M Cuevas
- Klinik für Hals-, Nasen- und Ohrenheilkunde, TU Dresden
| |
Collapse
|
542
|
Choudhary J, Dheeman S, Sharma V, Katiyar P, Karn SK, Sarangi MK, Chauhan AK, Verma G, Baliyan N. Insights of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) pandemic: a current review. Biol Proced Online 2021; 23:5. [PMID: 33526007 PMCID: PMC7849622 DOI: 10.1186/s12575-020-00141-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19, a pandemic of the 21st century caused by novel coronavirus SARS-CoV-2 was originated from China and shallowed world economy and human resource. The medical cures via herbal treatments, antiviral drugs, and vaccines still in progress, and studying rigorously. SARS-CoV-2 is more virulent than its ancestors due to evolution in the spike protein(s), mediates viral attachment to the host's membranes. The SARS-CoV-2 receptor-binding spike domain associates itself with human angiotensin-converting enzyme 2 (ACE-2) receptors. It causes respiratory ailments with irregularities in the hepatic, nervous, and gastrointestinal systems, as reported in humans suffering from COVID-19 and reviewed in the present article. There are several approaches, have been put forward by many countries under the world health organization (WHO) recommendations and some trial drugs were introduced for possible treatment of COVID-19, such as Lopinavir or Ritonavir, Arbidol, Chloroquine (CQ), Hydroxychloroquine (HCQ) and most important Remdesivir including other like Tocilizumab, Oritavancin, Chlorpromazine, Azithromycin, Baricitinib, etc. RT-PCR is the only and early detection test available besides the rapid test kit (serodiagnosis) used by a few countries due to unreasonable causes. Development of vaccine by several leader of pharmaceutical groups still under trial or waiting for approval for mass inoculation. Management strategies have been evolved by the recommendations of WHO, specifically important to control COVID-19 situations, in the pandemic era. This review will provide a comprehensive collection of studies to support future research and enhancement in our wisdom to combat COVID-19 pandemic and to serve humanity.
Collapse
Affiliation(s)
- Jyoti Choudhary
- Department of Microbiology, Chinmaya Degree College (Hemwati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand), Haridwar, Uttarakhand 249401 India
- Department of Botany and Microbiology, Gurukula Kangri Deemed to be University, Haridwar, Uttarakhand 249404 India
| | - Shrivardhan Dheeman
- Department of Microbiology, School of Life Sciences, Sardar Bhagwan Singh University, Dehradun, Uttarakhand 248161 India
| | - Vipin Sharma
- Department of Pharmaceuticals Sciences, Faculty of Ayurvedic and Medicinal Sciences, Gurukula Kangri Deemed to be University, Haridwar, Uttarakhand 249404 India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Deemed to be University, Haridwar, Uttarakhand 249404 India
| | - Santosh Kumar Karn
- Deaprtment of Biotechnology and Biochemistry, School of Life Sciences, Sardar Bhagwan Singh University, Dehradun, Uttarakhand 248161 India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand 248161 India
| | - Ankit Kumar Chauhan
- Department of Botany and Microbiology, Gurukula Kangri Deemed to be University, Haridwar, Uttarakhand 249404 India
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, 110001 India
| | - Gaurav Verma
- Deaprtment of Microbiology, Shri Dev Suman Subharti Medical College, Ras Bihari Bose Subharti University, Dehradun, Uttarakhand 248001 India
| | - Nitin Baliyan
- Department of Botany and Microbiology, Gurukula Kangri Deemed to be University, Haridwar, Uttarakhand 249404 India
| |
Collapse
|
543
|
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA, Oliveira TY, Yang Z, Abernathy ME, Huey-Tubman KE, Hurley A, Turroja M, West KA, Gordon K, Millard KG, Ramos V, Da Silva J, Xu J, Colbert RA, Patel R, Dizon J, Unson-O'Brien C, Shimeliovich I, Gazumyan A, Caskey M, Bjorkman PJ, Casellas R, Hatziioannou T, Bieniasz PD, Nussenzweig MC. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33501451 DOI: 10.1101/2021.01.15.426911] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To date severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 100 million individuals resulting in over two million deaths. Many vaccines are being deployed to prevent coronavirus disease 2019 (COVID-19) including two novel mRNA-based vaccines 1,2 . These vaccines elicit neutralizing antibodies and appear to be safe and effective, but the precise nature of the elicited antibodies is not known 3-6 . Here we report on the antibody and memory B cell responses in a cohort of 20 volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines. Consistent with prior reports, 8 weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-SARS-CoV-2 spike protein (S) and receptor binding domain (RBD) binding titers 3,5,6 . Moreover, the plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection 7,8 . However, activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin. Consistent with these findings, vaccine-elicited monoclonal antibodies (mAbs) potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes in common with mAbs isolated from infected donors. Structural analyses of mAbs complexed with S trimer suggest that vaccine- and virus-encoded S adopts similar conformations to induce equivalent anti-RBD antibodies. However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations. Notably, the same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs. Taken together the results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.
Collapse
|
544
|
Sui Y, Bekele Y, Berzofsky JA. Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization. Pathogens 2021; 10:pathogens10020138. [PMID: 33573221 PMCID: PMC7912691 DOI: 10.3390/pathogens10020138] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/08/2023] Open
Abstract
Both SARS-CoV-2 infections and vaccines induce robust immune responses. Current data suggested that high neutralizing antibody titers with sustained Th1 responses might correlate with protection against viral transmission and disease development and severity. In addition, genetic and innate immune factors, including higher levels of type I interferons, as well as the induction of trained immunity and local mucosal immunity also contribute to lower risk of infection and amelioration of disease severity. The identification of immune correlates of protection will facilitate the development of effective vaccines and therapeutics strategies.
Collapse
|
545
|
Bieniasz P. The case against delaying SARS-CoV-2 mRNA vaccine boosting doses. Clin Infect Dis 2021; 73:1321-1323. [PMID: 33503230 PMCID: PMC7929009 DOI: 10.1093/cid/ciab070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
546
|
Rawson JMO, Duchon A, Nikolaitchik OA, Pathak VK, Hu WS. Development of a Cell-Based Luciferase Complementation Assay for Identification of SARS-CoV-2 3CL pro Inhibitors. Viruses 2021; 13:173. [PMID: 33498923 PMCID: PMC7911889 DOI: 10.3390/v13020173] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The 3C-like protease (3CLpro) of SARS-CoV-2 is considered an excellent target for COVID-19 antiviral drug development because it is essential for viral replication and has a cleavage specificity distinct from human proteases. However, drug development for 3CLpro has been hindered by a lack of cell-based reporter assays that can be performed in a BSL-2 setting. Current efforts to identify 3CLpro inhibitors largely rely upon in vitro screening, which fails to account for cell permeability and cytotoxicity of compounds, or assays involving replication-competent virus, which must be performed in a BSL-3 facility. To address these limitations, we have developed a novel cell-based luciferase complementation reporter assay to identify inhibitors of SARS-CoV-2 3CLpro in a BSL-2 setting. The assay is based on a lentiviral vector that co-expresses 3CLpro and two luciferase fragments linked together by a 3CLpro cleavage site. 3CLpro-mediated cleavage results in a loss of complementation and low luciferase activity, whereas inhibition of 3CLpro results in 10-fold higher levels of luciferase activity. The luciferase reporter assay can easily distinguish true 3CLpro inhibition from cytotoxicity, a powerful feature that should reduce false positives during screening. Using the assay, we screened 32 small molecules for activity against SARS-CoV-2 3CLpro, including HIV protease inhibitors, HCV protease inhibitors, and various other compounds that have been reported to inhibit SARS-CoV-2 3CLpro. Of these, only five exhibited significant inhibition of 3CLpro in cells: GC376, boceprevir, Z-FA-FMK, calpain inhibitor XII, and GRL-0496. This assay should greatly facilitate efforts to identify more potent inhibitors of SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA; (J.M.O.R.); (A.D.); (O.A.N.)
| | - Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA; (J.M.O.R.); (A.D.); (O.A.N.)
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA; (J.M.O.R.); (A.D.); (O.A.N.)
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA; (J.M.O.R.); (A.D.); (O.A.N.)
| |
Collapse
|
547
|
|
548
|
Zhang X, Liu Y, Liu J, Bailey AL, Plante KS, Plante JA, Zou J, Xia H, Bopp N, Aguilar P, Ren P, Menachery VD, Diamond MS, Weaver SC, Xie X, Shi PY. A trans -complementation system for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33501436 DOI: 10.1101/2021.01.16.426970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The biosafety level-3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research and countermeasure development. Here we report a trans -complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans -complementation system consists of two components: a genomic viral RNA containing a deletion of ORF3 and envelope gene, and a producer cell line expressing the two deleted genes. Trans- complementation of the two components generates virions that can infect naive cells for only one round, but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. The results suggest that the trans -complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.
Collapse
|
549
|
Ma M, Badeti S, Chen CH, Pinter A, Jiang Q, Shi L, Zhou R, Xu H, Li Q, Gause W, Liu D. CAR-NK Cells Effectively Target the D614 and G614 SARS-CoV-2-infected Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33469580 DOI: 10.1101/2021.01.14.426742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious presenting a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants, though the current therapeutic options remain limited and expensive. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet to be documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in preventing and treating severe cases of COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its D614G mutant. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein, therefore would be more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G mutant. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently published CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.
Collapse
|
550
|
Mellet J, Pepper MS. A COVID-19 Vaccine: Big Strides Come with Big Challenges. Vaccines (Basel) 2021; 9:vaccines9010039. [PMID: 33440895 PMCID: PMC7827578 DOI: 10.3390/vaccines9010039] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
As of 8 January 2021, there were 86,749,940 confirmed coronavirus disease 2019 (COVID-19) cases and 1,890,342 COVID-19-related deaths worldwide, as reported by the World Health Organization (WHO). In order to address the COVID-19 pandemic by limiting transmission, an intense global effort is underway to develop a vaccine against SARS-CoV-2. The development of a safe and effective vaccine usually requires several years of pre-clinical and clinical stages of evaluation and requires strict regulatory approvals before it can be manufactured in bulk and distributed. Since the global impact of COVID-19 is unprecedented in the modern era, the development and testing of a new vaccine are being expedited. Given the high-level of attrition during vaccine development, simultaneous testing of multiple candidates increases the probability of finding one that is effective. Over 200 vaccines are currently in development, with over 60 candidate vaccines being tested in clinical trials. These make use of various platforms and are at different stages of development. This review discusses the different phases of vaccine development and the various platforms in use for candidate COVID-19 vaccines, including their progress to date. The potential challenges once a vaccine becomes available are also addressed.
Collapse
|