551
|
Hagan S, Hameroff SR, Tuszyński JA. Quantum computation in brain microtubules: decoherence and biological feasibility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:061901. [PMID: 12188753 DOI: 10.1103/physreve.65.061901] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Revised: 08/07/2001] [Indexed: 05/23/2023]
Abstract
The Penrose-Hameroff orchestrated objective reduction (orch. OR) model assigns a cognitive role to quantum computations in microtubules within the neurons of the brain. Despite an apparently "warm, wet, and noisy" intracellular milieu, the proposal suggests that microtubules avoid environmental decoherence long enough to reach threshold for "self-collapse" (objective reduction) by a quantum gravity mechanism put forth by Penrose. The model has been criticized as regards the issue of environmental decoherence, and a recent report by Tegmark finds that microtubules can maintain quantum coherence for only 10(-13) s, far too short to be neurophysiologically relevant. Here, we critically examine the decoherence mechanisms likely to dominate in a biological setting and find that (1) Tegmark's commentary is not aimed at an existing model in the literature but rather at a hybrid that replaces the superposed protein conformations of the orch. OR theory with a soliton in superposition along the microtubule; (2) recalculation after correcting for differences between the model on which Tegmark bases his calculations and the orch. OR model (superposition separation, charge vs dipole, dielectric constant) lengthens the decoherence time to 10(-5)-10(-4) s; (3) decoherence times on this order invalidate the assumptions of the derivation and determine the approximation regime considered by Tegmark to be inappropriate to the orch. OR superposition; (4) Tegmark's formulation yields decoherence times that increase with temperature contrary to well-established physical intuitions and the observed behavior of quantum coherent states; (5) incoherent metabolic energy supplied to the collective dynamics ordering water in the vicinity of microtubules at a rate exceeding that of decoherence can counter decoherence effects (in the same way that lasers avoid decoherence at room temperature); (6) microtubules are surrounded by a Debye layer of counterions, which can screen thermal fluctuations, and by an actin gel that might enhance the ordering of water in bundles of microtubules, further increasing the decoherence-free zone by an order of magnitude and, if the dependence on the distance between environmental ion and superposed state is accurately reflected in Tegmark's calculation, extending decoherence times by three orders of magnitude; (7) topological quantum computation in microtubules may be error correcting, resistant to decoherence; and (8) the decohering effect of radiative scatterers on microtubule quantum states is negligible. These considerations bring microtubule decoherence into a regime in which quantum gravity could interact with neurophysiology.
Collapse
Affiliation(s)
- S Hagan
- Department of Mathematics, British Columbia Institute of Technology, Burnaby, British Columbia, Canada V5G 3H2
| | | | | |
Collapse
|
552
|
Kadota T, Kadota K. Rapid structural remodeling of shaft synapses associated with long-term potentiation in the cat superior cervical ganglion in situ. Neurosci Res 2002; 43:135-46. [PMID: 12067749 DOI: 10.1016/s0168-0102(02)00028-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synaptic plasticity associated with long-term potentiation was studied electrophysiologically and ultrastructurally in the cat superior cervical ganglion in situ. The preganglionic nerve fiber was stimulated at 10 Hz for 50 s for conditioning and then at 1 Hz for 1-3 h to monitor changes in the postganglionic compound action potential (PGP). The present material has shown the long-term potentiation (LTP), around 120% of the control, which lasted for up to 3 h. Fifteen of 18 ganglia (83%) have shown LTP. Ultrastructural studies demonstrated the synaptic structural remodeling: (1) The preganglionic nerve terminals ordinarily made mainly asymmetrical type of shaft synapses directly with dendrites of the ganglion cells that lacked dendritic spines; (2) conditioning tetanus rapidly remodeled simple shaft synapses into perforated ones characterized by perforations in the postsynaptic density (PSD), some of which had synaptic spinules associated with the perforated PSDs, i.e. spinule-synapses; (3) a rapid increase in the number of both structures was detected immediately after the tetanus. Perforated synapses and the spinule-synapses increased from 5% and 0% in the control to 27 and 9% at 0 min, respectively. Spinule-synapses occurred about one-third of the perforated shaft synapses; (4) Increased numbers of restructured shaft synapses was maintained for 15 min in ganglia expressing LTP; (5) Remodeled synapses did not increase in ganglia that did not express LTP or ganglia that were activated at 0.5 or 1 Hz. It was suggested a rapid increase in the number of remodeled synapses associated with the onset of LTP and its durability at its earlier phases in the cat SCG.
Collapse
Affiliation(s)
- Tomoko Kadota
- Department of Bioenvironmental Medicine and Anatomy, Chiba University, Graduate School of Medicine, Chiba, Japan.
| | | |
Collapse
|
553
|
Coleman LA, Friedlander MJ. Postnatal dendritic development of Y-like geniculocortical relay neurons. Int J Dev Neurosci 2002; 20:137-59. [PMID: 12175851 DOI: 10.1016/s0736-5748(02)00018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe the dendritic development of neurons in the dorsal lateral geniculate nucleus (LGNd) projecting to cortical area 18 in the postnatal cat. LGN neurons were identified by retrograde labeling from area 18 with fluorescent latex microspheres and injected in the fixed slice with Lucifer yellow (LY) and horseradish peroxidase (HRP) to visualize their dendritic arborizations. Both topological (measures of the patterns of dendritic branching and their territorial coverage) and metric parameters (measures of the quantitative parameters describing the size, length, extent and diameter of the dendritic arbors) were measured in three-dimensions for 25 LGN neurons in cats between 1 and 18 postnatal weeks. In addition, dendritic growth was compared to the changing dimensions of the LGNd. At all ages, neurons projecting to area 18 have large somata and radiate dendrites. From 1 to 18 weeks neurons increase in size--both soma area and the length of all dendritic segments double during this period. Intermediate and terminal dendritic segments show comparable growth until 5 weeks. However, only terminal segments continue to grow significantly from 5 until 18 weeks. Dendrites become straighter during development, the angle between daughter branches decreases and dendritic segment diameter increases, with terminal segments showing a greater increase relative to intermediate segments. The density of dendritic appendages increases transiently at 5 weeks and a differential redistribution occurs, so that by 18 weeks dendrites further from the soma have a greater density of appendages than those near the soma. Some dendritic relationships remain invariant during development--intermediate segments are always shorter, thicker and straighter than terminal segments. During these changes however, area 18 projecting neurons maintain a constant number of primary dendrites and have, on average, a constant branching pattern. The relative volume of the LGNd occupied by an area 18 projecting neuron increases 2.4-fold between 1 and 18 weeks as the dendrites grow with the result that the coverage of a given point of the LGNd by dendrites of area 18 projecting nearly doubles from 24 to 45 neurons per unit volume. This increased net dendritic overlap provides a substrate for enhanced numerical synaptic divergence of the Y-cell pathway from a point source in the retina to the visual cortex.
Collapse
Affiliation(s)
- Lee-Ann Coleman
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | |
Collapse
|
554
|
Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:29-54. [PMID: 12086707 DOI: 10.1016/s0165-0173(02)00158-3] [Citation(s) in RCA: 627] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered dendritic spines are characteristic of traumatized or diseased brain. Two general categories of spine pathology can be distinguished: pathologies of distribution and pathologies of ultrastructure. Pathologies of spine distribution affect many spines along the dendrites of a neuron and include altered spine numbers, distorted spine shapes, and abnormal loci of spine origin on the neuron. Pathologies of spine ultrastructure involve distortion of subcellular organelles within dendritic spines. Spine distributions are altered on mature neurons following traumatic lesions, and in progressive neurodegeneration involving substantial neuronal loss such as in Alzheimer's disease and in Creutzfeldt-Jakob disease. Similarly, spine distributions are altered in the developing brain following malnutrition, alcohol or toxin exposure, infection, and in a large number of genetic disorders that result in mental retardation, such as Down's and fragile-X syndromes. An important question is whether altered dendritic spines are the intrinsic cause of the accompanying neurological disturbances. The data suggest that many categories of spine pathology may result not from intrinsic pathologies of the spiny neurons, but from a compensatory response of these neurons to the loss of excitatory input to dendritic spines. More detailed studies are needed to determine the cause of spine pathology in most disorders and relationship between spine pathology and cognitive deficits.
Collapse
Affiliation(s)
- John C Fiala
- Department of Biology, Boston University, 5 Cummington Street, MA 02215, USA.
| | | | | |
Collapse
|
555
|
Abstract
Spines are neuronal protrusions, each of which receives input typically from one excitatory synapse. They contain neurotransmitter receptors, organelles, and signaling systems essential for synaptic function and plasticity. Numerous brain disorders are associated with abnormal dendritic spines. Spine formation, plasticity, and maintenance depend on synaptic activity and can be modulated by sensory experience. Studies of compartmentalization have shown that spines serve primarily as biochemical, rather than electrical, compartments. In particular, recent work has highlighted that spines are highly specialized compartments for rapid large-amplitude Ca(2+) signals underlying the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Esther A Nimchinsky
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | |
Collapse
|
556
|
Abstract
Glutamate receptors are concentrated in the postsynaptic complex of central synapses. This implies a highly organized and stable postsynaptic membrane with tightly anchored receptors. Recent reports of rapid AMPA receptor insertion and removal at synapses have challenged this view. We examined the stability of synaptic NMDA receptors on cultured hippocampal neurons using the open-channel blockers (+)-MK-801 and ketamine to tag synaptic NMDA receptors. NMDA receptor-mediated EPSCs showed an anomalous recovery following "irreversible" MK-801 block. The recovery could not be attributed to MK-801 unbinding or insertion of new receptors, suggesting that membrane receptors had moved laterally into the synapse. At least 65% of synaptic NMDA receptors were mobile. Our results indicate that NMDA receptors can move laterally between synaptic and extrasynaptic pools, providing evidence for a dynamic organization of synaptic NMDA receptors in the postsynaptic complex.
Collapse
Affiliation(s)
- Kenneth R Tovar
- Vollum Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | |
Collapse
|
557
|
Churchill JD, Grossman AW, Irwin SA, Galvez R, Klintsova AY, Weiler IJ, Greenough WT. A converging-methods approach to fragile X syndrome. Dev Psychobiol 2002; 40:323-38. [PMID: 11891642 DOI: 10.1002/dev.10036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Converging approaches across domains of brain anatomy, cell biology, and behavior indicate that Fragile X syndrome, arising from impaired expression of a single gene and protein, appears to involve an aberration of normal developmental processes. Synapse overproduction and selective elimination, or pruning, characterize normal brain development. In autopsy tissue from Fragile X patients and in a knockout mouse model of the disease, synapse overproduction appears to occur unaccompanied by synapse pruning and maturation, leaving an excess of immature spine synapses in place. The absence of the Fragile X protein seems to impair the synthesis of important proteins at synapses. The developmental outcome in Fragile X is a nervous system that is relatively disorganized, resulting in disrupted perceptual, and cognitive social, behavior.
Collapse
Affiliation(s)
- James D Churchill
- Beckman Institute, Neuroscience Program and Department of Psychology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
558
|
Abstract
For several decades, it has been known that mental retardation (MR) is associated with abnormalities in dendrites and dendritic spines. The recent cloning of seven genes that cause nonspecific MR when mutated provides important insights in the cellular mechanisms that result in the dendritic abnormalities associated with MR. Three of the encoded proteins, oligophrenin 1, PAK3 and alpha PIX, interact directly with Rho GTPases. Rho GTPases are key signaling proteins that integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton essential for directed neurite outgrowth and the regulation of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are still unclear, a picture is unfolding showing how mutations that alter Rho signaling result in abnormal neuronal connectivity and deficient cognitive functioning in humans. Conversely, these findings illuminate the cellular mechanisms underlying normal cognitive function.
Collapse
Affiliation(s)
- Ger J A Ramakers
- Neurons and Networks, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| |
Collapse
|
559
|
Woodring PJ, Litwack ED, O'Leary DDM, Lucero GR, Wang JYJ, Hunter T. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J Cell Biol 2002; 156:879-92. [PMID: 11864995 PMCID: PMC2173320 DOI: 10.1083/jcb.200110014] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nonreceptor tyrosine kinase encoded by the c-Abl gene has the unique feature of an F-actin binding domain (FABD). Purified c-Abl tyrosine kinase is inhibited by F-actin, and this inhibition can be relieved through mutation of its FABD. The c-Abl kinase is activated by physiological signals that also regulate the actin cytoskeleton. We show here that c-Abl stimulated the formation of actin microspikes in fibroblasts spreading on fibronectin. This function of c-Abl is dependent on kinase activity and is not shared by c-Src tyrosine kinase. The Abl-dependent F-actin microspikes occurred under conditions where the Rho-family GTPases were inhibited. The FABD-mutated c-Abl, which is active in detached fibroblasts, stimulated F-actin microspikes independent of cell attachment. Moreover, FABD-mutated c-Abl stimulated the formation of F-actin branches in neurites of rat embryonic cortical neurons. The reciprocal regulation between F-actin and the c-Abl tyrosine kinase may provide a self-limiting mechanism in the control of actin cytoskeleton dynamics.
Collapse
|
560
|
Abstract
The procedure for making a low density culture of hippocampal neurons has been elaborated by Goslin and Banker. The viability of hippocampal neurons, which are sparsely disseminated on the glass surface, is maintained by a separately cultured glial monolayer; the glial feeder layer is grown on the bottom surface of the dish, while those neurons, placed face down, are attached on the coverslips. This method is originaLly designed for the observation of the maturation, polarity and axogenesis of a single neuron. In addition, this method can be applied for a variety of other purposes: (1) to observe synaptogenesis, (2) to analyze synaptic function electrophysiologically, (3) to analyze receptor functions and signaling cascades pharmacologically, (4) to visualize a molecular dynamics by time-lapse analyses of GFP-tagged molecules, and (5) to observe ultrastructure by an electron microscope. Furthermore, these neurons are useful even in biochemical experiments because they are relatively uniform without glial contamination and highly enriched in synaptic components.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Pharmacology, Osaka University School of Medicine, A6, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
561
|
Star EN, Kwiatkowski DJ, Murthy VN. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 2002; 5:239-46. [PMID: 11850630 DOI: 10.1038/nn811] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic spines are motile structures that contain high concentrations of filamentous actin. Using hippocampal neurons expressing fluorescent actin and the method of fluorescence recovery after photobleaching, we found that 85 +/- 2% of actin in the spine was dynamic, with a turnover time of 44.2 +/- 4.0 s. The rapid turnover is not compatible with current models invoking a large population of stable filaments and static coupling of filaments to postsynaptic components. Low-frequency stimulation known to induce long-term depression in these neurons stabilized nearly half the dynamic actin in the spine. This effect depended on the activation of N-methyl-D-aspartate (NMDA) receptors and the influx of calcium. In neurons from mice lacking gelsolin, a calcium-dependent actin-binding protein, activity-dependent stabilization of actin was impaired. Our studies provide new information on the kinetics of actin turnover in spines, its regulation by neural activity and the mechanisms involved in this regulation.
Collapse
Affiliation(s)
- Erin N Star
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Ave., Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
562
|
Luo JH, Fu ZY, Losi G, Kim BG, Prybylowski K, Vissel B, Vicini S. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture. Neuropharmacology 2002; 42:306-18. [PMID: 11897109 DOI: 10.1016/s0028-3908(01)00188-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We generated expression vectors for N-terminally green fluorescent protein -tagged NR2A and NR2B subunits (GFP-NR2A and GFP-NR2B). Both constructs expressed GFP and formed functional NMDA channels with similar properties to untagged controls when co-transfected with NR1 subunit partner in HEK293 cells. Primary cultured hippocampal neurons were transfected at five days in vitro with these vectors. Fifteen days after transfection, well-defined GFP clusters were observed for both GFP-NR2A and GFP-NR2B subunits being co-localized with endogenous NR1 subunit. Whole-cell recordings showed that the GFP-NR2A subunit determined the decay of NMDA-mediated miniature spontaneous excitatory postsynaptic currents (NMDA-mEPSCs) in transfected neurons. Live staining with anti-GFP antibody demonstrated the surface expression of GFP-NR2A and GFP-NR2B subunits that was partly co-localized a presynaptic marker. Localization of NMDA receptor clusters in dendrites was studied by co-transfection of CFP-actin and GFP-NR2 subunits followed by anti-GFP surface staining. Within one week after plating most surface NMDAR clusters were distributed on dendritic shafts. Later in development, a large portion of surface clusters for both GFP-NR2A and GFP-NR2B subunits were clearly localized at dendritic spines. Our report provides the basis for studies of NMDA receptor location together with dendritic dynamics in living neurons during synaptogenesis in vitro.
Collapse
Affiliation(s)
- J-H Luo
- Department of Physiology and Biophysics, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
563
|
Laube G, Seidenbecher CI, Richter K, Dieterich DC, Hoffmann B, Landwehr M, Smalla KH, Winter C, Böckers TM, Wolf G, Gundelfinger ED, Kreutz MR. The neuron-specific Ca2+-binding protein caldendrin: gene structure, splice isoforms, and expression in the rat central nervous system. Mol Cell Neurosci 2002; 19:459-75. [PMID: 11906216 DOI: 10.1006/mcne.2001.1078] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caldendrin is the founder member of a recently discovered family of calmodulin-like proteins, which are highly abundant in brain. In this study we examined the organization of the murine and human caldendrin gene as well as the expression pattern of transcripts for caldendrin and two novel splice variants. In addition the distribution of caldendrin in rat brain has been assessed by immunohistochemistry. Caldendrin is localized to the somatodendritic compartment of a subpopulation of mainly principal neurons in brain regions with a laminar organization and is present only at a subset of mature excitatory synapses. Caldendrin immunoreactivity (IR) is tightly associated with the cortical cytoskeleton, enriched in the postsynaptic density (PSD) fraction, and associates late during development with the synaptic cytomatrix. The expression is highly heterogenous within cortex, with highest levels of caldendrin IR in layer III of the piriform and layer II/III of the somatosensory cortex. The segregated cortical distribution to areas, which represent the most important primary sensory systems of the rodent brain, may reflect different requirements for dendritic Ca2+-signaling in these neurons. The presence of caldendrin in the PSD of distinct synapses may have important implications for Ca2+-modulated processes of synaptic plasticity.
Collapse
Affiliation(s)
- G Laube
- Institute for Medical Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
564
|
Abstract
Dendritic spines are morphologically and functionally heterogeneous. To understand this diversity, we use two-photon imaging of layer 5 neocortical pyramidal cells and measure action potential-evoked [Ca(2+)]i transients in spines. Spine calcium kinetics are controlled by (i) the diameter of the parent dendrite, (ii) the length of the spine neck, and (iii) the strength of spine calcium pumps. These factors produce different calcium dynamics in spines from basal, proximal apical, and distal apical dendrites, differences that are more pronounced without exogenous buffers. In proximal and distal apical dendrites, different calcium dynamics correlate with different susceptibility to synaptic depression, and modifying calcium kinetics in spines changes the expression of long-term depression. Thus, the spine location apparently determines its calcium dynamics and synaptic plasticity. Our results highlight the precision in design of neocortical neurons.
Collapse
Affiliation(s)
- Knut Holthoff
- Department Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
565
|
Rapid redistribution of the postsynaptic density protein PSD-Zip45 (Homer 1c) and its differential regulation by NMDA receptors and calcium channels. J Neurosci 2002. [PMID: 11739567 DOI: 10.1523/jneurosci.21-24-09561.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PSD-Zip45 (Homer 1c) and PSD-95 are postsynaptic density (PSD) proteins containing distinct protein-interacting motifs. Green fluorescent protein (GFP)-tagged PSD-Zip45 and PSD-95 molecules were targeted to the PSD in hippocampal neurons. We analyzed dynamic behavior of these GFP-tagged PSD proteins by using time-lapse confocal microscopy. In contrast to the less dynamic properties of PSD-95, PSD-Zip45 showed rapid redistribution and a higher steady-state turnover rate. Differential stimulation protocols were found to alter the direction of PSD-Zip45 assembly-disassembly. Transient increases in intracellular Ca(2+) by voltage-dependent Ca(2+) channel activation induced PSD-Zip45 clustering. In contrast, NMDA receptor-dependent Ca(2+) influx resulted in the disassembly of PSD-Zip45 clusters. Thus, neuronal activity differentially redistributes a specific subset of PSD proteins, which are important for localization of both surface receptors and intracellular signaling complexes.
Collapse
|
566
|
Modular transport of postsynaptic density-95 clusters and association with stable spine precursors during early development of cortical neurons. J Neurosci 2002. [PMID: 11717366 DOI: 10.1523/jneurosci.21-23-09325.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of filopodia and spines and their association with the postsynaptic density (PSD) protein PSD-95 were studied during early development of cultured cortical neurons using time-lapse confocal microscopy. Neurons were transfected with recombinant PSD-95 constructs fused to green fluorescent protein (GFP) for, on average, either 8 d in vitro (DIV) or 14 DIV. We find that, during 1 hr of imaging, filopodia and spines bearing PSD-95/GFP clusters are significantly more stable (i.e., do not turnover) than those lacking clusters. When present within a spine precursor, a PSD-95/GFP cluster appeared to nucleate a relatively stable structure around which filopodium-spine membranes can move. Although processes bearing clusters were generally stable, in 8 DIV neurons, we observed that a subset ( approximately 10%) of PSD-95/GFP clusters underwent rapid modular translocation between filopodia-spines and dendritic shafts. We conclude that, during early synaptic maturation, prefabricated PSD-95 clusters are trafficked in a developmentally regulated process that is associated with filopodial stabilization and synapse formation.
Collapse
|
567
|
Abstract
Synaptic actin has now been shown to change shape in response to stimulation. The cytoskeleton may therefore be pivotal in integrating molecular and morphological changes associated with synaptic plasticity and coordinating such changes across pre- and postsynaptic compartments.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Research Center for Neurobiology, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| | | | | |
Collapse
|
568
|
Dunn GA, Dobbie IM, Monypenny J, Holt MR, Zicha D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J Microsc 2002; 205:109-12. [PMID: 11856387 DOI: 10.1046/j.0022-2720.2001.001007.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FLAP is a new method for localized photo-labelling and subsequent tracking of specific molecules within living cells. It is simple in principle, easy to implement and has a wide potential application. The molecule to be located carries two fluorophores: one to be photobleached and the other to act as a reference label. Unlike the related methods of fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), the use of a reference fluorophore permits the distribution of the photo-labelled molecules themselves to be tracked by simple image differencing. In effect, FLAP is therefore comparable with methods of photoactivation. Its chief advantage over the method of caged fluorescent probes is that it can be used to track chimaeric fluorescent proteins directly expressed by the cells. Although methods are being developed to track fluorescent proteins by direct photoactivation, these still have serious drawbacks. In order to demonstrate FLAP, we have used nuclear microinjection of cDNA fusion constructs of beta-actin with yellow (YFP) and cyan (CFP) fluorescent proteins to follow both the fast relocation dynamics of monomeric (globular) G-actin and the much slower dynamics of filamentous F-actin simultaneously in living cells.
Collapse
Affiliation(s)
- G A Dunn
- MRC Muscle and Cell Motility Unit, The Randall Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
569
|
Johansson BB, Belichenko PV. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain. J Cereb Blood Flow Metab 2002; 22:89-96. [PMID: 11807398 DOI: 10.1097/00004647-200201000-00011] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The authors compared the influence of environmental enrichment on intact and lesioned brain, and tested the hypothesis that postischemic exposure to an enriched environment can alter dendritic spine density in pyramidal neurons contralateral to a cortical infarct. The middle cerebral artery was occluded distal to the striatal branches in spontaneously hypertensive rats postoperatively housed either in a standard or in an enriched environment. Intact rats were housed in the same environment. Three weeks later the brains were perfused in situ. The dendritic and spine morphology was studied with three-dimensional confocal laser scanning microscopy after microinjection of Lucifer yellow in pyramidal neurons in layers II/III and V/VI in the somatosensory cortex. In intact rats, the number of dendritic spines was significantly higher in the enriched group than in the standard group in all layers ( P < 0.05). Contralateral to the infarct, pyramidal neurons in layers II/III, which have extensive intracortical connections that may play a role in cortical plasticity, had significantly more spines in the enriched group than in the standard group ( P < 0.05). No difference was observed in layers V/VI. They conclude that housing rats in an enriched environment significantly increases spine density in superficial cortical layers in intact and lesioned brain, but in deeper layers of intact brain.
Collapse
|
570
|
Capani F, Ellisman MH, Martone ME. Filamentous actin is concentrated in specific subpopulations of neuronal and glial structures in rat central nervous system. Brain Res 2001; 923:1-11. [PMID: 11743966 DOI: 10.1016/s0006-8993(01)03189-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper is the second in a series of studies on the light and electron microscopic distribution of filamentous actin (F-actin) in the rat central nervous system (CNS) using phalloidin tagged with the fluorophore eosin followed by fluorescence photooxidation. A previous report described the selective localization of high concentrations of F-actin in subpopulations of dendritic spines in hippocampus, cerebellum and neostriatum. Dendritic spines were the most intensely stained structures in the CNS, but several other structures were notable for their consistent staining for F-actin. Although the majority of cell bodies, axons and large dendrites were unlabeled, mossy fibers and Schaffer collaterals in the hippocampal formation, basket cell axons in the cerebellar pinceau, and granule cell dendrites in the glomeruli of the cerebellar cortex routinely showed strong F-actin labeling. Staining was observed in all three glial cell types. Labeling was consistently observed in the astrocytic processes surrounding the Purkinje cell soma and primary dendrite. Intense but sporadic staining was observed in the perinodal glia of the Node of Ranvier. A few examples of labeled oligodendrocyte processes were also seen in the neostriatum. Labeling was observed in microglia in every brain region examined, although the labeling was present in the lumen of the endoplasmic reticulum and the nuclear membrane, leading to questions about its specificity. Perycites apposed to the blood vessels also showed very consistent labeling. Our results suggest that selected structures in the adult CNS in addition to dendritic spines are enriched in F-actin.
Collapse
Affiliation(s)
- F Capani
- Department of Neuroscience, National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093-0608, USA.
| | | | | |
Collapse
|
571
|
Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem 2001; 276:48458-65. [PMID: 11583995 PMCID: PMC2715172 DOI: 10.1074/jbc.m104927200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dynamin is a GTPase involved in endocytosis and other aspects of membrane trafficking. A critical function in the presynaptic compartment attributed to the brain-specific dynamin isoform, dynamin-1, is in synaptic vesicle recycling. We report that dynamin-2 specifically interacts with members of the Shank/ProSAP family of postsynaptic density scaffolding proteins and present evidence that dynamin-2 is specifically associated with the postsynaptic density. These data are consistent with a role for this otherwise broadly distributed form of dynamin in glutamate receptor down-regulation and other aspects of postsynaptic membrane turnover.
Collapse
Affiliation(s)
- Patricia M. Okamoto
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Chantal Gamby
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David Wells
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Justin Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Richard B. Vallee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- To whom correspondence should be addressed: Dept. of Cell Biology, University of Massachusetts Medical School, 377 Plantation St., Worcester, MA 01605. Tel.: 508-856-8504; Fax: 508-856-8987; E-mail:
| |
Collapse
|
572
|
Abstract
The postsynaptic density (PSD) at excitatory dendritic synapses comprises a protein complex of glutamate receptors, scaffolding elements, and signaling enzymes. For example, NMDA receptors (NMDARs) are linked to several proteins in the PSD, such as PSD-95, and are also tethered via binding proteins such as alpha-actinin directly to filamentous actin of the cytoskeleton. Depolymerization of the cytoskeleton modulates the activity of NMDARs, and, in turn, strong activation of NMDARs can trigger depolymerization of actin. Myosin, the motor protein of muscular contraction and nonmuscle motility, is also associated with NMDARs and the PSD. We show here that constitutively active myosin light chain kinase (MLCK) enhances NMDAR-mediated whole-cell and synaptic currents in acutely isolated CA1 pyramidal and cultured hippocampal neurons, whereas inhibitors of MLCK depress these currents. This MLCK-dependent regulation was observed in cell-attached patches but was lost after excision to inside-out patches. Furthermore, the enhancement induced by constitutively active MLCK and the depression of MLCK inhibitors were eliminated after depolymerization of the cytoskeleton. NMDARs and MLCK did not colocalize in clusters on the dendrites of cultured hippocampal neurons, further indicating that the effects of MLCK are mediated indirectly via actomyosin. Our results suggest that MLCK enhances actomyosin contractility to either increase the membrane tension on NMDARs or to alter physical relationships between the actin cytoskeleton and the linker proteins of NMDARs.
Collapse
|
573
|
Billy E, Brondani V, Zhang H, Müller U, Filipowicz W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci U S A 2001; 98:14428-33. [PMID: 11724966 PMCID: PMC64698 DOI: 10.1073/pnas.261562698] [Citation(s) in RCA: 298] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, double-stranded (ds) RNA induces sequence-specific inhibition of gene expression, referred to as RNA interference (RNAi). In invertebrates, RNAi can be triggered effectively by either long dsRNAs or 21- to 23-nt-long short interfering (si) duplex RNAs, acting as effectors of RNAi. siRNAs recently have been shown to act as potent inducers of RNAi in cultured mammalian cells. However, studies of RNAi activated by long dsRNA are impeded by its nonspecific effects, mediated by dsRNA-dependent protein kinase PKR and RNase L. Here, we report that the RNAi response can be induced effectively by long dsRNA in nondifferentiated mouse cells grown in culture. Transfection of dsRNA into embryonal carcinoma (EC) P19 and F9 cells results in a sequence-specific decrease in the level of proteins expressed from either exogenous or endogenous genes. dsRNA-mediated inhibition of the reporter gene also occurs in mouse embryonic stem cells. The RNAi effect is mediated by siRNAs, which are generated by cleavage of dsRNA by the RNaseIII-like enzyme, Dicer. We demonstrate that extracts prepared from EC cells catalyze processing of dsRNA into approximately 23-nt fragments and that Dicer localizes to the cytoplasm of EC and HeLa cells.
Collapse
Affiliation(s)
- E Billy
- Friedrich Miescher Institute for Biomedical Research, P.O. Box 2543, 4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
574
|
Abstract
The total length of cortical axons could be reduced if the parent axons maintained straight trajectories and simply connected to dendritic shafts via spine-like terminaux boutons and to dendritic spines via bead-like en passant boutons. Cortical axons from cat area 17 were reconstructed from serial electron micrographs and their bouton morphology was correlated with their synaptic targets. En passant or terminaux boutons did not differ in the proportion of synapses they formed with dendritic spines and shafts, and thus, the two morphological variants of synaptic bouton do not contribute directly to optimizing axon length.
Collapse
Affiliation(s)
- J C Anderson
- Institute for Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
575
|
Herget-Rosenthal S, Hosford M, Kribben A, Atkinson SJ, Sandoval RM, Molitoris BA. Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion. Am J Physiol Cell Physiol 2001; 281:C1858-70. [PMID: 11698244 DOI: 10.1152/ajpcell.2001.281.6.c1858] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the actin cytoskeleton in proximal tubule cells is a key pathophysiological factor in acute renal failure. To investigate dynamic alterations of the actin cytoskeleton in live proximal tubule cells, LLC-PK(10) cells were transfected with an enhanced yellow fluorescence protein (EYFP)-actin construct, and a clone with stable EYFP-actin expression was established. Confluent live cells were studied by confocal microscopy under physiological conditions or during ATP depletion of up to 60 min. Immunoblots of stable transfected LLC-PK(10) cells confirmed the presence of EYFP-actin, accounting for 5% of total actin. EYFP-actin predominantly incorporated in stress fibers, i.e., cortical and microvillar actin as shown by excellent colocalization with Texas red phalloidin. Homogeneous cytosolic distribution of EYFP-actin indicated colocalization with G-actin as well. Beyond previous findings, we observed differential subcellular disassembly of F-actin structures: stress fibers tagged with EYFP-actin underwent rapid and complete disruption, whereas cortical and microvillar actin disassembled at slower rates. In parallel, ATP depletion induced the formation of perinuclear EYFP-actin aggregates that colocalized with F-actin. During ATP depletion the G-actin fraction of EYFP-actin substantially decreased while endogenous and EYFP-F-actin increased. During intracellular ATP repletion, after 30 min of ATP depletion, there was a high degree of agreement between F-actin formation from EYFP-actin and endogenous actin. Our data indicate that EYFP-actin did not alter the characteristics of the endogenous actin cytoskeleton or the morphology of LLC-PK(10) cells. Furthermore, EYFP-actin is a suitable probe to study the spatial and temporal dynamics of actin cytoskeleton alterations in live proximal tubule cells during ATP depletion and ATP repletion.
Collapse
Affiliation(s)
- S Herget-Rosenthal
- Indiana Center for Biological Microscopy, Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
576
|
Affiliation(s)
- H Hering
- Center for Learning and Memory, RIKEN-MIT Center for Neuroscience Research, Department of Brain and Cognitive Sciences, and Howard Hughes Medical Institute, 77 Massachusetts Avenue (E18-215), Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
577
|
Affiliation(s)
- C Job
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
578
|
Colicos MA, Collins BE, Sailor MJ, Goda Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 2001; 107:605-16. [PMID: 11733060 DOI: 10.1016/s0092-8674(01)00579-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Use-dependent synapse remodeling is thought to provide a cellular mechanism for encoding durable memories, yet whether activity triggers an actual structural change has remained controversial. We use photoconductive stimulation to demonstrate activity-dependent morphological synaptic plasticity by video imaging of GFP-actin at individual synapses. A single tetanus transiently moves presynaptic actin toward and postsynaptic actin away from the synaptic junction. Repetitive spaced tetani induce glutamate receptor-dependent stable restructuring of synapses. Presynaptic actin redistributes and forms new puncta that label for an active synapse marker FM5-95 within 2 hr. Postsynaptic actin sprouts projections toward the new presynaptic actin puncta, resembling the axon-dendrite interaction during synaptogenesis. Our results indicate that activity-dependent presynaptic structural plasticity facilitates the formation of new active presynaptic terminals.
Collapse
Affiliation(s)
- M A Colicos
- Neurobiology Section/Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
579
|
Abstract
This paper reviews the evidence that antipsychotic drugs induce neuroplasticity. We outline how the synaptic changes induced by the antipsychotic drug haloperidol may help our understanding of the mechanism of action of antipsychotic drugs in general, and how they may help to elucidate the neurobiology of schizophrenia. Studies have provided compelling evidence that haloperidol induces anatomical and molecular changes in the striatum. Anatomical changes have been documented at the level of regional brain volume, synapse morphology, and synapse number. At the molecular level, haloperidol has been shown to cause phosphorylation of proteins and to induce gene expression. The molecular responses to conventional antipsychotic drugs are predominantly observed in the striatum and nucleus accumbens, whereas atypical antipsychotic drugs have a subtler and more widespread impact. We conclude that the ability of antipsychotic drugs to induce anatomical and molecular changes in the brain may be relevant for their antipsychotic properties. The delayed therapeutic action of antipsychotic drugs, together with their promotion of neuroplasticity suggests that modification of synaptic connections by antipsychotic drugs is important for their mode of action. The concept of schizophrenia as a disorder of synaptic organization will benefit from a better understanding of the synaptic changes induced by antipsychotic drugs.
Collapse
Affiliation(s)
- C Konradi
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
580
|
Job C, Eberwine J. Identification of sites for exponential translation in living dendrites. Proc Natl Acad Sci U S A 2001; 98:13037-42. [PMID: 11606784 PMCID: PMC60820 DOI: 10.1073/pnas.231485698] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal processes contain mRNAs and membrane structures, and some forms of synaptic plasticity seem to require protein synthesis in dendrites of hippocampal neurons. To quantitate dendritic protein synthesis, we used multiphoton microscopy of green fluorescent protein synthesized in living isolated dendrites. Transfection of dendrites with mRNA encoding green fluorescent protein resulted in fluorescence that exponentially increased on stimulation with a glutamate receptor agonist; a reaction attenuated by the translation inhibitors anisomycin and emetine. Comparable experiments on whole neurons revealed that (RS)-3,5-dihydroxy-phenylglycine 0.5 H(2)O (DHPG)-stimulated fluorescence was linear in cell bodies relative to the exponential increase seen in dendrites. Detailed spatial analysis of the subdendritic distribution of fluorescence revealed "hotspots," sites of dendritic translation that were spatially stable. However, detailed temporal analysis of these hotspots revealed heterogeneous rates of translation. A double-label protocol counterstaining for ribosomes indicated that sites of "fastest" translation correlated with increased ribosome density, consistent with ribosome subunit assembly for initiation, the first step of translation. We propose that dendrites have specific sites specialized for fast translation.
Collapse
Affiliation(s)
- C Job
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
581
|
Capani F, Deerinck TJ, Ellisman MH, Bushong E, Bobik M, Martone ME. Phalloidin-eosin followed by photo-oxidation: a novel method for localizing F-actin at the light and electron microscopic levels. J Histochem Cytochem 2001; 49:1351-61. [PMID: 11668188 DOI: 10.1177/002215540104901103] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe a novel high-resolution method to detect F-actin at the light and electron microscopic levels through the use of the actin-binding protein phalloidin conjugated to the fluorophore eosin, followed by photo-oxidation of diaminobenzidine. This method possesses several key advantages over antibody-based labeling and structural methods. First, phalloidin binding to F-actin can tolerate relatively high concentrations of glutaraldehyde (up to 1%) in the primary fixative, resulting in good ultrastructural preservation. Second, because both eosin and phalloidin are relatively small molecules, considerable penetration of reagents into aldehyde-fixed tissue was obtained without any permeabilization steps, allowing 3D reconstructions at the electron microscopic level. By employing a secondary fixation with tannic acid combined with low pH osmication, conditions known to stabilize actin filaments during preparation for electron microscopy, we were able to visualize individual actin filaments in some structures. Finally, we show that fluorescent phalloidin can be directly injected into neurons to label actin-rich structures such as dendritic spines. These results suggest that the fluorescent phalloidin is an excellent tool for the study of actin networks at high resolution.
Collapse
Affiliation(s)
- F Capani
- Department of Neuroscience, National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093-0608, USA
| | | | | | | | | | | |
Collapse
|
582
|
Affiliation(s)
- Y N Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, California 94143-0725, USA.
| | | |
Collapse
|
583
|
Maira SM, Galetic I, Brazil DP, Kaech S, Ingley E, Thelen M, Hemmings BA. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 2001; 294:374-80. [PMID: 11598301 DOI: 10.1126/science.1062030] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The PKB (protein kinase B, also called Akt) family of protein kinases plays a key role in insulin signaling, cellular survival, and transformation. PKB is activated by phosphorylation on residues threonine 308, by the protein kinase PDK1, and Serine 473, by a putative serine 473 kinase. Several protein binding partners for PKB have been identified. Here, we describe a protein partner for PKBalpha termed CTMP, or carboxyl-terminal modulator protein, that binds specifically to the carboxyl-terminal regulatory domain of PKBalpha at the plasma membrane. Binding of CTMP reduces the activity of PKBalpha by inhibiting phosphorylation on serine 473 and threonine 308. Moreover, CTMP expression reverts the phenotype of v-Akt-transformed cells examined under a number of criteria including cell morphology, growth rate, and in vivo tumorigenesis. These findings identify CTMP as a negative regulatory component of the pathway controlling PKB activity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Division
- Cell Line
- Cell Line, Transformed
- Cell Membrane/metabolism
- Cell Size
- Enzyme Activation
- Genes, fos
- Humans
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Nude
- Molecular Sequence Data
- Neoplasms, Experimental/etiology
- Oncogene Protein v-akt
- Palmitoyl-CoA Hydrolase
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-akt
- Recombinant Fusion Proteins/metabolism
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Signal Transduction
- Thiolester Hydrolases
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Vanadates/pharmacology
Collapse
Affiliation(s)
- S M Maira
- Friedrich Miescher Institute, Post Office Box 2543, CH-4002 Basel, Switzerland., Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | | | | | | | | | | | | |
Collapse
|
584
|
Abstract
Dendritic spines occupy a strategic position in the central nervous system, yet their function is still under debate. Over the past decades, many hypotheses have been put forward to explain the specific function of spines. Recently, imaging experiments have demonstrated that spines compartmentalize calcium, a role that appears necessary for input-specific forms of synaptic plasticity. In addition, it has been discovered that spine morphology is plastic over fast time scales and can be controlled by specific biochemical pathways. Also, several aspects of the spine's morphology appear to be intricately linked to its function. The authors review these recent data and incorporate them into a model for the function of dendritic spines in CNS circuits. In their proposal, spines serve to specifically connect sparse inputs and therefore minimize the wiring necessary in the CNS while maximizing connectivity. By virtue of the same design, spines isolate inputs and thus implement local learning rules. These rules appear only necessary with sparse inputs so these two functions are intimately related. Spines therefore would play a crucial circuit role, remarkably analogous to synaptic matrix elements of associative neural networks. This model highlights the economical, yet elegant, design of CNS circuits.
Collapse
Affiliation(s)
- R Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
585
|
Yamazaki M, Matsuo R, Fukazawa Y, Ozawa F, Inokuchi K. Regulated expression of an actin-associated protein, synaptopodin, during long-term potentiation. J Neurochem 2001; 79:192-9. [PMID: 11595771 DOI: 10.1046/j.1471-4159.2001.00552.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report NMDA receptor-dependent expression of synaptopodin mRNA in the dentate granule cells of the hippocampus following induction of long-term potentiation (LTP) in vivo. Synaptopodin did not belong to immediate-early genes, as de novo protein synthesis was required for the induction of synaptopodin gene transcription. An increased level of synaptopodin mRNA was observed at 75 min and 3.5 h after the onset of LTP. Importantly, there was correlation between the induction of mRNA expression and the persistence of LTP. Synaptopodin immunoreactivity was elevated specifically in synaptic layers, middle and outer molecular layers of dentate gyrus where LTP was induced. As synaptopodin is an actin-associated protein present in spine neck and implicated in the modulation of cell morphology, our results suggest that synaptopodin, by regulating the dynamics of the actin cytoskeleton, contributes to the morphological change in spine shape considered to be important for the maintenance of synaptic plasticity.
Collapse
Affiliation(s)
- M Yamazaki
- Mitsubishi Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo, Japan
| | | | | | | | | |
Collapse
|
586
|
Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 2001; 24:1071-89. [PMID: 11520928 DOI: 10.1146/annurev.neuro.24.1.1071] [Citation(s) in RCA: 928] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic spines are morphological specializations that receive synaptic inputs and compartmentalize calcium. In spite of a long history of research, the specific function of spines is still not well understood. Here we review the current status of the relation between morphological changes in spines and synaptic plasticity. Since Cajal and Tanzi proposed that changes in the structure of the brain might occur as a consequence of experience, the search for the morphological correlates of learning has constituted one of the central questions in neuroscience. Although there are scores of studies that encompass this wide field in many species, in this review we focus on experimental work that has analyzed the morphological consequences of hippocampal long-term potentiation (LTP) in rodents. Over the past two decades many studies have demonstrated changes in the morphology of spines after LTP, such as enlargements of the spine head and shortenings of the spine neck. Biophysically, these changes translate into an increase in the synaptic current injected at the spine, as well as shortening of the time constant for calcium compartmentalization. In addition, recent online studies using time-lapse imaging have reported increased spinogenesis. The currently available data show a strong correlation between synaptic plasticity and morphological changes in spines, although at the same time, there is no evidence that these morphological changes are necessary or sufficient for the induction or maintenance of LTP. Still, they highlight once more how form and function go hand in hand in the central nervous system.
Collapse
Affiliation(s)
- R Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
587
|
Abstract
Regulation of dendritic spine motility was studied in dissociated cultures of the rat and mouse hippocampus, using green fluorescent protein-labeled neurons or neurons loaded with the calcium-sensitive dye Oregon Green-1. Cells were time-lapse-photographed on a confocal laser-scanning microscope at high resolution to detect movements as well as spontaneous fluctuations of intracellular calcium concentrations in their dendritic spines. Active presynaptic terminals attached to the spines were labeled with FM4-64, which marks a subset of synaptophysin-labeled terminals. Dendritic spines were highly motile in young, 4- to 7-d-old cells. At this age, neurons had little spontaneous calcium fluctuation or FM4-64 labeling. Within 2-3 weeks in culture, dendritic spines were much less motile, they were associated with active presynaptic terminals, and they expressed high rates of spontaneous calcium fluctuations. Irrespective of age, and even on the same dendrite, there was an inverse relationship between spine motility and presence of FM4-64-labeled terminals in contact with the imaged spines. Spine motility was blocked by latrunculin, which prevents actin polymerization, and was disinhibited by blockade of action potential discharges with tetrodotoxin. It is proposed that an active presynaptic terminal restricts motility of dendritic spines.
Collapse
|
588
|
Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 2001. [PMID: 11487652 DOI: 10.1523/jneurosci.21-16-06292.2001] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines are postsynaptic sites of excitatory input in the mammalian nervous system. Despite much information about their structure, their functional significance remains unknown. It has been reported that females in proestrus, when estrogen levels are elevated, have a greater density of apical dendritic spines on pyramidal neurons in area CA1 of the hippocampus than females in other stages of estrous (Woolley et al., 1990). Here we replicate these findings and in addition, show that females in proestrus have a greater density of spines in area CA1 of the hippocampus than males. Moreover, this sex difference in spine density is affected in opposite directions by stressful experience. In response to one acute stressful event of intermittent tailshocks, spine density was enhanced in the male hippocampus but reduced in the female hippocampus. The decrease in the female was observed for those that were stressed during diestrus 2 and perfused 24 hr later during proestrus. The opposing effects of stress were not evident immediately after the stressor but rather occurred within 24 hr and were evident on apical and to a lesser extent on basal dendrites of pyramidal cells in area CA1. Neither sex nor stress affected spine density on pyramidal neurons in somatosensory cortex. Sex differences in hippocampal spine density correlated with sex hormones, estradiol and testosterone, whereas stress effects on spine density were not directly associated with differences in the stress hormones, glucocorticoids. In summary, males and females have different levels of dendritic spine density in the hippocampus under unstressed conditions, and their neuronal anatomy can respond in opposite directions to the same stressful event.
Collapse
|
589
|
Abstract
Several morphological changes of synapses have been reported to be associated with the induction of long-term potentiation (LTP) in the CA1 hippocampus, including an transient increase in the proportion of synapses with perforated postsynaptic densities (PSDs) and a later occurrence of multiple spine boutons (MSBs) in which the two spines arise from the same dendrite. To investigate the functional significance of these modifications, we analyzed single sections and reconstructed 134 synapses labeled via activity using a calcium precipitation approach. Analyses of labeled spine profiles showed changes of the spine head area, PSD length, and proportion of spine profiles containing a coated vesicle that reflected variations in the relative proportion of different types of synapses. Three-dimensional reconstruction indicated that the increase of perforated spine profiles observed 30 min after LTP induction essentially resulted from synapses exhibiting segmented, completely partitioned PSDs. These synapses had spine head and PSD areas approximately three times larger than those of simple synapses. They contained coated vesicles in a much higher proportion than that of any other type of synapse and exhibited large spinules associated with the PSD. Also the MSBs with two spines arising from the same dendrite that were observed 1-2 hr after LTP induction included a spine that was smaller and a PSD that was smaller than those of simple synapses. These results support the idea that LTP induction is associated with an enhanced recycling of synaptic membrane and that this process could underlie the formation of synapses with segmented PSDs and eventually result in the formation of a new, immature spine.
Collapse
|
590
|
Dupont E, Canu MH, Langlet C, Falempin M. Time course of recovery of the somatosensory map following hindpaw sensory deprivation in the rat. Neurosci Lett 2001; 309:121-4. [PMID: 11502360 DOI: 10.1016/s0304-3940(01)02050-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hindlimb sensory deprivation is known to induce a decrease in the cortical representation of hindpaw, and an increase in the size of the cutaneous receptive fields. The aim of the present study was to determine (i) the time-course of recovery when the rat retrieves a normal use of its limbs after a 14-day period of sensory disruption and (ii) whether a 1-day period of sensory deprivation is sufficient to induce a plasticity. Our results indicate that the remodelling of the cortical map was not observed after 1 day of sensory deprivation. On the other hand, the recovery was achieved after 6 h. These findings suggest that a procedure reducing sensory function resulted in reversible changes in the somatosensory cortex. The recovery was more rapid than the induction of plasticity.
Collapse
Affiliation(s)
- E Dupont
- Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, bâtiment SN4, 59655 Villeneuve d'Ascq cedex, France
| | | | | | | |
Collapse
|
591
|
Gardiol A, Racca C, Triller A. RNA transport and local protein synthesis in the dendritic compartment. Results Probl Cell Differ 2001; 34:105-28. [PMID: 11288671 DOI: 10.1007/978-3-540-40025-7_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A Gardiol
- Laboratoire de Biologie Cellulaire de la Synapse N&P INSERM U497 Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
592
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
593
|
Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 2001; 31:289-303. [PMID: 11502259 DOI: 10.1016/s0896-6273(01)00355-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PSD-95/SAP90 family of scaffold proteins organizes the postsynaptic density (PSD) and regulates NMDA receptor signaling at excitatory synapses. We report that SPAR, a Rap-specific GTPase-activating protein (RapGAP), interacts with the guanylate kinase-like domain of PSD-95 and forms a complex with PSD-95 and NMDA receptors in brain. In heterologous cells, SPAR reorganizes the actin cytoskeleton and recruits PSD-95 to F-actin. In hippocampal neurons, SPAR localizes to dendritic spines and causes enlargement of spine heads, many of which adopt an irregular appearance with putative multiple synapses. Dominant negative SPAR constructs cause narrowing and elongation of spines. The effects of SPAR on spine morphology depend on the RapGAP and actin-interacting domains, implicating Rap signaling in the regulation of postsynaptic structure.
Collapse
Affiliation(s)
- D T Pak
- Department of Neurobiology, Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
594
|
Abstract
Acid secretion by the gastric parietal cell is controlled through movement of vesicles containing the proton pump, the H(+)-K(+)-ATPase (HK). We have used latrunculin B (Lat B), which binds to monomeric actin, to investigate actin turnover in the stimulated parietal cell. In isolated gastric glands, relatively high concentrations of Lat B were required to inhibit acid accumulation (ED(50) approximately 70 microM). Cultured parietal cells stimulated in the presence of low Lat B (0.1--1 microM) have reduced lamellipodia formation and some aberrant punctate phalloidin-stained structures, but translocation of HK and vacuolar swelling appeared unaffected. High Lat B (10--50 microM) resulted in gross changes in actin organization (punctate phalloidin-stained structures throughout the cell and nucleus) and reduced translocation of HK and vacuolar swelling. Resting parietal cells treated with high Lat B showed minor effects on morphology and F-actin staining. If resting cells treated with high Lat B were washed immediately before stimulation, they exhibited a normal stimulated morphology. These data suggest distinct pools of parietal cell actin: a pool highly susceptible to Lat B primarily involved in motile function of cultured cells; and a Lat B-resistant pool, most likely microvillar filaments, that is essential for secretion. Furthermore, the stimulation process appears to accentuate the effects of Lat B, most likely through Lat B binding to monomer actin liberated by the turnover of the motile actin filament pool.
Collapse
Affiliation(s)
- D A Ammar
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
595
|
Abstract
The dynamics of axonal arbors during synaptogenesis and their plasticity in the adult nervous system remain poorly understood. Axonal filopodia, which emerge from the shaft of axonal branches and contain small synaptic vesicle clusters, initiate synaptic formation. We found that the movement of axonal filopodia is strongly inhibited by the neurotransmitter glutamate. This inhibitory effect is local, requires extracellular Ca2+, and can be blocked by CNQX treatment but not by NMDA, implicating axonal AMPA/kainate glutamate receptors. Transport and exo-endocytic recycling of synaptic vesicle packages in filopodia are not affected. These results reveal that the effect of glutamate on axonal filopodia is similar to its previously described effect on dendritic spines. Our results raise the possibility that axonal ionotropic glutamate receptors are also involved in synaptic plasticity in the adult nervous system.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/genetics
- Actins/metabolism
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Central Nervous System/cytology
- Central Nervous System/embryology
- Central Nervous System/metabolism
- Glutamic Acid/drug effects
- Glutamic Acid/metabolism
- Green Fluorescent Proteins
- Growth Cones/drug effects
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Immunohistochemistry
- Luminescent Proteins/genetics
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/genetics
- Pseudopodia/drug effects
- Pseudopodia/metabolism
- Pseudopodia/ultrastructure
- Rats
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Thiazoles/pharmacology
- Thiazolidines
- tau Proteins/metabolism
Collapse
Affiliation(s)
- S Chang
- Howard Hughes Medical Institute and Department of Cell Biology, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, PO Box 9812, New Haven, Connecticut 06515, USA
| | | |
Collapse
|
596
|
Donnadieu E, Revy P, Trautmann A. Imaging T-cell antigen recognition and comparing immunological and neuronal synapses. Immunology 2001; 103:417-25. [PMID: 11529931 PMCID: PMC1783261 DOI: 10.1046/j.1365-2567.2001.01268.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Accepted: 04/27/2001] [Indexed: 12/15/2022] Open
Affiliation(s)
- E Donnadieu
- Laboratoire d'Immuno-Pharmacologie, CNRS UPR 415, ICGM, 22 rue Méchain, 75014 Paris, France
| | | | | |
Collapse
|
597
|
Umeda T, Okabe S. Visualizing synapse formation and remodeling: recent advances in real-time imaging of CNS synapses. Neurosci Res 2001; 40:291-300. [PMID: 11463475 DOI: 10.1016/s0168-0102(01)00243-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation and maintenance of synaptic connections are critical in the development and plasticity of the central nervous system (CNS). Until recently, there have been few studies that followed the molecular sequences of the CNS synapse formation and maintenance. This situation changed dramatically after the introduction of green fluorescent protein (GFP)-based fluorescent probes and the development of lipophilic tracers of endocytotic membranes. These techniques enabled us to visualize presynaptic and postsynaptic structures in living neurons and illustrated active transport and remodeling of synaptic components. Furthermore, recent attempts to identify correlation between presynaptic and postsynaptic morphogenesis suggested very rapid time course of synapse formation at the individual axo-dendritic contact sites. These recent works clearly demonstrated the power of real-time imaging studies. Development of a wide variety of fluorescent probes and advances in the imaging techniques in future will further extend our knowledge on the molecular events that take place in the process of the development and maturation of synaptic junctions.
Collapse
Affiliation(s)
- T Umeda
- Department of Anatomy and Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | | |
Collapse
|
598
|
Petralia RS, Wang YX, Sans N, Worley PF, Hammer JA, Wenthold RJ. Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. Eur J Neurosci 2001; 13:1722-32. [PMID: 11359524 DOI: 10.1046/j.0953-816x.2001.01553.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeting of glutamate receptors (GluRs) to synapses involves rapid movement of intracellular receptors. This occurs in forms of synaptic upregulation of receptors, such as long-term potentiation. Thus, many GluRs are retained in a cytoplasmic pool in dendrites, and are transported to synapses for upregulation, presumably via motor proteins such as myosins travelling along cytoskeletal elements that extend up into the spine. In this ultrastructural immunogold study of the cerebellar cortex, we compared synapses between normal rats/mice and dilute lethal mutant mice. These mutant mice lack myosin Va, which has been implicated in protein trafficking at synapses. The postsynaptic spine in the cerebellum lacks the inositol trisphosphate receptor (IP3R) -laden reticular tubules that are found in normal mice and rats (Takagishi et al., Neurosci. Lett., 1996, 215, 169). Thus, we tested the hypothesis that myosin Va is necessary for transport of GluRs and associated proteins to spine synapses. We found that these spines retain a normal distribution of (i) GluRs (delta 1/2, GluR2/3 and mGluR1alpha), (ii) at least one associated MAGUK (membrane-associated guanylate kinase) protein, (iii) Homer (which interacts with mGluR1alpha and IP3Rs), (iv) the actin cytoskeleton, (v) the reticulum-associated protein BiP, and (vi) the motor-associated protein, dynein light chain. Thus, while myosin Va may maintain the IP3R-laden reticulum in the spine for proper calcium regulation, other mechanisms must be involved in the delivery of GluRs and associated proteins to synapses. Other possible mechanisms include diffusion along the extrasynaptic membrane and delivery via other motors running along the spine's actin cytoskeleton.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, NIDCD/NIH, 36/5D08, 36 Convent Dr MSC 4162, Bethesda MD 20892-4162, USA.
| | | | | | | | | | | |
Collapse
|
599
|
Sala C, Piëch V, Wilson NR, Passafaro M, Liu G, Sheng M. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001; 31:115-30. [PMID: 11498055 DOI: 10.1016/s0896-6273(01)00339-7] [Citation(s) in RCA: 550] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Shank family of proteins interacts with NMDA receptor and metabotropic glutamate receptor complexes in the postsynaptic density (PSD). Targeted to the PSD by a PDZ-dependent mechanism, Shank promotes the maturation of dendritic spines and the enlargement of spine heads via its ability to recruit Homer to postsynaptic sites. Shank and Homer cooperate to induce accumulation of IP3 receptors in dendritic spines and formation of putative multisynapse spines. In addition, postsynaptic expression of Shank enhances presynaptic function, as measured by increased minifrequency and FM4-64 uptake. These data suggest a central role for the Shank scaffold in the structural and functional organization of the dendritic spine and synaptic junction.
Collapse
Affiliation(s)
- C Sala
- Howard Hughes Medical Institute and, Department of Neurobiology, Massachusetts General Hospital and, Harvard Medical School, 02114, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
600
|
Schenck A, Bardoni B, Moro A, Bagni C, Mandel JL. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci U S A 2001; 98:8844-9. [PMID: 11438699 PMCID: PMC37523 DOI: 10.1073/pnas.151231598] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The absence of the fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, is responsible for pathologic manifestations in the Fragile X Syndrome, the most frequent cause of inherited mental retardation. FMRP is an RNA-binding protein associated with polysomes as part of a messenger ribonucleoprotein (mRNP) complex. Although its function is poorly understood, various observations suggest a role in local protein translation at neuronal dendrites and in dendritic spine maturation. We present here the identification of CYFIP1/2 (Cytoplasmic FMRP Interacting Proteins) as FMRP interactors. CYFIP1/2 share 88% amino acid sequence identity and represent the two members in humans of a highly conserved protein family. Remarkably, whereas CYFIP2 also interacts with the FMRP-related proteins FXR1P/2P, CYFIP1 interacts exclusively with FMRP. FMRP--CYFIP interaction involves the domain of FMRP also mediating homo- and heteromerization, thus suggesting a competition between interaction among the FXR proteins and interaction with CYFIP. CYFIP1/2 are proteins of unknown function, but CYFIP1 has recently been shown to interact with the small GTPase Rac1, which is implicated in development and maintenance of neuronal structures. Consistent with FMRP and Rac1 localization in dendritic fine structures, CYFIP1/2 are present in synaptosomal extracts.
Collapse
Affiliation(s)
- A Schenck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, B.P. 163, 67404 Illkirch Cedex, Strasbourg, France
| | | | | | | | | |
Collapse
|