501
|
Zhu Q, Yamagata K, Miura A, Shihara N, Horikawa Y, Takeda J, Miyagawa J, Matsuzawa Y. T130I mutation in HNF-4alpha gene is a loss-of-function mutation in hepatocytes and is associated with late-onset Type 2 diabetes mellitus in Japanese subjects. Diabetologia 2003; 46:567-73. [PMID: 12669197 DOI: 10.1007/s00125-003-1067-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Revised: 12/06/2002] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Mutations in hepatocyte nuclear factor (HNF)-4alpha gene cause a form of maturity-onset diabetes of the young (MODY1). The T130I mutation is a rare missense mutation, which affects a conserved amino acid in a DNA binding domain. This mutation can be found in the general population, so this variant alone does not cause MODY. However, its significance in the development of late-onset Type 2 diabetes is not known. METHODS We screened 423 unrelated Japanese patients with late-onset Type 2 diabetes and 354 unrelated non-diabetic control subjects for the T130I mutation in the HNF-4alpha gene. The transactivation ability of T130I-HNF-4alpha was assessed using reporter gene assay. RESULTS The frequency of the T130I mutation was higher in Type 2 diabetic patients ( p=0.015, odds ratio 4.3, 95%CI 1.24-14.98) than control subjects. The serum HDL-cholesterol concentration was lower in Type 2 diabetic patients with the T130I mutation compared with those without this mutation ( p=0.006). Reporter gene analysis showed that T130I-HNF-4alpha transcriptional activity was not impaired compared with wild-type HNF-4alpha in Hela and MIN6 cells, but it was reduced in HepG2 and primary cultured mouse hepatocytes (27-78% of wild type, p<0.05). CONCLUSION/INTERPRETATION Our findings suggest that T130I-HNF-4alpha is a loss-of-function mutation in hepatocytes and that this mutation is associated with late-onset Type 2 diabetes in Japanese subjects. The T130I mutation in the HNF-4alpha gene might be involved in the development of Type 2 diabetes in the Japanese population.
Collapse
Affiliation(s)
- Q Zhu
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, B5, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
502
|
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003; 278:10297-303. [PMID: 12525490 DOI: 10.1074/jbc.m212307200] [Citation(s) in RCA: 474] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple studies suggest that lipid oversupply to skeletal muscle contributes to the development of insulin resistance, perhaps by promoting the accumulation of lipid metabolites capable of inhibiting signal transduction. Herein we demonstrate that exposing muscle cells to particular saturated free fatty acids (FFAs), but not mono-unsaturated FFAs, inhibits insulin stimulation of Akt/protein kinase B, a serine/threonine kinase that is a central mediator of insulin-stimulated anabolic metabolism. These saturated FFAs concomitantly induced the accumulation of ceramide and diacylglycerol, two products of fatty acyl-CoA that have been shown to accumulate in insulin-resistant tissues and to inhibit early steps in insulin signaling. Preventing de novo ceramide synthesis negated the antagonistic effect of saturated FFAs toward Akt/protein kinase B. Moreover, inducing ceramide buildup recapitulated and augmented the inhibitory effect of saturated FFAs. By contrast, diacylglycerol proved dispensable for these FFA effects. Collectively these results identify ceramide as a necessary and sufficient intermediate linking saturated fats to the inhibition of insulin signaling.
Collapse
Affiliation(s)
- Jose Antonio Chavez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
503
|
Lan H, Rabaglia ME, Stoehr JP, Nadler ST, Schueler KL, Zou F, Yandell BS, Attie AD. Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 2003; 52:688-700. [PMID: 12606510 DOI: 10.2337/diabetes.52.3.688] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes.
Collapse
Affiliation(s)
- Hong Lan
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
504
|
Fisher SJ, Kahn CR. Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J Clin Invest 2003; 111:463-8. [PMID: 12588884 PMCID: PMC151923 DOI: 10.1172/jci16426] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We and others have suggested that insulin predominantly acts indirectly to inhibit hepatic glucose production (HGP) via suppression of gluconeogenic precursors, FFAs, and glucagon. To test that hypothesis, we performed high-dose hyperinsulinemic-euglycemic clamps using [3-(3)H]-glucose in liver-specific insulin receptor knockout (LIRKO) mice, LIRKO mice treated with streptozotocin (LIRKO+STZ), and controls. In LIRKO mice, fasted glucose was normal, but insulin levels were elevated tenfold. STZ treatment reduced insulinemia by 60% with resulting hyperglycemia. Interestingly, basal HGP was similar in all three groups. During the clamp, HGP was suppressed by 82 +/- 17% in controls, but was not suppressed in either LIRKO or LIRKO+STZ mice. Glucose infusion and utilization were impaired ( approximately 50%) in LIRKO and LIRKO+STZ mice versus controls. Insulin suppressed FFAs similarly in all groups ( approximately 46%). Glucagon was not significantly suppressed during the clamp. Thus, in LIRKO mice, (a) high-dose insulin fails to suppress HGP indicating that both direct and indirect effects of insulin require an intact insulin-signaling pathway in the liver; (b) primary hepatic insulin resistance leads to hyperinsulinemia and secondary extrahepatic insulin resistance; and (c) lowering insulin levels with STZ tended to improve extrahepatic insulin sensitivity but failed to reveal the previously postulated indirect role of insulin in suppressing HGP.
Collapse
Affiliation(s)
- Simon J Fisher
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston. Massachusetts 02215, USA
| | | |
Collapse
|
505
|
Kamei Y, Mizukami J, Miura S, Suzuki M, Takahashi N, Kawada T, Taniguchi T, Ezaki O. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett 2003; 536:232-6. [PMID: 12586369 DOI: 10.1016/s0014-5793(03)00062-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipoprotein lipase (LPL) plays a role in lipid usage in skeletal muscle by hydrolyzing plasma triglycerides into fatty acids, which are further utilized for beta-oxidation. Lipid usage is stimulated during fasting, diabetes mellitus and exercise, concomitant with enhanced LPL expression in skeletal muscle. Here we show that the forkhead type transcription factor FKHR is strongly induced in skeletal muscle in fasting mice, in mice with streptozotocin-induced diabetes and in mice after treadmill running. Ectopic expression of FKHR enhanced LPL gene expression in C2C12 muscle cells in culture. These results implicate FKHR as an important modulator of lipid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Yasutomi Kamei
- PRESTO, Japan Science and Technology Corporation, National Institute of Health and Nutrition, 1-23-1, Toyama Shinjuku-ku, Tokyo 162-863, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
506
|
Colombo C, Haluzik M, Cutson JJ, Dietz KR, Marcus-Samuels B, Vinson C, Gavrilova O, Reitman ML. Opposite effects of background genotype on muscle and liver insulin sensitivity of lipoatrophic mice. Role of triglyceride clearance. J Biol Chem 2003; 278:3992-9. [PMID: 12456680 DOI: 10.1074/jbc.m207665200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolic phenotype of the A-ZIP/F-1 (AZIP) lipoatrophic mouse is different depending on its genetic background. On both the FVB/N (FVB) and C57BL/6J (B6) backgrounds, AZIP mice have a similarly severe lack of white adipose tissue and comparably increased insulin levels and triglyceride secretion rates. However, on the B6 background, the AZIP mice have less hyperglycemia, lower circulating triglyceride and fatty acid levels, and lower mortality. AZIP characteristics that are more severe on the B6 background include increased liver size and liver triglyceride content. A unifying hypothesis is that the B6 strain has higher triglyceride clearance into the liver, with lower triglyceride levels elsewhere. This may account for the observation that the B6 AZIP mice have less insulin-resistant muscles and more insulin-resistant livers, than do the FVB AZIP mice. B6 wild type, as well as B6 AZIP, mice have increased triglyceride clearance relative to FVB, which may be explained in part by higher serum lipase levels and liver CD36/fatty acid translocase mRNA levels. Thus, it is likely that increased triglyceride clearance in B6, as compared with FVB, mice contributes to the strain differences in insulin resistance and lipid metabolism.
Collapse
Affiliation(s)
- Carlo Colombo
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
507
|
Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37:343-50. [PMID: 12540784 DOI: 10.1053/jhep.2003.50048] [Citation(s) in RCA: 698] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ob/ob mice, a model for nonalcoholic fatty liver disease (NAFLD), develop intestinal bacterial overgrowth and overexpress tumor necrosis factor alpha (TNF-alpha). In animal models for alcoholic fatty liver disease (AFLD), decontaminating the intestine or inhibiting TNF-alpha improves AFLD. Because AFLD and NAFLD may have a similar pathogenesis, treatment with a probiotic (to modify the intestinal flora) or anti-TNF antibodies (to inhibit TNF-alpha activity) may improve NAFLD in ob/ob mice. To evaluate this hypothesis, 48 ob/ob mice were given either a high-fat diet alone (ob/ob controls) or the same diet + VSL#3 probiotic or anti-TNF antibodies for 4 weeks. Twelve lean littermates fed a high-fat diet served as controls. Treatment with VSL#3 or anti-TNF antibodies improved liver histology, reduced hepatic total fatty acid content, and decreased serum alanine aminotransferase (ALT) levels. These benefits were associated with decreased hepatic expression of TNF-alpha messenger RNA (mRNA) in mice treated with anti-TNF antibodies but not in mice treated with VSL#3. Nevertheless, both treatments reduced activity of Jun N-terminal kinase (JNK), a TNF-regulated kinase that promotes insulin resistance, and decreased the DNA binding activity of nuclear factor kappaB (NF-kappaB), the target of IKKbeta, another TNF-regulated enzyme that causes insulin resistance. Consistent with treatment-related improvements in hepatic insulin resistance, fatty acid beta-oxidation and uncoupling protein (UCP)-2 expression decreased after treatment with VSL#3 or anti-TNF antibodies. In conclusion, these results support the concept that intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and NAFLD and suggest novel therapies for these common conditions.
Collapse
Affiliation(s)
- Zhiping Li
- The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a well recognised form of chronic liver disease that has recently gained greater recognition. Originally described in the late 1950s, NAFLD is currently considered the leading cause of abnormal liver enzyme levels in the US, closely paralleling the increase in obesity and diabetes mellitus. NAFLD has a worldwide distribution, affecting both adults and children, and typically is seen in association with obesity, diabetes, hypertension and hypertriglyceridaemia. Most patients are asymptomatic and usually present with mild elevations in aminotransferases. The natural history of NAFLD is not clearly defined but progression to cirrhosis and end-stage liver disease is well recognised in some patients. The accumulation of hepatic steatosis is thought to occur initially, primarily through hepatic and peripheral insulin resistance, which leads to altered glucose and free fatty acid metabolism. The progression from simple fatty liver to more severe forms of NAFLD (nonalcoholic steatohepatitis and cirrhosis) is much less clear but evidence suggests that oxidative stress may preferentially enhance proinflammatory cytokines, which leads to cellular adaptations and dysfunction followed by development of inflammation, necrosis and fibrosis. Therapeutic modalities remain limited and are largely focused on correcting the underlying insulin resistance or reducing oxidative stress. However, at the present time, there are several limitations to the current potential therapies, mainly because of the lack of large-scale, prospective, randomised studies, as well as clearly defined histological endpoints. Ultimately, the future for potential therapeutic modalities to treat this disease are quite promising, but further research is needed to clearly demonstrate which therapy or therapies will be effective at eliminating fatty liver disease and its potential complications.
Collapse
Affiliation(s)
- Stephen A Harrison
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | | |
Collapse
|
509
|
Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277:50230-6. [PMID: 12006582 DOI: 10.1074/jbc.m200958200] [Citation(s) in RCA: 1111] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent studies have demonstrated that fatty acids induce insulin resistance in skeletal muscle by blocking insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase). To examine the mechanism by which fatty acids mediate this effect, rats were infused with either a lipid emulsion (consisting mostly of 18:2 fatty acids) or glycerol. Intracellular C18:2 CoA increased in a time-dependent fashion, reaching an approximately 6-fold elevation by 5 h, whereas there was no change in the concentration of any other fatty acyl-CoAs. Diacylglycerol (DAG) also increased transiently after 3-4 h of lipid infusion. In contrast there was no increase in intracellular ceramide or triglyceride concentrations during the lipid infusion. Increases in intracellular C18:2 CoA and DAG concentration were associated with protein kinase C (PKC)-theta activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and IRS-1 associated PI3-kinase activity, which were associated with an increase in IRS-1 Ser(307) phosphorylation. These data support the hypothesis that an increase in plasma fatty acid concentration results in an increase in intracellular fatty acyl-CoA and DAG concentrations, which results in activation of PKC-theta leading to increased IRS-1 Ser(307) phosphorylation. This in turn leads to decreased IRS-1 tyrosine phosphorylation and decreased activation of IRS-1-associated PI3-kinase activity resulting in decreased insulin-stimulated glucose transport activity.
Collapse
Affiliation(s)
- Chunli Yu
- Department of Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Boucher P, Ducluzeau PH, Davelu P, Andreelli F, Vallier P, Riou JP, Laville M, Vidal H. Expression and regulation by insulin of low-density lipoprotein receptor-related protein mRNA in human skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:226-31. [PMID: 12393177 DOI: 10.1016/s0925-4439(02)00169-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evidence suggests that increased hydrolysis and/or uptake of triglyceride-rich lipoprotein particles in skeletal muscle can be involved in insulin resistance. We determined the steady state mRNA levels of the low-density lipoprotein-related receptor (LRP) and lipoprotein lipase (LPL) in skeletal muscle of eight healthy lean control subjects, eight type 2 diabetic patients and eight nondiabetic obese individuals. The regulation by insulin of LRP and LPL mRNA expression was also investigated in biopsies taken before and at the end of a 3 h euglycemic hyperinsulinemic clamp (insulinemia of about 1 nM). LRP mRNA was expressed in human skeletal muscle (1.3+/-0.1 amol/microg total RNA in control subjects). Type 2 diabetic patients, but not nondiabetic obese subjects, were characterized by a reduced expression of LRP (0.8+/-0.2 and 1.3+/-0.3 amol/microg total RNA in diabetic and obese patients, respectively; P<0.05 in diabetic vs. control subjects). Insulin infusion decreased LRP mRNA levels in muscle of the control subjects but not in muscle of type 2 diabetic and nondiabetic obese patients. Similar results were found when investigating the regulation of the expression of LPL. Taken together, these results did not support the hypothesis that a higher capacity for clearance or hydrolysis of circulating triglycerides in skeletal muscle is present during obesity- or type 2 diabetes-associated insulin resistance.
Collapse
|
511
|
Abstract
Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.
Collapse
Affiliation(s)
- Martin Merkel
- Department of Medicine, University of Hamburg, Hamburg, Germany. Department of Medicine, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | |
Collapse
|
512
|
Abstract
Different types of lean mice have been produced by genetic manipulation. Leanness can result from deficiency of stored energy or a lack of adipocytes to store the lipid. Mice lacking functional adipocytes are usually insulin resistant and have fatty livers, and elevated circulating triglyceride levels. Insulin resistance may result from the lack of adipocyte hormones (such as leptin) and increased metabolite (such as triglyceride) levels in nonadipose tissue. Mice with depleted adipocyte triglyceride levels typically are insulin sensitive and have normal or low liver and circulating triglycerides. Mechanisms to produce depleted adipocytes include increased energy expenditure by peripheral tissues, peripheral mechanisms to decrease food intake, and altered central regulation of these processes.
Collapse
Affiliation(s)
- Marc L Reitman
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-1770, USA.
| |
Collapse
|
513
|
Abstract
Long-chain fatty acids are an important constituent of the diet and they contribute to a multitude of cellular pathways and functions. Uptake of long-chain fatty acids across plasma membranes is the first step in fatty acid utilization, and recent evidence supports an important regulatory role for this process. Although uptake of fatty acids involves two components, passive diffusion through the lipid bilayer and protein-facilitated transfer, the latter component appears to play the major role in mediating uptake by key tissues. Identification of several proteins as fatty acid transporters, and emerging evidence from genetically altered animal models for some of these proteins, has contributed significant insight towards understanding the limiting role of transport in the regulation of fatty acid utilization. We are also beginning to better appreciate how disturbances in fatty acid utilization influence general metabolism and contribute to metabolic pathology.
Collapse
Affiliation(s)
- Tahar Hajri
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, 11794-8661, USA.
| | | |
Collapse
|
514
|
Ruan H, Miles PDG, Ladd CM, Ross K, Golub TR, Olefsky JM, Lodish HF. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes 2002; 51:3176-88. [PMID: 12401708 DOI: 10.2337/diabetes.51.11.3176] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite extensive studies implicating tumor necrosis factor (TNF)-alpha as a contributing cause of insulin resistance, the mechanism(s) by which TNF-alpha alters energy metabolism in vivo and the tissue specificity of TNF-alpha action are unclear. Here, we investigated the effects of TNF-alpha infusion on gene expression and energy metabolism in adult rats. A 1-day TNF-alpha treatment decreased overall insulin sensitivity and caused a 70% increase (P = 0.005) in plasma levels of free fatty acids (FFAs) and a 46% decrease (P = 0.01) in ACRP30. A 4-day TNF-alpha infusion caused insulin resistance and significant elevation of plasma levels of FFAs and triglycerides and reduction of ACRP30. Plasma glucose concentration was not altered following TNF-alpha infusion for up to 4 days. As revealed by oligonucleotide microarrays, TNF-alpha evoked major and rapid changes in adipocyte gene expression, favoring FFA release and cytokine production, and fewer changes in liver gene expression, but favoring FFA and cholesterol synthesis and VLDL production. There was only a moderate repressive effect on skeletal muscle gene expression. We demonstrate that TNF-alpha antagonizes the actions of insulin, at least in part, through regulation of adipocyte gene expression including reduction in ACRP30 mRNA and induction of lipolysis resulting in increased plasma FFAs. TNF-alpha later alters systemic energy homeostasis that closely resembles the insulin resistance phenotype. Our data suggest that blockade of TNF-alpha action in adipose tissue may prevent TNF-alpha-induced insulin resistance in vivo.
Collapse
Affiliation(s)
- Hong Ruan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | |
Collapse
|
515
|
Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002; 13:471-81. [PMID: 12352010 DOI: 10.1097/00041433-200210000-00002] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize and discuss recent advances in the understanding of the physiological role of lipoprotein lipase in lipid and energy metabolism. RECENT FINDINGS Studies on the transcriptional and the posttranscriptional level of lipoprotein lipase expression have provided new insights into the complex mechanisms that are involved in the regulation of the enzyme. Additionally a large body of evidence from both human studies and animal models suggests that the level of lipoprotein lipase expression in a given tissue is the rate limiting process for the uptake of triglyceride derived fatty acids. Imbalances in the partitioning of fatty acids among peripheral tissues have major metabolic consequences. For example, in mice both decreased lipoprotein lipase activities in adipose tissue and increased activity in muscle are associated with resistance to obesity; lack of lipoprotein lipase activity in macrophages is correlated with a decreased susceptibility to develop atherosclerotic lesions and overexpression of the enzyme in muscle is associated with increased blood glucose levels and insulin resistance. SUMMARY Considering the central role of lipoprotein lipase in energy metabolism it is a reasonable goal to discover and develop new drugs that affect the tissue specific expression pattern of the enzyme.
Collapse
Affiliation(s)
- Karina Preiss-Landl
- Institute of Molecular Bioloogy, Biochemistry and Microbiology, Karl-Frasnzens-University, Graz, Heinrichstrasse 31a, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
516
|
Houmard JA, Tanner CJ, Yu C, Cunningham PG, Pories WJ, MacDonald KG, Shulman GI. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Diabetes 2002; 51:2959-63. [PMID: 12351433 DOI: 10.2337/diabetes.51.10.2959] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increases in intramyocellular long-chain fatty acyl-CoAs (LCACoA) have been implicated in the pathogenesis of insulin resistance in skeletal muscle. To test this hypothesis, we measured muscle (vastus lateralis) LCACoA content and insulin action in morbidly obese patients (n = 11) before and after weight loss (gastric bypass surgery). The intervention produced significant weight loss (142.3 +/- 6.8 vs. 79.6 +/- 4.1 kg for before versus after surgery, respectively). Fasting insulin decreased by approximately 84% (23.3 +/- 3.8 vs. 3.8 +/- 0.5 mU/ml), and insulin sensitivity, as determined by minimal model, increased by approximately 360% (1.2 +/- 0.3 vs. 4.1 +/- 0.5 min(-1). [ micro U/kg(-1)]) indicating enhanced insulin action. Muscle palmityl CoA (16:0; 0.54 +/- 0.08 vs. 0.35 +/- 0.04 nmol/g wet wt) concentration decreased by approximately 35% (P < 0.05) with weight loss, whereas stearate CoA (18:0; -17%; 0.65 +/- 0.05 vs. 0.54 +/- 0.03 nmol/g wet wt) and linoleate CoA (18:2; -30%; 2.47 +/- 0.27 vs. 1.66 +/- 0.19 nmol/g wet wt) were also reduced (P < 0.05). There were no statistically significant declines in muscle palmitoleate CoA (16:1), oleate CoA (18:1), or total LCACoA content. These data suggest that a reduction in intramuscular LCACoA content may be responsible, at least in part, for the enhanced insulin action observed with weight loss in obese individuals.
Collapse
Affiliation(s)
- Joseph A Houmard
- Department of Exercise and Sport Science, and the Human Performance Laboratory and Diabetes/Obesity Center, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | | | | | | | | | |
Collapse
|
517
|
Abstract
Insulin resistance is a principal feature of type 2 diabetes and precedes the clinical development of the disease by 10 to 20 years. Insulin resistance is caused by the decreased ability of peripheral target tissues (especially muscle) to respond properly to normal circulating concentrations of insulin. Defects in muscle glycogen synthesis play a significant role in insulin resistance, and 3 potentially rate-controlling steps in muscle glucose metabolism have been implicated in its pathogenesis: glycogen synthase, hexokinase, and GLUT4 (the major insulin-stimulated glucose transporter). Results from recent studies using nuclear magnetic resonance (NMR) spectroscopy implicate intracellular defects in glucose transport as the rate-controlling step for insulin-mediated glucose uptake in muscle. These alterations in glucose transport activity are likely the result of dysregulation of intramyocellular fatty acid metabolism, whereby fatty acids cause insulin resistance by activation of a serine kinase cascade, leading to decreased insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and decreased IRS-1-associated phosphatidylinositol 3-kinase activity, a required step in insulin-stimulated glucose transport into muscle. The thiazolidinedione class of antidiabetic agents directly targets insulin resistance in skeletal muscle by improving glucose transport activity and insulin-stimulated muscle glycogen synthesis. Although the precise mechanism of action is not known, recent NMR studies support the hypothesis that these agents improve insulin action in skeletal muscle and liver by promoting a redistribution of fat out of these tissues and into peripheral adipocytes.
Collapse
Affiliation(s)
- Kitt F Petersen
- Howard Hughes Medical Institute, Department of Internal Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|
518
|
Abstract
PURPOSE OF REVIEW The number of people affected with obesity and type 2 diabetes has reached epidemic proportions worldwide. Insulin resistance, a common feature of both conditions, has come under intense investigation. This review focuses on our current understanding of the insulin signaling cascade and potential mechanisms of regulation. RECENT FINDINGS Recent studies have concentrated on inhibition of insulin-stimulated glucose uptake by free fatty acids as the primary cause of insulin resistance, particularly in muscle, a major site of insulin-stimulated glucose disposal. Mouse models of muscle-specific lipoprotein lipase overexpression permit closer examination of the consequences of lipid oversupply to muscle. Such mice exhibit whole-body and muscle insulin resistance, accompanied by increased accumulation of intramyocellular triglyceride and other fatty acid metabolites (i.e. long-chain acyl coenzyme A, diacylglycerol, and ceramide). These molecules may impede glucose transport by interfering with insulin signal transduction. The mechanisms for the inhibitory effect of free fatty acids on insulin-stimulated glucose transport are complex, and multiple pathways may be involved. Although key molecules have been identified, no single, clearly defined pathway has been established. SUMMARY The mouse model of muscle-specific lipoprotein lipase overexpression allows closer examination of increased free fatty acid delivery to the muscle and of effects on insulin sensitivity. Further study of this model may provide additional insight into the role that lipids play in the development of insulin resistance, and may possibly help to identify novel approaches to prevention or treatment.
Collapse
Affiliation(s)
- Leslie K Pulawa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
519
|
Abstract
PURPOSE OF REVIEW The prevalence of obesity and of type 2 diabetes mellitus are increasing at an accelerating rate in the USA and other industrialized countries. Free fatty acids (FFAs) have emerged as a major link between obesity and insulin resistance/type 2 diabetes mellitus. A review of the interaction between FFAs and glucose metabolism is therefore timely and relevant. RECENT FINDINGS Acute and chronic elevations in plasma FFAs produce peripheral (muscle) and hepatic insulin resistance. In skeletal muscle, this process is associated with accumulation of intramyocellular triglyceride and diacylglycerol, and with activation of protein kinase C (the beta and delta isoforms). It is hypothesized that FFAs interfere with insulin signaling via protein kinase C-induced serine phosphorylation of insulin receptor substrate-1. In the liver, FFAs cause insulin resistance by interfering with insulin suppression of glycogenolysis. In the beta cells, FFAs potentiate glucose-stimulated insulin secretion. It is postulated that this prevents the development type 2 diabetes mellitus in the majority (approximately 80%) of obese insulin-resistant people. SUMMARY Elevated plasma FFA levels have been shown to account for up to 50% of insulin resistance in obese patients with type 2 diabetes mellitus. Lowering of FFAs in these patients or interfering with steps in the pathway through which FFAs cause insulin resistance could be a new and promising approach to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Guenther Boden
- Division of Endocrinology/Diabetes/Metabolism and the General Clinical Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA..
| |
Collapse
|
520
|
Chou CJ, Haluzik M, Gregory C, Dietz KR, Vinson C, Gavrilova O, Reitman ML. WY14,643, a peroxisome proliferator-activated receptor alpha (PPARalpha ) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice. J Biol Chem 2002; 277:24484-9. [PMID: 11994294 DOI: 10.1074/jbc.m202449200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WY14,643 is a specific peroxisome proliferator-activated receptor alpha (PPARalpha) agonist with strong hypolipidemic effects. Here we have examined the effect of WY14,643 in the A-ZIP/F-1 mouse, a model of severe lipoatrophic diabetes. With 1 week of treatment, all doses of WY14,643 that were tested normalized serum triglyceride and fatty acid levels. Glucose and insulin levels also improved but only with high doses and longer treatment duration. WY14,643 reduced liver and muscle triglyceride content and increased levels of mRNA encoding fatty acid oxidation enzymes. In liver, the elevated lipogenic mRNA profile (including PPARgamma) in A-ZIP/F-1 mice remained unchanged. These results suggest that WY14,643 acts by increasing beta-oxidation rather by than decreasing lipogenesis or lipid uptake. Hyperinsulinemic euglycemic clamp studies indicated that WY14,643 treatment improved liver more than muscle insulin sensitivity and that hepatic mRNA levels of gluconeogenic enzymes were reduced. Combination treatment with both WY14,643 and a PPARgamma ligand, rosiglitazone, did not lower glucose levels more effectively than did treatment with WY14,643 alone. These data support the hypothesis that reducing intracellular triglycerides in non-adipose tissues improves insulin sensitivity and suggest that further investigation of the role of PPARalpha agonists in the treatment of lipoatrophic diabetes is warranted.
Collapse
Affiliation(s)
- Chieh J Chou
- Diabetes Branch, NIDDK and the Metabolism Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
521
|
Le Roith D, Kim H, Fernandez AM, Accili D. Inactivation of muscle insulin and IGF-I receptors and insulin responsiveness. Curr Opin Clin Nutr Metab Care 2002; 5:371-5. [PMID: 12107371 DOI: 10.1097/00075197-200207000-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review will outline the recent advances in the area of insulin-stimulated skeletal muscle glucose uptake and its effect on whole body glucose homeostasis, using gene-deletion and transgenic mouse models. RECENT FINDINGS Insulin resistance is often the first abnormality detected in cases of type 2 diabetes, and is seen at the level of the peripheral tissues especially muscle. Both the insulin receptor and the insulin-like growth factor I receptor are capable of stimulating glucose uptake into skeletal muscle. One model involves the gene deletion of muscle glucose transport protein 4, which leads to severe insulin resistance and hyperglycemia, and a second model using a transgenic approach abrogates the function of the insulin-like growth factor I receptor and the insulin receptor resulting in severe insulin resistance and progression to diabetes. Both models demonstrate that abrogation of the insulin-like growth factor I receptor and the insulin receptor or a common signalling pathway must be inhibited to cause sufficient insulin resistance to lead to type 2 diabetes; with either glucotoxicity or lipotoxicity being involved in the progression from severe to resistance to full-blown type 2 diabetes. SUMMARY Thus, abrogation of insulin-stimulated glucose uptake in skeletal muscle, at least in mice, may lead to severe insulin resistance and diabetes.
Collapse
Affiliation(s)
- Derek Le Roith
- Clinical Endocrinology Branch, National Institutes of Health, Bethesda, Maryland 20892-1758, USA.
| | | | | | | |
Collapse
|
522
|
Mauvais-Jarvis F, Kulkarni RN, Kahn CR. Knockout models are useful tools to dissect the pathophysiology and genetics of insulin resistance. Clin Endocrinol (Oxf) 2002; 57:1-9. [PMID: 12100063 DOI: 10.1046/j.1365-2265.2002.01563.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The development of type 2 diabetes is linked to insulin resistance coupled with a failure of pancreatic beta-cells to compensate by adequate insulin secretion. DESIGN Here, we review studies obtained from genetically engineered mice that provide novel insights into the pathophysiology of insulin resistance. RESULTS Knockout models with monogenic impairment in insulin action have highlighted the potential role for insulin signalling molecules in insulin resistance at a tissue-specific level. Polygenic models have strengthened the idea that minor defects in insulin secretion and insulin action, when combined, can lead to diabetes, emphasizing the importance of interactions of different genetic loci in the production of diabetes. Knockout models with tissue-specific alterations in glucose or lipid metabolism have dissected the individual contributions of insulin-responsive organs to glucose homeostasis. They have demonstrated the central role of fat as an endocrine tissue in the maintenance of insulin sensitivity and the development of insulin resistance. Finally, these models have shown the potential role of impaired insulin action in pancreatic beta-cells and brain in the development of insulin deficiency and obesity.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Endocrinology and Diabetes, Saint-Louis Hospital and University of Paris VII Medical School, France.
| | | | | |
Collapse
|
523
|
Wadum MCT, Villadsen JK, Feddersen S, Møller RS, Neergaard TBF, Kragelund BB, Højrup P, Faergeman NJ, Knudsen J. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids. Biochem J 2002; 365:165-72. [PMID: 12071849 PMCID: PMC1222666 DOI: 10.1042/bj20011727] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl-CoA-binding protein were replaced by cysteine residues, which were covalently modified with 6-bromoacetyl-2-dimethylaminonaphthalene to make the two fluorescent acyl-CoA indicators (FACIs) FACI-24 and FACI-53. FACI-24 and FACI-53 showed fluorescence emission maximum at 510 and 525 nm respectively, in the absence of ligand (excitation 387 nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495 nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460 nm upon binding of C14-C20 saturated and unsaturated acyl-CoA esters. Both indicators bind long-chain (>C14) acyl-CoA esters with high specificity and affinity (K(d)=0.6-1.7 nM). FACI-53 showed a high fluorescence yield for C8-C12 acyl chains. It is shown that FACI-24 acts as a sensitive acyl-CoA sensor for measuring the concentration of free acyl-CoA, acyl-CoA synthetase activity and the concentrations of free fatty acids after conversion of the fatty acid into their respective acyl-CoA esters.
Collapse
Affiliation(s)
- Majken C T Wadum
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
524
|
Geisler JG, Zawalich W, Zawalich K, Lakey JRT, Stukenbrok H, Milici AJ, Soeller WC. Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes 2002; 51:2158-69. [PMID: 12086946 DOI: 10.2337/diabetes.51.7.2158] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes is characterized by loss of beta-cell mass and concomitant deposition of amyloid derived from islet amyloid polypeptide (IAPP). Previously we have shown that expression of human IAPP (huIAPP) in islets of transgenic mice results in either a rapid onset of hyperglycemia in mice homozygous for the huIAPP transgene on a lean background (FVB/N) or a gradual hyperglycemia in mice hemizygous for the huIAPP transgene on an obese background (A(vy)/A). In both strains, only the males routinely develop diabetes. To investigate this sexual dimorphism, we treated young prediabetic A(vy)/A mice transgenic for huIAPP (huIAPP-A(vy)) with 17beta-estradiol (E2). The treatment completely blocked the progression to hyperglycemia but also prevented the associated weight gain in these mice. Immunohistochemistry of pancreatic sections demonstrated normal islet morphology with no apparent deposition of islet amyloid. E2 treatment of 1-year-old huIAPP-A(vy) diabetic males rapidly reverses obesity and hyperglycemia. To determine the effects of E2 in a nonobese model, we also treated prediabetic, ad libitum-fed and pair-fed Lean-huIAPP transgenic males. E2 completely blocked the progression to hyperglycemia with no significant effect on body weight. Pancreatic insulin content and plasma insulin concentration of Lean-huIAPP transgenic mice increased in a dose-dependent manner. We demonstrated the presence of estrogen receptor (ER)-alpha mRNA in mouse and human islets. By also confirming the presence of ER-alpha protein in islets, we discovered a novel 58-kDa ER-alpha isoform in mice and a 52-kDa isoform in humans, in the absence of the classic 67-kDa protein found in most tissues of both species. The demonstrated presence of ER-alpha in mouse and human islets is consistent with a direct effect on islet function. We conclude that exogenous E2 administered to male mice may block human IAPP-mediated beta-cell loss both by direct action on beta-cells and by decreasing insulin demand through inhibition of weight gain or increasing insulin action.
Collapse
|
525
|
Chen HC, Farese RV. Fatty acids, triglycerides, and glucose metabolism: recent insights from knockout mice. Curr Opin Clin Nutr Metab Care 2002; 5:359-63. [PMID: 12107369 DOI: 10.1097/00075197-200207000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Cellular lipid metabolism plays an important role in modulating glucose metabolism. Recent models of mice with disruptions in genes involved in cellular fatty acid and triglyceride metabolism have provided insight into the long recognized but incompletely understood relationship between fatty acid metabolism and glucose metabolism. RECENT FINDINGS Here we review findings from mice with deficiency in selected genes involved in the cellular uptake, storage, and hydrolysis of fatty acids. Our review is organized from the perspective of a fatty acid, as it makes its way from the circulation into the anabolic and then catabolic pathways in the cell. Although we focus primarily on the phenotypes of knockout mice, we also point out several transgenic models in which the overexpression phenotype provides complementary information. SUMMARY The inactivation of enzymes in the anabolic process of fatty acid uptake and storage is more likely to enhance tissue glucose disposal or insulin secretion, whereas disruptions in the catabolic process tend to impair insulin action or secretion. These findings suggest that pharmacological inhibition of fatty acid uptake or storage may be an effective strategy for treating insulin resistance and diabetes.
Collapse
Affiliation(s)
- Hubert C Chen
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | |
Collapse
|
526
|
Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, Cline GW, DePaoli AM, Taylor SI, Gorden P, Shulman GI. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002. [PMID: 12021250 DOI: 10.1172/jci200215001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lipodystrophy is a rare disorder that is characterized by selective loss of subcutaneous and visceral fat and is associated with hypertriglyceridemia, hepatomegaly, and disordered glucose metabolism. It has recently been shown that chronic leptin treatment ameliorates these abnormalities. Here we show that chronic leptin treatment improves insulin-stimulated hepatic and peripheral glucose metabolism in severely insulin-resistant lipodystrophic patients. This improvement in insulin action was associated with a marked reduction in hepatic and muscle triglyceride content. These data suggest that leptin may represent an important new therapy to reverse the severe hepatic and muscle insulin resistance and associated hepatic steatosis in patients with lipodystrophy.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, Cline GW, DePaoli AM, Taylor SI, Gorden P, Shulman GI. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002. [PMID: 12021250 DOI: 10.1172/jci0215001] [Citation(s) in RCA: 476] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipodystrophy is a rare disorder that is characterized by selective loss of subcutaneous and visceral fat and is associated with hypertriglyceridemia, hepatomegaly, and disordered glucose metabolism. It has recently been shown that chronic leptin treatment ameliorates these abnormalities. Here we show that chronic leptin treatment improves insulin-stimulated hepatic and peripheral glucose metabolism in severely insulin-resistant lipodystrophic patients. This improvement in insulin action was associated with a marked reduction in hepatic and muscle triglyceride content. These data suggest that leptin may represent an important new therapy to reverse the severe hepatic and muscle insulin resistance and associated hepatic steatosis in patients with lipodystrophy.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
528
|
Sugden MC, Bulmer K, Gibbons GF, Knight BL, Holness MJ. Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem J 2002; 364:361-8. [PMID: 12023878 PMCID: PMC1222580 DOI: 10.1042/bj20011699] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of the present study was to determine whether peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency disrupts the normal regulation of triacylglycerol (TAG) accumulation, hepatic lipogenesis and glycogenesis by fatty acids and insulin using PPARalpha-null mice. In wild-type mice, hepatic TAG concentrations increased (P<0.01) with fasting (24 h), with substantial reversal after refeeding (6 h). Hepatic TAG levels in fed PPARalpha-null mice were 2.4-fold higher than in the wild-type (P<0.05), increased with fasting, but remained elevated after refeeding. PPARalpha deficiency also impaired hepatic glycogen repletion (P<0.001), despite normal insulin and glucose levels after refeeding. Higher levels of plasma insulin were required to support similar levels of hepatic lipogenesis de novo ((3)H(2)O incorporation) in the PPARalpha-null mice compared with the wild-type. This difference was reflected by corresponding changes in the relationship between plasma insulin and the mRNA expression of the lipogenic transcription factor sterol-regulatory-element-binding protein-1c, and that of one of its known targets, fatty acid synthase. In wild-type mice, hepatic pyruvate dehydrogenase kinase (PDK) 4 protein expression (a downstream marker of altered fatty acid catabolism) increased (P<0.01) in response to fasting, with suppression (P<0.001) by refeeding. Although PDK4 up-regulation after fasting was halved by PPARalpha deficiency, PDK4 suppression after refeeding was attenuated. In summary, PPARalpha deficiency leads to accumulation of hepatic TAG and elicits dysregulation of hepatic lipid and carbohydrate metabolism, emphasizing the importance of precise control of lipid oxidation for hepatic fuel homoeostasis.
Collapse
Affiliation(s)
- Mary C Sugden
- Department of Diabetes and Metabolic Medicine, Division of General and Developmental Medicine, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| | | | | | | | | |
Collapse
|
529
|
Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32 Suppl 3:14-23. [PMID: 12028371 DOI: 10.1046/j.1365-2362.32.s3.3.x] [Citation(s) in RCA: 899] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasma free fatty acids (FFA) play important physiological roles in skeletal muscle, heart, liver and pancreas. However, chronically elevated plasma FFA appear to have pathophysiological consequences. Elevated FFA concentrations are linked with the onset of peripheral and hepatic insulin resistance and, while the precise action in the liver remains unclear, a model to explain the role of raised FFA in the development of skeletal muscle insulin resistance has recently been put forward. Over 30 years ago, Randle proposed that FFA compete with glucose as the major energy substrate in cardiac muscle, leading to decreased glucose oxidation when FFA are elevated. Recent data indicate that high plasma FFA also have a significant role in contributing to insulin resistance. Elevated FFA and intracellular lipid appear to inhibit insulin signalling, leading to a reduction in insulin-stimulated muscle glucose transport that may be mediated by a decrease in GLUT-4 translocation. The resulting suppression of muscle glucose transport leads to reduced muscle glycogen synthesis and glycolysis. In the liver, elevated FFA may contribute to hyperglycaemia by antagonizing the effects of insulin on endogenous glucose production. FFA also affect insulin secretion, although the nature of this relationship remains a subject for debate. Finally, evidence is discussed that FFA represent a crucial link between insulin resistance and beta-cell dysfunction and, as such, a reduction in elevated plasma FFA should be an important therapeutic target in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G Boden
- Division of Endocrinology/Diabetes/Metabolism and the General Clinical Research Center, Temple University Hospital, Philadelphia PA 19140, USA.
| | | |
Collapse
|
530
|
Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 2002. [DOI: 10.1172/jci0214596] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
531
|
Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 2002; 109:1381-9. [PMID: 12021254 PMCID: PMC150975 DOI: 10.1172/jci14596] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Deficiency of the membrane protein FAT/CD36 causes a marked defect in fatty acid uptake by various tissues and is genetically linked to insulin resistance in rats and humans. Here, we examined insulin responsiveness of CD36-/- mice. When fed a diet high in complex carbohydrates and low (5%) in fat, these animals cleared glucose faster than the wild-type. In vivo, uptake of 2-fluorodeoxyglucose by muscle was increased severalfold, and in vitro, insulin responsiveness of glycogenesis by the soleus was enhanced. Null mice had lower glycogen levels in muscle and liver, lower muscle triglyceride levels, and increased liver triglyceride content--all findings consistent with increased insulin-sensitivity. However, when the chow diet was switched to one high in fructose, CD36-/- mice but not wild-type mice developed marked glucose intolerance, hyperinsulinemia, and decreased muscle glucose uptake. High-fat diets impaired glucose tolerance equally in both groups, although CD36 deficiency helped moderate insulin-responsive muscle glucose oxidation. In conclusion, CD36 deficiency enhances insulin responsiveness on a high-starch, low-fat diet. It predisposes to insulin resistance induced by high fructose and partially protects from that induced by high-fat diets. In humans, CD36 deficiency may be an important factor in the metabolic adaptation to diet and in susceptibility to some forms of diet-induced pathology.
Collapse
Affiliation(s)
- Tahar Hajri
- Department of Physiology and Biophysics, State University of New York at Stony Brook, New York 11794-8661, USA
| | | | | | | |
Collapse
|
532
|
Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, Cline GW, DePaoli AM, Taylor SI, Gorden P, Shulman GI. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109:1345-50. [PMID: 12021250 PMCID: PMC150981 DOI: 10.1172/jci15001] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophy is a rare disorder that is characterized by selective loss of subcutaneous and visceral fat and is associated with hypertriglyceridemia, hepatomegaly, and disordered glucose metabolism. It has recently been shown that chronic leptin treatment ameliorates these abnormalities. Here we show that chronic leptin treatment improves insulin-stimulated hepatic and peripheral glucose metabolism in severely insulin-resistant lipodystrophic patients. This improvement in insulin action was associated with a marked reduction in hepatic and muscle triglyceride content. These data suggest that leptin may represent an important new therapy to reverse the severe hepatic and muscle insulin resistance and associated hepatic steatosis in patients with lipodystrophy.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
533
|
Affiliation(s)
- Jeanne M Clark
- Department of Medicine, The Johns Hopkins University, 720 Rutland Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
534
|
Abstract
I review evidence that leptin is a liporegulatory hormone that controls lipid homeostasis in nonadipose tissues during periods of overnutrition. When adipocytes store excess calories as triacylglycerol (TG), leptin secretion rises so as to prevent accumulation of lipids in nonadipose tissues, which are not adapted for TG storage. Whenever leptin action is lacking, whether through leptin deficiency or leptin resistance, overnutrition causes disease of nonadipose tissues with generalized steatosis, lipotoxicity, and lipoapoptosis. Examples of such disorders of liporegulation include generalized lipodystrophies, mutations of leptin and leptin receptor genes, and diet-induced obesity. Lipotoxicity of pancreatic beta-cells, myocardium, and skeletal muscle leads, respectively, to type 2 diabetes, cardiomyopathy, and insulin resistance. In humans this constellation of abnormalities is referred to as the metabolic syndrome, a major health problem in the United States. When lipids overaccumulate in nonadipose tissues during overnutrition, fatty acids enter deleterious pathways such as ceramide production, which, through increased nitric oxide formation, causes apoptosis of lipid-laden cells, such as beta-cells and cardiomyocytes. Lipoapoptosis can be prevented by caloric restriction, by thiazolidinedione treatment, and by administration of nitric oxide blockers. There is now substantial evidence that complications of human obesity may reflect lipotoxicity similar to that described in rodents.
Collapse
Affiliation(s)
- Roger H Unger
- Gifford Laboratories, Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA.
| |
Collapse
|
535
|
Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, McGuire JG, Pitas RE, Eckel RH, Farese RV. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest 2002. [DOI: 10.1172/jci0214672] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
536
|
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23:201-29. [PMID: 11943743 DOI: 10.1210/edrv.23.2.0461] [Citation(s) in RCA: 769] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The primary genetic, environmental, and metabolic factors responsible for causing insulin resistance and pancreatic beta-cell failure and the precise sequence of events leading to the development of type 2 diabetes are not yet fully understood. Abnormalities of triglyceride storage and lipolysis in insulin-sensitive tissues are an early manifestation of conditions characterized by insulin resistance and are detectable before the development of postprandial or fasting hyperglycemia. Increased free fatty acid (FFA) flux from adipose tissue to nonadipose tissue, resulting from abnormalities of fat metabolism, participates in and amplifies many of the fundamental metabolic derangements that are characteristic of the insulin resistance syndrome and type 2 diabetes. It is also likely to play an important role in the progression from normal glucose tolerance to fasting hyperglycemia and conversion to frank type 2 diabetes in insulin resistant individuals. Adverse metabolic consequences of increased FFA flux, to be discussed in this review, are extremely wide ranging and include, but are not limited to: 1) dyslipidemia and hepatic steatosis, 2) impaired glucose metabolism and insulin sensitivity in muscle and liver, 3) diminished insulin clearance, aggravating peripheral tissue hyperinsulinemia, and 4) impaired pancreatic beta-cell function. The precise biochemical mechanisms whereby fatty acids and cytosolic triglycerides exert their effects remain poorly understood. Recent studies, however, suggest that the sequence of events may be the following: in states of positive net energy balance, triglyceride accumulation in "fat-buffering" adipose tissue is limited by the development of adipose tissue insulin resistance. This results in diversion of energy substrates to nonadipose tissue, which in turn leads to a complex array of metabolic abnormalities characteristic of insulin-resistant states and type 2 diabetes. Recent evidence suggests that some of the biochemical mechanisms whereby glucose and fat exert adverse effects in insulin-sensitive and insulin-producing tissues are shared, thus implicating a diabetogenic role for energy excess as a whole. Although there is now evidence that weight loss through reduction of caloric intake and increase in physical activity can prevent the development of diabetes, it remains an open question as to whether specific modulation of fat metabolism will result in improvement in some or all of the above metabolic derangements or will prevent progression from insulin resistance syndrome to type 2 diabetes.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, Division of Endocrinology, University of Toronto, Canada M5G 2C4.
| | | | | | | |
Collapse
|
537
|
Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, McGuire JG, Pitas RE, Eckel RH, Farese RV. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest 2002; 109:1049-55. [PMID: 11956242 PMCID: PMC150948 DOI: 10.1172/jci14672] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Accepted: 03/11/2002] [Indexed: 12/19/2022] Open
Abstract
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin and to leptin. Importantly, DGAT1 deficiency protects against insulin resistance and obesity in agouti yellow mice, a model of severe leptin resistance. In contrast, DGAT1 deficiency did not affect energy and glucose metabolism in leptin-deficient (ob/ob) mice, possibly due in part to a compensatory upregulation of DGAT2 expression in the absence of leptin. Our results suggest that inhibition of DGAT1 may be useful in treating insulin resistance and leptin resistance in human obesity.
Collapse
Affiliation(s)
- Hubert C Chen
- Gladstone Institute of Cardiovascular Disease, PO Box 419100, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Lin X, Schonfeld G, Yue P, Chen Z. Hepatic fatty acid synthesis is suppressed in mice with fatty livers due to targeted apolipoprotein B38.9 mutation. Arterioscler Thromb Vasc Biol 2002; 22:476-82. [PMID: 11884293 DOI: 10.1161/hq0302.105271] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Humans and genetically engineered mice with hypobetalipoproteinemia due to truncation-producing mutations of the apolipoprotein B (apoB) gene frequently have fatty livers, because the apoB defect impairs the capacity of livers to export triglycerides (TGs). We assessed the adaptation of hepatic lipid metabolism in our apoB-38.9-bearing mice. Hepatic TG contents were 2- and 4-fold higher in heterozygous and homozygous mice, respectively, compared with wild-type mice. Respective in vivo hepatic fatty acid synthetic rates were reduced to 40% and 15% of the wild-type rate. Hepatic mRNAs for sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and stearoyl coenzyme A desaturase-1 were coordinately decreased. FAS and SREBP-1c mRNA levels were strongly and positively correlated with each other and inversely correlated with hepatic TGs, suggesting that impaired TG export is a potent inhibitor of fatty acid synthesis. In contrast, levels of plasma beta-hydroxybutyrate and of hepatic carnitine palmitoyl transferase and peroxisome proliferator-activated receptor-alpha mRNAs were not altered, implying that beta-oxidation was not affected. Fasting followed by refeeding increased hepatic fatty acid synthesis 56-fold over fasting in normal and heterozygous mice but only 24-fold in homozygous mice. Parallel changes occurred in FAS and SREBP-1c mRNAs. Thus, impairment of very low density lipoprotein export downregulates hepatic fatty acid synthesis, but the adaptation is incomplete, resulting in fatty livers. The signals mediating suppression of FAS and SREBP-1c levels remain to be identified.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | | | | | | |
Collapse
|
539
|
Mantha L, Russell JC, Brindley DN, Deshaies Y. Developmental changes in adipose and muscle lipoprotein lipase activity in the atherosclerosis-prone JCR:LA-corpulent rat. Int J Obes (Lond) 2002; 26:308-17. [PMID: 11896485 DOI: 10.1038/sj.ijo.0801882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Revised: 08/23/2001] [Accepted: 10/01/2001] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To characterize the developmental changes in adipose and muscle lipoprotein lipase (LPL) activity in the atherosclerosis-prone JCR:LA-corpulent rat, and to test the hypothesis that tissue-specific abnormalities in LPL activity precede the establishment of obesity. DESIGN Lean (+/?) and obese cp/cp male JCR:LA rats were studied at 4, 5 and 8 weeks of age, that is at the onset of obesity, and at a time when obesity is well established. Assessment was made of plasma variables related to glucose and lipid metabolism and of LPL activity in several adipose depots, skeletal muscles and the heart. RESULTS At week 4, body weights were identical in both genotypes and began to diverge at week 5. Eight-week-old cp/cp rats weighed 35% more than their lean counterparts. Perirenal and epididymal adipose depot weights were also identical in both genotypes at week 4 and began to increase in cp/cp rats at week 5, whereas the subcutaneous depot of 4-week-old cp/cp rats was slightly enlarged. At week 4, the cp/cp rats were hyperinsulinemic (5-fold), hyperleptinemic (30-fold) and hypertriglyceridemic (3-fold) compared to their lean counterparts, and their liver contained twice as much triglyceride. The 4-week-old cp/cp rats displayed 2-7-fold higher LPL specific activity in the various adipose depots compared to lean rats, and enzyme activity remained higher in obese than in lean rats at all subsequent ages. In contrast, LPL activity in the vastus lateralis, gastrocnemius and heart muscles of 4-week-old obese rats was approximately half that observed in lean animals. CONCLUSION Profound, persistent alterations in the tissue-specific modulation of LPL activity are established in the JCR:LA cp/cp rat prior to the development of frank obesity. The increase in adipose tissue LPL activity and its decrease in muscle tissues are likely to be related to the concomitant alterations in insulinemia and triglyceridemia, respectively. The pre-obesity, tissue-specific alterations in LPL activity may be considered as an integrated adaptation to increased lipid flux aimed at driving lipids toward storage sites and limiting their uptake by triglyceride-laden muscles.
Collapse
Affiliation(s)
- L Mantha
- Centre de recherche sur le métabolisme énergétique, Département d'anatomie et physiologie, Faculté de médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
540
|
Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51:797-802. [PMID: 11872682 PMCID: PMC2995527 DOI: 10.2337/diabetes.51.3.797] [Citation(s) in RCA: 499] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We examined the effect of three months of rosiglitazone treatment (4 mg b.i.d.) on whole-body insulin sensitivity and in vivo peripheral adipocyte insulin sensitivity as assessed by glycerol release in microdialysis from subcutaneous fat during a two-step (20 and 120 mU.m(-2).min(-1)) hyperinsulinemic-euglycemic clamp in nine type 2 diabetic subjects. In addition, the effects of rosiglitazone on liver and muscle triglyceride content were assessed by (1)H-nuclear magnetic resonance spectroscopy. Rosiglitazone treatment resulted in a 68% (P < 0.002) and a 20% (P < 0.016) improvement in insulin-stimulated glucose metabolism during the low- and high- dosage-insulin clamps, respectively, which was associated with approximately 40% reductions in plasma fatty acid concentration (P < 0.05) and hepatic triglyceride content (P < 0.05). These changes were associated with a 39% increase in extramyocellular lipid content (P < 0.05) and a 52% increase in the sensitivity of peripheral adipocytes to the inhibitory effects of insulin on lipolysis (P = 0.04). In conclusion, these results support the hypothesis that thiazolidinediones enhance insulin sensitivity in patients with type 2 diabetes by promoting increased insulin sensitivity in peripheral adipocytes, which results in lower plasma fatty acid concentrations and a redistribution of intracellular lipid from insulin responsive organs into peripheral adipocytes.
Collapse
Affiliation(s)
- Adam B. Mayerson
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
| | - Ripudaman S. Hundal
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
| | - Sylvie Dufour
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
- Department of Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT 06510
| | - Vincent Lebon
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
- Department of Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT 06510
| | - Douglas Befroy
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
- Department of Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT 06510
| | - Gary W. Cline
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
| | - Staffan Enocksson
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
| | - Silvio E. Inzucchi
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
- Department of Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT 06510
- Department of Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT 06510
| | - Kitt F. Petersen
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT 06510
| |
Collapse
|
541
|
Neschen S, Moore I, Regittnig W, Yu CL, Wang Y, Pypaert M, Petersen KF, Shulman GI. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am J Physiol Endocrinol Metab 2002; 282:E395-401. [PMID: 11788372 PMCID: PMC2995503 DOI: 10.1152/ajpendo.00414.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.
Collapse
Affiliation(s)
- Susanne Neschen
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | | | |
Collapse
|
542
|
Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002; 109:121-30. [PMID: 11781357 PMCID: PMC150824 DOI: 10.1172/jci14080] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent evidence has defined an important role for PPARalpha in the transcriptional control of cardiac energy metabolism. To investigate the role of PPARalpha in the genesis of the metabolic and functional derangements of diabetic cardiomyopathy, mice with cardiac-restricted overexpression of PPARalpha (MHC-PPAR) were produced and characterized. The expression of PPARalpha target genes involved in cardiac fatty acid uptake and oxidation pathways was increased in MHC-PPAR mice. Surprisingly, the expression of genes involved in glucose transport and utilization was reciprocally repressed in MHC-PPAR hearts. Consistent with the gene expression profile, myocardial fatty acid oxidation rates were increased and glucose uptake and oxidation decreased in MHC-PPAR mice, a metabolic phenotype strikingly similar to that of the diabetic heart. MHC-PPAR hearts exhibited signatures of diabetic cardiomyopathy including ventricular hypertrophy, activation of gene markers of pathologic hypertrophic growth, and transgene expression-dependent alteration in systolic ventricular dysfunction. These results demonstrate that (a) PPARalpha is a critical regulator of myocardial fatty acid uptake and utilization, (b) activation of cardiac PPARalpha regulatory pathways results in a reciprocal repression of glucose uptake and utilization pathways, and (c) derangements in myocardial energy metabolism typical of the diabetic heart can become maladaptive, leading to cardiomyopathy.
Collapse
Affiliation(s)
- Brian N Finck
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002. [DOI: 10.1172/jci0214080] [Citation(s) in RCA: 677] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
544
|
Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 2001; 108:1875-81. [PMID: 11748271 PMCID: PMC209474 DOI: 10.1172/jci14120] [Citation(s) in RCA: 610] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intraperitoneal injection of purified recombinant Acrp30 lowers glucose levels in mice. To gain insight into the mechanism(s) of this hypoglycemic effect, purified recombinant Acrp30 was infused in conscious mice during a pancreatic euglycemic clamp. In the presence of physiological hyperinsulinemia, this treatment increased circulating Acrp30 levels by approximately twofold and stimulated glucose metabolism. The effect of Acrp30 on in vivo insulin action was completely accounted for by a 65% reduction in the rate of glucose production. Similarly, glucose flux through glucose-6-phosphatase (G6Pase) decreased with Acrp30, whereas the activity of the direct pathway of glucose-6-phosphate biosynthesis, an index of hepatic glucose phosphorylation, increased significantly. Acrp30 did not affect the rates of glucose uptake, glycolysis, or glycogen synthesis. These results indicate that an acute increase in circulating Acrp30 levels lowers hepatic glucose production without affecting peripheral glucose uptake. Hepatic expression of the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and G6Pase mRNAs was reduced by more than 50% following Acrp30 infusion compared with vehicle infusion. Thus, a moderate rise in circulating levels of the adipose-derived protein Acrp30 inhibits both the expression of hepatic gluconeogenic enzymes and the rate of endogenous glucose production.
Collapse
Affiliation(s)
- T P Combs
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
545
|
Abstract
The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.
Collapse
Affiliation(s)
- A R Saltiel
- Life Sciences Institute, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
546
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a ligand-activated transcription factor and functions as a heterodimer with a retinoid X receptor (RXR). Supraphysiological activation of PPAR gamma by thiazolidinediones can reduce insulin resistance and hyperglycemia in type 2 diabetes, but these drugs can also cause weight gain. Quite unexpectedly, a moderate reduction of PPAR gamma activity observed in heterozygous PPAR gamma-deficient mice or the Pro 12 Ala polymorphism in human PPAR gamma has been shown to prevent insulin resistance and obesity induced by a high-fat (HF) diet. We investigated whether functional antagonism toward PPAR gamma/RXR could be used to treat obesity and type 2 diabetes. We show herein that moderate reduction of PPAR gamma with an RXR antagonist or a PPAR gamma antagonist decreases triglyceride (TG) content in white adipose tissue, skeletal muscle and liver. These inhibitors potentiate leptin's effects and stimulated adiponectin levels, which increases fatty acid combustion and energy dissipation, thereby ameliorating HF diet-induced obesity and insulin resistance. Paradoxically, severe reduction of PPAR gamma by treatment of heterozygous PPAR gamma-deficient mice with an RXR antagonist or a PPAR gamma antagonist depletes white adipose tissue and markedly decreases leptin and adiponectin levels and energy dissipation, which increases TG content in skeletal muscle and the liver, thereby leading to the re-emergence of insulin resistance. Our data suggest that appropriate functional antagonism of PPAR gamma/RXR may be a logical approach to protection against obesity and related diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- T Kadowaki
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
547
|
Voshol PJ, Jong MC, Dahlmans VE, Kratky D, Levak-Frank S, Zechner R, Romijn JA, Havekes LM. In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes 2001; 50:2585-90. [PMID: 11679438 DOI: 10.2337/diabetes.50.11.2585] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In patients with type 2 diabetes, a strong correlation between accumulation of intramuscular triclycerides (TGs) and insulin resistance has been found. The aim of the present study was to determine whether there is a causal relation between intramuscular TG accumulation and insulin sensitivity. Therefore, in mice with muscle-specific overexpression of human lipoprotein lipase (LPL) and control mice, muscle TG content was measured in combination with glucose uptake in vivo, under hyperinsulinemic-euglycemic conditions. Overexpression of LPL in muscle resulted in accumulation of TGs in skeletal muscle (85.5 +/- 33.3 vs. 25.7 +/- 23.1 micromol/g tissue in LPL and control mice, respectively; P < 0.05). During the hyperinsulinemic clamp study, there were no differences in plasma glucose, insulin, and FFA concentrations between the two groups. Moreover, whole-body, as well as skeletal muscle, insulin-mediated glucose uptake did not differ between LPL-overexpressing and wild-type mice. Surprisingly, whole-body glucose oxidation was decreased by approximately 60% (P < 0.05), whereas nonoxidative glucose disposal was increased by approximately 50% (P < 0.05) in LPL-overexpressing versus control mice. In conclusion, overexpression of human LPL in muscle increases intramuscular TG accumulation, but does not affect whole-body or muscle-specific insulin-mediated uptake, findings that argue against a simple causal relation between intramuscular TG content and insulin resistance.
Collapse
Affiliation(s)
- P J Voshol
- TNO-Prevention and Health, Division VBO, Leiden, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|