501
|
Tejedor S, Wågberg M, Correia C, Åvall K, Hölttä M, Hultin L, Lerche M, Davies N, Bergenhem N, Snijder A, Marlow T, Dönnes P, Fritsche-Danielson R, Synnergren J, Jennbacken K, Hansson K. The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice: An Ex Vivo and In Vivo Investigation. Cells 2024; 13:414. [PMID: 38474378 PMCID: PMC10930761 DOI: 10.3390/cells13050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.
Collapse
Affiliation(s)
- Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
| | - Maria Wågberg
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Karin Åvall
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Mikko Hölttä
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Leif Hultin
- Imaging and Data Analytics, Clinical and Pharmacological Safety Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nils Bergenhem
- Alliance Management, Business Development and Licensing, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Tom Marlow
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- SciCross AB, 541 35 Skövde, Sweden
| | - Regina Fritsche-Danielson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Kenny Hansson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| |
Collapse
|
502
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
503
|
Salehi N, Ghaee A, Moris H, Derhambakhsh S, Sharifloo MM, Safshekan F. Electrospun zein nanofibers loaded with curcumin as a wound dressing: enhancing properties with PSS and PDADMAC layers. Biomed Mater 2024; 19:025044. [PMID: 38364281 DOI: 10.1088/1748-605x/ad2a39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.
Collapse
Affiliation(s)
- Nasrin Salehi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hanieh Moris
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Sara Derhambakhsh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Mansour Sharifloo
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Farzaneh Safshekan
- Department of Mechanical Engineering, Ahrar Institute of Technology and Higher Education, Rasht, Iran
| |
Collapse
|
504
|
Dos Santos ÉM, de Macedo LM, Ataide JA, Delafiori J, de Oliveira Guarnieri JP, Rosa PCP, Ruiz ALTG, Lancellotti M, Jozala AF, Catharino RR, Camargo GA, Paiva-Santos AC, Mazzola PG. Antioxidant, antimicrobial and healing properties of an extract from coffee pulp for the development of a phytocosmetic. Sci Rep 2024; 14:4453. [PMID: 38396007 PMCID: PMC10891086 DOI: 10.1038/s41598-024-54797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 μg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.
Collapse
Affiliation(s)
- Érica Mendes Dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - Lucas Malvezzi de Macedo
- Faculdade de Ciências Médicas, Universidade de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Campinas, São Paulo, 13083-887, Brazil
| | - Janaína Artem Ataide
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil.
| | - Jeany Delafiori
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - João Paulo de Oliveira Guarnieri
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - Paulo César Pires Rosa
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - Marcelo Lancellotti
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - Angela Faustino Jozala
- Laboratory of Industrial Microbiology and Fermentation Process (LAMINFE), University of Sorocaba, Sorocaba, São Paulo, 18023-000, Brazil
| | - Rodrigo Ramos Catharino
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| | - Gisele Anne Camargo
- Institute of Food Technology, ITAL, Av. Brasil, 2880, Campinas, São Paulo, 13070-178, Brazil
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Priscila Gava Mazzola
- Faculdade de Ciências Farmacêuticas, Universidade de Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, São Paulo, 13083-871, Brazil
| |
Collapse
|
505
|
Worledge CS, Kostelecky RE, Zhou L, Bhagavatula G, Colgan SP, Lee JS. Allopurinol Disrupts Purine Metabolism to Increase Damage in Experimental Colitis. Cells 2024; 13:373. [PMID: 38474337 PMCID: PMC10930830 DOI: 10.3390/cells13050373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing. Allopurinol, a synthetic hypoxanthine isomer commonly prescribed to treat excess uric acid in the blood, inhibits the degradation of hypoxanthine by xanthine oxidase, but also inhibits purine salvage. Although the use of allopurinol is common, studies regarding how allopurinol influences the gastrointestinal tract during colitis are largely nonexistent. In this work, a series of in vitro and in vivo experiments were performed to dissect the relationship between allopurinol, allopurinol metabolites, and colonic epithelial metabolism and function in health and during disease. Of particular significance, the in vivo investigation identified that a therapeutically relevant allopurinol dose shifts adenylate and creatine metabolism, leading to AMPK dysregulation and disrupted proliferation to attenuate wound healing and increased tissue damage in murine experimental colitis. Collectively, these findings underscore the importance of purine salvage on cellular metabolism and gut health in the context of IBD and provide insight regarding the use of allopurinol in patients with IBD.
Collapse
Affiliation(s)
- Corey S. Worledge
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Rachael E. Kostelecky
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Liheng Zhou
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Geetha Bhagavatula
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| |
Collapse
|
506
|
Huang PY, Tsai MC, Kiu KT, Yen MH, Chang TC. Collagen patch cover facilitates recovery of bowel function after laparoscopic colectomy. BMC Surg 2024; 24:66. [PMID: 38378522 PMCID: PMC10880318 DOI: 10.1186/s12893-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Numerous factors can influence bowel movement recovery and anastomotic healing in colorectal surgery, and poor healing can lead to severe complications and increased medical expenses. Collagen patch cover (CPC) is a promising biomaterial that has been demonstrated to be safe in animal models and has been successfully applied in various surgical procedures in humans. This study. METHODS A retrospective review of medical records from July 2020 to June 2022 was conducted to identify consecutive patients who underwent laparoscopic colectomy. Patients who received CPC at the anastomotic site were assigned to the collagen group, whereas those who did not receive CPC were assigned to the control group. RESULTS Data from 241 patients (collagen group, 109; control group, 132) were analyzed. Relative to the control group, the collagen group exhibited a faster recovery of bowel function, including an earlier onset of first flatus (2.93 days vs. 3.43 days, p < 0.01), first defecation (3.73 days vs. 4.18 days, p = 0.01), and oral intake (4.30 days vs. 4.68 days, p = 0.04). CPC use was also associated with lower use of postoperative intravenous analgesics. The complication rates in the two groups did not differ significantly. CONCLUSIONS CPCs can be safely and easily applied to the anastomotic site during laparoscopic colectomy, and can accelerate bowel movement recovery. Further studies on the effectiveness of CPCs in colorectal surgery involving larger sample sizes are required. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov registration number: NCT05831956 (26/04/2023).
Collapse
Affiliation(s)
- Pin-Yang Huang
- Department of General Medicine, Taipei Medical University Shuang-Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Meng-Che Tsai
- Department of General Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi County, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Kee-Thai Kiu
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Shuang-Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Min-Hsuan Yen
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Shuang-Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Tung-Cheng Chang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Shuang-Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan.
| |
Collapse
|
507
|
Wu D, Tao S, Zhu L, Zhao C, Xu N. Chitosan Hydrogel Dressing Loaded with Adipose Mesenchymal Stem Cell-Derived Exosomes Promotes Skin Full-Thickness Wound Repair. ACS APPLIED BIO MATERIALS 2024; 7:1125-1134. [PMID: 38319146 DOI: 10.1021/acsabm.3c01039] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cutaneous trauma repair is still a challenge in the clinic due to the scar formation and slow healing rate, especially for diabetic patients. Various drug-loading wound dressings have been explored to solve this problem. Mesenchymal stem cell (MSC)-derived exosomes have been considered as a potential cell-free drug because of their anti-inflammation function and tissue repair property that are comparable to that of MSCs. Herein, a composite wound dressing (Exo/Gel) consisting of the chitosan hydrogel and adipose MSC-derived exosome (ADMSC-Exo) was designed and fabricated by a physical mixing method to promote the skin full-thickness wound repair. The exosomes were slowly released from the Exo/Gel dressing with the degradation of the chitosan hydrogel. The Exo/Gel displayed enhanced cell migration and angiogenic properties in vitro. And the results in the rat skin wound model showed that the Exo/Gel could promote the regular collagen deposition, angiogenesis, and hair follicle mosaicism regeneration. These results proved that the hydrogel dressing with ADMSCs-derived exosomes can accelerate skin wound healing, which is a strategy for developing wound dressings.
Collapse
Affiliation(s)
- Dingwei Wu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Suwan Tao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenchen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
508
|
Bestepe F, Ghanem GF, Fritsche CM, Weston J, Sahay S, Mauro AK, Sahu P, Tas SM, Ruemmele B, Persing S, Good ME, Chatterjee A, Huggins GS, Salehi P, Icli B. MicroRNA-409-3p/BTG2 signaling axis improves impaired angiogenesis and wound healing in obese mice. FASEB J 2024; 38:e23459. [PMID: 38329343 DOI: 10.1096/fj.202302124rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.
Collapse
Affiliation(s)
- Furkan Bestepe
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - George F Ghanem
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Colette M Fritsche
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Weston
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sumedha Sahay
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amanda K Mauro
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Parul Sahu
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sude M Tas
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brooke Ruemmele
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sarah Persing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Miranda E Good
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Abhishek Chatterjee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Gordon S Huggins
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Payam Salehi
- Division of Vascular Surgery, Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Basak Icli
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
509
|
Wei H, Deng M, Ding R, Wei L, Yuan H. Macrophage β2-AR activation amplifies inflammation in wound healing by upregulating Trem1 via the cAMP/PKA/CREB pathway. Int Immunopharmacol 2024; 128:111463. [PMID: 38190789 DOI: 10.1016/j.intimp.2023.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Inflammation is an important part of the wound healing process. The stress hormone epinephrine has been demonstrated to modulate the inflammatory response via its interaction with β2-adrenergic receptor (β2-AR). However, the precise molecular mechanism through which β2-AR exerts its influence on inflammation during the wound healing process remains an unresolved question. METHODS Transcriptome datasets of wound and macrophages from the GEO database were reanalyzed using bioinformatics. The role of β2-AR in wound healing was explored by a mouse hind paw plantar wound model, and histological analyses were performed to assess wound healing. In vivo and in vitro assays were performed to elucidate the role of β2-AR on the inflammatory response. Triggering receptor expressed on myeloid cells 1 (Trem1) was knocked down with siRNA on RAW cells and western blot and qPCR assays were performed. RESULTS Trem1 was upregulated within 24 h of wounding, and macrophage β2-AR activation also upregulated Trem1. In vivo experiments demonstrated that β2-AR agonists impaired wound healing, accompanied by upregulation of Trem1 and activation of cAMP/PKA/CREB pathway, as well as by a high level of pro-inflammatory cytokine production. In vitro experiments showed that macrophage β2-AR activation amplified LPS-induced inflammation, and knockdown of Trem1 reversed this effect. Using activator and inhibitor of cAMP, macrophage β2-AR activation was confirmed to upregulate Trem1 via the cAMP/PKA/CREB pathway. CONCLUSION Our study found that β2-AR agonists increase Trem1 expression in wounds, accompanied by amplification of the inflammatory response, impairing wound healing. β2-AR activation in RAW cells induces Trem1 upregulation via the cAMP/PKA/CREB pathway and amplifies LPS-induced inflammatory responses.
Collapse
Affiliation(s)
- Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
510
|
Abdel Halim MB, Eid HH, El Deeb KS, Metwally GF, Masoud MA, Ahmed-Farid OA, El Messiry HM. The study of wound healing activity of Thespesia populnea L. bark, an approach for accelerating healing through nanoparticles and isolation of main active constituents. BMC Complement Med Ther 2024; 24:85. [PMID: 38355527 PMCID: PMC10865512 DOI: 10.1186/s12906-024-04343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
The present study provides an evaluation for the wound healing activity of the ethanolic extract of Thespesia populnea L. bark (EBE) and its successive fractions in two doses level (1&2%), designed for determining the most bioactive fraction and the suitable dose. Furthermore, development of the most convenient formulation for these bioactive fractions through either their direct incorporation into hydrogel formulations or incorporation of chitosan-loaded nanoparticles with these bioactive fractions into hydrogel formulations. The highest excision wound healing activity was observed in petroleum ether (Pet-B) followed by ethyl acetate (Etac-B) fractions at the high dose (2%). The most suitable formulation designed for the Etac-B fraction was found to be the chitosan-loaded nanoparticles incorporated in the hydrogel formulation, while the conventional hydrogel formulation was observed to be the highly acceptable formulation for Pet-B fraction. Further phytochemical studies of the bioactive fractions led to the isolation of many compounds of different chemical classes viz; beta-sitosterol and lupeol acetate isolated from the Pet-B, in addition to cyanidin and delphinidin from the Etac-B. Our results revealed that EBE and its bioactive fractions (Pet-B & Etac-B) could be considered as strong wound healers through their anti-oxidant and anti-inflammatory activities, in addition to stimulating collagen synthesis.
Collapse
Affiliation(s)
- Menna B Abdel Halim
- Department of Medicinal plants and Natural Products, Egyptian Drug Authority (EDA; formerly: NODCAR), Giza, Egypt.
| | - Hanaa H Eid
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Postal code 11562, Egypt
| | - Kadriya S El Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Postal code 11562, Egypt
| | - Ghada F Metwally
- Department of Medicinal plants and Natural Products, Egyptian Drug Authority (EDA; formerly: NODCAR), Giza, Egypt
| | - Marwa A Masoud
- Department of Pharmacology, Egyptian Drug Authority (EDA; formerly: NODCAR), Giza, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, Egyptian Drug Authority (EDA; formerly: NODCAR), Giza, Egypt
| | - Hussien M El Messiry
- Department of Pharmaceutics, Egyptian Drug Authority (EDA; formerly: NODCAR), Giza, Egypt
| |
Collapse
|
511
|
Kumar N, Bose P, Kumar S, Daksh S, Verma YK, Roy BG, Som S, Singh JD, Datta A. Nanoapatite-Loaded κ-Carrageenan/Poly(vinyl alcohol)-Based Injectable Cryogel for Hemostasis and Wound Healing. Biomacromolecules 2024; 25:1228-1245. [PMID: 38235663 DOI: 10.1021/acs.biomac.3c01180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immediate control of excessive bleeding and prevention of infections are of utmost importance in the management of wounds. Cryogels have emerged as promising materials for the rapid release of medication and achieving hemostasis. However, their quick release properties pose the challenge of exposing patients to high concentrations of drugs. In this study, hybrid nanocomposites were developed to address this issue by combining poly(vinyl alcohol) and κ-carrageenan with whitlockite nanoapatite (WNA) particles and ciprofloxacin, aiming to achieve rapid hemostasis and sustained antibacterial effects. A physically cross-linked cryogel was obtained by subjecting a blend of poly(vinyl alcohol) and κ-carrageenan to successive freezing-thawing cycles, followed by the addition of WNA. Furthermore, ciprofloxacin was introduced into the cryogel matrix for subsequent evaluation of its wound healing properties. The resulting gel system exhibited a 3D microporous structure and demonstrated excellent swelling, low cytotoxicity, and outstanding mechanical properties. These characteristics were evaluated through analytical and rheological experiments. The nanocomposite cryogel with 4% whitlockite showed extended drug release of 71.21 ± 3.5% over 21 days and antibacterial activity with a considerable growth inhibition zone (4.19 ± 3.55 cm). Experiments on a rat model demonstrated a rapid hemostasis property of cryogels within an average of 83 ± 4 s and accelerated the process of wound healing with 96.34% contraction compared to the standard, which exhibited only ∼78% after 14 days. The histopathological analysis revealed that the process of epidermal re-epithelialization took around 14 days following the skin incision. The cryogel loaded with WNAs and ciprofloxacin holds great potential for strategic utilization in wound management applications as an effective material for hemostasis and anti-infection purposes.
Collapse
Affiliation(s)
- Nikhil Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Pritha Bose
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Subodh Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Shivani Daksh
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Yogesh Kumar Verma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Bal G Roy
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Swati Som
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Jai Deo Singh
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Anupama Datta
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
512
|
Ming L, Qu Y, Wang Z, Dong L, Li Y, Liu F, Wang Q, Zhang D, Li Z, Zhou Z, Shang F, Xie X. Small Extracellular Vesicles Laden Oxygen-Releasing Thermosensitive Hydrogel for Enhanced Antibacterial Therapy against Anaerobe-Induced Periodontitis Alveolar Bone Defect. ACS Biomater Sci Eng 2024; 10:932-945. [PMID: 38275448 DOI: 10.1021/acsbiomaterials.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Periodontitis is a bacterially induced chronic destructive inflammatory disease that leads to irreversible destruction of the tooth supporting structure, including connective tissue destruction, bone resorption, and even tooth loss. Until now, there has been no effective treatment to repair inflammatory bone loss in periodontitis. Recently, small extracellular vesicles (sEVs) emerged as the essential paracrine factors of mesenchymal stem cells (MSCs) that mediated tissue regeneration. However, limitations of antimicrobial activity associated with the use of sEVs have led to the urgency of new alternative strategies. Currently, we investigated the potential of a biocompatible oxygen-releasing thermosensitive hydrogel laded with sEVs secreted by bone marrow MSCs (BMMSCs) for the alveolar bone defect in periodontitis. The hydrogel composed of different polymers such as chitosan (CS), poloxamer 407 (P407), and cross-linked hyaluronic acid (c-HA) conglomerating is a kind of nanoporous structure material. Then, the gel matrix further encapsulated sEVs and calcium peroxide nanoparticles to realize the control of sEVs and oxygen release. Furthermore, ascorbic acid was added to achieve the REDOX equilibrium and acid-base equilibrium. The experiments in vivo and in vitro proved its good biocompatibility and effectively inhibited the growth of the periodontal main anaerobe, relieved periodontal pocket anaerobic infections, and promoted the periodontal defect regeneration. Therefore, this finding demonstrated that it was a promising approach for combating anaerobic pathogens with enhanced and selective properties in periodontal diseases, even in other bacteria-induced infections, for future clinical application.
Collapse
Affiliation(s)
- Leiguo Ming
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Yanling Qu
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Yinghui Li
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fen Liu
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Qingxia Wang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhifeng Li
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa 850007, Tibet, China
| | - Fengqing Shang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
513
|
Voza FA, Huerta CT, Le N, Shao H, Ribieras A, Ortiz Y, Atkinson C, Machuca T, Liu ZJ, Velazquez OC. Fibroblasts in Diabetic Foot Ulcers. Int J Mol Sci 2024; 25:2172. [PMID: 38396848 PMCID: PMC10889208 DOI: 10.3390/ijms25042172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Fibroblasts are stromal cells ubiquitously distributed in the body of nearly every organ tissue. These cells were previously considered to be "passive cells", solely responsible for ensuring the turnover of the extracellular matrix (ECM). However, their versatility, including their ability to switch phenotypes in response to tissue injury and dynamic activity in the maintenance of tissue specific homeostasis and integrity have been recently revealed by the innovation of technological tools such as genetically modified mouse models and single cell analysis. These highly plastic and heterogeneous cells equipped with multifaceted functions including the regulation of angiogenesis, inflammation as well as their innate stemness characteristics, play a central role in the delicately regulated process of wound healing. Fibroblast dysregulation underlies many chronic conditions, including cardiovascular diseases, cancer, inflammatory diseases, and diabetes mellitus (DM), which represent the current major causes of morbidity and mortality worldwide. Diabetic foot ulcer (DFU), one of the most severe complications of DM affects 40 to 60 million people. Chronic non-healing DFU wounds expose patients to substantial sequelae including infections, gangrene, amputation, and death. A complete understanding of the pathophysiology of DFU and targeting pathways involved in the dysregulation of fibroblasts are required for the development of innovative new therapeutic treatments, critically needed for these patients.
Collapse
Affiliation(s)
- Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Nga Le
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hongwei Shao
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoine Ribieras
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Yulexi Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carl Atkinson
- Department of Internal Medicine, Division of Pulmonary Critical Care & Sleep Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Tiago Machuca
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
514
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Bennett C, Cooksley CM, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone-Gallium-Protoporphyrin Chitogel Decreases Pseudomonas aeruginosa Biofilm Infection without Impairing Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:793. [PMID: 38399044 PMCID: PMC10889926 DOI: 10.3390/ma17040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and heme analogue Gallium-Protoporphyrin (GaPP) in a chitosan-dextran hydrogel (Chitogel) have previously been demonstrated to be effective against PAO1 and clinical isolates of P. aeruginosa in vitro. Moreover, this combination of these two agents has been shown to improve sinus surgery outcomes by quickly reducing bleeding and preventing adhesions. In this study, the efficacy of Def-GaPP Chitogel was investigated in a P. aeruginosa biofilm-infected wound murine model over 6 days. Two concentrations of Def-GaPP Chitogel were investigated: Def-GaPP high dose (10 mM Def + 500 µg/mL GaPP) and Def-GaPP low dose (5 mM Def + 200 µg/mL GaPP). The high-dose Def-GaPP treatment reduced bacterial burden in vivo from day 2, without delaying wound closure. Additionally, Def-GaPP treatment decreased wound inflammation, as demonstrated by reduced neutrophil infiltration and increased anti-inflammatory M2 macrophage presence within the wound bed to drive wound healing progression. Def-GaPP Chitogel treatment shows promising potential in reducing P. aeruginosa cutaneous infection with positive effects observed in the progression of wound healing.
Collapse
Affiliation(s)
- Tahlia L. Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Suzanne Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Catherine Bennett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Clare M. Cooksley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Peter John Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Sarah Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| |
Collapse
|
515
|
Le Thi P, Tran DL, Park KM, Lee S, Oh DH, Park KD. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B 2024; 12:1538-1549. [PMID: 38251728 DOI: 10.1039/d3tb01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dieu Linh Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1A - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Simin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
516
|
Ciarlantini C, Lacolla E, Francolini I, Fernández-García M, Muñoz-Núñez C, Muñoz-Bonilla A, Piozzi A. Development of Antioxidant and Antimicrobial Membranes Based on Functionalized and Crosslinked Chitosan for Tissue Regeneration. Int J Mol Sci 2024; 25:1961. [PMID: 38396645 PMCID: PMC10888599 DOI: 10.3390/ijms25041961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tissue engineering is an interdisciplinary field that develops new methods to enhance the regeneration of damaged tissues, including those of wounds. Polymer systems containing bioactive molecules can play an important role in accelerating tissue regeneration, mitigating inflammation process, and fighting bacterial infection. Chitosan (CS) has attracted much attention regarding its use in wound healing system fabrication thanks to its biocompatibility, biodegradability, and the presence of functional groups in its structure. In this work, bioactive chitosan-based membranes were obtained by both chemical and physical modifications of the polymer with glycidyl methacrylate and glycerol (GLY), respectively. The most suitable GLY concentration to obtain wound healing systems with good elongation at break, a good water vapor transmission rate (WVTR), and good wettability values was 20% (w/w). Afterwards, the membranes were crosslinked with different concentrations of ethylene glycol dimethacrylate (EGDMA). By using a concentration of 0.05 mM EGDMA, membranes with a contact angle and WVTR values suitable for the application were obtained. To make the system bioactive, 3,4-dihydrocinnamic acid (HCAF) was introduced into the membranes, either by imbibition or chemical reaction, using laccase as a catalyst. Thermal and mechanical analyses confirmed the formation of a cohesive network, which limited the plasticizing effect of GLY, particularly when HCAF was chemically bound. The HCAF-imbibed membrane showed a good antioxidant and antimicrobial activity, highlighting the potential of this system for the treatment of wound healing.
Collapse
Affiliation(s)
- Clarissa Ciarlantini
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (C.C.); (E.L.); (I.F.)
| | - Elisabetta Lacolla
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (C.C.); (E.L.); (I.F.)
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (C.C.); (E.L.); (I.F.)
| | - Marta Fernández-García
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.F.-G.); (C.M.-N.); (A.M.-B.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Carolina Muñoz-Núñez
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.F.-G.); (C.M.-N.); (A.M.-B.)
| | - Alexandra Muñoz-Bonilla
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.F.-G.); (C.M.-N.); (A.M.-B.)
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (C.C.); (E.L.); (I.F.)
| |
Collapse
|
517
|
D'Alessandro GS, Munhoz AM, Takeuchi FM, Povedano A, Góes JCS. Neoadjuvant chemotherapy impact on outcomes in immediate breast reconstruction with latissimus dorsi flap and silicone implant. J Surg Oncol 2024; 129:208-218. [PMID: 37792635 DOI: 10.1002/jso.27479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Neoadjuvant chemotherapy (NCH) has demonstrated efficacy in downsizing tumors and facilitating less extensive surgery. However, immediate breast reconstruction (IBR) after NCH has raised concerns regarding higher complication rates. This study evaluates the impact of NCH on outcomes following IBR with a latissimus dorsi flap and implant (LDI) after mastectomy. METHODS Cases from a prospective maintained database were reviewed, and patients classified according to whether or not they received NCH. Risk factors and major and minor complications in both groups were then analyzed. RESULTS Among the 196 patients who underwent 198 IBR procedures, 38.4% received NCH and 66.1% did not. The overall complication rate was 46.7% in the non-NCH group and 53.3% in the NCH group (p = 0.650). The presence of comorbidities increased the likelihood of any complication (odds ratio [OR]: 3.46; 95% confidence interval [CI]: 1.38-8.66; p = 0.008) as well as major complications (OR: 3.35; 95% CI: 1.03-10.95; p = 0.045). Although patients in the NCH group experienced more major complications (10.5% vs. 4.9%; p = 0.134) and early loss of breast reconstruction (3.9% vs. 0.8%; p = 0.128), these findings were not statistically significant. CONCLUSION This study found no statistically significant association between NCH and higher risk of complications or loss of IBR with LDI after mastectomy.
Collapse
Affiliation(s)
- Gabriel Salum D'Alessandro
- Breast and Plastic Surgery Division, Instituto Brasileiro de Controle do Cancer (IBCC), São Paulo, Brazil
| | - Alexandre Mendonça Munhoz
- Plastic Surgery Division, Hospital Sírio-Libanês, São Paulo, Brazil
- Plastic Surgery Division, Hospital Moriah, São Paulo, Brazil
| | - Fabiana Midori Takeuchi
- Plastic Surgery Division, Instituto Brasileiro de Controle do Cancer (IBCC), São Paulo, Brazil
| | - Alejandro Povedano
- Plastic Surgery Division, Instituto Brasileiro de Controle do Cancer (IBCC), São Paulo, Brazil
| | - João Carlos Sampaio Góes
- Breast and Plastic Surgery Division, Instituto Brasileiro de Controle do Cancer (IBCC), São Paulo, Brazil
| |
Collapse
|
518
|
Galarraga-Vinueza ME, Barootchi S, Nevins ML, Nevins M, Miron RJ, Tavelli L. Twenty-five years of recombinant human growth factors rhPDGF-BB and rhBMP-2 in oral hard and soft tissue regeneration. Periodontol 2000 2024; 94:483-509. [PMID: 37681552 DOI: 10.1111/prd.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Contemporary oral tissue engineering strategies involve recombinant human growth factor approaches to stimulate diverse cellular processes including cell differentiation, migration, recruitment, and proliferation at grafted areas. Recombinant human growth factor applications in oral hard and soft tissue regeneration have been progressively researched over the last 25 years. Growth factor-mediated surgical approaches aim to accelerate healing, tissue reconstruction, and patient recovery. Thus, regenerative approaches involving growth factors such as recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human bone morphogenetic proteins (rhBMPs) have shown certain advantages over invasive traditional surgical approaches in severe hard and soft tissue defects. Several clinical studies assessed the outcomes of rhBMP-2 in diverse clinical applications for implant site development and bone augmentation. Current evidence regarding the clinical benefits of rhBMP-2 compared to conventional therapies is inconclusive. Nevertheless, it seems that rhBMP-2 can promote faster wound healing processes and enhance de novo bone formation, which may be particularly favorable in patients with compromised bone healing capacity or limited donor sites. rhPDGF-BB has been extensively applied for periodontal regenerative procedures and for the treatment of gingival recessions, showing consistent and positive outcomes. Nevertheless, current evidence regarding its benefits at implant and edentulous sites is limited. The present review explores and depicts the current applications, outcomes, and evidence-based clinical recommendations of rhPDGF-BB and rhBMPs for oral tissue regeneration.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- School of Dentistry, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Marc L Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Myron Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Lorenzo Tavelli
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
519
|
Perez K, Teotia SS, Haddock NT. To Ablate or Not to Ablate: Does Umbilectomy Decrease Donor-Site Complications in DIEP Flap Breast Reconstruction? Plast Reconstr Surg 2024; 153:305-314. [PMID: 37166049 DOI: 10.1097/prs.0000000000010617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Improving outcomes for deep inferior epigastric perforator (DIEP) flap breast reconstruction is an evolving area of interest. The aim of this study was to evaluate the effect of umbilectomy in abdominally based breast reconstruction. METHODS This retrospective study evaluated postoperative outcomes of patients who underwent autologous DIEP flap breast reconstruction at an academic center between January of 2015 and December of 2021 performed by one of two reconstructive surgeons. The primary outcome variable was abdominal donor-site complications. A secondary outcome variable was treatment outcomes for complications. Covariates included demographic information, comorbidities, cancer treatment, and smoking. RESULTS A total of 408 patients underwent DIEP flap breast reconstruction, with 194 (47.5%) undergoing umbilectomy. Umbilectomy resulted in decreased number of total wounds per patient (0.35 ± 0.795) compared with umbilical preservation (0.75 ± 1.322; P < 0.001), as well as decreased associated risk of any reported wounds (OR, 0.530; P = 0.009). Associations that trended toward significance occurred between umbilectomy and minor wound separation and partial necrosis, with both showing decreased risk. A significant association was noted between umbilectomy and donor-site seroma [χ 2 (1) = 6.348; P = 0.016], showing an increased risk (OR, 5.761). CONCLUSIONS Umbilectomy should be discussed with patients and considered as a part of DIEP flap breast reconstruction given the reduction in the risk of abdominal donor-site wounds. Although umbilectomy decreases the rate of wounds, it can increase the risk of seroma; therefore, other interventions, such as progressive tension sutures, may be explored to aid in reducing seroma and improving wound healing. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, III.
Collapse
Affiliation(s)
- Kevin Perez
- From the Department of Plastic Surgery, University of Texas Southwestern Medical Center
| | - Sumeet S Teotia
- From the Department of Plastic Surgery, University of Texas Southwestern Medical Center
| | - Nicholas T Haddock
- From the Department of Plastic Surgery, University of Texas Southwestern Medical Center
| |
Collapse
|
520
|
Shi C, Zhang M. Incidence and Management of Skin Lesions and Minor Wounds in Chronic Obstructive Pulmonary Disease Patients undergoing Advanced Bronchodilator Therapy. Int Wound J 2024; 21:e14668. [PMCID: PMC10834100 DOI: 10.1111/iwj.14668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 04/24/2025] Open
Abstract
While triple inhalation therapy is commonly employed in the treatment of chronic obstructive pulmonary disease (COPD), limited knowledge exists regarding its impact on the healing of minor wounds and integrity of the epidermis. This study investigated the impact of combining triple inhalation therapy with double bronchodilators on the aforementioned parameters in patients with stable COPD. A cross‐sectional study was conducted in Changzhou, China, from March 2022 to October 2023, involving 540 patients who had received the diagnosis of stable COPD. Combined therapy participation requirements stipulated a minimum of 6 months of uninterrupted treatment. Dermatological examinations, demographic data and clinical records were utilized to collect information regarding the elasticity, moisture content and duration of wound healing. The research revealed that there were no statistically significant differences in demographic and clinical characteristics between the groups that received triple inhalation alone and triple inhalation in combination with double bronchodilators (p > 0.05). Nevertheless, the combined therapy group demonstrated shorter duration since receiving a diagnosis of COPD (p < 0.05). It is noteworthy to remark that the combined therapy group exhibited significantly higher skin moisture content and shorter interval for wound recovery when compared with the group that only received triple inhalation (p < 0.05). Lung function measurements in combined therapy group indicated enhanced Forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity ratio, as well as a reduction in COPD exacerbations. Nevertheless, no statistically significant distinction in skin elasticity was observed among the groups (p > 0.05). The supplementary application of triple inhalation therapy and double bronchodilators in stable COPD patients not only improved respiratory outcomes but also positively impacted skin health, specifically by promoting wound healing and augmenting moisture levels. These results highlighted the possible benefits of implementing a holistic treatment approach in COPD, suggesting that incorporating these therapies could offer additional advantages to the epidermis.
Collapse
Affiliation(s)
- Caiwen Shi
- Department of Respiratory and Critical Care MedicineThe Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu ProvinceChina
| | - Ming Zhang
- Medical Imaging DepartmentThe Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
521
|
Liu L, Liu X, Chen Y, Kong M, Zhang J, Jiang M, Zhou H, Yang J, Chen X, Zhang Z, Wu C, Jiang X, Zhang J. Paxillin/HDAC6 regulates microtubule acetylation to promote directional migration of keratinocytes driven by electric fields. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119628. [PMID: 37949303 DOI: 10.1016/j.bbamcr.2023.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.
Collapse
Affiliation(s)
- Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Meng Kong
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Hongling Zhou
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinrui Yang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xu Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| |
Collapse
|
522
|
Banlue A, Kaewmuangmoon J, Janebodin K, Tansriratanawong K. Induction of Migration and Collagen Synthesis in Human Gingival Fibroblasts Using Periodontal Ligament Stem Cell Conditioned Medium. Eur J Dent 2024; 18:219-227. [PMID: 37105221 PMCID: PMC10959630 DOI: 10.1055/s-0043-1764422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE This study aimed to examine the effect of periodontal ligament stem cell conditioned medium (PDLSC-CM) on human gingival fibroblast (HGF) migration and collagen synthesis. MATERIALS AND METHODS To assess cell viability, we extracted PDLSC-CM, and the total derived protein concentration was adjusted to 12.5 to 200 µg/mL, followed by treatment with HGFs. The viability of HGFs was observed for 24 hours using the MTT assay. Cell migration was monitored for 24 to 48 hours by wound healing and Boyden chamber assays. Collagen synthesis from HGFs was examined by picrosirius red dye and real-time polymerase chain reaction (PCR) to measure collagen type I and III gene expression for 7 to 10 days. A comparison among the groups was assessed using a one-way analysis of variance (ANOVA) and Bonferroni post hoc test, with the exception of the cell viability assay, which was subjected to Welch's test and Dunnett's T3 post hoc test. RESULTS HGF viability was significantly enhanced by 12.5, 25, and 50 µg/mL PDLSC-CM. The HGFs treated with 50 µg/mL PDLSC-CM promoted cell migration as shown by wound healing and Boyden chamber assays. At this concentration, collagen synthesis increased at 10 days. Collagen type I gene expression increased by 1.6-fold (p < 0.001) and 4.96-fold (p < 0.001) at 7 and 10 days, respectively. Collagen type III gene expression showed an increase of 1.76-fold (p < 0.001) and 6.67-fold (p < 0.001) at the same time points. CONCLUSION Our study suggested that a low concentration of PDLSC-CM at 50 µg/mL has given an amelioration of HGFs providing for periodontal wound healing and periodontal regeneration, particularly migration and collagen synthesis.
Collapse
Affiliation(s)
- Akkapol Banlue
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
523
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
524
|
Jagdale S, Agarwal B, Dixit A, Gaware S. Chitosan as excellent bio-macromolecule with myriad of anti-activities in biomedical applications - A review. Int J Biol Macromol 2024; 257:128697. [PMID: 38096939 DOI: 10.1016/j.ijbiomac.2023.128697] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
The aim of the study is to explore the myriad of anti-activities of chitosan - deacylated derivative of chitin in biomedical applications. Chitosan consists of reactive residual amino groups, which can be modified chemically to obtain wide range of derivatives. These derivatives exhibit the controlled physicochemical characteristics, which in turn improve its functional properties. Such derivatives find numerous applications in the field of biomedical science, agriculture, tissue engineering, bone regeneration and environmental science. This study presents a comprehensive overview of the multifarious anti-activities of chitosan and its derivatives in the field of biomedical science including anti-microbial, antioxidant, anti-tumor, anti-HIV, anti-fungal, anti- inflammatory, anti-Alzheimer's, anti-hypertensive and anti-diabetic activity. It briefly details these anti-activities with respect to its mode of action, pharmacological effects and potential applications. It also presents the overview of current research exploring novel derivatives of chitosan and its anti- activities in the recent past. Finally, the review projects the prospective potential of chitosan and its derivatives and expects to encourage the readers to develop new drug delivery systems based on such chitosan derivatives and explore its applications in biomedical science for benefit of mankind.
Collapse
Affiliation(s)
- Sachin Jagdale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India.
| | - Babita Agarwal
- Department of Pharmaceutical Chemistry, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Abhishek Dixit
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Saurabh Gaware
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| |
Collapse
|
525
|
Khoshnoudi P, Sabiza S, Khosravi M, Mohamadian B. Exploring effect of M2 macrophages on experimental full-thickness wound healing in streptozotocin-induced diabetic rats. Int J Exp Pathol 2024; 105:13-20. [PMID: 37969023 PMCID: PMC10797421 DOI: 10.1111/iep.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/23/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes mellitus is one of the most prevalent medical conditions, in both humans and animals. People with diabetes mellitus often experience slower than normal wound healing, making it a serious health concern. This study investigates the effect of M2 differentiated macrophages on full-thickness wound healing in white Westar rats exposed to streptozocin 70 mg/kg. A full-thickness skin defect with dimensions of 2 × 2 cm was created on the back of all the animals, and their blood sugar was simultaneously assessed. The monocytes were isolated from blood samples using the plastic adherence method and were exposed to dexamethasone (5-10 μ) for 24 h. Subsequently, they were washed with PBS and incubated in fresh cell culture medium for 5 days. The differentiated M2 cells were injected into four points of the experimental ulcers of the treatment group. Macroscopic and microscopic changes were evaluated and compared over a period of two weeks between the test and control groups. The infusion of these cells a few days after wounding enhances wound healing parameters significantly, as evidenced by an increase in germinating tissue formation, wound contraction, inflammation reduction, and collagen increase in the treated group.
Collapse
Affiliation(s)
- Parmis Khoshnoudi
- Department of Clinical Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Soroush Sabiza
- Department of Clinical Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Babak Mohamadian
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
526
|
Baishal S, Prakash J, Marvaan MS, Sundar M, Pannerselvam B, Venkatasubbu GD. Naringin and graphene oxide incorporated Moringa oleifera gum/poly(vinyl) alcohol patch for enhanced wound healing. Int J Biol Macromol 2024; 259:129198. [PMID: 38191107 DOI: 10.1016/j.ijbiomac.2024.129198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Patients and healthcare systems stand to gain much from the use of substances that can accelerate wound healing. In this research work, a polymeric patch was fabricated using polymers like poly (vinyl alcohol) (PVA) and Moringa oleifera gum (MO) incorporated with graphene oxide (GO) and naringin (Nar) (drug). This study determined the impact of using PVA/MO/GO/Nar polymeric patch on wound healing via in vitro and in vivo investigations. Graphene oxide was synthesized by modified Hummer's method. The synthesized sample was characterized using XRD, FT-IR, RAMAN Spectroscopy, FESEM and HRTEM. Antibacterial analysis of the GO on four different bacteria was studied through well diffusion, colony count, growth curve and biofilm assay. Biocompatibility was analysed by haemolysis assay. The morphology, antibacterial activity, haemolysis assay, swelling, degradation, porosity, water vapour transmission rate, drug release, blood pump model, in-vitro scratch assay and MTT assay were analysed for the fabricated polymeric patches under in-vitro condition. The PVA/MO/GO/Nar patch has shown enhanced wound healing in in-vivo wound healing experiments on albino Wistar rats.
Collapse
Affiliation(s)
- S Baishal
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - J Prakash
- Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - M S Marvaan
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamil Nadu, India
| | | | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
527
|
Alou L, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, Moreno J, Sánchez-Gómez R, González N, Sevillano D. Strengthening the relationship between intractable plantar keratosis and human papillomavirus. J Med Virol 2024; 96:e29431. [PMID: 38293752 DOI: 10.1002/jmv.29431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
The aim of the study was to determine the presence of human papillomavirus (HPV) in patients with intractable plantar keratosis (IPK) by comparing the histopathological findings of biopsies. A prospective, observational, and concordance study was carried out. Three different specimens were taken from each IPK. A first punch was sent for histopathological examination, and a second punch and a superficial skin scraping were both sent for HPV polymerase chain reaction (PCR) and type determination. A total of 51 patients were included. From the histopathological examination, it was determined that 35 (68.6%) samples were diagnosed as warts and 16 (31.3%) as keratosis. However, the presence of HPV was confirmed by PCR in 49 (96.1%) and in 42 (82.4%) samples obtained by punch and superficial scraping, respectively. In the 49 PCR-positive samples, the most common HPV types were HPV1, HPV2, HPV27, HPV57, and HPV65, accounting for 81.6% of the samples. In conclusion, this study demonstrates that HPV infection and IPK lesions are very closely related. Although we cannot confirm that HPV is the cause of the development of IPK, the high prevalence of HPV observed in these lesions calls for a change to the procedures for managing IPK.
Collapse
Affiliation(s)
- Luis Alou
- Medicine Department, Microbiology Area, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Marta E Losa-Iglesias
- Department of Nursing and Stomatology, Faculty of Health Sciences, King Juan Carlos University, Madrid, Spain
| | | | - Rubén Sánchez-Gómez
- Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, Madrid, Spain
| | - Natalia González
- Medicine Department, Microbiology Area, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - David Sevillano
- Medicine Department, Microbiology Area, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
528
|
Yip PL, Lee WYV, Leung WK, Nyaw SF, Chan NY, Lee SF. Stereotactic Body Radiation Therapy to the Foot for Bone Metastasis. Adv Radiat Oncol 2024; 9:101363. [PMID: 38261951 PMCID: PMC10797535 DOI: 10.1016/j.adro.2023.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/19/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Pui Lam Yip
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
| | - Wan Yan Venus Lee
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | | | - Shi Feng Nyaw
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | - Ngai Yui Chan
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | - Shing Fung Lee
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
| |
Collapse
|
529
|
Goher SS, Aly SH, Abu-Serie MM, El-Moslamy SH, Allam AA, Diab NH, Hassanein KMA, Eissa RA, Eissa NG, Elsabahy M, Kamoun EA. Electrospun Tamarindus indica-loaded antimicrobial PMMA/cellulose acetate/PEO nanofibrous scaffolds for accelerated wound healing: In-vitro and in-vivo assessments. Int J Biol Macromol 2024; 258:128793. [PMID: 38134993 DOI: 10.1016/j.ijbiomac.2023.128793] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indica-loaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, School of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Ayat A Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Nadeen H Diab
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut university, Assiut 71526, Egypt
| | - Khaled M A Hassanein
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Rana A Eissa
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Noura G Eissa
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo 11837, Egypt.
| |
Collapse
|
530
|
Bergamo ET, de Oliveira PG, Campos TMB, Bonfante EA, Tovar N, Boczar D, Nayak VV, Coelho PG, Witek L. Osseointegration of implant surfaces in metabolic syndrome and type-2 diabetes mellitus. J Biomed Mater Res B Appl Biomater 2024; 112:e35382. [PMID: 38355936 PMCID: PMC10883641 DOI: 10.1002/jbm.b.35382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/20/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
This in vivo study evaluated the bone healing response around endosteal implants with varying surface topography/chemistry in a preclinical, large transitional model induced with metabolic syndrome (MS) and type-2 diabetes mellitus (T2DM). Fifteen Göttingen minipigs were randomly distributed into two groups: (i) control (normal diet, n = 5) and (ii) O/MS (cafeteria diet for obesity induction, n = 10). Following obesity induction, five minipigs from the obese/metabolic syndrome (O/MS) group were further allocated, randomly, into the third experimental group: (iii) T2DM (cafeteria diet + streptozotocin). Implants with different surface topography/chemistry: (i) dual acid-etched (DAE) and (ii) nano-hydroxyapatite coating over the DAE surface (NANO), were placed into the right ilium of the subjects and allowed to heal for 4 weeks. Histomorphometric evaluation of bone-to-implant contact (%BIC) and bone area fraction occupancy (%BAFO) within implant threads were performed using histomicrographs. Implants with NANO surface presented significantly higher %BIC (~26%) and %BAFO (~35%) relative to implants with DAE surface (%BIC = ~14% and %BAFO = ~28%, p < .025). Data as a function of systemic condition presented significantly higher %BIC (~28%) and %BAFO (~42%) in the control group compared with the metabolically compromised groups (O/MS: %BIC = 14.35% and %BAFO = 26.24%, p < .021; T2DM: %BIC = 17.91% and %BAFO = 26.12%, p < .021) with no significant difference between O/MS and T2DM (p > .05). Statistical evaluation considering both factors demonstrated significantly higher %BIC and %BAFO for the NANO surface relative to DAE implant, independent of systemic condition (p < .05). The gain increase of %BIC and %BAFO for the NANO compared with DAE was more pronounced in O/MS and T2DM subjects. Osseointegration parameters were significantly reduced in metabolically compromised subjects compared with healthy subjects. Nanostructured hydroxyapatite-coated surfaces improved osseointegration relative to DAE, regardless of systemic condition.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Prosthodontics, University of São Paulo, School of Dentistry, São Paulo, SP, Brazil
| | - Paula G.F.P. de Oliveira
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- CESUPA, Department of Periodontology, University Center of State of Para, Belem, PA, Brazil
| | - Tiago M B Campos
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Physics, Technological Institute of Aeronautics, São José dos Campos, SP, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics, University of São Paulo, School of Dentistry, São Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY, USA
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lukasz Witek
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
531
|
Linawati L, Sitam S, Mulyawan W, Purba A, Syawqie A, Handharyani E, Subiakto Y, Amaliya A. Effect of Intermittent Hypobaric Hypoxia Exposure on HIF-1α, VEGF, and Angiogenesis in the Healing Process of Post-Tooth Extraction Sockets in Rats. Eur J Dent 2024; 18:304-313. [PMID: 37295455 PMCID: PMC10959591 DOI: 10.1055/s-0043-1768639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of intermittent hypobaric hypoxia (IHH) exposure on the expression of hypoxia-induced factor-1α (HIF-1α) messenger RNA (mRNA), vascular endothelial growth factor-a (VEGF-a) mRNA, and angiogenesis after tooth extraction in rats. MATERIALS AND METHODS On 45 male Sprague-Dawley rats were performed the removal of the maxillary left first molar, and then they were randomly divided into 9 groups, namely: 4 groups that were exposed to IHH for 30 minutes every day in the Hypobaric Chamber at an altitude of 18,000 feet, with 1 time hypobaric hypoxia (HH), 3 times HH, 5 times HH, and 7 times HH; 4 normoxia groups that were terminated on days 1, 3, 5, and 7 after tooth extraction; and the 1 control group. Real-time polymerase chain reaction measured the molecular changes in the socket tissue after tooth extraction in rats to evaluate the expression of HIF-1α mRNA and VEGF mRNA. Histological changes with hematoxylin and eosin staining were noted to evaluate the amount of angiogenesis in the socket after tooth extraction. Molecular and histological parameters were calculated at the end of each experiment on days 0, 1, 3, 5, and 7 after tooth extraction, which exhibited the improvement phase of the wound-healing process. RESULTS Increases in the expression of HIF-1α mRNA, VEGF mRNA, and angiogenesis were found in the IHH group compared with the normoxia group and the control group. The expression of HIF-1α mRNA increased significantly (p < 0.05) in the group after one time HH exposure on day 1, then decreased in the IHH group (three times HH exposure, five times HH exposure, and seven times HH exposure) approaching the control group. The expression of VEGF mRNA and angiogenesis began to increase after one time HH exposure on day 1, and increased again after three times HH exposure on day 3, then increased even more after five times HH exposure on day 5, and increased very significantly (**p < 0.05) after seven times HH exposure on day 7. It showed that repeated or intermittent exposure to HH conditions induced a protective response that made cells adapt under hypoxia conditions. CONCLUSION IHH exposure accelerates the socket healing of post-tooth extraction, which is proven by changes in HIF-1α mRNA expression and increase in VEGF mRNA expression as stimuli for angiogenesis in post-tooth extraction sockets under hypobaric hypoxic condition, which also stimulates the formation of new blood vessels, thereby increasing blood supply and accelerating wound healing.
Collapse
Affiliation(s)
- Linawati Linawati
- Doctoral Degree Study Program in Military Dentistry Science, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Suhardjo Sitam
- Department of Radiology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Mulyawan
- Department of Community Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ambrosius Purba
- Division of Physiology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Achmad Syawqie
- Department of Oral Biology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Yuli Subiakto
- Military Pharmacy Faculty, Universitas Pertahanan, Jakarta, Indonesia
| | - Amaliya Amaliya
- Departement of Periodontology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
- Centre for Military Dentistry Research, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
532
|
Zhang Y, Tao K, Ding L, Zhao Y. Assessing biomarkers for post-surgical wound healing: A meta-analysis of exosome-based CircRNA in breast cancer recovery. Int Wound J 2024; 21:e14723. [PMID: 38379248 PMCID: PMC10830351 DOI: 10.1111/iwj.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
To evaluate the diagnostic potential of exosome-based circular RNAs (circRNAs) as biomarkers for wound healing in patients after breast cancer surgery, we conducted a comprehensive meta-analysis of studies that measured exosome-based circRNA levels in breast cancer patients post-surgery. Data sources included several biomedical databases up to April 2023. Two independent reviewers extracted the data and assessed study quality. Sensitivity, specificity and diagnostic odds ratios were synthesized using random-effects model with subgroup analyses performed based on study characteristics. Seventeen studies met the inclusion criteria, encompassing a total of 1234 patients. The pooled sensitivity and specificity of exosome-based circRNA for detecting wound healing complications were 0.85 (95% CI: 0.77-0.91) and 0.83 (95% CI: 0.78-0.88), respectively. The area under the summary receiver operating characteristic (SROC) curve was 0.90, indicating high diagnostic accuracy. Subgroup analyses revealed that diagnostic performance was consistent across studies of different geographic regions and sample types but indicated potential variability related to patient age and study design. Exosome-based circRNA profiles exhibited the high diagnostic accuracy for monitoring wound healing in breast cancer post-operative care. These findings supported the potential utility of circRNA as non-invasive biomarkers for post-surgical recovery. However, variability among studies suggested the need for standardized protocols in biomarker measurement. Future research should focus on longitudinal studies to validate the prognostic value of these biomarkers and investigate their role in personalized patient management.
Collapse
Affiliation(s)
- Yunsuo Zhang
- Department of Breast SurgeryThe Fourth People's Hospital of ZhenjiangZhenjiangChina
| | - Kai Tao
- Department of Breast SurgeryThe Fourth People's Hospital of ZhenjiangZhenjiangChina
| | - Lachun Ding
- Department of InformationThe Fourth People's Hospital of ZhenjiangZhenjiangChina
| | - Yi Zhao
- Department of Breast SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
533
|
Wolter A, Jirkof P, Thöne-Reineke C, Rapp AE, Lang A. Evaluating rearing behaviour as a model-specific pain indicator in mouse osteotomy models. Lab Anim 2024; 58:9-21. [PMID: 37684025 DOI: 10.1177/00236772231183197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
To assess pain in mouse models of bone fractures, currently applied assessment batteries use combinations of clinical signs with spontaneous behaviours and model-specific behaviours, including walking and weight-bearing behaviour. Rearing behaviour - an upright position on the hindlimbs - has a motivational and an ambulatory component. Thus, rearing behaviour might have the potential to be an indicator for model-specific pain in mouse fracture models. To date, the assessment of rearing behaviour in bone fracture models using mice is only scarcely described. In this study, we aimed to determine whether the duration of rearing behaviour is affected by osteotomy of the femur in male and female C57BL/6N mice with external fixation (rigid vs. flexible) and could be an additional sign for model-specific pain, such as the presence of limping. Rearing duration was significantly decreased after osteotomy in male and female mice at 24 h, 48 h and 72 h, but was not affected by anaesthesia/analgesia alone. In male mice, the relative rearing duration increased over 72 h (both fixations) and at 10 days in the rigid fixation group but remained significantly lower in the flexible fixation group. In contrast, in female mice, no increase in rearing duration was observed within 72 h and at 10 days post-osteotomy, independent of the fixation. We did not identify any association between relative rearing time and presence or absence of limping. In summary, our results do not provide sufficient evidence that altered rearing behaviour might be an indicative sign for pain in this model.
Collapse
Affiliation(s)
- Angelique Wolter
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Germany
- German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute of Animal Welfare, Animal Behaviour and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3R, University of Zurich, Switzerland
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behaviour and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Anna E Rapp
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Germany
- German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopaedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Annemarie Lang
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Germany
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
534
|
Chirayath A, Dhaniwala N, Kawde K. A Comprehensive Review on Managing Fracture Calcaneum by Surgical and Non-surgical Modalities. Cureus 2024; 16:e54786. [PMID: 38529440 PMCID: PMC10961470 DOI: 10.7759/cureus.54786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
This comprehensive review delves into the multifaceted landscape of calcaneal fractures, thoroughly examining their aetiology, clinical presentation, and diverse management strategies. Encompassing surgical and non-surgical approaches, the review scrutinises critical aspects such as patient compliance, rehabilitation protocols, and long-term follow-up considerations. Surgical modalities, propelled by recent innovations like minimally invasive techniques and advanced fixation materials, are juxtaposed with non-surgical interventions, emphasising the pivotal role of patient education and adherence to optimise outcomes. The synthesis of critical findings underscores the need for individualised care and multidisciplinary collaboration in clinical practice. Moreover, the review outlines recommendations for healthcare practitioners and identifies promising areas for future research, including biomechanical studies and telerehabilitation. This comprehensive exploration aims to contribute to the ongoing evolution of calcaneal fracture management, ultimately enhancing patient care and outcomes in this complex orthopaedic realm.
Collapse
Affiliation(s)
- Aditya Chirayath
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nareshkumar Dhaniwala
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kevin Kawde
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
535
|
Bettle G, Bell DP, Bakewell SJ. A Novel Comprehensive Therapeutic Approach to the Challenges of Chronic Wounds: A Brief Review and Clinical Experience Report. Adv Ther 2024; 41:492-508. [PMID: 38104037 PMCID: PMC10838851 DOI: 10.1007/s12325-023-02742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Following the clinical perspective and concept that a healthy body will not develop chronic wounds, the central approach for the treatment described here is based on an understanding of how the body transforms the wound microenvironment from a non-healing to a healing state. As part of a comprehensive treatment regimen that includes OCM™ (complete matrix), wound preparation, and skin protectant formulations, the OCM contains components for complete wound healing by attending to the individual needs required to promote the closure of each unique chronic wound. During application of the comprehensive treatment regimen in independent investigator-led trials, the total wound percentage average reduction over the first 4 weeks of treatment was 60% across multiple wound types; median time to total wound closure was 6.9 weeks. Safety testing of the OCM formulation shows no potential allergenicity, no potential sensitization, and no known product-related adverse events. Clinical trials evaluating the OCM formulation as part of the comprehensive treatment regimen of multiple wound types are underway. Results of clinical trials and real-world experiences will expand current knowledge of the wound-healing potential of this novel product.
Collapse
Affiliation(s)
- Griscom Bettle
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Desmond P Bell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Suzanne J Bakewell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA.
| |
Collapse
|
536
|
Lin X, Su J, Yang Z. Optimising wound care for patients with cirrhosis: A study of the effect of combination therapy on wound healing. Int Wound J 2024; 21:e14727. [PMID: 38356305 PMCID: PMC10867491 DOI: 10.1111/iwj.14727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Cirrhosis, a chronic liver disease, significantly impairs wound healing due to complex alterations in physiology, including compromised immune function, poor nutritional status and altered blood flow. This prospective observational cohort study aimed to evaluate the effectiveness of the multidimensional combination therapy approach in enhancing wound healing among patients diagnosed with cirrhosis. The study was conducted from February to November 2023 in Shanghai, China, including 248 patients with cirrhosis experiencing poor wound healing. The combination therapy consisted of tailored pharmacological treatments, advanced wound dressings, dietitian-directed dietary regimens and supplementary therapies like negative pressure wound therapy (NPWT), stem cell and hyperbaric oxygen therapy. The interventions were customised based on comprehensive initial assessments of liver function, nutritional status and wound characteristics. Follow-ups were conducted to monitor response and adjust treatments accordingly. The patient demographic was varied, predominantly 41-60 years old, with the slight male predominance. The study demonstrated that after 3 months of treatment, wound sizes decreased significantly across all cirrhosis severity levels: mild (2.4-1.7 cm2 ), moderate (4.1-2.6 cm2 ) and severe (6.2-4.4 cm2 ). Healing rates improved to 90% in mild, 75% in moderate and 45% in severe cases over 6 months. Albumin levels increased by the average of +0.3 g/dL to +0.4 g/dL post-treatment across the severity spectrum. However, complication rates escalated with severity: Mild cases had a 10% infection rate, while severe cases had up to 30% infection rate. Combination therapy significantly improved wound healing in cirrhosis patients, with the extent of improvement correlated with the severity of the condition. Tailored, multidisciplinary approaches are critical in managing the intricate wound healing process in cirrhosis, effectively reducing healing times and improving overall treatment outcomes. These findings advocate for personalised care strategies and highlight the potential of integrating various treatment modalities to address the complex needs of this population.
Collapse
Affiliation(s)
- Xuehong Lin
- Medical Imaging DepartmentQuanzhou First HospitalQuanzhouChina
| | - Jinman Su
- The 10th Recuperation DepartmentQingDao Special Servicemen Recuperation Center of PLA NavyQingdaoChina
| | - Zhijuan Yang
- Department of GastroenterologyXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
537
|
Chen ACY, Lu Y, Hsieh CY, Chen YS, Chang KC, Chang DH. Advanced Biomaterials and Topical Medications for Treating Diabetic Foot Ulcers: A Systematic Review and Network Meta-Analysis. Adv Wound Care (New Rochelle) 2024; 13:97-113. [PMID: 37395488 DOI: 10.1089/wound.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Significance: With the increasing diabetic population worldwide, diabetic foot ulcers (DFUs) are a significant concern. This study aimed to compare the efficacy of skin substitutes, biomaterials, and topical agents with standard care. Recent Advances: A meta-analysis was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed, EMBASE, and Web of Science were searched using the following keywords: diabetes mellitus AND skin graft OR tissue replacement OR dressing OR drug. Two independent reviewers performed data collection and quality assessment of the eligible studies. The primary outcome was the 12- to 16-week healing rates and the secondary outcome was recurrence rates. Critical Issues: Thirty-eight randomized controlled trials, including 3,862 patients, were analyzed. The studies exhibited low heterogeneity (τ2 = 0.10) without significant asymmetry (Egger's test, p = 0.8852). After pooling direct and indirect estimates, placenta-based tissue products exhibited the best wound healing probability (p-score = 0.90), followed by skin substitutes with living cells (p-score = 0.70), acellular skin substitutes (p-score = 0.56), and advanced topical dressings (p-score = 0.34) compared with standard of care. The recurrence analysis showed significant improvement in the intervention group compared with the control group (11.21% vs. 15.15%). Future Directions: This network meta-analysis provides the relative effectiveness and rank of biomaterials and topical dressings in DFU healing. The results could help clinical decision making.
Collapse
Affiliation(s)
| | - Yi Lu
- Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chi-Ying Hsieh
- Division of Plastic and Esthetic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yo-Shen Chen
- Division of Plastic and Esthetic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ke-Chung Chang
- Division of Plastic and Esthetic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Dun-Hao Chang
- Division of Plastic and Esthetic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Information Management, Yuan Ze University, Taoyuan, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
538
|
Akhtari N, Ahmadi M, Kiani Doust Vaghe Y, Asadian E, Behzad S, Vatanpour H, Ghorbani-Bidkorpeh F. Natural agents as wound-healing promoters. Inflammopharmacology 2024; 32:101-125. [PMID: 38062178 DOI: 10.1007/s10787-023-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 03/03/2024]
Abstract
The management of acute and chronic wounds resulting from diverse injuries poses a significant challenge to clinical practices and healthcare providers. Wound healing is a complex biological process driven by a natural physiological response. This process involves four distinct phases, namely hemostasis, inflammation, proliferation, and remodeling. Despite numerous investigations on wound healing and wound dressing materials, complications still persist, necessitating more efficacious therapies. Wound-healing materials can be categorized into natural and synthetic groups. The current study aims to provide a comprehensive review of highly active natural animal and herbal agents as wound-healing promoters. To this end, we present an overview of in vitro, in vivo, and clinical studies that led to the discovery of potential therapeutic agents for wound healing. We further elucidated the effects of natural materials on various pharmacological pathways of wound healing. The results of previous investigations suggest that natural agents hold great promise as viable and accessible products for the treatment of diverse wound types.
Collapse
Affiliation(s)
- Negin Akhtari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Kiani Doust Vaghe
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
539
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
540
|
Kumar M, Banerjee P, Das A, Singh K, Guith T, Kacar S, Gourishetti K, Sen CK, Roy S, Khanna S. Hydrolyzed Collagen Powder Dressing Improves Wound Inflammation, Perfusion, and Breaking Strength of Repaired Tissue. Adv Wound Care (New Rochelle) 2024; 13:70-82. [PMID: 37534840 DOI: 10.1089/wound.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Objective: Hydrolyzed collagen-based matrices are widely used as wound care dressings. Information on the mechanism of action of such dressings is scanty. The objective of this study was to test the effect of a specific hydrolyzed collagen powder (HCP), which is extensively used for wound care management in the United States. Approach: The effects of HCP on resolution of wound inflammation, perfusion, closure, and breaking strength of the repaired skin were studied in an experimental murine model. Results: In early (day 7) inflammatory phase of wound macrophages, HCP treatment boosted phagocytosis and efferocytosis of wound-site macrophages. In these cells, inducible reactive oxygen species were also higher on day (d) 7. HCP treatment potentiated the expression of anti-inflammatory interleukin (IL)-10 cytokine and proangiogenic vascular endothelial growth factor (VEGF) production. Excisional wounds dressed with HCP showed complete closure on day 21, while the control wounds remained open. HCP treatment also demonstrated improved quality of wound healing as marked by the improved breaking strength of the closed wound tissue/repaired skin. Innovation: These data represent first evidence on the mechanism of action of clinically used HCP. Conclusion: HCP dressing favorably influenced both wound inflammation and vascularization. Improved breaking strength of HCP-treated repaired skin lays the rationale for future studies testing the hypothesis that HCP-treated closed wounds would show fewer recurrences.
Collapse
Affiliation(s)
- Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tanner Guith
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Karthik Gourishetti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
541
|
Sun N, Sun Y, Xing Y, Xu L, Chen Z, Qing L, Wu P, Tang J. Knowledge mapping and research trends of stem cell in wound healing: A bibliometric analysis. Int Wound J 2024; 21:e14587. [PMCID: PMC10830390 DOI: 10.1111/iwj.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2025] Open
Abstract
Wound nonhealing is a common and difficult problem in clinic. Stem cells are pluripotent cells, and their undifferentiated and self‐replicating characteristics have attracted much attention in the regenerative medicine‐related researches. New treatment approaches might result from an understanding of the function of stem cells in wound healing. Using bibliometric techniques, this study proposed to analyse the research status, hotspots, and research trends in stem cell and wound healing. By using the Web of Science Core Collection (WoSCC), we conducted an in‐depth review of publications on stem cells in wound healing from 1999 to 2023. We used scientometric analysis methods to examine annual trends, institutions, countries, journals, authors, keywords, co‐occurrence references and their closed relationship, revealing present hotspots and potential future advancements in this field. We analysed 19 728 English studies and discovered a consistent rise in annual publications. The United States and China were the two countries with the most publications. The most three influential institutions in the field were Shanghai Jiao Tong University, Sun Yat‐sen University, and University of Pittsburgh. International Journal of Molecular Sciences and Biomaterials were considered the most influential journals in this field. International Journal of Molecular Sciences had the most publications, and the most quantity of citations and the highest H‐index were found in Biomaterials . The dual‐map overlay revealed that publications in Molecular/Biology/Genetics and Health/Nursing/Medicine co‐cited journals received the majority of the citations for studies from Molecular/Biology/Immunology and Medicine/Medical/Clinical. In terms of publication production and influence, Fu X stood out among the authors, and Pittenger MF took the top spot in co‐citations. According to the keywords from the analysis, future research should concentrate on the mechanisms through which stem cells promote wound healing. We conducted a thorough analysis of the general information, knowledge base and research hotspots in the field of stem cells and wound healing from 1999 to 2023 by using the VOSviewer, CiteSpace, and other bibliometric analysis tools. It not only provided valuable insights for scholars, but also served as a reliable reference that drives further development in the field and stimulates the interest of researchers.
Collapse
Affiliation(s)
- Nianzhe Sun
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Yu Sun
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Yixuan Xing
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- Department of EmergencyXiangya Hospital, Central South UniversityChangshaChina
| | - Laiyu Xu
- Department of OrthopedicsThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Zijie Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liming Qing
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Panfeng Wu
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Juyu Tang
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
542
|
Al-Nadaf AH, Awadallah A, Thiab S. Superior rat wound-healing activity of green synthesized silver nanoparticles from acetonitrile extract of Juglans regia L: Pellicle and leaves. Heliyon 2024; 10:e24473. [PMID: 38293455 PMCID: PMC10827513 DOI: 10.1016/j.heliyon.2024.e24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The process of wound healing is complicated. Antimicrobial silver has been one of the substances used for wounds since ancient times. Moreover, traditional medicine has long used Juglans regia L. to promote wound healing. Since eco-friendly nanotechnology has various uses in biomedical research, the aim of this study was to assess the wound-healing capacity of bio-reduced silver nanoparticles (AgNPs). UV, DLS, TEM, and FTIR were used to characterize the prepared AgNPs. Pellicle's bioreduced AgNP (AgNP/P) has a better polydispersity index (PI) of 0.336 compared to its chemically synthesized peers, which have a PI of 0.67. Using incision and excision wound healing models, AgNPs and extracts were compared to Solcoseryl®. Skin-breaking strength, wound contraction, epithelialization time, histology, and cytokines were all assessed. Juglans regia L. pellicle extract (P) has shown significant effectiveness in both models, as well as their bio-reduced partner AgNP/P. The skin's tensile strength following AgNP/P therapy (871 g, p value < 0.05) is comparable to that after Solcoseryl® (928 g), both of which are significantly better than AgNP (592 g) in the incision wound model. Epithelialization time (16.0 and 16.5 days) did not substantially differ from Solcoseryl® (15.3 days) (P value < 0.05). There was an elevated collagen content. Low levels of IL1β (189.0 pg/g) and high levels of TNF-α (1007.1 pg/g) in the case of AgNP/P suggest various cellular kinds of maturation and various wound healing structures that are evident in histopathology investigations. The bioreduced AgNP/P could find use as a pharmaceutical agent for wound healing dressings.
Collapse
Affiliation(s)
- Afaf H. Al-Nadaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Alkarak, Jordan
| | - Areej Awadallah
- Department of Pharmaceutics, Faculty of Pharmacy, Mutah University, Alkarak, Jordan
| | - Samar Thiab
- Faculty of Pharmacy, Applied Private Science University, Amman, Jordan
| |
Collapse
|
543
|
Moemenbellah-Fard MD, Bagheri M, Bonyani M, Sedaghat H, Raz A, Azizi K, Soltani A, Alipour H. Cloning, expression and molecular analysis of recombinant Netrin-A protein of Lucilia sericata Meigen (Diptera: Calliphoridae) larvae. SAGE Open Med 2024; 12:20503121231223607. [PMID: 38292417 PMCID: PMC10826387 DOI: 10.1177/20503121231223607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Objectives Lucilia sericata (Diptera: Calliphoridae) is used in larval therapy for wound healing. Netrin-A is an enzyme secreted from the salivary glands of these larvae, and has a central role in neural regeneration and angiogenesis. This study aimed to produce the recombinant Netrin-A protein from Lucilia sericata larvae by the baculovirus expression vector system in the Sf9 insect cell line. Methods The coding sequence of Netrin-A was cloned, amplified in the pTG19 vector, and then cloned in the pFastBac HTA vector. It was then transformed into DH10Bac, and the recombinant Bacmid was subsequently transfected into Sf9 cells. The recombinant Netrin-A was purified by Ni-NTA agarose. The evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay. Results The molecular weight of this protein was 52 kDa with 404 amino acids. The signal peptide was located between amino acids 24 and 25. The concentration of Netrin-A was calculated to be 48.8 μg/ml. It reaffirmed the characterized gene codes of Lucilia sericata Netrin-A in a previous study. Conclusions The generation of recombinant Netrin-A could be used in larval therapy, and as a biomarker in certain diseases. The netrin-A of Lucilia sericata was unprecedentedly cloned and expressed in a eukaryotic cell line. Given that this larva is FDA-approved, and non-pathogenic, it conduces to research on the development of maggot therapy in future.
Collapse
Affiliation(s)
- Mohammad Djafar Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Bagheri
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Bonyani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Sedaghat
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abouzar Soltani
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
544
|
González-Acedo A, Illescas-Montes R, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, García-Martínez O, Melguizo-Rodríguez L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes (Basel) 2024; 15:173. [PMID: 38397163 PMCID: PMC10887570 DOI: 10.3390/genes15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor β1 (TGF-β1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFβR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain;
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS), Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| |
Collapse
|
545
|
da Silva Vaz Junior I, Lu S, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L. Changes in saliva protein profile throughout Rhipicephalus microplus blood feeding. Parasit Vectors 2024; 17:36. [PMID: 38281054 PMCID: PMC10821567 DOI: 10.1186/s13071-024-06136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.
Collapse
Affiliation(s)
- Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Antônio F M Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Marcos Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
546
|
Zheng Q, Chen C, Liu Y, Gao J, Li L, Yin C, Yuan X. Metal Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Int J Nanomedicine 2024; 19:965-992. [PMID: 38293611 PMCID: PMC10826594 DOI: 10.2147/ijn.s434693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Diabetic wounds pose a significant challenge to public health, primarily due to insufficient blood vessel supply, bacterial infection, excessive oxidative stress, and impaired antioxidant defenses. The aforementioned condition not only places a significant physical burden on patients' prognosis, but also amplifies the economic strain on the medical system in treating diabetic wounds. Currently, the effectiveness of available treatments for diabetic wounds is limited. However, there is hope in the potential of metal nanoparticles (MNPs) to address these issues. MNPs exhibit excellent anti-inflammatory, antioxidant, antibacterial and pro-angiogenic properties, making them a promising solution for diabetic wounds. In addition, MNPs stimulate the expression of proteins that promote wound healing and serve as drug delivery systems for small-molecule drugs. By combining MNPs with other biomaterials such as hydrogels and chitosan, novel dressings can be developed and revolutionize the treatment of diabetic wounds. The present article provides a comprehensive overview of the research progress on the utilization of MNPs for treating diabetic wounds. Building upon this foundation, we summarize the underlying mechanisms involved in diabetic wound healing and discuss the potential application of MNPs as biomaterials for drug delivery. Furthermore, we provide an extensive analysis and discussion on the clinical implementation of dressings, while also highlighting future prospects for utilizing MNPs in diabetic wound management. In conclusion, MNPs represent a promising strategy for the treatment of diabetic wound healing. Future directions include combining other biological nanomaterials to synthesize new biological dressings or utilizing the other physicochemical properties of MNPs to promote wound healing. Synthetic biomaterials that contain MNPs not only play a role in all stages of diabetic wound healing, but also provide a stable physiological environment for the wound-healing process.
Collapse
Affiliation(s)
- Qinzhou Zheng
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yong Liu
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| |
Collapse
|
547
|
Che X, Zhao T, Hu J, Yang K, Ma N, Li A, Sun Q, Ding C, Ding Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers (Basel) 2024; 16:344. [PMID: 38337233 DOI: 10.3390/polym16030344] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Xueyan Che
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Jing Hu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Kaicheng Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Nan Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133000, China
| | - Qi Sun
- Jilin Zhengrong Pharmaceutical Development Co., Ltd., Dunhua 133700, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
548
|
van Zyl EM, Coburn JM. Functionalization of Bacterial Cellulose with the Antimicrobial Peptide KR-12 via Chimerical Cellulose-Binding Peptides. Int J Mol Sci 2024; 25:1462. [PMID: 38338739 PMCID: PMC10855235 DOI: 10.3390/ijms25031462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Bacterial-derived cellulose (BC) has been studied as a promising material for biomedical applications, including wound care, due to its biocompatibility, water-holding capacity, liquid/gas permeability, and handleability properties. Although BC has been studied as a dressing material for cutaneous wounds, to date, BC inherently lacks antibacterial properties. The current research utilizes bifunctional chimeric peptides containing carbohydrate binding peptides (CBP; either a short version or a long version) and an antimicrobial peptide (AMP), KR-12. The secondary structure of the chimeric peptides was evaluated and confirmed that the α-helix structure of KR-12 was retained for both chimeric peptides evaluated (Long-CBP-KR12 and Short-CBP-KR12). Chimeric peptides and their individual components were assessed for cytotoxicity, where only higher concentrations of Short-CBP and longer timepoints of Short-CBP-KR12 exposure exhibited negative effects on metabolic activity, which was attributed to solubility issues. All KR-12-containing peptides exhibited antibacterial activity in solution against Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The lipopolysaccharide (LPS) binding capability of the peptides was evaluated and the Short-CBP-KR12 peptide exhibited enhanced LPS-binding capabilities compared to KR-12 alone. Both chimeric peptides were able to bind to BC and were observed to be retained on the surface over a 7-day period. All functionalized materials exhibited no adverse effects on the metabolic activity of both normal human dermal fibroblasts (NHDFs) and human epidermal keratinocyte (HaCaT) epithelial cells. Additionally, the BC tethered chimeric peptides exhibited antibacterial activity against E. coli. Overall, this research outlines the design and evaluation of chimeric CBP-KR12 peptides for developing antimicrobial BC membranes with potential applications in wound care.
Collapse
Affiliation(s)
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
549
|
Elsayed EM, Farghali AA, Zanaty MI, Abdel-Fattah M, Alkhalifah DHM, Hozzein WN, Mahmoud AM. Poly-Gamma-Glutamic Acid Nanopolymer Effect against Bacterial Biofilms: In Vitro and In Vivo Study. Biomedicines 2024; 12:251. [PMID: 38397853 PMCID: PMC10887140 DOI: 10.3390/biomedicines12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a biodegradable poly-gamma-glutamic-acid nanopolymer (Ɣ-PGA NP) was investigated for its activity against clinical strains of Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli), and reference strains of S. aureus ATCC 6538, S. pyogenes ATCC 19615 (Gram-positive), and Gram-negative E. coli ATCC 25922, and K. pneumoniae ATCC 13884 bacterial biofilms. The minimum inhibitory concentration (MIC) effect of Ɣ-PGA NP showed inhibitory effects of 0.2, 0.4, 1.6, and 3.2 μg/mL for S. pyogenes, S. aureus, E. coli, and K. pneumoniae, respectively. Also, MIC values were 1.6, 0.8, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Afterwards, MBEC (minimum biofilm eradication concentration) and MBIC (minimum biofilm inhibitory concentration) were investigated to detect Ɣ-PGA NPs efficiency against the biofilms. MBEC and MBIC increased with increasing Ɣ-PGA NPs concentration or time of exposure. Interestingly, MBIC values were at lower concentrations of Ɣ-PGA NPs than those of MBEC. Moreover, MBEC values showed that K. pneumoniae was more resistant to Ɣ-PGA NPs than E. coli, S. aureus, and S. pyogenes, and the same pattern was observed in the reference strains. The most effective results for MBEC were after 48 h, which were 1.6, 0.8, 0.4, and 0.2 µg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. Moreover, MBIC results were the most impactful after 24 h but some were the same after 48 h. MBIC values after 48 h were 0.2, 0.2, 0.2, and 0.1 μg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. The most effective results for MBEC were after 24 h, which were 1.6, 0.8, 0.4, and 0.4 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Also, MBIC results were the most impactful after an exposure time of 12 h. MBIC values after exposure time of 12 h were 0.4, 0.4, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Besides that, results were confirmed using confocal laser scanning microscopy (CLSM), which showed a decrease in the number of living cells to 80% and 60% for MBEC and MBIC, respectively, for all the clinical bacterial strains. Moreover, living bacterial cells decreased to 70% at MBEC while decreasing up to 50% at MBIC with all bacterial refence strains. These data justify the CFU quantification. After that, ImageJ software was used to count the attached cells after incubating with the NPs, which proved the variation in live cell count between the manual counting and image analysis methods. Also, a scanning electron microscope (SEM) was used to detect the biofilm architecture after incubation with the Ɣ-PGA NP. In in vivo wound healing experiments, treated wounds of mice showed faster healing (p < 0.00001) than both the untreated mice and those that were only wounded, as the bacterial count was eradicated. Briefly, the infected mice were treated faster (p < 0.0001) when infected with S. pyogenes > S. aureus > E. coli > K. pneumoniae. The same pattern was observed for mice infected with the reference strains. Wound lengths after 2 h showed slightly healing (p < 0.001) for the clinical strains, while treatment became more obvious after 72 h > 48 h > 24 h (p < 0.0001) as wounds began to heal after 24 h up to 72 h. For reference strains, wound lengths after 2 h started to heal up to 72 h.
Collapse
Affiliation(s)
- Eman M. Elsayed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed A. Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Mohamed I. Zanaty
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Medhat Abdel-Fattah
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed M. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| |
Collapse
|
550
|
Nqoro X, Taziwa R. Polymer-Based Functional Materials Loaded with Metal-Based Nanoparticles as Potential Scaffolds for the Management of Infected Wounds. Pharmaceutics 2024; 16:155. [PMID: 38399218 PMCID: PMC10892860 DOI: 10.3390/pharmaceutics16020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Wound infection due to bacterial invasion at the wound site is one of the primary challenges associated with delayed wound healing. Microorganisms tend to form biofilms that protect them from harm, leading to their multidrug resistance. The alarming increase in antibiotic resistance poses a threat to wound healing. Hence, the urgent need for novel wound dressing materials capable of managing bacterial infection is crucial for expediting wound recovery. There is considerable interest in polymeric wound dressings embedded with bioactive substances, such as metal-based nanoparticles, as potential solutions for treating microbially infected wounds. Metal-based nanoparticles have been widely used for the management of infected wounds due to their broad antimicrobial efficacy. This review focuses on polymer-based and bioactive wound dressings loaded with metal-based nanoparticles like silver, gold, magnesium oxide, or zinc oxide. When compared, zinc oxide-loaded dressings exhibited higher antibacterial activity against Gram-positive strains and silver nanoparticle-loaded dressings against gram-negative strains. However, wound dressings infused with both nanoparticles displayed a synergistic effect against both strains of bacteria. Furthermore, these dressings displayed antibiofilm activity and the generation of reactive oxygen species while accelerating wound closure both in vitro and in vivo.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Applied Science, Faculty of Natural Sciences, Walter Sisulu University, Old King William’s Town Road, Potsdam Site, East London 5200, South Africa;
| | | |
Collapse
|