5701
|
Bajusz D, Miranda-Quintana RA, Rácz A, Héberger K. Extended many-item similarity indices for sets of nucleotide and protein sequences. Comput Struct Biotechnol J 2021; 19:3628-3639. [PMID: 34257841 PMCID: PMC8253954 DOI: 10.1016/j.csbj.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Quantification of similarities between protein sequences or DNA/RNA strands is a (sub-)task that is ubiquitously present in bioinformatics workflows, and is usually accomplished by pairwise comparisons of sequences, utilizing simple (e.g. percent identity) or more intricate concepts (e.g. substitution scoring matrices). Complex tasks (such as clustering) rely on a large number of pairwise comparisons under the hood, instead of a direct quantification of set similarities. Based on our recently introduced framework that enables multiple comparisons of binary molecular fingerprints (i.e., direct calculation of the similarity of fingerprint sets), here we introduce novel symmetric similarity indices for analogous calculations on sets of character sequences with more than two (t) possible items (e.g. DNA/RNA sequences with t = 4, or protein sequences with t = 20). The features of these new indices are studied in detail with analysis of variance (ANOVA), and demonstrated with three case studies of protein/DNA sequences with varying degrees of similarity (or evolutionary proximity). The Python code for the extended many-item similarity indices is publicly available at: https://github.com/ramirandaq/tn_Comparisons.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | | | - Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
5702
|
Garg U, Azim Y, Alam M. In acid-aminopyrimidine continuum: experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt. RSC Adv 2021; 11:21463-21474. [PMID: 35478783 PMCID: PMC9034213 DOI: 10.1039/d1ra01714d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Salts and cocrystals are the two important solid forms when a carboxylic acid crystallizes with an aminopyrimidine base such that the extent of proton transfer distinguishes between them. The ΔpKa value (pKa(base) − pKa(acid)) predicts whether the proton transfer will occur or not. However, the ΔpKa range, 0 < ΔpKa < 3, is elusive where the formation of cocrystal or salt cannot be predicted. The current study has been done to obtain a generalization in this elusive range with the Cambridge Structural Database (CSD). Based on the generalization, a novel salt (FTCA)−(2-AP)+ of furantetracarboxylic acid (FTCA) with 2-aminopyrimidine (2-AP) is obtained. The structural confirmation was done by single-crystal X-ray diffraction (SCXRD). Density functional theory (DFT) calculations were performed at the IEF-PCM-B3LYP-D3/6-311G(d,p) level to optimize the geometrical coordinates of salt for frontier molecular orbitals (FMOs) and molecular electrostatic potential (MESP). The geometrical parameters of most of the atoms of the optimized salt structure were comparable with SCXRD data. Additionally, results of other computational methods such as ab initio (Hartree–Fock; HF and second-order-Møller–Plesset perturbation; MP2) and semi-empirical were also compared with experimental results of the salt. Quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and natural bond orbital (NBO) analyses were done to calculate the strength and nature of non-covalent interactions present in the salt. Furthermore, Hirshfeld surface analysis, interaction energy calculations, and total energy frameworks were performed for qualitative and quantitative estimations of strong and weak intermolecular interactions. Generalization in the elusive ΔpKa range, experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt.![]()
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Mahboob Alam
- Division of Chemistry & Biotechnology, Dongguk University 123 Dongdae-ro Gyeongju Republic of Korea
| |
Collapse
|
5703
|
Melis DR, Barnett CB, Wiesner L, Nordlander E, Smith GS. Quinoline-triazole half-sandwich iridium(III) complexes: synthesis, antiplasmodial activity and preliminary transfer hydrogenation studies. Dalton Trans 2021; 49:11543-11555. [PMID: 32697227 DOI: 10.1039/d0dt01935f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium(iii) half-sandwich complexes containing 7-chloroquinoline-1,2,3-triazole hybrid ligands were synthesised and their inhibitory activities evaluated against the Plasmodium falciparum malaria parasite. Supporting computational analysis revealed that metal coordination to the quinoline nitrogen occurs first, forming a kinetic product that, upon heating over time, forms a more stable cyclometallated thermodynamic product. Single crystal X-ray diffraction confirmed the proposed molecular structures of both isolated kinetic and thermodynamic products. Complexation with iridium significantly enhances the in vitro activity of selected ligands against the chloroquine-sensitive (NF54) Plasmodium falciparum strain, with selected complexes being over one hundred times more active than their respective ligands. No cross-resistance was observed in the chloroquine-resistant (K1) strain. No cytotoxicity was observed for selected complexes tested against the mammalian Chinese Hamster Ovarian (CHO) cell line. In addition, speed-of-action assays and β-haematin inhibition studies were performed. Through preliminary qualitative and quantitative cell-free experiments, it was found that the two most active neutral, cyclometallated complexes can act as transfer hydrogenation catalysts, by reducing β-nicotinamide adenine dinucleotide (NAD+) to NADH in the presence of a hydrogen source, sodium formate.
Collapse
Affiliation(s)
- Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Christopher B Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
5704
|
Hu Y, Hu S, Pan G, Wu D, Wang T, Yu C, Fawad Ansari M, Yadav Bheemanaboina RR, Cheng Y, Bai L, Zhou C, Zhang J. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg Chem 2021; 114:105096. [PMID: 34147878 DOI: 10.1016/j.bioorg.2021.105096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
A new class of antibacterial ethanol-bridged purine azole hybrids as potential dual-targeting inhibitors was developed. Bioactivity evaluation showed that some of the target compounds had prominent antibacterial activity against the tested bacteria, notably, metronidazole hybrid 3a displayed significant inhibitory activity against MRSA (MIC = 6 μM), and had no obvious toxicity on normal mammalian cells (RAW 264.7). In addition, compound 3a also did not induce drug resistance of MRSA obviously, even after fifteen passages. Molecular modeling studies showed that the highly active molecule 3a could insert into the base pairs of topoisomerase IA-DNA as well as topoisomerase IV-DNA through hydrogen bonding. Furthermore, a preliminary study on the antibacterial mechanism revealed that the active molecule 3a could rupture the bacterial membrane of MRSA and insert into MRSA DNA to block its replication, thus possibly exhibiting strong antibacterial activity. These results strongly indicated that the highly active hybrid 3a could be used as a potential dual-targeting inhibitor of MRSA for further development of valuable antimicrobials.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Shunyou Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Dong Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Congwei Yu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, New Jersey 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ligang Bai
- School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China.
| |
Collapse
|
5705
|
Narita K, Suganuma K, Murata T, Kondo R, Satoh H, Watanabe K, Sasaki K, Inoue N, Yoshimura Y. Synthesis and evaluation of trypanocidal activity of derivatives of naturally occurring 2,5-diphenyloxazoles. Bioorg Med Chem 2021; 42:116253. [PMID: 34130218 DOI: 10.1016/j.bmc.2021.116253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
African trypanosomiasis is a zoonotic protozoan disease affecting the nervous system. Various natural products reportedly exhibit trypanocidal activity. Naturally occurring 2,5-diphenyloxazoles present in Oxytropis lanata, and their derivatives, were synthesized. The trypanocidal activities of the synthesized compounds were evaluated against Trypanosoma brucei brucei, T. b. gambiense, T. b. rhodesiense, T. congolense, and T. evansi. Natural product 1 exhibited trypanocidal activity against all the species/subspecies of trypanosomes, exhibiting half-maximal inhibitory concentrations (IC50) of 1.1-13.5 μM. Modification of the oxazole core improved the trypanocidal activity. The 1,3,4-oxadiazole (7) and 2,4-diphenyloxazole (9) analogs exhibited potency superior to that of 1. However, these compounds exhibited cytotoxicity in Madin-Darby bovine kidney cells. The O-methylated analog of 1 (12) was non-cytotoxic and exhibited selective trypanocidal activity against T. congolense (IC50 = 0.78 µM). Structure-activity relationship studies of the 2,5-diphenyloxazole analogs revealed aspects of the molecular structure critical for maintaining selective trypanocidal activity against T. congolense.
Collapse
Affiliation(s)
- Koichi Narita
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Murata
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Ryutaro Kondo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hiroka Satoh
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kazuhiro Watanabe
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kenroh Sasaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Yuichi Yoshimura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
5706
|
Hoare SRJ. The Problems of Applying Classical Pharmacology Analysis to Modern In Vitro Drug Discovery Assays: Slow Binding Kinetics and High Target Concentration. SLAS DISCOVERY 2021; 26:835-850. [PMID: 34112012 DOI: 10.1177/24725552211019653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis framework used to quantify drug potency in vitro (e.g., Kd or Ki) was initially developed for classical pharmacology bioassays, for example, organ bath experiments testing moderate-affinity natural products. Modern drug discovery can infringe the assumptions of the classical pharmacology analysis equations, owing to the reduction of assay volume in miniaturization, target overexpression, and the increase of compound-target affinity in medicinal chemistry. These assumptions are that (1) the compound concentration greatly exceeds the target concentration (i.e., minimal ligand depletion), and (2) the compound is at equilibrium with the receptor (i.e., rapid ligand binding kinetics). Unappreciated infringement of these assumptions can lead to substantial underestimation of compound affinity, which negatively impacts the drug discovery process, from early-stage lead optimization to prediction of human dosing. This study evaluates the real-world impact of these factors on the target interaction assays used in drug discovery using literature examples, database searches, and simulations. The ranges of compound affinity and the assay types that are prone to depletion and equilibration artifacts are identified. Importantly, the highest-affinity compounds, usually the highest value chemical matter in drug discovery, are the most affected. Methods and simulation tools are provided to enable investigators to evaluate, manage, and minimize depletion or equilibration artifacts. This study enables the correct application of pharmacological data analysis to accurately quantify affinity using modern drug discovery assay technology.
Collapse
|
5707
|
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe SD, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci 2021; 4:1096-1110. [PMID: 35287429 PMCID: PMC7986981 DOI: 10.1021/acsptsci.0c00216] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Francesca Esposito
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Laura Vangeel
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Markus Wolf
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and
Pharmacology
ITMP, Theodor Stern Kai
7, 60596 Frankfurt
am Main, Germany
- Institute
of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Angela Corona
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Daniela Iaconis
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Carmine Talarico
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Candida Manelfi
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Rolando Cannalire
- Department
of Pharmacy, University of Naples Federico
II, Via D. Montesano,
49, 80131 Naples, Italy
| | - Giulia Rossetti
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
- Faculty
of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jonas Gossen
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Simone Albani
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40216 Bologna, Italy
| | - Katja Herzog
- EU-OPENSCREEN
ERIC, Robert-Rössle-Straße
10, 13125 Berlin, Germany
| | - Yang Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Giabbai
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Dirk Jochmans
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Jasper Rymenants
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples Federico
II, Via D. Montesano,
49, 80131 Naples, Italy
| | - Enzo Tramontano
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | | | - Pieter Leyssen
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Paola Storici
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Johan Neyts
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
5708
|
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe SD, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci 2021; 4:1096-1110. [PMID: 35287429 DOI: 10.1101/2020.12.16.422677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 05/18/2023]
Abstract
Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Laura Vangeel
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Carmine Talarico
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jonas Gossen
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40216 Bologna, Italy
| | - Katja Herzog
- EU-OPENSCREEN ERIC, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Yang Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Giabbai
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Jasper Rymenants
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Pieter Leyssen
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Paola Storici
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
5709
|
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics (Basel) 2021; 10:701. [PMID: 34208097 PMCID: PMC8230823 DOI: 10.3390/antibiotics10060701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans trapped in the periplasmic space, and the displacement of cell surface charges. The focus of our discussion is the impact of Donnan potential on the cellular permeability of selected antibiotics including fluoroquinolones, tetracyclines, β-lactams, and trimethoprim.
Collapse
Affiliation(s)
| | | | | | | | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (O.A.); (A.P.); (J.C.); (I.O.)
| |
Collapse
|
5710
|
Discovery and optimization of 2-((1H-indol-3-yl)thio)-N-benzyl-acetamides as novel SARS-CoV-2 RdRp inhibitors. Eur J Med Chem 2021; 223:113622. [PMID: 34147744 PMCID: PMC8191315 DOI: 10.1016/j.ejmech.2021.113622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global pandemic coronavirus disease (COVID-19), but no specific antiviral drug has been proven effective for controlling this pandemic to date. In this study, several 2-((indol-3-yl)thio)-N-benzyl-acetamides were identified as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors. After a two-round optimization, a new series of 2-((indol-3-yl)thio)-N-benzyl-acetamides was designed, synthesized, and evaluated for SARS-CoV-2 RdRp inhibitory effect. Compounds 6b2, 6b5, 6c9, 6d2, and 6d5 were identified as potent inhibitors with IC50 values of 3.35 ± 0.21 μM, 4.55 ± 0.2 μM, 1.65 ± 0.05 μM, 3.76 ± 0.79 μM, and 1.11 ± 0.05 μM, respectively; the IC50 of remdesivir (control) was measured as 1.19 ± 0.36 μM. All of the compounds inhibited RNA synthesis by SARS-CoV-2 RdRp. The most potent compound 6d5, which showed a stronger inhibitory activity against the human coronavirus HCoV-OC43 than remdesivir, is a promising candidate for further investigation.
Collapse
|
5711
|
Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Release 2021; 334:463-484. [PMID: 33781809 DOI: 10.1016/j.jconrel.2021.03.033] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Drug delivery devices are promising tools in the pharmaceutical field, as they are able to maximize the therapeutic effects of the delivered drug while minimizing the undesired side effects. In the past years, electrospun nanofibers attracted rising attention due to their unique features, like biocompatibility and broad flexibility. Incorporation of active principles in nanofibrous meshes proved to be an efficient method for in situ delivery of a wide range of drugs, expanding the possibility and applicability of those devices. In this review, the principle of electrospinning and different fields of applications are treated to give an overview of the recent literature, underlining the easy tuning and endless combination of this technique, that in the future could be the new frontier of personalized medicine.
Collapse
Affiliation(s)
- Andrea Luraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, the Netherlands.
| |
Collapse
|
5712
|
Borgelt L, Li F, Hommen P, Lampe P, Hwang J, Goebel GL, Sievers S, Wu P. Trisubstituted Pyrrolinones as Small-Molecule Inhibitors Disrupting the Protein-RNA Interaction of LIN28 and Let-7. ACS Med Chem Lett 2021; 12:893-898. [PMID: 34136077 PMCID: PMC8201479 DOI: 10.1021/acsmedchemlett.0c00546] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Modulation of protein-RNA interaction (PRI) using small molecules is a promising strategy to develop therapeutics. LIN28 is an RNA-binding protein that blocks the maturation of the tumor suppressor let-7 microRNAs. Herein, we performed a fluorescence polarization-based screening and identified trisubstituted pyrrolinones as small-molecule inhibitors disrupting the LIN28-let-7 interaction. The most potent compound C902 showed dose-dependent inhibition in an EMSA validation assay, enhanced thermal stability of the cold shock domain of LIN28, and increased mature let-7 levels in JAR cells. The structure-activity relationship study revealed key structural features contributing to either PRI inhibition or stabilization of protein-protein interaction (PPI). The pyrrolinones identified in this study not only represent a new class of LIN28-binding molecules that diversify the limited available LIN28 inhibitors but also represent the first examples of small molecules that showed substituent-dependent PRI inhibitory and PPI activating activities.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Fu Li
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Pascal Hommen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Philipp Lampe
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Jimin Hwang
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Sonja Sievers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
5713
|
Huang B, Wang H, Zheng Y, Li M, Kang G, Barreto-de-Souza V, Nassehi N, Knapp PE, Selley DE, Hauser KF, Zhang Y. Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. J Med Chem 2021; 64:7702-7723. [PMID: 34027668 PMCID: PMC10548452 DOI: 10.1021/acs.jmedchem.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Anti-HIV Agents/chemistry
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/pharmacology
- Binding Sites
- Dimerization
- Drug Design
- HIV-1/drug effects
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Ligands
- Maraviroc/chemistry
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Naltrexone/chemistry
- Phytohemagglutinins/pharmacology
- Protein Binding
- Receptors, CCR5/chemistry
- Receptors, CCR5/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Guifeng Kang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Victor Barreto-de-Souza
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
5714
|
Bisavenathramide Analogues as Nrf2 Inductors and Neuroprotectors in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants (Basel) 2021; 10:antiox10060941. [PMID: 34200859 PMCID: PMC8230565 DOI: 10.3390/antiox10060941] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is crucial to the outbreak and advancement of neurodegenerative diseases and is a common factor to many of them. We describe the synthesis of a library of derivatives of the 4-arylmethylen-2-pyrrolin-5-one framework by sequential application of a three-component reaction of primary amines, β-dicarbonyl compounds, and α-haloketones and a Knoevenagel condensation. These compounds can be viewed as cyclic amides of caffeic and ferulic acids, and are also structurally related to the bisavenanthramide family of natural antioxidants. Most members of the library showed low cytotoxicity and good activity as inductors of Nrf2, a transcription factor that acts as the master regulator of the antioxidant response associated with activation of the antioxidant response element (ARE). Nrf2-dependent protein expression was also proved by the significant increase in the levels of the HMOX1 and NQO1 proteins. Some compounds exerted neuroprotective properties in oxidative stress situations, such as rotenone/oligomycin-induced toxicity, and also against protein hyperphosphorylation induced by the phosphatase inhibitor okadaic acid. Compound 3i, which can be considered a good candidate for further hit-to-lead development against neurodegenerative diseases due to its well-balanced multitarget profile, was further characterized by proving its ability to reduce phosphorylated Tau levels.
Collapse
|
5715
|
Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021; 222:113628. [PMID: 34139627 DOI: 10.1016/j.ejmech.2021.113628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
The increasing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics has led to a growing effort to design and synthesize novel structural candidates of chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids with outstanding bacteriostatic potential. Bioactivity screening showed that hybrid 5i, which was modified with methoxybenzene, exerted a significant inhibitory activity against MRSA (MIC = 0.004 mM), which was 6 times better than the anti-MRSA activity of the reference drug norfloxacin (MIC = 0.025 mM). Compound 5i neither conferred apparent resistance onto MRSA strains even after multiple passages nor triggered evident toxicity to human hepatocyte LO2 cells and normal mammalian cells (RAW 264.7). Molecular docking showed that highly active molecule 5i might bind to DNA gyrase by forming stable hydrogen bonds. In addition, molecular electrostatic potential surfaces were developed to explain the high antibacterial activity of the target compounds. Furthermore, preliminary mechanism studies suggested that hybrid 5i could disrupt the bacterial membrane of MRSA and insert itself into MRSA DNA to impede its replication, thus possibly becoming a potential antibacterial repressor against MRSA.
Collapse
|
5716
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
Affiliation(s)
- Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
5717
|
Yin X, Wei L, Pan X, Liu C, Jiang J, Wang K. The Pretreatment of Lignocelluloses With Green Solvent as Biorefinery Preprocess: A Minor Review. FRONTIERS IN PLANT SCIENCE 2021; 12:670061. [PMID: 34168668 PMCID: PMC8218942 DOI: 10.3389/fpls.2021.670061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 06/02/2023]
Abstract
Converting agriculture and forestry lignocellulosic residues into high value-added liquid fuels (ethanol, butanol, etc.), chemicals (levulinic acid, furfural, etc.), and materials (aerogel, bioresin, etc.) via a bio-refinery process is an important way to utilize biomass energy resources. However, because of the dense and complex supermolecular structure of lignocelluloses, it is difficult for enzymes and chemical reagents to efficiently depolymerize lignocelluloses. Strikingly, the compact structure of lignocelluloses could be effectively decomposed with a proper pretreatment technology, followed by efficient separation of cellulose, hemicellulose and lignin, which improves the conversion and utilization efficiency of lignocelluloses. Based on a review of traditional pretreatment methods, this study focuses on the discussion of pretreatment process with recyclable and non-toxic/low-toxic green solvents, such as polar aprotic solvents, ionic liquids, and deep eutectic solvents, and provides an outlook of the industrial application prospects of solvent pretreatment.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Linshan Wei
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Xueyuan Pan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Chao Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| |
Collapse
|
5718
|
Wang T, Jin J, Qian C, Lou J, Lin J, Xu A, Xia K, Jin L, Liu B, Tao H, Yang Z, Yu W. Estrogen/ER in anti-tumor immunity regulation to tumor cell and tumor microenvironment. Cancer Cell Int 2021; 21:295. [PMID: 34098945 PMCID: PMC8182917 DOI: 10.1186/s12935-021-02003-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
As the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.
Collapse
Affiliation(s)
- Tiecheng Wang
- Department of Orthopedics, Shengzhou People's Hospital, #666 Dangui Road, Shengzhou, 312400, Zhejiang, People's Republic of China
| | - Jiakang Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Chao Qian
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Jianan Lou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Jinti Lin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Libin Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Zhengming Yang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
5719
|
Soltani S, Hallaj-Nezhadi S, Rashidi MR. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives. Eur J Med Chem 2021; 222:113559. [PMID: 34119831 DOI: 10.1016/j.ejmech.2021.113559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
The importance of aldehyde oxidase (AOX) in drug metabolism necessitates the development and application of the in silico rational drug design methods as an integral part of drug discovery projects for the early prediction and modulation of AOX-mediated metabolism. The current study represents an up-to-date and thorough review of in silico studies of AOX-mediated metabolism and modulation methods. In addition, the challenges and the knowledge gap that should be covered have been discussed. The importance of aldehyde oxidase (AOX) in drug metabolism is a hot topic in drug discovery. Different strategies are available for the modulation of the AOX-mediated metabolism of drugs. Application of the rational drug design methods as an integral part of drug discovery projects is necessary for the early prediction of AOX-mediated metabolism. The current study represents a comprehensive review of AOX molecular structure, AOX-mediated reactions, AOX substrates, AOX inhibition, approaches to modify AOX-mediated metabolism, prediction of AOX metabolism/substrates/inhibitors, and the AOX related structure-activity relationship (SAR) studies. Furthermore, an up-to-date and thorough review of in silico studies of AOX metabolism has been carried out. In addition, the challenges and the knowledge gap that should be covered in the scientific literature have been discussed in the current review.
Collapse
Affiliation(s)
- Somaieh Soltani
- Pharmaceutical Analysis Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Stem Cell and Regenerative Medicine Institute and Pharmacy faculty, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
5720
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
5721
|
Li Z, Ma S, Yang X, Zhang L, Liang D, Dong G, Du L, Lv Z, Li M. Development of photocontrolled BRD4 PROTACs for tongue squamous cell carcinoma (TSCC). Eur J Med Chem 2021; 222:113608. [PMID: 34119833 DOI: 10.1016/j.ejmech.2021.113608] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The catalytic properties of small-molecule proteolysis targeting chimeras (PROTACs) may lead to uncontrolled degradation. Therefore, the main disadvantages of PROTACs are non-cancer specificity and relatively high toxicity, which limit the clinical application of PROTACs. The photocontrolled PROTACs (photoPROTACs) were proposed to overcome this issue, in which they can be triggered by ultraviolet A (UVA) or visible light to induce the degradation of the target protein. Herein, we designed several photoPROTACs to cause the degradation of bromodomain-containing protein 4 (BRD4) on-demand using 365 nm light. The representative compound N2 is proved to induce the degradation of BRD4 upon irradiation. Moreover, compound N2 was successfully applied in vivo to inhibit tumor growth in a zebrafish xenograft model of skin cancer tongue squamous cell carcinoma (TSCC) in a photocontrol manner.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Siyue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dong Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Zhenghua Lv
- Department of Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250022, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5722
|
In Vitro Susceptibility to Miltefosine of Leishmania infantum (syn. L. chagasi) Isolates from Different Geographical Areas in Brazil. Microorganisms 2021; 9:microorganisms9061228. [PMID: 34198947 PMCID: PMC8228039 DOI: 10.3390/microorganisms9061228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Treatment of visceral leishmaniasis in Brazil still relies on meglumine antimoniate, with less than ideal efficacy and safety, making new therapeutic tools an urgent need. The oral drug miltefosine was assayed in a phase II clinical trial in Brazil with cure rates lower than previously demonstrated in India. The present study investigated the susceptibility to miltefosine in 73 Brazilian strains of Leishmania infantum from different geographic regions, using intracellular amastigote and promastigote assays. The EC50 for miltefosine of 13 of these strains evaluated in intracellular amastigotes varied between 1.41 and 4.57 μM. The EC50 of the 73 strains determined in promastigotes varied between 5.89 and 23.7 μM. No correlation between in vitro miltefosine susceptibility and the presence of the miltefosine sensitive locus was detected among the tested strains. The relatively low heterogeneity in miltefosine susceptibility observed for the 73 strains tested in this study suggests the absence of decreased susceptibility to miltefosine in Brazilian L. infantum and does not exclude future clinical evaluation of miltefosine for VL treatment in Brazil.
Collapse
|
5723
|
Lee C, Cook AJ, Elisabeth JE, Friede NC, Sammis GM, Ball ND. The Emerging Applications of Sulfur(VI) Fluorides in Catalysis. ACS Catal 2021; 11:6578-6589. [PMID: 34123485 PMCID: PMC8185885 DOI: 10.1021/acscatal.1c01201] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Indexed: 12/17/2022]
Abstract
The past decade has witnessed remarkable growth of catalytic transformations in organic sulfur(VI) fluoride chemistry. This Perspective concentrates exclusively on foundational examples that utilize catalytic strategies to synthesize and react S(VI) fluorides. Key mechanistic studies that aim to provide insight toward future catalytic systems are emphasized.
Collapse
Affiliation(s)
- Cayo Lee
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Alina J. Cook
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jonathan E. Elisabeth
- Department
of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Nathan C. Friede
- Department
of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Glenn M. Sammis
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicholas D. Ball
- Department
of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| |
Collapse
|
5724
|
Craven GB, Briggs EL, Zammit CM, McDermott A, Greed S, Affron DP, Leinfellner C, Cudmore HR, Tweedy RR, Luisi R, Bull JA, Armstrong A. Synthesis and Configurational Assignment of Vinyl Sulfoximines and Sulfonimidamides. J Org Chem 2021; 86:7403-7424. [PMID: 34003635 DOI: 10.1021/acs.joc.1c00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vinyl sulfones and sulfonamides are valued for their use as electrophilic warheads in covalent protein inhibitors. Conversely, the S(VI) aza-isosteres thereof, vinyl sulfoximines and sulfonimidamides, are far less studied and have yet to be applied to the field of protein bioconjugation. Herein, we report a range of different synthetic methodologies for constructing vinyl sulfoximine and vinyl sulfonimidamide architectures that allows access to new areas of electrophilic chemical space. We demonstrate how late-stage functionalization can be applied to these motifs to incorporate alkyne tags, generating fully functionalized probes for future chemical biology applications. Finally, we establish a workflow for determining the absolute configuration of enantioenriched vinyl sulfoximines and sulfonimidamides by comparing experimentally and computationally determined electronic circular dichroism spectra, enabling access to configurationally assigned enantiomeric pairs by separation.
Collapse
Affiliation(s)
- Gregory B Craven
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.,The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Edward L Briggs
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Charlotte M Zammit
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Alexander McDermott
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Stephanie Greed
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Dominic P Affron
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Charlotte Leinfellner
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Hannah R Cudmore
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Ruth R Tweedy
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari, "A. Moro" Via E. Orabona 4, Bari 70125, Italy
| | - James A Bull
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Alan Armstrong
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
5725
|
Attia MF, Montaser AS, Arifuzzaman M, Pitz M, Jlassi K, Alexander-Bryant A, Kelly SS, Alexis F, Whitehead DC. In Situ Photopolymerization of Acrylamide Hydrogel to Coat Cellulose Acetate Nanofibers for Drug Delivery System. Polymers (Basel) 2021; 13:1863. [PMID: 34205186 PMCID: PMC8200032 DOI: 10.3390/polym13111863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
In this study we developed electrospun cellulose acetate nanofibers (CANFs) that were loaded with a model non-steroidal anti-inflammatory drug (NSAID) (ibuprofen, Ib) and coated with poly(acrylamide) (poly-AAm) hydrogel polymer using two consecutive steps: an electrospinning process followed by photopolymerization of AAm. Coated and non-coated CANF formulations were characterized by several microscopic and spectroscopic techniques to evaluate their physicochemical properties. An analysis of the kinetic release profile of Ib showed noticeable differences due to the presence or absence of the poly-AAm hydrogel polymer. Poly-AAm coating facilitated a constant release rate of drug as opposed to a more conventional burst release. The non-coated CANFs showed low cumulative drug release concentrations (ca. 35 and 83% at 5 and 10% loading, respectively). Conversely, poly-AAm coated CANFs were found to promote the release of drug (ca. 84 and 99.8% at 5 and 10% loading, respectively). Finally, the CANFs were found to be superbly cytocompatible.
Collapse
Affiliation(s)
- Mohamed F. Attia
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ahmed S. Montaser
- Textile Research Division, Pretreatment and Finishing Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Md Arifuzzaman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| | - Megan Pitz
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.P.); (A.A.-B.)
| | - Khouloud Jlassi
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| | | | - Stephen S. Kelly
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27607, USA;
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui 100650, Ecuador;
| | | |
Collapse
|
5726
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5727
|
Taka E, Yilmaz SZ, Golcuk M, Kilinc C, Aktas U, Yildiz A, Gur M. Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor. J Phys Chem B 2021; 125:5537-5548. [PMID: 33979162 PMCID: PMC8130525 DOI: 10.1021/acs.jpcb.1c02048] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on blocking S-ACE2 binding, but critical residues that stabilize this interaction are not well understood. By performing all-atom molecular dynamics (MD) simulations, we identified an extended network of salt bridges, hydrophobic and electrostatic interactions, and hydrogen bonds between the receptor-binding domain (RBD) of the S protein and ACE2. Mutagenesis of these residues on the RBD was not sufficient to destabilize binding but reduced the average work to unbind the S protein from ACE2. In particular, the hydrophobic end of RBD serves as the main anchor site and is the last to unbind from ACE2 under force. We propose that blocking the hydrophobic surface of RBD via neutralizing antibodies could prove to be an effective strategy to inhibit S-ACE2 interactions.
Collapse
Affiliation(s)
- Elhan Taka
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Sema Z. Yilmaz
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Mert Golcuk
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Ceren Kilinc
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Umut Aktas
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Ahmet Yildiz
- Physics Department, University of
California, Berkeley, California 94720-3220, United
States
- Department of Molecular and Cellular Biology,
University of California, Berkeley, California 94720-3220,
United States
| | - Mert Gur
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| |
Collapse
|
5728
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
5729
|
Romeo G, Bonanno F, Wilson LL, Arena E, Modica MN, Pittalà V, Salerno L, Prezzavento O, McLaughlin JP, Intagliata S. Development of New Benzylpiperazine Derivatives as σ 1 Receptor Ligands with in Vivo Antinociceptive and Anti-Allodynic Effects. ACS Chem Neurosci 2021; 12:2003-2012. [PMID: 34019387 PMCID: PMC8291485 DOI: 10.1021/acschemneuro.1c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
σ-1 receptors (σ1R) modulate nociceptive signaling, driving the search for selective antagonists to take advantage of this promising target to treat pain. In this study, a new series of benzylpiperazinyl derivatives has been designed, synthesized, and characterized for their affinities toward σ1R and selectivity over the σ-2 receptor (σ2R). Notably, 3-cyclohexyl-1-{4-[(4-methoxyphenyl)methyl]piperazin-1-yl}propan-1-one (15) showed the highest σ1R receptor affinity (Ki σ1 = 1.6 nM) among the series with a significant improvement of the σ1R selectivity (Ki σ2/Ki σ1= 886) compared to the lead compound 8 (Ki σ2/Ki σ1= 432). Compound 15 was further tested in a mouse formalin assay of inflammatory pain and chronic nerve constriction injury (CCI) of neuropathic pain, where it produced dose-dependent (3-60 mg/kg, i.p.) antinociception and anti-allodynic effects. Moreover, compound 15 demonstrated no significant effects in a rotarod assay, suggesting that this σ1R antagonist did not produce sedation or impair locomotor responses. Overall, these results encourage the further development of our benzylpiperazine-based σ1R antagonists as potential therapeutics for chronic pain.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Federica Bonanno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Lisa L. Wilson
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Emanuela Arena
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Maria N. Modica
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
5730
|
Wang J, Zhang PL, Ansari MF, Li S, Zhou CH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg Chem 2021; 113:105039. [PMID: 34091291 DOI: 10.1016/j.bioorg.2021.105039] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5731
|
F Nahhas A, F Nahhas A, J Webster T. Nanoscale pathogens treated with nanomaterial-like peptides: a platform technology appropriate for future pandemics. Nanomedicine (Lond) 2021; 16:1237-1254. [PMID: 33988037 PMCID: PMC8120868 DOI: 10.2217/nnm-2020-0447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections are historically very difficult to treat. Although imperfect and time-consuming to develop, we do have some conventional vaccine and therapeutic approaches to stop viral spreading. Most importantly, all of this takes significant time while viruses continue to wreak havoc on our healthcare system. Furthermore, viral infections are accompanied by a weakened immune system which is often overlooked in antiviral drug strategies and requires additional drug development. In this review, for the first time, we touch on some promising alternative approaches to treat viral infections, specifically those focused on the use of platform nanomaterials with antiviral peptides. In doing so, this review presents a timely discussion of how we need to change our old way of treating viruses into one that can quickly meet the demands of COVID-19, as well as future pandemic-causing viruses, which will come.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, KSA
| | - Alrayan F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, KSA
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5732
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
5733
|
Novel Bis- and Mono-Pyrrolo[2,3- d]pyrimidine and Purine Derivatives: Synthesis, Computational Analysis and Antiproliferative Evaluation. Molecules 2021; 26:molecules26113334. [PMID: 34206076 PMCID: PMC8199500 DOI: 10.3390/molecules26113334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
Novel symmetrical bis-pyrrolo[2,3-d]pyrimidines and bis-purines and their monomers were synthesized and evaluated for their antiproliferative activity in human lung adenocarcinoma (A549), cervical carcinoma (HeLa), ductal pancreatic adenocarcinoma (CFPAC-1) and metastatic colorectal adenocarcinoma (SW620) cells. The use of ultrasound irradiation as alternative energy input in Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) shortened the reaction time, increased the reaction efficiency and led to the formation of exclusively symmetric bis-heterocycles. DFT calculations showed that triazole formation is exceedingly exergonic and confirmed that the presence of Cu(I) ions is required to overcome high kinetic requirements and allow the reaction to proceed. The influence of various linkers and 6-substituted purine and regioisomeric 7-deazapurine on their cytostatic activity was revealed. Among all the evaluated compounds, the 4-chloropyrrolo[2,3-d]pyrimidine monomer 5f with 4,4′-bis(oxymethylene)biphenyl had the most pronounced, although not selective, growth-inhibitory effect on pancreatic adenocarcinoma (CFPAC-1) cells (IC50 = 0.79 µM). Annexin V assay results revealed that its strong growth inhibitory activity against CFPAC-1 cells could be associated with induction of apoptosis and primary necrosis. Further structural optimization of bis-chloropyrrolo[2,3-d]pyrimidine with aromatic linker is required to develop novel efficient and non-toxic agent against pancreatic cancer.
Collapse
|
5734
|
Tabuchi Y, Watanabe T, Katsuki R, Ito Y, Taki M. Direct screening of a target-specific covalent binder: stringent regulation of warhead reactivity in a matchmaking environment. Chem Commun (Camb) 2021; 57:5378-5381. [PMID: 33978001 DOI: 10.1039/d1cc01773j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A peptide-type covalent binder for a target protein was obtained by direct and stringent screening of a warhead-modified peptide library on the robust T7 phage. The aryl fluorosulfate (fosylate) warhead was activated only in a matchmaking microenvironment created between the target protein and an appropriate peptide during the reactivity/affinity-based co-selection process of extended phage display.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Takahito Watanabe
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Riku Katsuki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
5735
|
Bai J, Guo F, Li M, Li Y, Lei X. Click-based amplification: designed to facilitate various target labelling modes with ultralow background amplification. RSC Chem Biol 2021; 2:906-916. [PMID: 34458817 PMCID: PMC8341700 DOI: 10.1039/d1cb00002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
We here describe a fluorescent signal amplification method termed "Click-based amplification" that can be well integrated with various click-labelling modes, including chemical labelling, genetic incorporation and covalent inhibitor probe mediated target labelling. Picolyl azide (pAz) was used as a functional group of a streptavidin-based amplifier to enhance the efficiency of click chemistry. Click-based amplification provided 3.0-12.7 fold amplification on fixed HeLa cells with different click-labelling modes. Click-based amplification has proven to be superior to tyramide signal amplification (TSA) in view of its low nonspecific amplification and high signal-to-noise ratio. Moreover, in terms of the challenging signal amplification of tissue specimens, Click-based amplification successfully achieved remarkable fluorescence enhancement on intestinal tissue slices of afatinib-N3 treated mice, which provided direct evidence of the presence of afatinib-N3 in the intestinal tissues and helped in revealing the off-target toxicity of afatinib. Collectively, these results illustrate that Click-based amplification could serve as a promising method for bioimaging studies.
Collapse
Affiliation(s)
- Jinyi Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 People's Republic of China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 People's Republic of China
| | - Mengyao Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences Beijing China
- PKU-IDG/McGovern Institute for Brain Research Beijing China
- Chinese Institute for Brain Research Beijing China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 People's Republic of China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences Beijing China
- PKU-IDG/McGovern Institute for Brain Research Beijing China
- Chinese Institute for Brain Research Beijing China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 People's Republic of China
| |
Collapse
|
5736
|
Padhi AK, Tripathi T. Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Biochem Biophys Res Commun 2021; 555:147-153. [PMID: 33813274 PMCID: PMC7997393 DOI: 10.1016/j.bbrc.2021.03.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022]
Abstract
Several existing drugs are currently being tested worldwide to treat COVID-19 patients. Recent data indicate that SARS-CoV-2 is rapidly evolving into more transmissible variants. It is therefore highly possible that SARS-CoV-2 can accumulate adaptive mutations modulating drug susceptibility and hampering viral antigenicity. Thus, it is vital to predict potential non-synonymous mutation sites and predict the evolution of protein structural modifications leading to drug tolerance. As two FDA-approved anti-hepatitis C virus (HCV) drugs, boceprevir, and telaprevir, have been shown to effectively inhibit SARS-CoV-2 by targeting the main protease (Mpro), here we used a high-throughput interface-based protein design strategy to identify mutational hotspots and potential signatures of adaptation in these drug binding sites of Mpro. Several mutants exhibited reduced binding affinity to these drugs, out of which hotspot residues having a strong tendency to undergo positive selection were identified. The data further indicated that these anti-HCV drugs have larger footprints in the mutational landscape of Mpro and hence encompass the highest potential for positive selection and adaptation. These findings are crucial in understanding the potential structural modifications in the drug binding sites of Mpro and thus its signatures of adaptation. Furthermore, the data could provide systemic strategies for robust antiviral design and discovery against COVID-19 in the future.
Collapse
Affiliation(s)
- Aditya K. Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa, 230-0045, Japan,Corresponding author
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India,Corresponding author
| |
Collapse
|
5737
|
Zhao L, Qiu C, Zhao L, Yin G, Li F, Wang C, Li Z. Base-promoted, CBr 4-mediated tandem bromination/intramolecular Friedel-Crafts alkylation of N-aryl enamines: a facile access to 1H- and 3H-indoles. Org Biomol Chem 2021; 19:5377-5382. [PMID: 34047749 DOI: 10.1039/d1ob00731a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described here is a general and highly efficient method for the synthesis of 1H- and 3H-indoles. In the presence of CBr4 and a suitable base, the cyclization of N-aryl enamines proceeds with high efficiency. Unlike previous intramolecular cross dehydrogenative coupling (CDC) of the same substrates, this process does not require the use of either a transition metal or a stoichiometric amount of oxidant. This method also features operational simplicity, easy scalability and good substrate tolerability. Control experiments indicate the reactions may proceed in a tandem sequence of bromination and intramolecular Friedel-Crafts alkylation in a simple one-pot procedure.
Collapse
Affiliation(s)
- Lan Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Changfu Qiu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lixin Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
| | - Guangwei Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chunhua Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
5738
|
Wang W, Cui J, Ma H, Lu W, Huang J. Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front Oncol 2021; 11:684961. [PMID: 34123854 PMCID: PMC8194085 DOI: 10.3389/fonc.2021.684961] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolic rewiring is considered as a primary feature of cancer. Malignant cells reprogram metabolism pathway in response to various intrinsic and extrinsic drawback to fuel cell survival and growth. Among the complex metabolic pathways, pyrimidine biosynthesis is conserved in all living organism and is necessary to maintain cellular fundamental function (i.e. DNA and RNA biosynthesis). A wealth of evidence has demonstrated that dysfunction of pyrimidine metabolism is closely related to cancer progression and numerous drugs targeting pyrimidine metabolism have been approved for multiple types of cancer. However, the non-negligible side effects and limited efficacy warrants a better strategy for negating pyrimidine metabolism in cancer. In recent years, increased studies have evidenced the interplay of oncogenic signaling and pyrimidine synthesis in tumorigenesis. Here, we review the recent conceptual advances on pyrimidine metabolism, especially dihydroorotate dehydrogenase (DHODH), in the framework of precision oncology medicine and prospect how this would guide the development of new drug precisely targeting the pyrimidine metabolism in cancer.
Collapse
Affiliation(s)
- Wanyan Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayan Cui
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5739
|
Brown MS, Caporello MA, Goetz AE, Johnson AM, Jones KN, Knopf KM, Kulkarni SA, Lee T, Li B, Lu CV, Magano J, Puchlopek-Dermenci ALA, Reyes GP, Ruggeri SG, Wei L, Weisenburger GA, Wisdom RA, Zhang M. Streamlined Synthesis of a Bicyclic Amine Moiety Using an Enzymatic Amidation and Identification of a Novel Solid Form. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria S. Brown
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michaella A. Caporello
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Adam E. Goetz
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M. Johnson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kris N. Jones
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kevin M. Knopf
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Samir A. Kulkarni
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Taegyo Lee
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bryan Li
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cuong V. Lu
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Javier Magano
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Angela L. A. Puchlopek-Dermenci
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Giselle P. Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sally Gut Ruggeri
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lulin Wei
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gerald A. Weisenburger
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Richard A. Wisdom
- Euticals GmbH, Industriepark
Höchst, D 569, 65926 Frankfurt am Main, Germany
| | - Mengtan Zhang
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
5740
|
Gosangi M, Ravula V, Rapaka H, Patri SV. α-Tocopherol-anchored gemini lipids with delocalizable cationic head groups: the effect of spacer length on DNA compaction and transfection properties. Org Biomol Chem 2021; 19:4565-4576. [PMID: 33954315 DOI: 10.1039/d1ob00475a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the role of structural units in cationic lipids used for gene delivery is essential in designing efficient gene delivery vehicles. Herein, we report a systematic structure-activity investigation on the influence of the spacer length on the DNA compaction ability and the transfection properties of gemini lipids with delocalizable cationic head groups. We have synthesized a series of dimeric cationic lipids varying in spacer length. The DNA binding interactions of liposomal formulations were characterized by gel electrophoresis and ethidium bromide (EtBr) exclusion assays. Condensation potentials were optimized and the best results were observed with cationic lipids possessing a 6 methylene spacer (TIM 6). We found that the size of the lipid/DNA complex decreased with the increase in spacer chain length up to a 6 methylene spacer TIM 6 and increased further. We have optimized the dimeric lipid/DOPE molar formulation using the β-galactosidase activity assay and found that the molar ratio of 1 : 1.5 (gemini lipid/DOPE) showed the maximum transfection among all molar ratios. The cellular uptake and co-localization of lipoplexes were observed by cell analysis and imaging using confocal microscopy. The results confirm that the lipoplex derived from lipid TIM 6 and pCMV-bgal/DNA internalizes via cellular endocytosis. The cytotoxicity studies using the MTT assay revealed that all formulations show comparable cell viability to the commercial standard even at higher charge ratios. Overall, the data suggest that the DNA compaction ability of these lipid dimers depends on the spacer chain length and the gemini lipid containing a six methylene aliphatic spacer has the maximum potential to deliver genes.
Collapse
Affiliation(s)
- Mallikarjun Gosangi
- Department of Chemistry, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Venkatesh Ravula
- Department of Chemistry, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Hithavani Rapaka
- Department of Chemistry, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Srilakshmi V Patri
- Department of Chemistry, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
5741
|
Ratni H, Baumann K, Bellotti P, Cook XA, Green LG, Luebbers T, Reutlinger M, Stepan AF, Vifian W. Phenyl bioisosteres in medicinal chemistry: discovery of novel γ-secretase modulators as a potential treatment for Alzheimer's disease. RSC Med Chem 2021; 12:758-766. [PMID: 34124674 PMCID: PMC8152580 DOI: 10.1039/d1md00043h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Phenyl rings are one of the most prevalent structural moieties in active pharmaceutical ingredients, even if they often contribute to poor physico-chemical properties. Herein, we propose the use of a bridged piperidine (BP) moiety as a phenyl bioisostere, which could also be seen as a superior phenyl alternative as it led to strongly improved drug like properties, in terms of solubility and lipophilicity. Additionally, this BP moiety compares favorably to the recently reported saturated phenyl bioisosteres. We applied this concept to our γ-secretase modulator (GSM) project for the potential treatment of Alzheimer's disease delivering clinical candidates.
Collapse
Affiliation(s)
- H Ratni
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - K Baumann
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - P Bellotti
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - X A Cook
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - L G Green
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - T Luebbers
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - M Reutlinger
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - A F Stepan
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - W Vifian
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| |
Collapse
|
5742
|
Pinkert T, Das M, Schrader ML, Glorius F. Use of Strain-Release for the Diastereoselective Construction of Quaternary Carbon Centers. J Am Chem Soc 2021; 143:7648-7654. [PMID: 33974436 DOI: 10.1021/jacs.1c03492] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we describe the formation of quaternary carbon centers with excellent diastereoselectivity via a strain-release protocol. An organometallic species is generated by Cp*Rh(III)-catalyzed C-H activation, which is then coupled with strained bicyclobutanes (BCBs) and a prochiral carbon electrophile in a three-component reaction. This work illustrates a rare example of BCBs in transition metal catalysis and demonstrates their broad potential to access novel reaction pathways. The method developed exhibits ample functional group tolerance, and the products can be further transformed into valuable α-quaternary β-lactones. Preliminary mechanistic investigations suggest a twofold C-C bond cleavage sequence involving σ-bond insertion and an ensuing β-carbon elimination event.
Collapse
Affiliation(s)
- Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Malte L Schrader
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
5743
|
Mikolaichuk OV, Zarubaev VV, Muryleva AА, Esaulkova YL, Spasibenko DV, Batyrenko AА, Kornyakov IV, Trifonov RЕ. Synthesis, structure, and antiviral properties of novel 2-adamantyl-5-aryl-2 H-tetrazoles. Chem Heterocycl Compd (N Y) 2021; 57:442-447. [PMID: 34054132 PMCID: PMC8149581 DOI: 10.1007/s10593-021-02931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
The reaction of 5-aryl-NH-tetrazoles with adamantan-1-ol in concentrated sulfuric acid proceeds regioselectively with the formation of the corresponding 2-adamantyl-5-aryl-2H-tetrazoles. Nitration of these compounds leads to 2-(adamantan-1-yl)-5-(3-nitroaryl)-2Htetrazoles. The structures and composition of the obtained novel 2-adamantyl-5-aryltetrazoles were proven by IR spectroscopy, 1H and 13C NMR spectroscopy, high-resolution mass spectrometry, and also by X-ray structural analysis. According to the simultaneous thermal analysis data, the obtained compounds are thermally stable up to a temperature of about 150°C. In vitro studies have shown that some of the 2-adamantyl-5-aryltetrazoles exhibit moderate inhibitory activity against influenza A (H1N1) virus. The antiviral selectivity index (SI) of 2-[2-(adamantan-1-yl)-2H-tetrazol-5-yl]-6-bromo-4-nitroaniline is significantly higher (SI 11) than that of the reference drug rimantadine (SI 5).
Collapse
Affiliation(s)
- Olga V Mikolaichuk
- Saint Petersburg State University, 7/9 University Embankment, Saint Petersburg, 199034 Russia
| | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 14 Mira St, Saint Petersburg, 197101 Russia
| | - Anna А Muryleva
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 14 Mira St, Saint Petersburg, 197101 Russia
| | - Yana L Esaulkova
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 14 Mira St, Saint Petersburg, 197101 Russia
| | - Daria V Spasibenko
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Alina А Batyrenko
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Ilya V Kornyakov
- Saint Petersburg State University, 7/9 University Embankment, Saint Petersburg, 199034 Russia.,Kola Science Center, Russian Academy of Sciences, 14 Fersmana St., Apatity, 184209 Murmansk Oblast, Russia
| | - Rostislav Е Trifonov
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| |
Collapse
|
5744
|
Babaei A, Mousavi SM, Ghasemi M, Pirbonyeh N, Soleimani M, Moattari A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci 2021; 284:119652. [PMID: 34051217 DOI: 10.1016/j.lfs.2021.119652] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
AIMS Gold nanoparticles (AuNPs) have been attracted interests in the various areas of clinical therapeutics. In this study, we investigated the anticancer and antiviral potential activity of AuNPs against influenza A virus and human glioblastoma (GMB) U-87 and U-251 cell lines. MAIN METHODS Gold nanoparticles (AuNPs) were synthesized by citrate reduction method. Then, ultraviolet-visible spectrophotometry (UV-vis spectra) and electron microscopy analysis confirmed the type, size (mean diameter of 17 nm) and distribution of the particles. The AuNPs in vitro antiviral and anticancer effects was evaluated by hemagglutination inhibition (HAI), tissue culture infectious dose 50 (TCID50), real-time PCR, MTT, flow cytometry, and scratch assays. KEY FINDINGS The AuNPs were synthesized in spherical with a mean diameter of 17 ± 2 nm and an absorbance peak at 520 nm. The AuNPs were well tolerable by MDCK cells at concentrations up to 0.5μg/ml and they significantly inhibited the hemagglutination and virus infectivity, particularly when added pre- or during virus infection. Furthermore, anticancer results indicated that AuNPs treatment caused the marked induction of apoptosis and reduced growth and migration capability of U-87 and U-251 cell lines in a time-dependent manner. SIGNIFICANCE The present results suggest that AuNPs provide promising antiviral and anticancer approaches. Further research is needed to fully elucidate the mode of antiviral and anticancer action of AuNPs against influenza virus infection and human glioblastoma cell lines.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Mousavi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzie Ghasemi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Pirbonyeh
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Tarbiat Modares University, Tehran, Iran; Nano Medicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5745
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
5746
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
5747
|
Sui YF, Ansari MF, Fang B, Zhang SL, Zhou CH. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur J Med Chem 2021; 221:113557. [PMID: 34087496 DOI: 10.1016/j.ejmech.2021.113557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
An unprecedented amount of fungal and fungal-like infections has recently brought about some of the most severe die-offs and extinctions due to fungal drug resistance. Aimed to alleviate the situation, new effort was made to develop novel purinylthiazolylethanone derivatives, which were expected to combat the fungal drug resistance. Some prepared purinylthiazolylethanone derivatives possessed satisfactory inhibitory action towards the tested fungi, among which compound 8c gave a MIC value of 1 μg/mL against C. albicans. The active molecule 8c was able to kill C. albicans with undetectable resistance as well as low hematotoxicity and cytotoxicity. Furthermore, it could hinder the growth of C. albicans biofilm, thus avoiding the occurrence of drug resistance. Mechanism research manifested that purinylthiazolylethanone derivative 8c led to damage of cell wall and membrane disruption, so protein leakage and the cytoplasmic membrane depolarization were observed. On this account, the activity of fungal lactate dehydrogenase was reduced and metabolism was impeded. Meanwhile, the increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) disordered redox equilibrium, giving rise to oxidative damage to fungal cells and fungicidal effect.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5748
|
Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med 2021; 11:jpm11060470. [PMID: 34070567 PMCID: PMC8226687 DOI: 10.3390/jpm11060470] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a new line of research on mitochondria-targeted anticancer drugs is actively developing in the field of biomedicine and medicinal chemistry. The distinguishing features of this universal target for anticancer agents include presence of mitochondria in the overwhelming majority, if not all types of transformed cells, crucial importance of these cytoplasmic organelles in energy production, regulation of cell death pathways, as well as generation of reactive oxygen species and maintenance of calcium homeostasis. Hence, mitochondriotropic anticancer mitocan agents, acting through mitochondrial destabilization, have good prospects in cancer therapy. Available natural pentacyclic triterpenoids are considered promising scaffolds for development of new mitochondria-targeted anticancer agents. These secondary metabolites affect the mitochondria of tumor cells and initiate formation of reactive oxygen species. The present paper focuses on the latest research outcomes of synthesis and study of cytotoxic activity of conjugates of pentacyclic triterpenoids with some mitochondria-targeted cationic lipophilic molecules and highlights the advantages of applying them as novel mitocan agents compared to their prototype natural triterpenic acids.
Collapse
|
5749
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
5750
|
Yang D, Shi J, Chen J, Jia X, Shi C, Ma L, Li Z. Visible-light enabled room-temperature dealkylative imidation of secondary and tertiary amines promoted by aerobic ruthenium catalysis. RSC Adv 2021; 11:18966-18973. [PMID: 35478631 PMCID: PMC9033495 DOI: 10.1039/d0ra10517a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Employing sulfonyl azide as a nitrogen donor, a visible-light-enabled aerobic dealkylative imidation of tertiary and secondary amines involving C(sp3)–C(sp3) bond cleavage with moderate to excellent yields at room temperature is described. It has been demonstrated that this imidation could take place spontaneously upon visible-light irradiation, and could be facilitated considerably by a ruthenium photocatalyst and oxygen. An alternative mechanism to the previous aerobic photoredox pathway has also been proposed. A photoredox dealkylative imidation of tertiary and secondary amines with sulfonyl azide facilitated by aerobic ruthenium-catalysis to afford sulfonyl amidine at room temperature is reported.![]()
Collapse
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|