501
|
Novais AA, Chuffa LGDA, Zuccari DAPDC, Reiter RJ. Exosomes and Melatonin: Where Their Destinies Intersect. Front Immunol 2021; 12:692022. [PMID: 34177952 PMCID: PMC8226101 DOI: 10.3389/fimmu.2021.692022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell communication is a broad and complex process associated with regular stimuli to maintain healthy cell interactions. One of the agents capable of cellular communication is known as an exosome, a subset of extracellular vesicles (EVs) released by the cell membrane. The exosome contains a wide range of functional proteins, mRNAs and miRNAs, which have the potential to interact with healthy or diseased cells in the body. On the other hand, melatonin also acts as a cellular communicator, produced and released by the pineal gland in a circadian way and also, non-circadian melatonin is derived from the mitochondria of all normal cells. In addition to exhibiting antioxidant, anti-inflammatory, anti-tumor and anti-aging activities, melatonin has recently been studied by its influence on exosomes. This review summarizes the relationship between exosomes and melatonin in various pathological processes. There is robust evidence that their combination ameliorates inflammation, ischemia-reperfusion injury, hepatic metabolic disturbance, cancer immunosuppression status, degenerative processes like chronic kidney disease, vascular calcification, ageing, ischemic brain injury, neurodegenerative diseases, obesity, colitis, wound healing and even embryonic development. Association of exosomes and melatonin represent a promising therapeutic tool, capable of interfering with basic molecular processes, such as oxidative stress and the inflammatory cascade, which support many pathophysiological aspects of diseases.
Collapse
Affiliation(s)
- Adriana Alonso Novais
- Health Sciences Institute (ICS), Mato Grosso Federal University (UFMT), Sinop, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, University of Texas (UT) Health, San Antonio, TX, United States
| |
Collapse
|
502
|
Whiteside TL, Diergaarde B, Hong CS. Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. Int J Mol Sci 2021; 22:ijms22126234. [PMID: 34207762 PMCID: PMC8229953 DOI: 10.3390/ijms22126234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in health and disease, including cancer. Tumors produce a mix of EVs differing in size, cellular origin, biogenesis and molecular content. Small EVs (sEV) or exosomes are a subset of 30-150 nm (virus-size) vesicles originating from the multivesicular bodies (MVBs) and carrying a cargo that in its content and topography approximates that of a parent cell. Tumor-derived exosomes (TEX) present in all body fluids of cancer patients, are considered promising candidates for a liquid tumor biopsy. TEX also mediate immunoregulatory activities: they maintain a crosstalk between the tumor and various non-malignant cells, including immunocytes. Effects that EVs exert on immune cells may be immunosuppressive or immunostimulatory. Here, we review the available data for TEX interactions with immunocytes, focusing on strategies that allow isolation from plasma and separation of TEX from sEV produced by non-malignant cells. Immune effects mediated by either of the subsets can now be distinguished and measured. The approach has allowed for the comparison of molecular and functional profiles of the two sEV fractions in plasma of cancer patients. While TEX carried an excess of immunosuppressive proteins and inhibited immune cell functions in vitro and in vivo, the sEV derived from non-malignant cells, including CD3(+)T cells, were variably enriched in immunostimulatory proteins and could promote functions of immunocytes. Thus, sEV in plasma of cancer patients are heterogenous, representing a complex molecular network which is not evident in healthy donors' plasma. Importantly, TEX appear to be able to reprogram functions of non-malignant CD3(+)T cells inducing them to produce CD3(+)sEV enriched in immunosuppressive proteins. Ratios of stimulatory/inhibitory proteins carried by TEX and by CD3(+)sEV derived from reprogrammed non-malignant cells vary broadly in patients and appear to negatively correlate with disease progression. Simultaneous capture from plasma and functional/molecular profiling of TEX and the CD3(+)sEV fractions allows for defining their role as cancer biomarkers and as monitors of cancer patients' immune competence, respectively.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- Department of Pathology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-(412)-624-0096; Fax: +1-(412)-623-0264
| | - Brenda Diergaarde
- Department of Human Genetics and UPMC Hillman Cancer Center, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA;
| | - Chang-Sook Hong
- Department of Pathology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
503
|
Yang T, He R, Li G, Liang J, Zhao L, Zhao X, Li L, Wang P. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neurosci Lett 2021; 758:136004. [PMID: 34098025 DOI: 10.1016/j.neulet.2021.136004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Growth arrest and DNA damage-inducible protein 34 (GADD34), one of the key effectors of negative feedback loops, is induced by stress and subsequently attempts to restore homeostasis. It plays a critical role in response to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimulus-induced cell apoptosis events in many nervous system diseases, but its role in ischemic stroke is unclear. In this study, we evaluated the role of GADD34 and its distribution in a rat cerebral ischemic model. The results showed that GADD34 was increased in the cortex and contributed to brain injury in ischemic rats. Furthermore, treatment with a GADD34 inhibitor reduced the infarct volume, improved functional outcomes, and inhibited neuronal apoptosis in the cortical penumbra after ischemia. The role of GADD34 in ischemic stroke was associated with the dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and phosphorylation of p53. In addition, the GADD34 level was increased in plasma exosomes of cerebral ischemic rats. These findings indicate that GADD34 could be a potential therapeutic target and biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Tianhui Yang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruyi He
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gongzhe Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Liang Zhao
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xing Zhao
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Liyang Li
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
504
|
Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis 2021; 12:576. [PMID: 34088891 PMCID: PMC8178321 DOI: 10.1038/s41419-021-03803-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Cancer-secreted exosomes are critical mediators of cancer-host crosstalk. In the present study, we showed the delivery of miR-21-5p from colorectal cancer (CRC) cells to endothelial cells via exosomes increased the amount of miR-21-5p in recipient cells. MiR-21-5p suppressed Krev interaction trapped protein 1 (KRIT1) in recipient HUVECs and subsequently activated β-catenin signaling pathway and increased their downstream targets VEGFa and Ccnd1, which consequently promoted angiogenesis and vascular permeability in CRC. A strong inverse correlation between miR-21-5p and KRIT1 expression levels was observed in CRC-adjacent vessels. Furthermore, miR-21-5p expression in circulating exosomes was markedly higher in CRC patients than in healthy donors. Thus, our data suggest that exosomal miR-21-5p is involved in angiogenesis and vascular permeability in CRC and may be used as a potential new therapeutic target.
Collapse
|
505
|
Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13112777. [PMID: 34204940 PMCID: PMC8199777 DOI: 10.3390/cancers13112777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer death in the United States and over 90% of the patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDAC is the most lethal gastrointestinal malignancies and only 10% of the people survive more than 5 years, therefore, novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity. Studies have demonstrated microRNAs in bodily fluids that are bound with membranes (exosomes) can act as stable biomarkers both for disease development and metastasis. The diagnostic, prognostic, as well as therapeutic roles of exosomal microRNAs in pancreatic cancer have been discussed in this review. Abstract Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge. Novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity to increase the survival of pancreatic cancer patients. So far, studies have demonstrated microRNAs (miRNAs) as sensitive biomarkers because of their significant correlation with disease development and metastasis. The miRNAs have been shown to be more stable inside membrane-bound vesicles in the extracellular environment called exosomes. Varieties of miRNAs are released into the body fluids via exosomes depending on the normal physiological or pathological conditions of the body. In this review, we discuss the recent findings on the diagnostic, prognostic, and therapeutic roles of exosomal miRNAs in pancreatic cancer.
Collapse
|
506
|
Freger S, Leonardi M, Foster WG. Exosomes and their cargo are important regulators of cell function in endometriosis. Reprod Biomed Online 2021; 43:370-378. [PMID: 34272164 DOI: 10.1016/j.rbmo.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Endometriosis is a chronic oestrogen-dependent gynaecological disorder characterized by non-menstrual pelvic pain, infertility and the extrauterine growth of endometrial-like glands and stroma. It has been noted that the eutopic endometrium of women with endometriosis is functionally distinct from that of women without endometriosis. Moreover, ectopic endometrial implants are functionally different from the eutopic endometrium of women with endometriosis. However, the mechanisms directing these differences are ill-defined. It is proposed here that small membrane-bound extracellular vesicles called exosomes are important vehicles in the protection and transport of signalling molecules central to the dysregulation of endometrial function in women with endometriosis. Therefore, a critical review of the literature linking exosomes and their cargo to the pathobiology of endometriosis was conducted. Circulating peritoneal fluid and endometrial cell exosomes contained long non-coding RNA, miRNA and proteins involved in histone modification, angiogenesis and immune modulation that differed significantly in women with endometriosis compared with controls. Moreover, experimental evidence supports a role for exosomes and their cargo in angiogenesis, neurogenesis, immune modulation and endometrial stromal cell invasion. It is therefore suggested that exosomes play an important role in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Shay Freger
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada
| | - Mathew Leonardi
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada; Sydney Medical School Nepean, University of Sydney, Sydney, Australia
| | - Warren George Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada.
| |
Collapse
|
507
|
Butreddy A, Kommineni N, Dudhipala N. Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1481. [PMID: 34204903 PMCID: PMC8229362 DOI: 10.3390/nano11061481] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Exosomes as nanosized vesicles are emerging as drug delivery systems for therapeutics owing to their natural origin, their ability to mediate intercellular communication, and their potential to encapsulate various biological molecules such as proteins and nucleic acids within the lipid bilayer membrane or in the lumen. Exosomes contain endogenous components (proteins, lipids, RNA) that could be used to deliver cargoes to target cells, offering an opportunity to diagnose and treat various diseases. Owing to their ability to travel safely in extracellular fluid and to transport cargoes to target cells with high efficacy, exosomes offer enhanced delivery of cargoes in vivo. However, several challenges related to the stabilization of the exosomes, the production of sufficient amounts of exosomes with safety and efficacy, the efficient loading of drugs into exosomes, the clearance of exosomes from circulation, and the transition from the bench scale to clinical production may limit their development and clinical use. For the clinical use of exosomes, it is important to understand the molecular mechanisms behind the transport and function of exosome vesicles. This review exploits techniques related to the isolation and characterization of exosomes and their drug delivery potential to enhance the therapeutic outcome and stabilization methods. Further, routes of administration, clinical trials, and regulatory aspects of exosomes will be discussed in this review.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad 500078, Telangana State, India;
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Narendar Dudhipala
- Depratment of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal 506005, Telangana State, India
| |
Collapse
|
508
|
Li Y, Qu H, Ji J, Wang Y, Liu T, He J, Wang J, Shu D, Luo C. Characterization of the exosomes in the allantoic fluid of the chicken embryo. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The embryo stage is critical for chicken development. Numerous studies have been conducted to clarify the dynamic changes and functions of various proteins and the composition of amino acids during embryo development. However, the physiological characteristics of extraembryonic fluid (allantoic and amniotic), especially allantoic fluid (AF), remain largely unexplored; furthermore, how information is transmitted from embryonic fluid is unknown. In this study, AF-derived exosomes ranging from 60 to 160 nm in diameter from fertilized eggs at 13 d of incubation of fast-growth chickens (WG chicken), medium-growth chickens (Silky N4 chicken), and slow-growth chickens (Huiyang Beard chicken) were isolated and purified by different ultra-centrifugations and further verified by transmission electron microscopy and a flow nano-analyzer. Expression of the exosomal positive biomarkers of ALIX and HSP70 as well as lack of the epithelium marker GRP78 was observed by Western blotting. In addition, small RNA sequencing revealed that AF-derived exosomes at 13 d of incubation contained a large number of known miRNAs (32.62%–65.83%). The top 10 most abundant and co-expressed miRNAs were primarily related to development, growth, and immunity. In addition, AF-derived exosomes promoted DF-1 cell migration. These findings broadened our understanding of the characteristic of AF-derived exosomes.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Hao Qu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jian Ji
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Yan Wang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Tianfei Liu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jingyi He
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jie Wang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Dingming Shu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Chenglong Luo
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| |
Collapse
|
509
|
Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, Bucci C, Guerra F. Extracellular Vesicles and Pancreatic Cancer: Insights on the Roles of miRNA, lncRNA, and Protein Cargos in Cancer Progression. Cells 2021; 10:1361. [PMID: 34205944 PMCID: PMC8226820 DOI: 10.3390/cells10061361] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer (PC) is among the most devastating digestive tract cancers worldwide. This cancer is characterized by poor diagnostic detection, lack of therapy, and difficulty in predicting tumorigenesis progression. Although mutations of key oncogenes and oncosuppressor involved in tumor growth and in immunosurveillance escape are known, the underlying mechanisms that orchestrate PC initiation and progression are poorly understood or still under debate. In recent years, the attention of many researchers has been concentrated on the role of extracellular vesicles and of a particular subset of extracellular vesicles, known as exosomes. Literature data report that these nanovesicles are able to deliver their cargos to recipient cells playing key roles in the pathogenesis and progression of many pancreatic precancerous conditions. In this review, we have summarized and discussed principal cargos of extracellular vesicles characterized in PC, such as miRNAs, lncRNAs, and several proteins, to offer a systematic overview of their function in PC progression. The study of extracellular vesicles is allowing to understand that investigation of their secretion and analysis of their content might represent a new and potential diagnostic and prognostic tools for PC.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Leonardo Henry Umberto Eusebi
- Gastroenterology and Endoscopy Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Gastroenterology and Endoscopy Unit, Sant’Orsola University Hospital, 40138 Bologna, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; or
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
510
|
Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, Beheshtkhoo N, Kouhbanani MAJ, Marofi F, Nikoo M, Jarahian M. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12:297. [PMID: 34020704 PMCID: PMC8138094 DOI: 10.1186/s13287-021-02378-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30100nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | | | - Judi Januadi Endjun
- Medical Faculty, UPN Veteran, Jakarta, Indonesia.,Gatot Soebroto Indonesia Army Hospital, Jakarta, Indonesia
| | | | | | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
511
|
Abstract
Significant androgenetic hair loss occurs in men older than 50 years, and in women it occurs in many who are perimenopausal, menopausal, and postmenopausal. By age 60 years, it is estimated that 80% of women experience hair loss. Other nonandrogenetic forms of hair loss occur due to various dermatologic disorders as well as systemic disorders. Children may also experience significant hair loss, often due to genetic abnormalities and incidences of trauma. In this article the author discusses a combination approach to hair loss for men, women, and children.
Collapse
|
512
|
Hurdles in treating Hurler disease: potential routes to achieve a "real" cure. Blood Adv 2021; 4:2837-2849. [PMID: 32574368 DOI: 10.1182/bloodadvances.2020001708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are multiorgan devastating diseases for which hematopoietic cell transplantation (HCT) and, to a lesser extent, enzyme replacement therapy have substantially altered the course of the disease. Furthermore, they have resulted in increased overall survival, especially for Hurler disease (MPS-1). However, despite the identification of clinical predictors and harmonized transplantation protocols, disease progression still poses a significant burden to patients, although at a slower pace. To design better therapies, we need to understand why and where current therapies fail. In this review, we discuss important aspects of the underlying disease and the disease progression. We note that the majority of progressive symptoms that occur in "hard-to-treat" tissues are actually tissues that are difficult to reach, such as avascular connective tissue or tissues isolated from the circulation by a specific barrier (eg, blood-brain barrier, blood-retina barrier). Although easily reached tissues are effectively cured by HCT, disease progression is observed in these "hard-to-reach" tissues. We used these insights to critically appraise ongoing experimental endeavors with regard to their potential to overcome the encountered hurdles and improve long-term clinical outcomes in MPS patients treated with HCT.
Collapse
|
513
|
Jia X, Yin Y, Chen Y, Mao L. The Role of Viral Proteins in the Regulation of Exosomes Biogenesis. Front Cell Infect Microbiol 2021; 11:671625. [PMID: 34055668 PMCID: PMC8155792 DOI: 10.3389/fcimb.2021.671625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Exosomes are membrane-bound vesicles of endocytic origin, secreted into the extracellular milieu, in which various biological components such as proteins, nucleic acids, and lipids reside. A variety of external stimuli can regulate the formation and secretion of exosomes, including viruses. Viruses have evolved clever strategies to establish effective infections by employing exosomes to cloak their viral genomes and gain entry into uninfected cells. While most recent exosomal studies have focused on clarifying the effect of these bioactive vesicles on viral infection, the mechanisms by which the virus regulates exosomes are still unclear and deserve further attention. This article is devoted to studying how viral components regulate exosomes biogenesis, composition, and secretion.
Collapse
Affiliation(s)
- Xiaonan Jia
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiqian Yin
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
514
|
Alzhrani GN, Alanazi ST, Alsharif SY, Albalawi AM, Alsharif AA, Abdel-Maksoud MS, Elsherbiny N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol Int 2021; 45:1807-1831. [PMID: 33913604 DOI: 10.1002/cbin.11620] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are nano-sized bioactive vesicles of 30-150 nm in diameter. They are secreted by exocytosis of nearly all type of cells in to the extracellular fluid. Thereby, they can be found in many biological fluids. Exosomes regulate intracellular communication between cells via delivery of their cargo which include lipids, proteins, and nucleic acid. Many desirable features of exosomes made them promising candidates in several therapeutic applications. In this review, we discuss the use of exosomes as diagnostic tools and their possible biomedical applications. Additionally, current techniques used for isolation, purification, and characterization of exosomes from both biological fluids and in vitro cell cultures were discussed.
Collapse
Affiliation(s)
- Ghadi N Alzhrani
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sarah T Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sumayyah Y Alsharif
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amani M Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Anwar A Alsharif
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
515
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
516
|
Hu P, Chiarini A, Wu J, Freddi G, Nie K, Armato U, Prà ID. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. BURNS & TRAUMA 2021; 9:tkab003. [PMID: 34212056 PMCID: PMC8240536 DOI: 10.1093/burnst/tkab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy
| | - Jun Wu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Giuliano Freddi
- Silk Biomaterials S.r.l., Via Cavour 2, I-22074, Lomazzo, Lombardy, Italy
| | - Kaiyu Nie
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
517
|
Chen W, Cao R, Su W, Zhang X, Xu Y, Wang P, Gan Z, Xie Y, Li H, Qin J. Simple and fast isolation of circulating exosomes with a chitosan modified shuttle flow microchip for breast cancer diagnosis. LAB ON A CHIP 2021; 21:1759-1770. [PMID: 33710183 DOI: 10.1039/d0lc01311k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tumor-derived exosomes have been recognized as promising biomarkers for early-stage cancer diagnosis, tumor prognosis monitoring and individual medical treatment. However, it is a huge challenge to separate exosomes from trace biological samples in clinics for disease diagnosis. Herein, we propose a simple, quick, and label-free method for isolating circulating exosomes from serum of patients. The strategy synergistically integrates chitosan electrostatic-adsorption, micro-patterned substrates, and microfluidic shuttle flow control to enable the capture/release of circulating exosomes in a simple manner. Using this microchip, we can isolate exosomes from trace samples (10 μl) with relative purity over 90% and high RNA recovery ratio over 84% within 15 minutes, which is impossible for traditional ultracentrifugation methods. We then validate the application of the microchip using 24 serum samples from clinical breast cancer and breast fibroma patients. The isolated exosomes are subjected to miRNA sequencing and RT-PCR, followed by pathway prediction analysis. The results showed that exosomes were relevant to the invasion and metastasis of breast cancer cells and hsa-miR-18a-3p might have the potential to become a new biomarker for distinguishing breast cancer from breast fibroma (AUC = 0.83, P value = 0.019). This established method is simple, quick and easy to operate with integration. And it may pave a new way for clinical research on exosomes and tumor relevant diagnosis.
Collapse
Affiliation(s)
- Wenwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Rongkai Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Su
- Dalian Polytechnic University, Dalian, China
| | - Xu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Yuhai Xu
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Peng Wang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhongqiao Gan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Hongjing Li
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China and Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China and CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
518
|
González MF, Díaz P, Sandoval-Bórquez A, Herrera D, Quest AFG. Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development. Int J Mol Sci 2021; 22:ijms22094823. [PMID: 34062919 PMCID: PMC8124820 DOI: 10.3390/ijms22094823] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.
Collapse
Affiliation(s)
- María Fernanda González
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Paula Díaz
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Alejandra Sandoval-Bórquez
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela Herrera
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Andrew F. G. Quest
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago 7680201, Chile
- Correspondence: ; Tel.: +56-2-29786832
| |
Collapse
|
519
|
Saheera S, Jani VP, Witwer KW, Kutty S. Extracellular vesicle interplay in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1749-H1761. [PMID: 33666501 PMCID: PMC8163654 DOI: 10.1152/ajpheart.00925.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma membrane ectosomes or microvesicles and endosomal origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. We summarize contemporary understanding of EV biogenesis, composition, and function, with an emphasis on the role of EVs in the cardiovascular system. In addition, we outline the functional relevance of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vivek P Jani
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| |
Collapse
|
520
|
González‐Cubero E, González‐Fernández ML, Gutiérrez‐Velasco L, Navarro‐Ramírez E, Villar‐Suárez V. Isolation and characterization of exosomes from adipose tissue-derived mesenchymal stem cells. J Anat 2021; 238:1203-1217. [PMID: 33372709 PMCID: PMC8053584 DOI: 10.1111/joa.13365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the subject of intense research as they are a potential therapeutic tool for several clinical applications. The new MSCs action models are focused on the use of MSC-derived secretome which contains several growth factors, cytokines, microRNAs, and extracellular vesicles such as exosomes. Exosomes have recently emerged as a component with great potential involved as mediators in cellular communication. The isolation and identification of exosomes has made it possible for them to be used in cell-free therapies. The purposes of this study are: (i) to detect exosomes released into adipose-derived MSC conditioned cell culture medium, (ii) to identify exosome morphology, and (iii) to carry out a complete characterization of said exosomes. Moreover, it is aimed at determining which method for exosome isolation would be best to use. Precipitation has been identified as a highly useful method of exosome isolation since it provides higher efficiency and purity values than other methods. A broad characterization of the exosomes present in the MSC-conditioned medium was also carried out. This work fills a gap in the existing literature on bioactive molecules which have attracted a great deal of interest due to their potential use in cellular therapies.
Collapse
Affiliation(s)
- Elsa González‐Cubero
- Department of AnatomyFaculty of Veterinary SciencesUniversity of León‐Universidad de LeónLeónEspaña
| | | | - Laura Gutiérrez‐Velasco
- Department of AnatomyFaculty of Veterinary SciencesUniversity of León‐Universidad de LeónLeónEspaña
| | - Eliezer Navarro‐Ramírez
- Department of AnatomyFaculty of Veterinary SciencesUniversity of León‐Universidad de LeónLeónEspaña
| | - Vega Villar‐Suárez
- Institute of Biomedicine (IBIOMED)University of León‐Universidad de LeónLeónEspaña
| |
Collapse
|
521
|
Huang S, Ji X, Jackson KK, Lubman DM, Ard MB, Bruce TF, Marcus RK. Rapid separation of blood plasma exosomes from low-density lipoproteins via a hydrophobic interaction chromatography method on a polyester capillary-channeled polymer fiber phase. Anal Chim Acta 2021; 1167:338578. [PMID: 34049630 DOI: 10.1016/j.aca.2021.338578] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Xiaohui Ji
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaylan K Jackson
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - David M Lubman
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary B Ard
- Georgia Electron Microscopy Core Facility, University of Georgia Athens, GA, 30602, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
522
|
Liu Y, Xia Y, Smollar J, Mao W, Wan Y. The roles of small extracellular vesicles in lung cancer: Molecular pathology, mechanisms, diagnostics, and therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188539. [PMID: 33892051 DOI: 10.1016/j.bbcan.2021.188539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Small extracellular vesicles (sEVs) are submicron-sized, lipid-bilayer-enclosed particles that are released from cells. A variety of tissue-specific molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively encapsulated into sEVs and delivered to nearby and distant recipient cells. Incontestable and growing evidence shows the important biological roles and the clinical relevance of sEVs in tumors. In particular, recent studies validate sEVs can be used for early tumor diagnostics, staging, and treatment monitoring. Moreover, sEVs have been used as drug delivery nanocarriers, cancer vaccines, and antigen conferrers. While still in its infancy, the field of sEV-based fundamental and translational studies has been rapidly advancing. This review comprehensively examines the latest sEV-related studies in lung cancers, encompassing extracellular vesicles and their roles in lung cancer pathophysiology, diagnostics, and therapeutics. The state-of-the-art technologies for sEV isolation, downstream molecular analyses, and sEV-based therapies indicate their potency as tools for understanding the pathology and promising clinical management of lung cancers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jillian Smollar
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| |
Collapse
|
523
|
Cao M, Wen J, Bu C, Li C, Lin Y, Zhang H, Gu Y, Shi Z, Zhang Y, Long W, Zhang L. Differential circular RNA expression profiles in umbilical cord blood exosomes from preeclampsia patients. BMC Pregnancy Childbirth 2021; 21:303. [PMID: 33858365 PMCID: PMC8051099 DOI: 10.1186/s12884-021-03777-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Exosomal circular RNAs (circRNAs) are emerging as important regulators of physiological development and disease pathogenesis. However, the roles of exosomal circRNAs from umbilical cord blood in preeclampsia (PE) occurrence remains poorly understood. Methods We used microarray technology to establish the differential circRNA expression profiles in umbilical cord blood exosomes from PE patients compared with normal controls. Bioinformatics analysis was conducted to further predict the potential effects of the differentially expressed circRNAs and their interactions with miRNAs. Results According to the microarray data, we identified 143 significantly up-regulated circRNAs and 161 significantly down-regulated circRNAs in umbilical cord blood exosomes of PE patients compared with controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses showed that circRNA parental genes involved in the regulation of metabolic process, trophoblast growth and invasion were significantly enriched, which play important roles in PE development. Moreover, pathway network was constructed to reveal the key pathways in PE, such as PI3K-Akt signaling pathway. Further circRNA/miRNA interactions analysis demonstrated that most exosomal circRNAs had miRNA binding sites, and some miRNAs were associated with PE. Conclusions Our results highlight the importance of exosomal circRNAs in the pathogenesis of PE and lay a foundation for extensive studies on the role of exosomal circRNAs in PE development. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03777-7.
Collapse
Affiliation(s)
- Minkai Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Chaozhi Bu
- Research Institute for Reproductive Medicine and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yu Lin
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Hong Zhang
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Yanfang Gu
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Zhonghua Shi
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yan Zhang
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
524
|
Andronico LA, Jiang Y, Jung SR, Fujimoto BS, Vojtech L, Chiu DT. Sizing Extracellular Vesicles Using Membrane Dyes and a Single Molecule-Sensitive Flow Analyzer. Anal Chem 2021; 93:5897-5905. [PMID: 33784071 PMCID: PMC10243643 DOI: 10.1021/acs.analchem.1c00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are membranous particles released by most cells in our body, which are involved in many cell-to-cell signaling processes. Given the nanometer sizes and heterogeneity of EVs, highly sensitive methods with single-molecule resolution are fundamental to investigating their biophysical properties. Here, we demonstrate the sizing of EVs using a fluorescence-based flow analyzer with single-molecule sensitivity. Using a dye that selectively partitions into the vesicle's membrane, we show that the fluorescence intensity of a vesicle is proportional to its diameter. We discuss the constraints in sample preparation which are inherent to sizing nanoscale vesicles with a fluorescent membrane dye and propose several guidelines to improve data consistency. After optimizing staining conditions, we were able to measure the size of vesicles in the range ∼35-300 nm, covering the spectrum of EV sizes. Lastly, we developed a method to correct the signal intensity from each vesicle based on its traveling speed inside the microfluidic channel, by operating at a high sampling rate (10 kHz) and measuring the time required for the particle to cross the laser beam. Using this correction, we obtained a threefold greater accuracy in EV sizing, with a precision of ±15-25%.
Collapse
Affiliation(s)
- Luca A. Andronico
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Seung-Ryoung Jung
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Bryant S. Fujimoto
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
525
|
Circular RNA expression profiles in umbilical cord blood exosomes from normal and gestational diabetes mellitus patients. Biosci Rep 2021; 40:226898. [PMID: 33146699 PMCID: PMC7670577 DOI: 10.1042/bsr20201946] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNA (circRNA) is a novel member of endogenous noncoding RNAs with widespread distribution and diverse cellular functions. Recently, circRNAs have been identified for their enrichment and stability in exosomes. However, the roles of circRNAs from umbilical cord blood exosomes in gestational diabetes mellitus (GDM) occurrence and fetus growth remains poorly understood. In the present study, we used microarray technology to construct a comparative circRNA profiling of umbilical cord blood exosomes between GDM patients and controls. We found the exosome particle size was larger, and the exosome concentration was higher in the GDM patients. A total of 88,371 circRNAs in umbilical cord blood exosomes from two groups were evaluated. Of these, 229 circRNAs were significantly up-regulated and 278 circRNAs were significantly down-regulated in the GDM patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses demonstrated that circRNA parental genes involved in the regulation of metabolic process, growth and development were significantly enriched, which are important in GDM development and fetus growth. Further circRNA/miRNA interactions analysis showed that most of the exosomal circRNAs harbored miRNA binding sites, and some miRNAs were associated with GDM. Collectively, these results lay a foundation for extensive studies on the role of exosomal circRNAs in GDM development and fetus growth.
Collapse
|
526
|
Maiullari F, Chirivì M, Costantini M, Ferretti AM, Recchia S, Maiullari S, Milan M, Presutti D, Pace V, Raspa M, Scavizzi F, Massetti M, Petrella L, Fanelli M, Rizzi M, Fortunato O, Moretti F, Caradonna E, Bearzi C, Rizzi R. In vivoorganized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles. Biofabrication 2021; 13. [PMID: 33434889 DOI: 10.1088/1758-5090/abdacf] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability to mediate intercellular communication. This feature has been explored and is under constant investigation by researchers, who have demonstrated the important role of EVs in several research fields ranging from oncology to immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limitations to overcome before clinical application, including the inability to confine the EVs to strategically defined sites of interest to avoid side effects. In this study, for the first time, EV application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of human umbilical vein endothelial cell-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bioadditives for the formulation of advanced bioinks. Afterin vivosubcutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculaturein situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favour the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischaemic tissues, which represent the fundamental substrate for advanced regenerative medicine applications.
Collapse
Affiliation(s)
- Fabio Maiullari
- Gemelli Molise SpA, Campobasso, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Maila Chirivì
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Maria Ferretti
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council of Italy (SCITEC-CNR), Milano, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Silvia Maiullari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Institute of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marika Milan
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Dario Presutti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Pace
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Disease, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Lella Petrella
- Laboratory of Molecular Oncology, Gemelli Molise SpA, Campobasso, Italy
| | - Mara Fanelli
- Laboratory of Molecular Oncology, Gemelli Molise SpA, Campobasso, Italy
| | - Marta Rizzi
- Ufficio Programmazione e Grant Office, National Research Council of Italy (UPGO-CNR), Rome, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| |
Collapse
|
527
|
Kim GB, Shon OJ, Seo MS, Choi Y, Park WT, Lee GW. Mesenchymal Stem Cell-Derived Exosomes and Their Therapeutic Potential for Osteoarthritis. BIOLOGY 2021; 10:285. [PMID: 33915850 PMCID: PMC8066608 DOI: 10.3390/biology10040285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are nano-sized vesicles (50-150 nm in diameter) that contain nucleic acids (e.g., microRNA and messenger RNA), functional proteins, and bioactive lipids. They are secreted by various types of cells, including B cells, T cells, reticulocytes, dendritic cells, mast cells, epithelial cells, and mesenchymal stem cells (MSCs). They perform a wide variety of functions, including the repair of damaged tissues, regulation of immune responses, and reduction in inflammation. When considering the limitations of MSCs, including issues in standardization and immunogenicity, MSC-derived exosomes have advantages such as small dimensions, low immunogenicity, and lack of requirement for additional procedures for culture expansion or delivery. MSC-derived exosomes have shown outstanding therapeutic effects through chondro-protective and anti-inflammatory properties. MSC-derived exosomes may enable a new therapeutic paradigm for the treatment of osteoarthritis. However, further research is needed to prove their clinical effectiveness and feasibility.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Young Choi
- Department of Orthopedic Surgery, Kosin University College of Medicine, Kosin University Gospel Hospital, 262 Gamcheon-ro, Seogu, Busan 49267, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| |
Collapse
|
528
|
Zhang Z, Mugisha A, Fransisca S, Liu Q, Xie P, Hu Z. Emerging Role of Exosomes in Retinal Diseases. Front Cell Dev Biol 2021; 9:643680. [PMID: 33869195 PMCID: PMC8049503 DOI: 10.3389/fcell.2021.643680] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal diseases, the leading causes of vison loss and blindness, are associated with complicated pathogeneses such as angiogenesis, inflammation, immune regulation, fibrous proliferation, and neurodegeneration. The retina is a complex tissue, where the various resident cell types communicate between themselves and with cells from the blood and immune systems. Exosomes, which are bilayer membrane vesicles with diameters of 30–150 nm, carry a variety of proteins, lipids, and nucleic acids, and participate in cell-to-cell communication. Recently, the roles of exosomes in pathophysiological process and their therapeutic potential have been emerging. Here, we critically review the roles of exosomes as possible intracellular mediators and discuss the possibility of using exosomes as therapeutic agents in retinal diseases.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aime Mugisha
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silvia Fransisca
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
529
|
Saitoh Y, Inagaki A, Fathi I, Imura T, Nishimaki H, Ogasawara H, Matsumura M, Miyagi S, Yasunami Y, Unno M, Kamei T, Goto M. Improvement of hepatocyte engraftment by co-transplantation with pancreatic islets in hepatocyte transplantation. J Tissue Eng Regen Med 2021; 15:361-374. [PMID: 33484496 PMCID: PMC8048420 DOI: 10.1002/term.3170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/05/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Because of the fragility of isolated hepatocytes, extremely poor engraftment of transplanted hepatocytes remains a severe issue in hepatocyte transplantation. Therefore, improving hepatocyte engraftment is necessary to establish hepatocyte transplantation as a standard therapy. Since the pancreatic islets are known to have favorable autocrine effects, we hypothesized that the transplanted islets might influence not only the islets but also the nearby hepatocytes, subsequently promoting engraftment. We evaluated the effects of islet co-transplantation using an analbuminemic rat model (in vivo model). Furthermore, we established a mimicking in vitro model to investigate the underlying mechanisms. In an in vivo model, the hepatocyte engraftment was significantly improved only when the islets were co-transplanted to the nearby hepatocytes (p < 0.001). Moreover, the transplanted hepatocytes appeared to penetrate the renal parenchyma together with the co-transplanted islets. In an in vitro model, the viability of cultured hepatocytes was also improved by coculture with pancreatic islets. Of particular interest, the coculture supernatant alone could also exert beneficial effects comparable to islet coculture. Although insulin, VEGF, and GLP-1 were selected as candidate crucial factors using the Bio-Plex system, beneficial effects were partially counteracted by anti-insulin receptor antibodies. In conclusion, this study demonstrated that islet co-transplantation improves hepatocyte engraftment, most likely due to continuously secreted crucial factors, such as insulin, in combination with providing favorable circumstances for hepatocyte engraftment. Further refinements of this approach, especially regarding substitutes for islets, could be a promising strategy for improving the outcomes of hepatocyte transplantation.
Collapse
Affiliation(s)
- Yoshikatsu Saitoh
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Ibrahim Fathi
- Division of Transplantation and Regenerative MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Takehiro Imura
- Division of Transplantation and Regenerative MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroyasu Nishimaki
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroyuki Ogasawara
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Muneyuki Matsumura
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Shigehito Miyagi
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | | | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Kamei
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Masafumi Goto
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Division of Transplantation and Regenerative MedicineTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
530
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
531
|
Wang J, Ma P, Kim DH, Liu BF, Demirci U. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy. NANO TODAY 2021; 37:101066. [PMID: 33777166 PMCID: PMC7990116 DOI: 10.1016/j.nantod.2020.101066] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exosomes are a class of cell-secreted, nano-sized extracellular vesicles with a bilayer membrane structure of 30-150 nm in diameter. Their discovery and application have brought breakthroughs in numerous areas, such as liquid biopsies, cancer biology, drug delivery, immunotherapy, tissue repair, and cardiovascular diseases. Isolation of exosomes is the first step in exosome-related research and its applications. Standard benchtop exosome separation and sensing techniques are tedious and challenging, as they require large sample volumes, multi-step operations that are complex and time-consuming, requiring cumbersome and expensive instruments. In contrast, microfluidic platforms have the potential to overcome some of these limitations, owing to their high-precision processing, ability to handle liquids at a microscale, and integrability with various functional units, such as mixers, actuators, reactors, separators, and sensors. These platforms can optimize the detection process on a single device, representing a robust and versatile technique for exosome separation and sensing to attain high purity and high recovery rates with a short processing time. Herein, we overview microfluidic strategies for exosome isolation based on their hydrodynamic properties, size filtration, acoustic fields, immunoaffinity, and dielectrophoretic properties. We focus especially on advances in label-free isolation of exosomes with active biological properties and intact morphological structures. Further, we introduce microfluidic techniques for the detection of exosomal proteins and RNAs with high sensitivity, high specificity, and low detection limits. We summarize the biomedical applications of exosome-mediated therapeutic delivery targeting cancer cells. To highlight the advantages of microfluidic platforms, conventional techniques are included for comparison. Future challenges and prospects of microfluidics towards exosome isolation applications are also discussed. Although the use of exosomes in clinical applications still faces biological, technical, regulatory, and market challenges, in the foreseeable future, recent developments in microfluidic technologies are expected to pave the way for tailoring exosome-related applications in precision medicine.
Collapse
Affiliation(s)
- Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Peng Ma
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Daniel H Kim
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| |
Collapse
|
532
|
Yang T, Zhao F, Zhou L, Liu J, Xu L, Dou Q, Xu Z, Jia R. Therapeutic potential of adipose-derived mesenchymal stem cell exosomes in tissue-engineered bladders. J Tissue Eng 2021; 12:20417314211001545. [PMID: 33868627 PMCID: PMC8020766 DOI: 10.1177/20417314211001545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a therapeutic tool for tissue engineering. However, many studies have recently shown that the therapeutic effects of MSCs are mediated by paracrine signaling and their secretory factors rather than their multidirectional differentiation ability. Exosomes isolated from the conditioned medium of MSCs are considered the main intercellular communication medium between MSCs and their target cells. Exosomes have been utilized in a novel cell-free therapy strategy that has attracted much attention. In this study, we evaluated the effects of a new cell-free tissue-engineered bladder (bladder acellular matrix combined with adipose-derived mesenchymal stem cell exosomes (AMEs)) in vivo and in vitro to prove that AMEs promoted tissue regeneration and functional recovery in a rat bladder replacement model.
Collapse
Affiliation(s)
- Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
533
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
534
|
Mangiapane G, Parolini I, Conte K, Malfatti MC, Corsi J, Sanchez M, Pietrantoni A, D'Agostino VG, Tell G. Enzymatically active apurinic/apyrimidinic endodeoxyribonuclease 1 is released by mammalian cells through exosomes. J Biol Chem 2021; 296:100569. [PMID: 33753167 PMCID: PMC8080531 DOI: 10.1016/j.jbc.2021.100569] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), the main AP-endonuclease of the DNA base excision repair pathway, is a key molecule of interest to researchers due to its unsuspected roles in different nonrepair activities, such as: i) adaptive cell response to genotoxic stress, ii) regulation of gene expression, and iii) processing of microRNAs, which make it an excellent drug target for cancer treatment. We and others recently demonstrated that APE1 can be secreted in the extracellular environment and that serum APE1 may represent a novel prognostic biomarker in hepatocellular and non-small-cell lung cancers. However, the mechanism by which APE1 is released extracellularly was not described before. Here, using three different approaches for exosomes isolation: commercial kit, nickel-based isolation, and ultracentrifugation methods and various mammalian cell lines, we elucidated the mechanisms responsible for APE1 secretion. We demonstrated that APE1 p37 and p33 forms are actively secreted through extracellular vesicles (EVs), including exosomes from different mammalian cell lines. We then observed that APE1 p33 form is generated by proteasomal-mediated degradation and is enzymatically active in EVs. Finally, we revealed that the p33 form of APE1 accumulates in EVs upon genotoxic treatment by cisplatin and doxorubicin, compounds commonly found in chemotherapy pharmacological treatments. Taken together, these findings provide for the first time evidence that a functional Base Excision Repair protein is delivered through exosomes in response to genotoxic stresses, shedding new light into the complex noncanonical biological functions of APE1 and opening new intriguing perspectives on its role in cancer biology.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Kristel Conte
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Jessica Corsi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | | | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy.
| |
Collapse
|
535
|
Gaurav I, Thakur A, Iyaswamy A, Wang X, Chen X, Yang Z. Factors Affecting Extracellular Vesicles Based Drug Delivery Systems. Molecules 2021; 26:molecules26061544. [PMID: 33799765 PMCID: PMC7999478 DOI: 10.3390/molecules26061544] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play major roles in intracellular communication and participate in several biological functions in both normal and pathological conditions. Surface modification of EVs via various ligands, such as proteins, peptides, or aptamers, offers great potential as a means to achieve targeted delivery of therapeutic cargo, i.e., in drug delivery systems (DDS). This review summarizes recent studies pertaining to the development of EV-based DDS and its advantages compared to conventional nano drug delivery systems (NDDS). First, we compare liposomes and exosomes in terms of their distinct benefits in DDS. Second, we analyze what to consider for achieving better isolation, yield, and characterization of EVs for DDS. Third, we summarize different methods for the modification of surface of EVs, followed by discussion about different origins of EVs and their role in developing DDS. Next, several major methods for encapsulating therapeutic cargos in EVs have been summarized. Finally, we discuss key challenges and pose important open questions which warrant further investigation to develop more effective EV-based DDS.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, Jiangsu Province, China
- Correspondence: ; Tel.: +852-3411-2961
| |
Collapse
|
536
|
Exosomes as Pleiotropic Players in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030275. [PMID: 33803470 PMCID: PMC8002012 DOI: 10.3390/biomedicines9030275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) incidence is rising and due to late diagnosis, combined with unsatisfactory response to current therapeutic approaches, this tumor has an extremely high mortality rate. A better understanding of the mechanisms underlying pancreatic carcinogenesis is of paramount importance for rational diagnostic and therapeutic approaches. Multiple lines of evidence have showed that exosomes are actively involved in intercellular communication by transferring their cargos of bioactive molecules to recipient cells within the tumor microenvironment and systemically. Intriguingly, exosomes may exert both protumor and antitumor effects, supporting or hampering processes that play a role in the pathogenesis and progression of PC, including shifts in tumor metabolism, proliferation, invasion, metastasis, and chemoresistance. They also have a dual role in PC immunomodulation, exerting immunosuppressive or immune enhancement effects through several mechanisms. PC-derived exosomes also induce systemic metabolic alterations, leading to the onset of diabetes and weight loss. Moreover, exosomes have been described as promising diagnostic and prognostic biomarkers for PC. Their potential application in PC therapy as drug carriers and therapeutic targets is under investigation. In this review, we provide an overview of the multiple roles played by exosomes in PC biology through their specific cargo biomolecules and of their potential exploitation in early diagnosis and treatment of PC.
Collapse
|
537
|
Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052666. [PMID: 33800860 PMCID: PMC7961842 DOI: 10.3390/ijms22052666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.
Collapse
|
538
|
Jiang Y, Jiang H, Wang K, Liu C, Man X, Fu Q. Hypoxia enhances the production and antitumor effect of exosomes derived from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:473. [PMID: 33850870 PMCID: PMC8039676 DOI: 10.21037/atm-21-347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Exosomes are a subgroup of extracellular vesicles that are naturally released by almost all types of cells. However, the factors that promote the capacity of natural killer (NK) cells to release exosomes are unclear. In this study, we investigated whether hypoxia can enhance the yield of NK cell-derived exosomes and improve the immunotherapeutic effects of these cells. Methods Exosomes from NK92 or NK92-hIL-15 cells were isolated from culture medium under normoxic (NK92-Exo and NK92-hIL-15-Exo) or hypoxic (hypoxic NK92-Exo and hypoxic NK92-hIL-15-Exo) conditions. NK92-Exo and hypoxic NK92-Exo were characterized by transmission electron microscopy (TEM), nanoparticle-tracking analysis (NTA), and western blot. Real-time cell assay, wound healing assay, flow cytometry, and western blot were then performed to assess cytotoxicity, cell proliferation, cell migration, apoptosis, and the expression levels of cytotoxicity-associated proteins. Results After 48 hours of hypoxic treatment, NK92-Exo exhibited significantly increased cytotoxicity, enhanced inhibition of cell proliferation, and elevated levels of molecules associated with NK cell cytotoxicity. The hypoxia-treated NK92-Exo and NK92-hIL-15-Exo showed increased expression of three functional proteins of NK cells-specifically FasL, perforin, and granzyme B-as compared with their NK92-Exo counterparts exposed to normoxia. Conclusions As an approach that supports overproduction of exosomes, hypoxic treatment of NK cells may serve as a promising therapeutic option for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Immunology, Binzhou Medical University, Yantai, China
| | - Haiming Jiang
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Kun Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunling Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xuejing Man
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China.,School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA.,Shandong Cellogene Pharamaceutics Co. LTD, Yantai, China
| |
Collapse
|
539
|
Trino S, Lamorte D, Caivano A, De Luca L, Sgambato A, Laurenzana I. Clinical relevance of extracellular vesicles in hematological neoplasms: from liquid biopsy to cell biopsy. Leukemia 2021; 35:661-678. [PMID: 33299143 PMCID: PMC7932927 DOI: 10.1038/s41375-020-01104-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In the era of precision medicine, liquid biopsy is becoming increasingly important in oncology. It consists in the isolation and analysis of tumor-derived biomarkers, including extracellular vesicles (EVs), in body fluids. EVs are lipid bilayer-enclosed particles, heterogeneous in size and molecular composition, released from both normal and neoplastic cells. In tumor context, EVs are valuable carriers of cancer information; in fact, their amount, phenotype and molecular cargo, including proteins, lipids, metabolites and nucleic acids, mirror nature and origin of parental cells rendering EVs appealing candidates as novel biomarkers. Translation of these new potential diagnostic tools into clinical practice could deeply revolutionize the cancer field mainly for solid tumors but for hematological neoplasms, too.
Collapse
Affiliation(s)
- Stefania Trino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy.
| | - Antonella Caivano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Luciana De Luca
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy.
| |
Collapse
|
540
|
Xie X, Lian S, Zhou Y, Li B, Lu Y, Yeung I, Jia L. Tumor-derived exosomes can specifically prevent cancer metastatic organotropism. J Control Release 2021; 331:404-415. [DOI: 10.1016/j.jconrel.2021.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
|
541
|
Chen K, Wang Q, Kornmann M, Tian X, Yang Y. The Role of Exosomes in Pancreatic Cancer From Bench to Clinical Application: An Updated Review. Front Oncol 2021; 11:644358. [PMID: 33718244 PMCID: PMC7952979 DOI: 10.3389/fonc.2021.644358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal gastrointestinal malignancies with an overall 5-year survival rate of 8%-9%. The intra-tumor heterogeneity and special tumor microenvironment in PDAC make it challenging to develop effective treatment strategies. Exosomes are extracellular vesicles that originate from the endosomes and have a diameter of 40-160 nm. A growing body of evidence has shown that exosomes play vital roles in tumor initiation and development. Recently, extensive application of exosomes as biomarkers and drug carriers has rendered them attractive in the field of PDAC. This review summarizes the latest progress in the methodologies for isolation, modification, and tracking of exosomes, exosome-mediated cell-to-cell communication, clinical applications of exosome as minimally invasive liquid biopsy and drugs carriers, as well as their involvement in the angiogenic regulation in PDAC. In spite of these advancements, some obstacles are still required to be overcome to use the exosome-based technologies for early diagnosis or improvement of prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Qi Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Marko Kornmann
- Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
542
|
Correction: Gurunathan, S. et al. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307. Cells 2021; 10:cells10020462. [PMID: 33671844 PMCID: PMC7926903 DOI: 10.3390/cells10020462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022] Open
|
543
|
Mathew B, Mansuri MS, Williams KR, Nairn AC. Exosomes as Emerging Biomarker Tools in Neurodegenerative and Neuropsychiatric Disorders-A Proteomics Perspective. Brain Sci 2021; 11:258. [PMID: 33669482 PMCID: PMC7922222 DOI: 10.3390/brainsci11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Exosomes are synthesized and secreted by different cell types and contain proteins, lipids, metabolites and RNA species that reflect the physiological status of the cell of origin. As such, exosomes are increasingly being used as a novel reservoir for disease biomarker discovery. However, isolation of exosomes can be challenging due to their nonuniformity of shape and variable tissue of origin. Moreover, various analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein isolated from exosomes. Despite these challenges, techniques to improve proteomic yield and increase protein dynamic range continue to improve at a rapid rate. In this review, we highlight the importance of exosome proteomics in neurodegenerative and neuropsychiatric disorders and the associated technical difficulties. Furthermore, current progress and technological advancements in exosome proteomics research are discussed with an emphasis on disease-associated protein biomarkers.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - M. Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R. Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
544
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|
545
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Extracellular Vesicles in Oncology: from Immune Suppression to Immunotherapy. AAPS J 2021; 23:30. [PMID: 33586060 PMCID: PMC7882565 DOI: 10.1208/s12248-021-00554-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are involved in cell-to-cell communication and play a crucial role in cellular physiology. The role of exosomes in cancer has been widely explored. Tumor cells have evolved and adapted to evade the immune response. The study of the immune system's modulations in favor of rogue tumor cells led to the development of a novel immunotherapeutic strategy targeting the immune checkpoint proteins (ICPs). In clinical settings, the response to ICP therapy has been inconsistent and is difficult to predict. Quantitating the targeted ICPs through immunohistochemistry is one approach, but is not pragmatic in a clinical setting and is often not sensitive. Examining the molecules present in bodily fluids to determine ICP treatment response, "liquid biopsy" is a convenient alternative. The term "liquid biopsy" refers to circulating tumor cells (CTCs), extracellular vesicles (EVs), non-coding (nc) RNA, circulating tumor DNA (ctDNA), circulating free DNA (cfDNA), etc. EVs includes exosomes, microvesicles, and oncosomes. Herein, we focus on exosomes isolated from bodily fluids and their use in liquid biopsy. Due to their unique ability to transfer bioactive molecules and perturb the physiology of recipient cells, exosomes have garnered attention for their immune modulation role and as a resource to identify molecules associated with liquid biopsy-based diagnostic methods. In this review, we examine the putative role of exosomes and their cargo in influencing the immune system. We discuss the immune and tumor cells present in the tumor microenvironment (TME), and the exosomes derived from these cells to understand how they participate in creating the immune-suppressive TME. Additionally, use of exosomes in liquid biopsy-based methods to measure the treatment response elicited by immunotherapy is discussed. Finally, we describe how exosomes have been used to develop immune therapies, especially cell-free vaccines, for cancer treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
| | - Anupama Munshi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, 73104, Oklahoma, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
546
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wang Y, Tang H, Wu M, Wu Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 2021; 166:105490. [PMID: 33582246 DOI: 10.1016/j.phrs.2021.105490] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Exposure to the external environment may lead to instability and dysfunction of the skin, resulting in refractory wound, skin aging, pigmented dermatosis, hair loss, some immune-mediated dermatoses, and connective tissue diseases. Nowadays, many skin treatments have not achieved a commendable balance between medical recovery and cosmetic needs. Exosomes are cell-derived nanoscale vesicles carrying various biomolecules, including proteins, nucleic acids, and lipids, with the capability to communicate with adjacent or distant cells. Recent studies have demonstrated that endogenic multiple kinds of exosomes are crucial orchestrators in shaping physiological and pathological development of the skin. Besides, exogenous exosomes, such as stem cell exosomes, can serve as novel treatment options to repair, regenerate, and rejuvenate skin tissue. Herein, we review new insights into the role of endogenic and exogenous exosomes in the skin microenvironment and recent advances in applications of exosomes related to dermatology and cutaneous medical aesthetics. The deep understanding of the mechanisms by which exosomes perform biological functions in skin is of great potential to establish attractive therapeutic methods for the skin.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hongbo Tang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| |
Collapse
|
547
|
Wang X, Meng K, Wang H, Wang Y, Zhao Y, Kang J, Zhang Y, Quan F. Identification of small extracellular vesicle subtypes in follicular fluid: Insights into the function and miRNA profiles. J Cell Physiol 2021; 236:5633-5645. [PMID: 33576507 DOI: 10.1002/jcp.30251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
The study of small extracellular vesicles (sEVs) heterogeneity is one of the main problems that must be solved, and the different sEV subtypes in follicular fluid are still unclear, limiting our understanding of their function. This study first separated sEV subtypes from follicular fluid using differential ultracentrifugation combined with iodixanol density gradient flotation and then evaluated their miRNA profile and effects on the proliferation and apoptosis of granulosa cells (GCs). We also performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential target genes of differentially expressed miRNAs (DEMs) and KEGG analysis of potential target genes of non-DEMs. Low-density sEVs (sEV_F6) were enriched in TSG101, while high-density sEVs (sEV_F8) were enriched in CD63. The miRNA profiles of sEV_F6 and sEV_F8 were heterogeneous, and the differential signaling pathways were mainly related to the adhesion and hypoxic stress pathways, while the same signaling pathways were mainly related to cell proliferation, apoptosis, cell cycle, and autophagy pathways. In addition, the highly expressed miRNAs in both subtypes were mainly related to cell proliferation and apoptosis. Both subtypes transferred their miRNAs into GCs and promoted the proliferation ability of the GCs and inhibited their apoptosis. The results showed for the first time that there are different subtypes of sEVs in follicular fluid and that the miRNA profiles of subtypes are heterogeneous.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunqi Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
548
|
Yang W, Pan X, Ma A. The Potential of Exosomal RNAs in Atherosclerosis Diagnosis and Therapy. Front Neurol 2021; 11:572226. [PMID: 33643177 PMCID: PMC7905228 DOI: 10.3389/fneur.2020.572226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is an inflammatory disease that can lead to cardiovascular disorders and stroke. In the atherosclerosis microenvironment, exosomes secreted from various cells, especially macrophage-derived exosomes, play an important role in cell–cell communication and cellular biological functions. In this article, we review previous studies on exosomal RNAs and discuss their potential value in atherosclerosis diagnosis and therapy. Based on our research, we concluded that macrophage exosomes have potential value in atherosclerosis diagnosis and therapy. However, there is a need for future studies to further investigate methods of exosome isolation and targeting.
Collapse
Affiliation(s)
- Wenzhi Yang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
549
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
550
|
Cargnoni A, Papait A, Masserdotti A, Pasotti A, Stefani FR, Silini AR, Parolini O. Extracellular Vesicles From Perinatal Cells for Anti-inflammatory Therapy. Front Bioeng Biotechnol 2021; 9:637737. [PMID: 33614619 PMCID: PMC7892960 DOI: 10.3389/fbioe.2021.637737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Perinatal cells, including cells from placenta, fetal annexes (amniotic and chorionic membranes), umbilical cord, and amniotic fluid display intrinsic immunological properties which very likely contribute to the development and growth of a semiallogeneic fetus during pregnancy. Many studies have shown that perinatal cells can inhibit the activation and modulate the functions of various inflammatory cells of the innate and adaptive immune systems, including macrophages, neutrophils, natural killer cells, dendritic cells, and T and B lymphocytes. These immunological properties, along with their easy availability and lack of ethical concerns, make perinatal cells very useful/promising in regenerative medicine. In recent years, extracellular vesicles (EVs) have gained great interest as a new therapeutic tool in regenerative medicine being a cell-free product potentially capable, thanks to the growth factors, miRNA and other bioactive molecules they convey, of modulating the inflammatory microenvironment thus favoring tissue regeneration. The immunomodulatory actions of perinatal cells have been suggested to be mediated by still not fully identified factors (secretoma) secreted either as soluble proteins/cytokines or entrapped in EVs. In this review, we will discuss how perinatal derived EVs may contribute toward the modulation of the immune response in various inflammatory pathologies (acute and chronic) by directly targeting different elements of the inflammatory microenvironment, ultimately leading to the repair and regeneration of damaged tissues.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|