501
|
Abstract
Like several other adult onset neurodegenerative diseases, Alzheimer's disease is a multifactorial illness with both genetic and non-genetic causes. Recent genetic studies have identified four genes associated with inherited risk for AD (presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E). These genes account for about half of the total genetic risk for Alzheimer's disease. It is suspected that several other Alzheimer's disease-susceptibility genes exist, and their identification is the subject of ongoing research. Nevertheless, biological studies on the effects of mutations in the four known genes has led to the conclusion that all of these genes cause dysregulation of amyloid precursor protein processing and in particular dysregulation of the handling of a proteolytic derivative termed Abeta. The accumulation of Abeta appears to be an early and initiating event that triggers a series of downstream processes including misprocessing of the tau protein. This cascade ultimately causes neuronal dysfunction and death, and leads to the clinical and pathological features of Alzheimer's disease. Knowledge of this biochemical cascade now provides several potential targets for the development of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Peter H St George-Hyslop
- Department of Medicine, Division of Neurology, The Toronto Hospital, University of Toronto, 6, Queen's Park Crescent West, Toronto, Ontario, Canada.
| | | |
Collapse
|
502
|
Blomqvist MEL, Chalmers K, Andreasen N, Bogdanovic N, Wilcock GK, Cairns NJ, Feuk L, Brookes AJ, Love S, Blennow K, Kehoe PG, Prince JA. Sequence variants of IDE are associated with the extent of beta-amyloid deposition in the Alzheimer's disease brain. Neurobiol Aging 2005; 26:795-802. [PMID: 15718037 DOI: 10.1016/j.neurobiolaging.2004.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 07/28/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Insulin degrading enzyme, encoded by IDE, plays a primary role in the degradation of amyloid beta-protein (A beta), the deposition of which in senile plaques is one of the defining hallmarks of Alzheimer's disease (AD). We recently identified haplotypes in a broad linkage disequilibrium (LD) block encompassing IDE that associate with several AD-related quantitative traits. Here, by examining 32 polymorphic markers extending across IDE and testing quantitative measures of plaque density and cognitive function in three independent Swedish AD samples, we have refined the probable position of pathogenic sequences to a 3' region of IDE, with local maximum effects in the proximity of marker rs1887922. To replicate these findings, a subset of variants were examined against measures of brain A beta load in an independent English AD sample, whereby maximum effects were again observed for rs1887922. For both Swedish and English autopsy materials, variation at rs1887922 explained approximately 10% of the total variance in the respective histopathology traits. However, across all clinical materials studied to date, this variant site does not appear to associate directly with disease, suggesting that IDE may affect AD severity rather than risk. Results indicate that alleles of IDE contribute to variability in A beta deposition in the AD brain and suggest that this relationship may have relevance for the degree of cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Mia E-L Blomqvist
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
503
|
Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 2005; 37:289-305. [PMID: 15474976 DOI: 10.1016/j.biocel.2004.07.009] [Citation(s) in RCA: 494] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
Considerable evidence gained over the past decade has supported the conclusion that neuroinflammation is associated with Alzheimer's disease (AD) pathology. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the classic and alternate pathways of the complement system, the pentraxin acute-phase proteins, neuronal-type nicotinic acetylcholine receptors (AChRs), peroxisomal proliferators-activated receptors (PPARs), as well as cytokines and chemokines. Both the microglia and astrocytes have been shown to generate beta-amyloid protein (Abeta), one of the main pathologic features of AD. Abeta itself has been shown to act as a pro-inflammatory agent causing the activation of many of the inflammatory components. Further substantiation for the role of neuroinflammation in AD has come from studies that demonstrate patients who took non-steroidal anti-inflammatory drugs had a lower risk of AD than those who did not. These same results have led to increased interest in pursuing anti-inflammatory therapy for AD but with poor results. On the other hand, increasing amount of data suggest that AChRs and PPARs are involved in AD-induced neuroinflammation and in this regard, future therapy may focus on their specific targeting in the AD brain.
Collapse
Affiliation(s)
- Ehab E Tuppo
- Center for Aging, University of Medicine and Dentistry of New Jersey-School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | | |
Collapse
|
504
|
|
505
|
Kulstad JJ, McMillan PJ, Leverenz JB, Cook DG, Green PS, Peskind ER, Wilkinson CW, Farris W, Mehta PD, Craft S. Effects of Chronic Glucocorticoid Administration on Insulin-Degrading Enzyme and Amyloid-Beta Peptide in the Aged Macaque. J Neuropathol Exp Neurol 2005; 64:139-46. [PMID: 15751228 DOI: 10.1093/jnen/64.2.139] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin-degrading enzyme (IDE) has been identified as a candidate protease in the clearance of amyloid-delta (Abeta) peptides from the brain. IDE activity and binding to insulin are known to be inhibited by glucocorticoids in vitro. In Alzheimer disease (AD), both a decrease in IDE levels and an increase in peripheral glucocorticoid levels have been documented. Our study investigated the effects of glucocorticoid treatment on IDE expression in vivo in 12 nonhuman primates (Macaca nemestrina). Year-long, high-dose exposure to the glucocorticoid cortisol (hydrocortisone acetate) was associated with reduced IDE protein levels in the inferior frontal cortex and reduced IDE mRNA levels in the dentate gyrus of the hippocampus. We assessed Abeta40 and Abeta42 levels by ELISA in the brain and in plasma, total plaque burden by immunohistochemistry, and relative Abeta1-40 and Abeta1-42 levels in the brain by mass spectrometry. Glucocorticoid treatment increased Abeta42 relative to Abeta40 levels without a change in overall plaque burden within the brain, while Abeta42 levels were decreased in plasma. These findings support the notion that glucocorticoids regulate IDE and provide a mechanism whereby increased glucocorticoid levels may contribute to AD pathology.
Collapse
Affiliation(s)
- J Jacob Kulstad
- Geriatric Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Abstract
OBJECTIVE Aging is a risk factor for amyloid beta (Abeta) accumulation and dementia. Since highly active antiretroviral therapies have effectively lengthened the life expectancy of individuals infected with HIV-1, we investigated the affect of HIV-1 Tat, a viral transactivating transcription factor, on Abeta degradation in the brain by neprilysin (NEP), a neuronal endopeptidase. DESIGN AND METHODS Using neural cell membrane fractions from human brain aggregates, Tat inhibition of NEP activity was assessed in a fluorescence assay. Following treatment with Tat, conditioned medium of human brain aggregate cultures was assayed for Abeta1-40 by ELISA. We evaluated the potential consequence of Tat inhibition of NEP by immunostaining cortex sections from postmortem human brain for Abeta. RESULTS In an in vitro assay, Tat inhibited NEP activity by 80%. The cysteine-rich domain of Tat was essential for NEP inhibition. Recombinant Tat added directly to brain cultures, resulted in a 125% increase in soluble Abeta. Postmortem human brain sections from patients with HIV-1 infection (n = 14; 31-58 years old) had a significant increase in Abeta, compared to controls (n = 5; 30-52 years old). Correlative analysis identified a statistically significant relationship between Abeta load and duration of HIV-1 seropositive status. CONCLUSION We have shown that Tat, which is found in the brains of patients with HIV-1 infection, inhibits the Abeta-degrading enzyme, NEP. Abeta staining was significantly increased in human brain sections from individuals with HIV-1 infection compared to controls. These results have important implications for individuals living and aging with HIV-1 infection.
Collapse
Affiliation(s)
- Hans C Rempel
- Department of Laboratory Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | |
Collapse
|
507
|
Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW, Trojanowski JQ, Lee VMY. BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo. ACTA ACUST UNITED AC 2005; 168:291-302. [PMID: 15642747 PMCID: PMC2171598 DOI: 10.1083/jcb.200407070] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introducing mutations within the amyloid precursor protein (APP) that affect β- and γ-secretase cleavages results in amyloid plaque formation in vivo. However, the relationship between β-amyloid deposition and the subcellular site of Aβ production is unknown. To determine the effect of increasing β-secretase (BACE) activity on Aβ deposition, we generated transgenic mice overexpressing human BACE. Although modest overexpression enhanced amyloid deposition, high BACE overexpression inhibited amyloid formation despite increased β-cleavage of APP. However, high BACE expression shifted the subcellular location of APP cleavage to the neuronal perikarya early in the secretory pathway. These results suggest that the production, clearance, and aggregation of Aβ peptides are highly dependent on the specific neuronal subcellular domain wherein Aβ is generated and highlight the importance of perikaryal versus axonal APP proteolysis in the development of Aβ amyloid pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Edward B Lee
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine
| | | | | | | | | | | | | |
Collapse
|
508
|
Abstract
Interest in the beta amyloid (Abeta) peptides continues to grow due to their known accumulation in the brains of patients with Alzheimer's disease and recent tantalising evidence that reducing such accumulations can reverse disease-associated functional deficits. Abeta peptides are naturally produced in every cell by proteolytic cleavage of the amyloid precursor protein with two main alloforms (40 or 42 amino acids) both of which are disease associated. The identification that genetic mutations causing Alzheimer's disease impact on Abeta production and clearance have allowed for the manipulation of these pathways in cellular and animal models. These studies show that the amount and type of Abeta in the brain has significant consequences on neural function. However, there have been significant difficulties in the conversion of these findings into successful treatments in humans. In this review we concentrate on data from human studies to determine any comparative differences in Abeta production and clearance that may assist with better treatment design and delivery. Abeta40 is the dominant peptide species in human cerebrospinal fluid accounting for approximately 90% of total Abeta under normal conditions. However, similar studies using disease free human brain tissue do not correlate with these findings. In these studies, concentrations of Abeta40 are low with Abeta42 often identified as the dominant species. The data suggest preferential brain tissue utilisation and/or clearance of Abeta40 compared with Abeta42, findings which may have been predicted by their physiochemical differences. In Alzheimer's disease this equilibrium is disrupted significantly increasing Abeta peptide levels in brain tissue. The disease-specific increase in Abeta40 brain tissue levels in Alzheimer's disease appears to be an important though overlooked pathological change compared with the well-documented Abeta42 change observed both in the aged and in Alzheimer's disease. These findings are discussed in association with Abeta peptide function and a model of toxicity developed.
Collapse
Affiliation(s)
- Gillian C Gregory
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney, Australia
| | | |
Collapse
|
509
|
Campese VM, Nadim MK. Natriuretic Peptides. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
510
|
Morelli L, Llovera RE, Mathov I, Lue LF, Frangione B, Ghiso J, Castaño EM. Insulin-degrading Enzyme in Brain Microvessels. J Biol Chem 2004; 279:56004-13. [PMID: 15489232 DOI: 10.1074/jbc.m407283200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of amyloid beta (Abeta) in the walls of small vessels in the cerebral cortex is associated with diseases characterized by dementia or stroke. These include Alzheimer's disease, Down syndrome, and sporadic and hereditary cerebral amyloid angiopathies (CAAs) related to mutations within the Abeta sequence. A higher tendency of Abeta to aggregate, a defective clearance to the systemic circulation, and insufficient proteolytic removal have been proposed as mechanisms that lead to Abeta accumulation in the brain. By using immunoprecipitation and mass spectrometry, we show that insulin-degrading enzyme (IDE) from isolated human brain microvessels was capable of degrading (125)I-insulin and cleaved Abeta-(1-40) wild type and the genetic variants Abeta A21G (Flemish), Abeta E22Q (Dutch), and Abeta E22K (Italian) at the predicted sites. In microvessels from Alzheimer's disease cases with CAA, IDE protein levels showed a 44% increase as determined by sandwich enzyme-linked immunosorbent assay and Western blot. However, the activity of IDE upon radiolabeled insulin was significantly reduced in CAA as compared with age-matched controls. These results support the notion that a defect in Abeta proteolysis by IDE contributes to the accumulation of this peptide in the cortical microvasculature. Moreover they raise the possibility that IDE inhibition or inactivation is a pathogenic mechanism that may open novel strategies for the treatment of cerebrovascular Abeta amyloidoses.
Collapse
Affiliation(s)
- Laura Morelli
- IQUIFIB/Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
511
|
Yechoor VK, Patti ME, Ueki K, Laustsen PG, Saccone R, Rauniyar R, Kahn CR. Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc Natl Acad Sci U S A 2004; 101:16525-30. [PMID: 15546994 PMCID: PMC534529 DOI: 10.1073/pnas.0407574101] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a complex metabolic disorder accompanied by alterations in cellular physiology, metabolism, and gene expression. These alterations can be primary (due to loss of direct insulin action) or secondary (due to the metabolic perturbations associated with the disease). To dissect and quantitate these two separate effects, we compared the skeletal muscle gene-expression profiles of muscle insulin receptor knockout (MIRKO) mice and their Lox controls in the basal, streptozotocin-induced diabetic, and insulin-treated diabetic states. Pure deficiency of insulin action as present in the MIRKO mouse results in regulation of 130 genes, with down-regulation of NSF (N-ethylmaleimide-sensitive fusion protein) and VAMP-2 (vesicle-associated membrane protein 2), stearoyl CoA desaturase 1, and cAMP-specific phosphodiesterase 4B, as well as up-regulation of some signaling-related genes, such as Akt2, and the fatty-acid transporter CD36. In diabetes, additional transcriptional mechanisms are activated, resulting in alterations in expression of approximately 500 genes, including a highly coordinated down-regulation of genes of the mitochondrial electron-transport chain and one of the mammalian homologues of the histone deacetylase Sir2, which has been implicated in the link between nutrition and longevity. These distinct pathways of direct and indirect regulation of gene expression provide insights into the complex mechanisms of transcriptional control in diabetes and areas of potential therapeutic targeting.
Collapse
Affiliation(s)
- Vijay K Yechoor
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
512
|
Watson GS, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur J Pharmacol 2004; 490:97-113. [PMID: 15094077 DOI: 10.1016/j.ejphar.2004.02.048] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 12/20/2022]
Abstract
Converging evidence has identified a potential association among Alzheimer's disease, glucose metabolism, insulin activity, and memory. Notably, type 2 diabetes, which is characterized by insulin resistance, may modulate the risk of Alzheimer's disease, and patients with Alzheimer's disease may have a greater risk for glucoregulatory impairments than do healthy older adults. In animal studies, it has been shown that raising blood glucose levels acutely can facilitate memory, in part, by increasing cholinergic activity, which is greatly diminished in patients with Alzheimer's disease. Other studies have confirmed that glucose administration can facilitate memory in healthy humans and in patients with Alzheimer's disease. Interestingly, glucose effects on memory appear to be modulated by insulin sensitivity (efficiency of insulin-mediated glucose disposal). Of course, the acute effects of glucose administration should be distinguished from the effects of chronic hyperglycemia (diabetes), which has been associated with cognitive impairments, at least in older adults. The relationship of insulin and memory has been more difficult to characterize. In animals, systemic insulin administration has been associated with memory deficits, likely due, in part, to hypoglycemia that occurs when exogenous insulin is not supplemented with glucose to maintain euglycemia. In healthy adults and patients with Alzheimer's disease, raising plasma insulin levels while maintaining euglycemia can improve memory; however, raising plasma glucose while suppressing endogenous insulin secretion may not improve memory, suggesting that adequate levels of insulin and glucose are necessary for memory facilitation. Clinical studies have corroborated findings that patients with Alzheimer's disease are more likely than healthy older adults to have reduced insulin sensitivity, and further suggest that apolipoprotein E genotype may modulate the effects of insulin on glucose disposal, memory facilitation, and amyloid precursor protein processing. Collectively, these findings support an association among Alzheimer's disease, impaired glucose metabolism, and reduced insulin sensitivity.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Medical Center, 1660 South Columbian Way, Seattle, WA 98108, USA
| | | |
Collapse
|
513
|
Gao W, Eisenhauer PB, Conn K, Lynch JA, Wells JM, Ullman MD, McKee A, Thatte HS, Fine RE. Insulin degrading enzyme is expressed in the human cerebrovascular endothelium and in cultured human cerebrovascular endothelial cells. Neurosci Lett 2004; 371:6-11. [PMID: 15500957 DOI: 10.1016/j.neulet.2004.07.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/09/2004] [Accepted: 07/10/2004] [Indexed: 10/26/2022]
Abstract
Insulin degrading enzyme (IDE) is found in the cytosol, peroxisomes and plasma membrane of many cells. Although it preferentially cleaves insulin it can also cleave many other small proteins with diverse sequences including the monomeric form of the amyloid beta peptide (A beta). In the brain, IDE has been reported to be expressed predominantly in neurons. In this study, IDE expression was detected in cultured human cerebrovascular endothelial cells. Using laser capture microdissection followed by PCR analysis, it was found that IDE mRNA is expressed in human brain blood vessels. Using immunofluorescence and multiphoton microscopy IDE was localized to the endothelium of the cerebrovascular blood vessels in human.
Collapse
Affiliation(s)
- Wenwu Gao
- ENR VA Medical Center, Bedford, MA 01730, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol Aging 2004; 25:663-74. [PMID: 15172746 DOI: 10.1016/j.neurobiolaging.2004.01.007] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/08/2004] [Accepted: 01/09/2004] [Indexed: 11/15/2022]
Abstract
Amyloid plaques appear early during Alzheimer's disease (AD), and their development is intimately linked to activated astrocytes and microglia. Astrocytes are capable of accumulating substantial amounts of neuron-derived, amyloid beta(1-42) (Abeta42)-positive material and other neuron-specific proteins as a consequence of their debris-clearing role in response to local neurodegeneration. Immunohistochemical analyses have suggested that astrocytes overburdened with these internalized materials can eventually undergo lysis, and radial dispersal of their cytoplasmic contents, including Abeta42, can lead to the deposition of a persistent residue in the form of small, GFAP-rich, astrocytic amyloid plaques, first appearing in the molecular layer of the cerebral cortex. Microglia, most of which appear to be derived from blood monocytes and recruited from local blood vessels, rapidly migrate into and congregate within neuritic and dense-core plaques, but not diffuse plaques. Instead of internalizing and removing Abeta from plaques, microglia appear to contribute to their morphological and chemical evolution by facilitating the conversion of existing soluble and oligomeric Abeta within plaques to the fibrillar form. Abeta fibrillogenesis may occur largely within tiny, tube-like invaginations in the surface plasma membrane of microglia. These results highlight the therapeutic potential of blocking the initial intracellular accumulation of Abeta42 in neurons and astrocytes and inhibiting microglia-mediated assembly of fibrillar Abeta, which is particularly resistant to degradation in Alzheimer brain.
Collapse
Affiliation(s)
- Robert G Nagele
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey/SOM, 2 Medical Center Drive, Stratford, NJ 08084, USA.
| | | | | | | | | | | |
Collapse
|
515
|
Klyubin I, Walsh DM, Cullen WK, Fadeeva JV, Anwyl R, Selkoe DJ, Rowan MJ. Soluble Arctic amyloid beta protein inhibits hippocampal long-term potentiation in vivo. Eur J Neurosci 2004; 19:2839-46. [PMID: 15147317 DOI: 10.1111/j.1460-9568.2004.03389.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mutations in the amyloid precursor protein that result in substitutions of glutamic acid at residue 22 of the amyloid beta protein (A beta) with glutamine (Q22, Dutch) or glycine (G22, Arctic) cause aggressive familial neurological diseases characterized by cerebrovascular haemorrhages or Alzheimer's-type dementia, respectively. The present study compared the ability of these peptides to block long-term potentiation (LTP) of glutamatergic transmission in the hippocampus in vivo. The effects of intracerebroventricular injection of wild-type, Q22 and G22 A beta(1-40) peptides were examined in the CA1 area of urethane-anaesthetized rats. Both mutant peptides were approximately 100-fold more potent than wild-type A beta at inhibiting LTP induced by high-frequency stimulation when solutions of A beta were freshly prepared. Fibrillar material, as determined by electron microscopy, was obvious in all these peptide solutions and exhibited appreciable Congo Red binding, particularly for A beta(1-40)G22 and A beta(1-40)Q22. A soluble fraction of A beta(1-40)G22, obtained following high-speed centrifugation, retained full activity of the peptide solution to inhibit LTP, providing strong evidence that in the case of the Arctic disease a soluble nonfibrillar form of A beta may represent the primary mediator of A beta-related cognitive deficits, particularly early in the disease. In contrast, nonfibrillar soluble A beta(1-40)Q22 supernatant solution was approximately 10-fold less potent at inhibiting LTP than A beta(1-40)G22, a finding consistent with fibrillar A beta contributing to the inhibition of LTP by the Dutch peptide.
Collapse
Affiliation(s)
- Igor Klyubin
- Trinity College Institute of Neuroscience, and Department of Pharmacology and Therapeutics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
516
|
Laporte V, Lombard Y, Levy-Benezra R, Tranchant C, Poindron P, Warter JM. Uptake of Abeta 1-40- and Abeta 1-42-coated yeast by microglial cells: a role for LRP. J Leukoc Biol 2004; 76:451-61. [PMID: 15136588 DOI: 10.1189/jlb.1203620] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Artificial diffuse and amyloid core of neuritic plaques [beta-amyloid peptide (Abeta) deposits] could be prepared using heat-killed yeast particles opsonized with Abeta 1-40 or Abeta 1-42 peptides. Interaction and fate of these artificial deposits with microglial cells could be followed using a method of staining that allows discrimination of adherent and internalized, heat-killed yeast particles. Using this system, it was possible to show that nonfibrillar or fibrillar (f)Abeta peptides, formed in solution upon heating (aggregates), could not impair the internalization of heat-killed yeast particles opsonized with fAbeta 1-40 or fAbeta 1-42. This indicated that depending on their physical state, Abeta peptide(s) do not recognize the same receptors and probably do not follow the same internalization pathway. Using competitive ligands of class A scavenger receptors (SR-A) or low-density lipoprotein-related receptor protein (LRP), it has been shown that SR-A were not involved in the recognition of amyloid peptide deposits, whereas LRP specifically recognized deposits of fAbeta 1-42 (but not fAbeta 1-40) and mediated their phagocytosis.
Collapse
Affiliation(s)
- Vincent Laporte
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires, EA 3429, Faculté de Pharmacie, Université Louis Pasteur, 74, route du Rhin-BP 24, F-67401 Illkirch, Cedex, France
| | | | | | | | | | | |
Collapse
|
517
|
Ertekin-Taner N, Allen M, Fadale D, Scanlin L, Younkin L, Petersen RC, Graff-Radford N, Younkin SG. Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum Mutat 2004; 23:334-42. [PMID: 15024728 DOI: 10.1002/humu.20016] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Risk for late onset Alzheimer disease (LOAD) and plasma amyloid beta levels (Abeta42; encoded by APP), an intermediate phenotype for LOAD, show linkage to chromosome 10q. Several strong candidate genes (VR22, PLAU, IDE) lie within the 1-lod support interval for linkage. Others have independently identified haplotypes in the chromosome 10q region harboring IDE that show highly significant association with intermediate AD phenotypes and with risk for AD. To pursue these associations, we analyzed the same haplotypes for association with plasma Abeta42 in 24 extended LOAD families and for association with LOAD in two independent case-control series. One series (MCR, 188 age-matched case-control pairs) did not show association (p=0.64) with the six haplotypes in the 276-kb region spanning three genes (IDE, KNSL1, and HHEX) previously shown to associate with LOAD. The other series (MCJ, 109 age-matched case-control pairs) showed significant (p=0.003) association with these haplotypes. In the MCJ series, the H4 (odds ratio [OR]=5.1, p=0.003) and H2(H7) haplotypes (OR=0.60, p=0.04) had the same effects previously reported. In this series, the H8 haplotype (OR=2.7, p=0.098) also had an effect similar as in one previous case control series but not in others. In the extended families, the H8 haplotype was associated with significantly elevated plasma Abeta42 (p=0.02). In addition, the H5(H10) haplotype, which is associated with reduced risk for AD in the other study is associated with reduced plasma Abeta42 (p=0.007) in our family series. These results provide strong evidence for pathogenic variant(s) in the 276-kb region harboring IDE that influence intermediate AD phenotypes and risk for AD.
Collapse
|
518
|
Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, Tanzi RE, Selkoe DJ. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1425-34. [PMID: 15039230 PMCID: PMC1615329 DOI: 10.1016/s0002-9440(10)63229-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The causes of cerebral accumulation of amyloid beta-protein (Abeta) in most cases of Alzheimer's disease (AD) remain unknown. We recently found that homozygous deletion of the insulin-degrading enzyme (IDE) gene in mice results in an early and marked elevation of cerebral Abeta. Both genetic linkage and allelic association in the IDE region of chromosome 10 have been reported in families with late-onset AD. For IDE to remain a valid candidate gene for late-onset AD on functional grounds, it must be shown that partial loss of function of IDE can still alter Abeta degradation, but without causing early, severe elevation of brain Abeta. Here, we show that naturally occurring IDE missense mutations in a well-characterized rat model of type 2 diabetes mellitus (DM2) result in decreased catalytic efficiency and a significant approximately 15 to 30% deficit in the degradation of both insulin and Abeta. Endogenously secreted Abeta(40) and Abeta(42) are significantly elevated in primary neuronal cultures from animals with the IDE mutations, but there is no increase in steady-state levels of rodent Abeta in the brain up to age 14 months. We conclude that naturally occurring, partial loss-of-function mutations in IDE sufficient to cause DM2 also impair neuronal regulation of Abeta levels, but the brain can apparently compensate for the partial deficit during the life span of the rat. Our findings have relevance for the emerging genetic evidence suggesting that IDE may be a late-onset AD-risk gene, and for the epidemiological relationships among hyperinsulinemia, DM2, and AD.
Collapse
Affiliation(s)
- Wesley Farris
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
519
|
Blomqvist MEL, Silburn PA, Buchanan DD, Andreasen N, Blennow K, Pedersen NL, Brookes AJ, Mellick GD, Prince JA. Sequence variation in the proximity of IDE may impact age at onset of both Parkinson disease and Alzheimer disease. Neurogenetics 2004; 5:115-9. [PMID: 15088150 DOI: 10.1007/s10048-004-0173-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 02/03/2004] [Indexed: 02/07/2023]
Abstract
We recently reported that a linkage disequilibrium (LD) block on chromosome 10q encompassing the gene encoding insulin-degrading enzyme ( IDE) harbors sequence variants that associate with Alzheimer disease (AD). Evidence also indicated effects upon a number of quantitative indices of AD severity, including age-at-onset (AAO). Since linkage of this immediate region to AAO has been shown in both AD and Parkinson disease (PD), we have explored the possibility that polymorphism within this LD block might also influence PD. Utilizing single nucleotide polymorphisms that delineate common haplotypes from this region, we observed significant evidence of association with AAO in an Australian PD case-control sample. Analyses were complemented with AAO data from two independent Swedish AD case samples, for which previously reported findings were replicated. Results were consistent between AD and PD, suggesting the presence of equivalent detrimental and protective alleles. These data highlight a genomic region in the proximity of IDE that may contribute to AD and PD in a similar manner.
Collapse
Affiliation(s)
- Mia E-L Blomqvist
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
520
|
Abstract
Insulin has functions in the brain and dysregulation of these functions may contribute to the expression of late-life neurodegenerative disease. We provide a brief summary of research on the influence of insulin on normal brain function. We then review evidence that perturbation of this role may contribute to the symptoms and pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease, vascular dementia, Parkinson's disease, and Huntington's disease. We conclude by considering whether insulin dysregulation contributes to neurodegenerative disorders through disease-specific or general mechanisms.
Collapse
Affiliation(s)
- Suzanne Craft
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Medical Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, 98108, USA.
| | | |
Collapse
|
521
|
Ma Z, Chow KM, Yao J, Hersh LB. Nuclear shuttling of the peptidase nardilysin. Arch Biochem Biophys 2004; 422:153-60. [PMID: 14759602 DOI: 10.1016/j.abb.2003.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/05/2003] [Indexed: 11/19/2022]
Abstract
The metalloendopeptidase nardilysin contains a putative N-terminal nuclear localization signal. The functionality of this sequence was tested with nardilysin-GFP fusion constructs. Expression in NIH3T3 cells showed approximately 90-95% of nardilysin-GFP as cytoplasmic. However, 3-6% of transfected cells showed both cytosolic and nuclear staining, while 2-4% showed predominantly nuclear staining. A nuclear localization signal mutant and an N-terminally truncated nardilysin-GFP with the nuclear localization signal deleted were completely cytoplasmic. Although endogenous nardilysin was barely detectable in the nucleus, after treatment with leptomycin B, nuclear nardilysin rose to approximately 15% and to over 25% after addition of spermine. The ability of a methionine 49 to act as the sole initiator methionine, as previously proposed, was tested by inserting a c-myc epitope between leucine28 and glycine29. Expression in HEK293 cells showed the presence of the c-myc tag, demonstrating that the enzyme can be translated from the first methionine and contains the nuclear localization signal.
Collapse
Affiliation(s)
- Zhangliang Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
522
|
Rensink AAM, Otte-Höller I, de Boer R, Bosch RR, ten Donkelaar HJ, de Waal RMW, Verbeek MM, Kremer B. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiol Aging 2004; 25:93-103. [PMID: 14675735 DOI: 10.1016/s0197-4580(03)00039-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloid-beta (Abeta) deposition in the cerebral arterial and capillary walls is one of the characteristics of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type. In vitro, Abeta1-40, carrying the "Dutch" mutation (DAbeta1-40), induced reproducible degeneration of cultured human brain pericytes (HBP), by forming fibrils at the cell surface. Thus, this culture system provides an useful model to study the vascular pathology seen in Alzheimer's disease. In this study, we used this model to investigate the effects of insulin on Abeta-induced degeneration of HBP, as it has been mentioned previously that insulin is able to protect neurons against Abeta-induced cell-death. The toxic effect of DAbeta1-40 on HBP was inhibited by insulin in a dose-dependent matter. Insulin interacted with Abeta and inhibited fibril formation of Abeta in a cell-free assay, as well as at the cell surface of HBP. Our data indicate that the formation of a fibril network is essential for Abeta-induced cell death in HBP. Additionally, insulin may be involved in the regulation of Abeta fibrillization in AD.
Collapse
|
523
|
Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-Active Metals, Oxidative Stress, and Alzheimer's Disease Pathology. Ann N Y Acad Sci 2004; 1012:153-63. [PMID: 15105262 DOI: 10.1196/annals.1306.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Considerable evidence is mounting that dyshomeostasis of the redox-active biometals, Cu and Fe, and oxidative stress contribute to the neuropathology of Alzheimer's disease (AD). Present data suggest that metals can interact directly with Abeta peptide, the principal component of beta-amyloid that is one of the primary lesions in AD. The binding of metals to Abeta modulates several physiochemical properties of Abeta that are thought to be central to the pathogenicity of the peptide. First, we and others have shown that metals can promote the in vitro aggregation into tinctorial Abeta amyloid. Studies have confirmed that insoluble amyloid plaques in postmortem AD brain are abnormally enriched in Cu, Fe, and Zn. Conversely, metal chelators dissolve these proteinaceous deposits from postmortem AD brain tissue and attenuate cerebral Abeta amyloid burden in APP transgenic mouse models of AD. Second, we have demonstrated that redox-active Cu(II) and, to a lesser extent, Fe(III) are reduced in the presence of Abeta with concomitant production of reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)) and hydroxyl radical (OH*). These Abeta/metal redox reactions, which are silenced by redox-inert Zn(II), but exacerbated by biological reducing agents, may lead directly to the widespread oxidation damages observed in AD brains. Moreover, studies have also shown that H(2)O(2) mediates Abeta cellular toxicity and increases the production of both Abeta and amyloid precursor protein (APP). Third, the 5' untranslated region (5'UTR) of APP mRNA has a functional iron-response element (IRE), which is consistent with biochemical evidence that APP is a redox-active metalloprotein. Hence, the redox interactions between Abeta, APP, and metals may be at the heart of a pathological positive feedback system wherein Abeta amyloidosis and oxidative stress promote each other. The emergence of redox-active metals as key players in AD pathogenesis strongly argues that amyloid-specific metal-complexing agents and antioxidants be investigated as possible disease-modifying agents for treating this horrible disease.
Collapse
Affiliation(s)
- Xudong Huang
- Laboratory for Oxidation Biology, Genetics and Aging Research Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
524
|
Gandy S, Martins RN, Buxbaum J. Molecular and cellular basis for anti-amyloid therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 2004; 17:259-66. [PMID: 14657791 DOI: 10.1097/00002093-200310000-00011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sam Gandy
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
525
|
Sakai A, Ujike H, Nakata K, Takehisa Y, Imamura T, Uchida N, Kanzaki A, Yamamoto M, Fujisawa Y, Okumura K, Kuroda S. No association between the insulin degrading enzyme gene and Alzheimer's disease in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2004; 125B:87-91. [PMID: 14755451 DOI: 10.1002/ajmg.b.20106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Susceptibility to Alzheimer's disease (AD) is thought to be regulated by multiple genetic factors. Recently, three independent studies have reported that loci on chromosome 10q are linked with AD, and the insulin degrading enzyme (IDE; MIM 146680) gene located on chromosome 10q23-q25; IDE is located close to the maker D10S583, which exhibits a maximum LOD score for late-onset AD. We examined seven polymorphisms in the IDE gene, the marker D10S583 in the 5' flanking region, and SNPs in introns 1, 3, 11, 20, 21, and 22 (rs#1999764, 1855915, 1970244, 538469, 551266, and 489517, respectively). Four SNPs in introns 3, 11, 20, and 22 did not exhibit any polymorphisms in the Japanese population that was studied. D10S583 and two SNPs in introns 1 and 21 did not exhibit a significant association with early- or late-onset AD. In addition, no associations were observed for subgroups of AD grouped according to APOE status. The present study indicates that the IDE gene polymorphisms do not confer susceptibility to early- or late-onset AD at least in a Japanese population.
Collapse
|
526
|
Gan L, Ye S, Chu A, Anton K, Yi S, Vincent VA, von Schack D, Chin D, Murray J, Lohr S, Patthy L, Gonzalez-Zulueta M, Nikolich K, Urfer R. Identification of Cathepsin B as a Mediator of Neuronal Death Induced by Aβ-activated Microglial Cells Using a Functional Genomics Approach. J Biol Chem 2004; 279:5565-72. [PMID: 14612454 DOI: 10.1074/jbc.m306183200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by senile plaques, neurofibrillary tangles, dystrophic neurites, and reactive glial cells. Activated microglia are found to be intimately associated with senile plaques and may play a central role in mediating chronic inflammatory conditions in Alzheimer's disease. Activation of cultured murine microglial BV2 cells by freshly sonicated Abeta42 results in the secretion of neurotoxic factors that kill primary cultured neurons. To understand molecular pathways underlying Abeta-induced microglial activation, we analyzed the expression levels of transcripts isolated from Abeta42-activated BV2 cells using high density filter arrays. The analysis of these arrays identified 554 genes that are transcriptionally up-regulated by Abeta42 in a statistically significant manner. Quantitative reverse transcription-PCR was used to confirm the regulation of a subset of genes, including cysteine proteases cathepsin B and cathepsin L, tissue inhibitor of matrix metalloproteinase 2, cytochrome c oxidase, and allograft inflammatory factor 1. Small interfering RNA-mediated silencing of the cathepsin B gene in Abeta-activated BV2 cells diminished the microglial activation-mediated neurotoxicity. Moreover, CA-074, a specific cathepsin B inhibitor, also abolished the neurotoxic effects caused by Abeta42-activated BV2 cells. Our results suggest an essential role for secreted cathepsin B in neuronal death mediated by Abeta-activated inflammatory response.
Collapse
Affiliation(s)
- Li Gan
- AGY Therapeutics, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Abstract
Deciphering the molecular basis of synaptic dysfuction in Alzheimer's disease (AD) has engaged the attention of scientists with diverse backgrounds and interests. The synthesis of experimental findings from neuropathology, biochemistry, genetics, animal modeling and even immunology, has provided a plausible model for the pathogenesis of the disorder. While not universally accepted, the so-called amyloid (or Abeta) hypothesis of AD is well supported scientifically and predicts several specific targets for therapeutic intervention. Some of these are now reaching the clinic, providing the final and most important test for this hypothetical mechanism of disease.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Center for Neurological Diseases, Brigham and Women's Hospital, and the Harvard Center for Neurodegeneration and Repair Boston, Massachusetts, USA.
| |
Collapse
|
528
|
Abstract
The distinction between Alzheimer's disease and vascular dementia, the two most common types of dementia, has been undermined by recent advances in epidemiologic, clinical, imaging, and neuropathological studies. Cardiovascular risk factors, traditionally regarded as distinguishing criteria between the two entities, have been shown to be associated with both AD and vascular dementia. In this article, we propose mechanisms of action of cardiovascular risk factors in AD, suggest possible explanations for the overlap with vascular dementia and discuss the implications this might have on future differential diagnosis, research, and treatment strategies.
Collapse
|
529
|
Ling Y, Morgan K, Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol 2003; 35:1505-35. [PMID: 12824062 DOI: 10.1016/s1357-2725(03)00133-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processing of amyloid precursor protein (APP) generates amyloid-beta (Abeta) peptides 1-40 and 1-42. The latter is neurotoxic and its accumulation results in amyloid fibril formation and the generation of senile plaques, the hallmark of Alzheimer's disease (AD). Whilst there has been considerable progress made in understanding the generation of Abeta by alpha-, beta- and gamma-secretase activity on APP, recently enzymes involved in the degradation of Abeta have been identified including neprilysin and insulin-degrading enzyme (IDE). We review the pathways involved in proteolytic processing of APP and discuss the potential implications of aberrant proteolysis on neurodegeneration. It is conceivable that single nucleotide polymorphisms (SNPs) in the regulatory regions of genes in these proteolytic cascades, which alter their expression, could contribute to some of the age-related changes seen in AD.
Collapse
Affiliation(s)
- Yan Ling
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
530
|
Grossman H. Does diabetes protect or provoke Alzheimer's disease? Insights into the pathobiology and future treatment of Alzheimer's disease. CNS Spectr 2003; 8:815-23. [PMID: 14702004 DOI: 10.1017/s1092852900019258] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus has long been considered a risk factor for the development of vascular dementia. Epidemiologic evidence has suggested that diabetes mellitus significantly increases risk for the development of Alzheimer's disease, independent of vascular risk factors. As insulin's role as a neuromodulator in the brain has been described, its significance for AD has also emerged. Insulin dysregulation may contribute to AD pathology through several mechanisms including decreased cortical glucose utilization particularly in the hippocampus and entorhinal cortex; increased oxidative stress through the formation of advanced glycation end-products; increased Tau phosphorylation and neurofibrillary tangle formation; increased b-amyloid aggregation through inhibition of insulin-degrading enzyme. Future treatment of AD might involve pharmacologic and dietary manipulations of insulin and glucose regulation.
Collapse
Affiliation(s)
- Hillel Grossman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
531
|
Abstract
Alzheimer's disease afflicts 4.5 million people in the United States, and the number is expected to rise to 16 million by the year 2050, as the population ages. Researchers are scrambling to find genetic risk factors, decipher disease mechanisms, and develop reliable diagnostic tests that detect the illness at its earliest, potentially most treatable stage. Using these findings, they hope to devise new therapeutic approaches. Current clinical trials are assessing novel techniques that stall or reverse Alzheimer-like neuropathology in mice.
Collapse
|
532
|
Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem 2003; 278:49789-94. [PMID: 14527953 DOI: 10.1074/jbc.m308983200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of the insulin-degrading enzyme (IDE)-catalyzed hydrolysis of the fluorogenic substrate 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl is increased 2-7-fold by other peptide substrates but not by peptide non-substrates. This increased rate is attributed to a decrease in Km with little effect on Vmax. An approximately 2.5-fold increase in the rate of amyloid beta peptide hydrolysis is produced by dynorphin B-9. However, with insulin as substrate, dynorphin B-9 is inhibitory. Immunoprecipitation of differentially tagged IDE and gel filtration analysis were used to show that IDE exists as a mixture of dimers and tetramers. The equilibrium between dimer and tetramer is concentration-dependent, with the dimer the more active form. Bradykinin shifted the equilibrium toward dimer. Activation of substrate hydrolysis is not seen with a mixed dimer of IDE containing one active subunit and one subunit that is catalytically inactive and deficient in substrate binding. On the other hand, a mixed dimer containing one active subunit and one subunit that is catalytically inactive but binds substrate with normal affinity is activated by peptides. These findings suggest that peptides bind to one subunit of IDE and induce a conformational change that shifts the equilibrium to the more active dimer as well as activates the adjacent subunit. The selective activation of IDE toward amyloid beta peptide relative to insulin suggests the potential for development of compounds that increase IDE activity toward amyloid beta peptide as a therapeutic intervention for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Eun-Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
533
|
Prince JA, Feuk L, Gu HF, Johansson B, Gatz M, Blennow K, Brookes AJ. Genetic variation in a haplotype block spanningIDE influences Alzheimer disease. Hum Mutat 2003; 22:363-71. [PMID: 14517947 DOI: 10.1002/humu.10282] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Linkage studies have identified a large (>60-Mb) region on chromosome 10q that segregates with Alzheimer Disease (AD). Within the region, the gene for insulin degrading enzyme (IDE) represents a notable biological candidate given that it degrades amyloid beta-protein (one of the major constituents of senile plaques) and the intracellular amyloid precursor protein (APP) domain released by gamma-secretase processing. We have used a single nucleotide polymorphism (SNP) genetic association strategy to investigate AD in relation to a 480-kb region encompassing IDE. A 276-kb linkage disequilibrium block was revealed that spans three genes (IDE, KNSL1, and HHEX). Assessing this block in several independent sets of case-control materials (early- and late-onset AD) and focusing also upon quantitative measures that are pertinent to AD diagnosis and severity (MMSE scores, microtubule-associated protein Tau [MAPT] levels in CSF, degree of brain pathology, and age-at-onset) produced extensive evidence for significant AD association. Signals (p-values ranging from 0.05 to <1x10(-9)) were generally stronger when examining haplotypes rather than individual SNPs, and quantitative trait tests most uniformly revealed the detected associations. Consistent risk alleles and haplotypes were apparent across the study, with effects in some cases as large as that of the epsilon4 allele of APOE. A subsequent mutation screen of exons in all three suspect genes provided no evidence for common causative mutations. These results provide substantial evidence that genetic variation within or extremely close to IDE impacts both disease risk and traits related to the severity of AD.
Collapse
Affiliation(s)
- Jonathan A Prince
- Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
534
|
Bennett RG, Hamel FG, Duckworth WC. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 2003; 52:2315-20. [PMID: 12941771 DOI: 10.2337/diabetes.52.9.2315] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amylin (islet amyloid polypeptide) is the chief component of the islet amyloid found in type 2 diabetes, and amylin fibril precursors may be cytotoxic to pancreatic beta-cells. Little is known about the prevention of amylin aggregation. We investigated the role of insulin-degrading enzyme (IDE) in amylin degradation, amyloid deposition, and cytotoxicity in RIN-m5F insulinoma cells. Human (125)I-labeled amylin degradation was inhibited by 46 and 65% with the addition of 100 nmol/l human amylin or insulin, respectively. (125)I-labeled insulin degradation was inhibited with 100 nmol/l human amylin, rat amylin, and insulin (by 50, 50, and 73%, respectively). The IDE inhibitor bacitracin inhibited amylin degradation by 78% and insulin degradation by 100%. Amyloid staining by Congo red fluorescence was detectable at 100 nmol/l amylin and was pronounced at 1,000 nmol/l amylin treatment for 48 h. Bacitracin treatment markedly increased staining at all amylin concentrations. Bacitracin with amylin caused a dramatic decrease in cell viability compared with amylin alone (68 and 25%, respectively, at 10 nmol/l amylin). In summary, RIN-m5F cells degraded both amylin and insulin through a common proteolytic pathway. IDE inhibition by bacitracin impaired amylin degradation, increased amyloid formation, and increased amylin-induced cytotoxicity, suggesting a role for IDE in amylin clearance and the prevention of amylin aggregation.
Collapse
Affiliation(s)
- Robert G Bennett
- Department of Internal Medicine, University of Nebraska Medical Center, and Veterans Affairs Medical Center, Omaha, Nebraska 68105, USA.
| | | | | |
Collapse
|
535
|
Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresse S, Watson GS, Newcomer JW, Schellenberg GD, Krohn AJ. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003; 28:809-22. [PMID: 12812866 DOI: 10.1016/s0306-4530(02)00087-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In previous studies, adults with Alzheimer's disease (AD) showed memory enhancement when plasma insulin levels were raised to 85 microU/ml, whereas normal adults' memory was unchanged. Degree of memory enhancement was also related to apolipoprotein E (apoE) genotype status for AD patients. Response differences between normal and AD groups could reflect dose-response differences for insulin. To examine this question, 22 adults with AD and 15 normal adults received five doses of insulin on separate days in counterbalanced order, resulting in five plasma insulin levels (10, 25, 35, 85 and 135 microU/ml), while plasma glucose levels of ~100 mg/dl were maintained. Cognitive performance and plasma APP levels were measured after 120 min of infusion. Relative to baseline, AD patients who were not apoE- epsilon 4 homozygotes had improved memory at higher insulin levels of 35 and 85 microuU/ml, whereas normal adults and AD patients who were epsilon 4 homozygotes showed improved memory at insulin levels of 25 microU/ml. Normal adults' memory was also improved at insulin levels of 85 microU/ml. Plasma APP was lowered for adults with AD without the epsilon 4 allele at higher levels (85 microU/ml) than for normal adults and epsilon 4 homozygotes, who showed decreased APP at the 35 microU/ml level. AD patients with a single epsilon 4 allele showed a different pattern of insulin effects on APP than did other subjects. In general, few effects of insulin were seen at the highest dose for any subject group. These results support a role for insulin in normal memory and APP modulation that follows a curvilinear response pattern, and suggest that AD patients who are not epsilon 4 homozygotes have reduced sensitivity to insulin that may interfere with such modulation.
Collapse
Affiliation(s)
- Suzanne Craft
- Geriatric Research, Education, and Clinical Center, Veteran Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Abstract
Insulin-degrading enzyme (IDE) is a metalloprotease implicated in insulin degradation and suggested to have a variety of additional functions, including the clearance of amyloid beta peptides of Alzheimer's disease. Little is known about endogenous proteins that may interact with and modulate IDE's activity in the cell. We purified and characterized two proteins from mouse leukemic splenocytes that interact with IDE and inhibit its insulin-degrading activity. A protein of 14 kDa was similar to a competitive IDE inhibitor reported previously. The major inhibitor was identified by amino acid sequencing as ubiquitin, a protein that is post-translationally covalently attached to other intracellular proteins and regulates diverse cellular processes. Ubiquitin inhibited insulin-degrading activity of IDE and diminished crosslinking of 125I-insulin to IDE in a specific, concentration-dependent, reversible, and ATP-independent manner. Ubiquitin did not affect the crosslinking of 125I-insulin to insulin receptors or of 125I-atrial natriuretic peptide (ANP) to its receptor guanylate cyclase-A. These findings suggest a novel role for ubiquitin or perhaps proteins with ubiquitin-like domains in regulating the function of IDE.
Collapse
Affiliation(s)
- Tomo Saric
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
537
|
Morelli L, Llovera R, Gonzalez SA, Affranchino JL, Prelli F, Frangione B, Ghiso J, Castano EM. Differential degradation of amyloid beta genetic variants associated with hereditary dementia or stroke by insulin-degrading enzyme. J Biol Chem 2003; 278:23221-6. [PMID: 12695513 DOI: 10.1074/jbc.m300276200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inherited amino acid substitutions at position 21, 22, or 23 of amyloid beta (Abeta) lead to presenile dementia or stroke. Insulin-degrading enzyme (IDE) can hydrolyze Abeta wild type, yet whether IDE is capable of degrading Abeta bearing pathogenic substitutions is not known. We studied the degradation of all of the published Abeta genetic variants by recombinant rat IDE (rIDE). Monomeric Abeta wild type, Flemish (A21G), Italian (E22K), and Iowa (D23N) variants were readily degraded by rIDE with a similar efficiency. However, proteolysis of Abeta Dutch (E22Q) and Arctic (E22G) was significantly lower as compared with Abeta wild type and the rest of the mutant peptides. In the case of Abeta Dutch, inefficient proteolysis was related to a high content of beta structure as assessed by circular dichroism. All of the Abeta variants were cleaved at Glu3-Phe4 and Phe4-Arg5 in addition to the previously described major sites within positions 13-15 and 18-21. SDS-stable Abeta dimers were highly resistant to proteolysis by rIDE regardless of the variant, suggesting that IDE recognizes a conformation that is available for interaction only in monomeric Abeta. These results raise the possibility that upregulation of IDE may promote the clearance of soluble Abeta in hereditary forms of Abeta diseases.
Collapse
Affiliation(s)
- Laura Morelli
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
538
|
Takata K, Kitamura Y, Tsuchiya D, Kawasaki T, Taniguchi T, Shimohama S. Heat shock protein-90-induced microglial clearance of exogenous amyloid-beta1-42 in rat hippocampus in vivo. Neurosci Lett 2003; 344:87-90. [PMID: 12782334 DOI: 10.1016/s0304-3940(03)00447-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease is characterized by the accumulation of extracellular amyloid-beta (A beta) fibrils with microglia. In an in vitro microglial culture, we recently found that heat-shock protein-90 (Hsp90) enhanced the microglial phagocytosis and clearance of A beta (1-42) (A beta 42). In this study, we examined the microinjection of A beta 42 in the presence or absence of Hsp90 into the rat hippocampus in vivo. Intrahippocampal injection of A beta 42 alone induced microglial accumulation, and the amount of A beta 42 then gradually decreased. In addition, simultaneous injection with Hsp90 significantly reduced the amount of A beta 42 and increased the production of cytokines. These results suggest that Hsp90 may facilitate microglial A beta 42 clearance in rat brain in vivo.
Collapse
Affiliation(s)
- Kazuyuki Takata
- Department of Neurobiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|
539
|
Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL. Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci U S A 2003; 100:6221-6. [PMID: 12732730 PMCID: PMC156353 DOI: 10.1073/pnas.1031520100] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Factors that elevate amyloid-beta (Abeta) peptide levels are associated with an increased risk for Alzheimer's disease. Insulysin has been identified as one of several proteases potentially involved in Abeta degradation based on its hydrolysis of Abeta peptides in vitro. In this study, in vivo levels of brain Abeta40 and Abeta42 peptides were found to be increased significantly (1.6- and 1.4-fold, respectively) in an insulysin-deficient gene-trap mouse model. A 6-fold increase in the level of the gamma-secretase-generated C-terminal fragment of the Abeta precursor protein in the insulysin-deficient mouse also was found. In mice heterozygous for the insulysin gene trap, in which insulysin activity levels were decreased approximately 50%, brain Abeta peptides were increased to levels intermediate between those in wild-type mice and homozygous insulysin gene-trap mice that had no detectable insulysin activity. These findings indicate that there is an inverse correlation between in vivo insulysin activity levels and brain Abeta peptide levels and suggest that modulation of insulysin activity may alter the risk for Alzheimer's disease.
Collapse
Affiliation(s)
- Bonnie C Miller
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas 75390-9151, USA.
| | | | | | | | | | | | | | | |
Collapse
|
540
|
Abstract
There is accumulating evidence that intracellular and extracellular proteases of microglia contribute to various events in the central nervous system (CNS) through both nonspecific and limited proteolysis. Cathepsin E and cathepsin S, endosomal/lysosomal proteases, have been shown to play important roles in the major histocompatibility complex (MHC) class II-mediated antigen presentation of microglia by processing of exogenous antigens and degradation of the invariant chain associated with MHC class II molecules, respectively. Some members of cathepsins are also involved in neuronal death after secreted from microglia and clearance of phagocytosed amyloid- beta peptides. Tissue-type plasminogen activator, a serine protease, secreted from microglia participates in neuronal death, enhancement of N-methyl-D-aspartate receptor-mediated neuronal responses, and activation of microglia via either proteolytic or nonproteolytic activity. Calpain, a calcium-dependent cysteine protease, has been shown to play a pivotal role in the pathogenesis of multiple sclerosis by degrading myelin proteins extracellulary. Furthermore, matrix metalloproteases secreted from microglia also receive great attention as mediators of inflammation and tissue degradation through processing of pro-inflammatory cytokines and damage to the blood-brain barrier. The growing knowledge about proteolytic events mediated by microglial proteases will not only contribute to better understanding of microglial functions in the CNS but also may aid in the development of protease inhibitors as novel neuroprotective agents.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
541
|
Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 2003; 100:4162-7. [PMID: 12634421 PMCID: PMC153065 DOI: 10.1073/pnas.0230450100] [Citation(s) in RCA: 1118] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
Collapse
Affiliation(s)
- Wesley Farris
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Ravona-Springer R, Davidson M, Noy S. Is the distinction between Alzheimer's disease and vascular dementia possible and relevant? DIALOGUES IN CLINICAL NEUROSCIENCE 2003. [PMID: 22033677 PMCID: PMC3181710 DOI: 10.31887/dcns.2003.5.1/rravonaspringer] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in epidemiological, clinical, imaging, and neuropathological studies have undermined the clear distinction between vascular and Alzheimer-type dementia, which has characterized the last two decades of research in dementia. A significant degree of overlap between the two entities was demonstrated in terms of clinical expression, risk factors, and postmortem brain autopsy. In this article, we propose mechanisms by which cardiovascular risk factors might affect the manifestation of Alzheimer's disease, suggest possible explanations for the overlap with vascular dementia, and discuss the implications this might have on future differential diagnosis and treatment strategies.
Collapse
|
543
|
Abstract
An emerging body of evidence suggests that an increased prevalence of insulin abnormalities and insulin resistance in Alzheimer's disease may contribute to the disease pathophysiology and clinical symptoms. It has long been known that insulin is essential for energy metabolism in the periphery. In the past 2 decades, convergent findings have begun to demonstrate that insulin also plays a role in energy metabolism and other aspects of CNS function. Investigators reported 20 years ago that insulin and insulin receptors were densely but selectively expressed in the brain, including the medial temporal regions that support the formation of memory. It has recently been demonstrated that insulin-sensitive glucose transporters are localised to the same regions supporting memory and that insulin plays a role in memory functions. Collectively, these findings suggest that insulin may contribute to normal cognitive functioning and that insulin abnormalities may exacerbate cognitive impairments, such as those associated with Alzheimer's disease. Insulin may also play a role in regulating the amyloid precursor protein and its derivative beta-amyloid (Abeta), which is associated with senile plaques, a neuropathological hallmark of Alzheimer's disease. It has been proposed that insulin can accelerate the intracellular trafficking of Abeta and interfere with its degradation. These findings are consistent with the notion that insulin abnormalities may potentially influence levels of Abeta in the brains of patients with Alzheimer's disease. The increased occurrence of insulin resistance in Alzheimer's disease and the numerous mechanisms through which insulin may affect clinical and pathological aspects of the disease suggest that improving insulin effectiveness may have therapeutic benefit for patients with Alzheimer's disease. The thiazolidinedione rosiglitazone has been shown to have a potent insulin-sensitising action that appears to be mediated through the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma agonists, such as rosiglitazone, also have anti-inflammatory effects that may be of therapeutic benefit in patients with Alzheimer's disease. This review presents evidence suggesting that insulin resistance plays a role in the pathophysiology and clinical symptoms of Alzheimer's disease. Based on this evidence, we propose that treatment of insulin resistance may reduce the risk or retard the development of Alzheimer's disease.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | | |
Collapse
|
544
|
Meyer-Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pfeifer M, Boncristiano S, Mathews PM, Mercken M, Abramowski D, Staufenbiel M, Jucker M. Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 2003; 6:370-7. [PMID: 12598899 DOI: 10.1038/nn1022] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 01/14/2003] [Indexed: 11/08/2022]
Abstract
Amyloid precursor protein (APP) processing and the generation of beta-amyloid peptide (Abeta) are important in the pathogenesis of Alzheimer's disease. Although this has been studied extensively at the molecular and cellular levels, much less is known about the mechanisms of amyloid accumulation in vivo. We transplanted transgenic APP23 and wild-type B6 embryonic neural cells into the neocortex and hippocampus of both B6 and APP23 mice. APP23 grafts into wild-type hosts did not develop amyloid deposits up to 20 months after grafting. In contrast, both transgenic and wild-type grafts into young transgenic hosts developed amyloid plaques as early as 3 months after grafting. Although largely diffuse in nature, some of the amyloid deposits in wild-type grafts were congophilic and were surrounded by neuritic changes and gliosis, similar to the amyloid-associated pathology previously described in APP23 mice. Our results indicate that diffusion of soluble Abeta in the extracellular space is involved in the spread of Abeta pathology, and that extracellular amyloid formation can lead to neurodegeneration.
Collapse
Affiliation(s)
- Melanie Meyer-Luehmann
- Department of Neuropathology, Institute of Pathology, University of Basel, Schönbeinstrasse 40, CH-4003 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Abstract
1. While many questions remained unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease. 2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition. 3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system. 4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas. 5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melancortins, and neuropeptide Y (NPY) is suggested. 6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.
Collapse
|
546
|
Eckman EA, Watson M, Marlow L, Sambamurti K, Eckman CB. Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J Biol Chem 2003; 278:2081-4. [PMID: 12464614 DOI: 10.1074/jbc.c200642200] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abnormal accumulation of beta-amyloid (Abeta) in the brain is an early and invariant feature in Alzheimer's disease (AD) and is believed to play a pivotal role in the etiology and pathogenesis of the disease. As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Abeta. As with any peptide, however, the degree of Abeta accumulation is dependent not only on its production but also on its removal. In cell-based and in vitro models we have previously characterized endothelin-converting enzyme-1 (ECE-1) as an Abeta-degrading enzyme that appears to act intracellularly, thus limiting the amount of Abeta available for secretion. To determine the physiological significance of this activity, we analyzed Abeta levels in the brains of mice deficient for ECE-1 and a closely related enzyme, ECE-2. Significant increases in the levels of both Abeta40 and Abeta42 were found in the brains of these animals when compared with age-matched littermate controls. The increase in Abeta levels in the ECE-deficient mice provides the first direct evidence for a physiological role for both ECE-1 and ECE-2 in limiting Abeta accumulation in the brain and also provides further insight into the factors involved in Abeta clearance in vivo.
Collapse
|
547
|
Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS, Craft S. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:313-9. [PMID: 12507914 PMCID: PMC1851126 DOI: 10.1016/s0002-9440(10)63822-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abeta is the major component of amyloid plaques characterizing Alzheimer's disease (AD). Abeta accumulation can be affected by numerous factors including increased rates of production and/or impaired clearance. Insulin-degrading enzyme (IDE) has been implicated as a candidate enzyme responsible for the degradation and clearance of Abeta in the brain. We have previously shown that AD patients exhibit abnormalities in insulin metabolism that are associated with apoliprotein E (APOE) status. The possible association of IDE with AD, as well as the link between APOE status and insulin metabolism, led us to examine the expression of IDE in AD. We report that hippocampal IDE protein is reduced by approximately 50% in epsilon4+ AD patients compared to epsilon4- patients and controls. The allele-specific decrease of IDE in epsilon4+ AD patients is not associated with neuronal loss since neuron-specific enolase levels were comparable between the AD groups, regardless of APOE status. Hippocampal IDE mRNA levels were also reduced in AD patients with the epsilon4 allele compared to AD and normal subjects without the epsilon4 allele. These findings show that reduced IDE expression is associated with a significant risk factor for AD and suggest that IDE may interact with APOE status to affect Abeta metabolism.
Collapse
Affiliation(s)
- David G Cook
- Geriatric Research, Education, and Clinical Center, Veteran Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
548
|
Kitamura Y, Nomura Y. Stress proteins and glial functions: possible therapeutic targets for neurodegenerative disorders. Pharmacol Ther 2003; 97:35-53. [PMID: 12493534 DOI: 10.1016/s0163-7258(02)00301-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent findings suggest that unfolded or misfolded proteins participate in the pathology of several neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Usually, several stress proteins and glial cells act as intracellular molecular chaperones and show chaperoning neuronal function, respectively. In the brains of patients with neurodegenerative disorders, however, stress proteins are expressed and frequently associated with protein aggregates, and glial cells are activated around degenerative regions. In addition, several stress proteins and glial cells may also regulate neuronal cell death and loss. Therefore, some types of stress proteins and glial cells are considered to be neuroprotective targets. We summarize the current findings regarding the neuroprotective effects of stress proteins and glial cells, and discuss the possibility of using this knowledge to develop new therapeutic strategies to treat neurodegeneration.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Department of Neurobiology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | | |
Collapse
|
549
|
Astrocytes and microgliain Alzheimer's disease. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
550
|
Selkoe DJ. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J Clin Invest 2002. [DOI: 10.1172/jci0216783] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|