551
|
Zhao J, Chu H, Zhao Y, Lu Y, Li L. A NIR Light Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of MicroRNA in Cells and Animals. J Am Chem Soc 2019; 141:7056-7062. [DOI: 10.1021/jacs.9b01931] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ya Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
552
|
Fan B, Wang H, Wu T, Li Y, Lin Z, Li M, Li Q, Zhang W, Zheng Q. Electrophysiological Measurement of Rat Atrial Epicardium Using a Novel Stereotaxic Apparatus. Int Heart J 2019; 60:400-410. [DOI: 10.1536/ihj.18-215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Hongtao Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Tao Wu
- China Coal Xi'an Design Engineering Co., Ltd; Xi'an
| | - Yingqi Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Zehao Lin
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Mengying Li
- Department of Endocrinology, Xijing Hospital of the Fourth Military Medicine University
| | - Qing Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital of the Fourth Military Medicine University
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| |
Collapse
|
553
|
Roet M, Hescham SA, Jahanshahi A, Rutten BPF, Anikeeva PO, Temel Y. Progress in neuromodulation of the brain: A role for magnetic nanoparticles? Prog Neurobiol 2019; 177:1-14. [PMID: 30878723 DOI: 10.1016/j.pneurobio.2019.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
The field of neuromodulation is developing rapidly. Current techniques, however, are still limited as they i) either depend on permanent implants, ii) require invasive procedures, iii) are not cell-type specific, iv) involve slow pharmacokinetics or v) have a restricted penetration depth making it difficult to stimulate regions deep within the brain. Refinements into the different fields of neuromodulation are thus needed. In this review, we will provide background information on the different techniques of neuromodulation discussing their latest refinements and future potentials including the implementation of nanoparticles (NPs). In particular we will highlight the usage of magnetic nanoparticles (MNPs) as transducers in advanced neuromodulation. When exposed to an alternating magnetic field (AMF), certain MNPs can generate heat through hysteresis. This MNP heating has been promising in the field of cancer therapy and has recently been introduced as a method for remote and wireless neuromodulation. This indicates that MNPs may aid in the exploration of brain functions via neuromodulation and may eventually be applied for treatment of neuropsychiatric disorders. We will address the materials chemistry of MNPs, their biomedical applications, their delivery into the brain, their mechanisms of stimulation with emphasis on MNP heating and their remote control in living tissue. The final section compares and discusses the parameters used for MNP heating in brain cancer treatment and neuromodulation. Concluding, using MNPs for nanomaterial-mediated neuromodulation seem promising in a variety of techniques and could be applied for different neuropsychiatric disorders when more extensively investigated.
Collapse
Affiliation(s)
- Milaine Roet
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Sarah-Anna Hescham
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Ali Jahanshahi
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Bart P F Rutten
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Polina O Anikeeva
- Department of Materials Science and Engineering, Department of Brain and Cognitive Sciences, Research Laboratory of Electronics, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, United States of America
| | - Yasin Temel
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, 6202, AZ, The Netherlands.
| |
Collapse
|
554
|
O’Shea C, Holmes AP, Winter J, Correia J, Ou X, Dong R, He S, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology. Front Physiol 2019; 10:182. [PMID: 30899227 PMCID: PMC6416196 DOI: 10.3389/fphys.2019.00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Optogenetic control of the heart is an emergent technology that offers unparalleled spatio-temporal control of cardiac dynamics via light-sensitive ion pumps and channels (opsins). This fast-evolving technique holds broad scope in both clinical and basic research setting. Combination of optogenetics with optical mapping of voltage or calcium fluorescent probes facilitates 'all-optical' electrophysiology, allowing precise optogenetic actuation of cardiac tissue with high spatio-temporal resolution imaging of action potential and calcium transient morphology and conduction patterns. In this review, we provide a synopsis of optogenetics and discuss in detail its use and compatibility with optical interrogation of cardiac electrophysiology. We briefly discuss the benefits of all-optical cardiac control and electrophysiological interrogation compared to traditional techniques, and describe mechanisms, unique features and limitations of optically induced cardiac control. In particular, we focus on state-of-the-art setup design, challenges in light delivery and filtering, and compatibility of opsins with fluorescent reporters used in optical mapping. The interaction of cardiac tissue with light, and physical and computational approaches to overcome the 'spectral congestion' that arises from the combination of optogenetics and optical mapping are discussed. Finally, we summarize recent preclinical work applications of combined cardiac optogenetics and optical mapping approach.
Collapse
Affiliation(s)
- Christopher O’Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ruirui Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shicheng He
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, UHB NHS Trust, Birmingham, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, UHB NHS Trust, Birmingham, United Kingdom
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
555
|
Finlay BL. Human exceptionalism, our ordinary cortex and our research futures. Dev Psychobiol 2019; 61:317-322. [PMID: 30810224 DOI: 10.1002/dev.21838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
The widely held belief that the human cortex is exceptionally large for our brain size is wrong, resulting from basic errors in how best to compare evolving brains. This misapprehension arises from the comparison of only a few laboratory species, failure to appreciate differences in brain scaling in rodents versus primates, but most important, the false assumption that linear extrapolation can be used to predict changes from small to large brains. Belief in the exceptionalism of human cortex has propagated itself into genomic analysis of the cortex, where cortex has been studied as if it were an example of innovation rather than predictable scaling. Further, this belief has caused both neuroscientists and psychologists to prematurely assign functions distributed widely in the brain to the cortex, to fail to explore subcortical sources of brain evolution, and to neglect genuinely novel features of human infancy and childhood.
Collapse
|
556
|
Lukashev EP, Petrovskaya LE, Tretyak MV, Kryukova EA, Sizova SV, Oleinikov VA. Formation of an Efficient Energy Transfer Complex between Quantum Dots and Exiguobacterium sibiricum Retinal Protein via the Histidine-Cysteine Anchor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
557
|
Sugi T, Ito H, Nishimura M, Nagai KH. C. elegans collectively forms dynamical networks. Nat Commun 2019; 10:683. [PMID: 30778072 PMCID: PMC6379388 DOI: 10.1038/s41467-019-08537-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022] Open
Abstract
Understanding physical rules underlying collective motions requires perturbation of controllable parameters in self-propelled particles. However, controlling parameters in animals is generally not easy, which makes collective behaviours of animals elusive. Here, we report an experimental system in which a conventional model animal, Caenorhabditis elegans, collectively forms dynamical networks of bundle-shaped aggregates. We investigate the dependence of our experimental system on various extrinsic parameters (material of substrate, ambient humidity and density of worms). Taking advantage of well-established C. elegans genetics, we also control intrinsic parameters (genetically determined motility) by mutations and by forced neural activation via optogenetics. Furthermore, we develop a minimal agent-based model that reproduces the dynamical network formation and its dependence on the parameters, suggesting that the key factors are alignment of worms after collision and smooth turning. Our findings imply that the concepts of active matter physics may help us to understand biological functions of animal groups. Understanding collective motions in a group of interacting animal is a challenge owing to the lack of control over, for example, real fish schools. Here, the authors study the aggregation of C. elegans at controllable conditions and reproduce the experimental observations using a minimal model.
Collapse
Affiliation(s)
- Takuma Sugi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan.
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ken H Nagai
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
558
|
Miller CT, Hale ME, Okano H, Okabe S, Mitra P. Comparative Principles for Next-Generation Neuroscience. Front Behav Neurosci 2019; 13:12. [PMID: 30787871 PMCID: PMC6373779 DOI: 10.3389/fnbeh.2019.00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Neuroscience is enjoying a renaissance of discovery due in large part to the implementation of next-generation molecular technologies. The advent of genetically encoded tools has complemented existing methods and provided researchers the opportunity to examine the nervous system with unprecedented precision and to reveal facets of neural function at multiple scales. The weight of these discoveries, however, has been technique-driven from a small number of species amenable to the most advanced gene-editing technologies. To deepen interpretation and build on these breakthroughs, an understanding of nervous system evolution and diversity are critical. Evolutionary change integrates advantageous variants of features into lineages, but is also constrained by pre-existing organization and function. Ultimately, each species’ neural architecture comprises both properties that are species-specific and those that are retained and shared. Understanding the evolutionary history of a nervous system provides interpretive power when examining relationships between brain structure and function. The exceptional diversity of nervous systems and their unique or unusual features can also be leveraged to advance research by providing opportunities to ask new questions and interpret findings that are not accessible in individual species. As new genetic and molecular technologies are added to the experimental toolkits utilized in diverse taxa, the field is at a key juncture to revisit the significance of evolutionary and comparative approaches for next-generation neuroscience as a foundational framework for understanding fundamental principles of neural function.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
559
|
Juarez B, Liu Y, Zhang L, Han MH. Optogenetic investigation of neural mechanisms for alcohol-use disorder. Alcohol 2019; 74:29-38. [PMID: 30621856 DOI: 10.1016/j.alcohol.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Optogenetic techniques have been widely used in the study of neuropsychiatric diseases such as anxiety, depression, and drug addiction. Cell-type specific targeting of optogenetic tools to neurons has contributed to a tremendous understanding of the function of neural circuits for future treatment of neuropsychiatric disorders. Though optogenetics has been widely used in many research areas, the use of optogenetic tools to uncover and elucidate neural circuit mechanisms of alcohol's actions in the brain are still developing. Here in this review article, we will provide a basic introduction to optogenetics and discuss how these optogenetic experimental approaches can be used in alcohol studies to reveal neural circuit mechanisms of alcohol's actions in regions implicated in the development of alcohol addiction.
Collapse
Affiliation(s)
- Barbara Juarez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Yutong Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
560
|
Ron D, Weiner J. Special issue on new technologies for alcohol research and treatment. Alcohol 2019; 74:1-2. [PMID: 30409742 DOI: 10.1016/j.alcohol.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143 United States.
| | - Jeff Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 United States.
| |
Collapse
|
561
|
Spyropoulos GD, Gelinas JN, Khodagholy D. Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics. SCIENCE ADVANCES 2019; 5:eaau7378. [PMID: 30820453 PMCID: PMC6392764 DOI: 10.1126/sciadv.aau7378] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/09/2019] [Indexed: 05/23/2023]
Abstract
Real-time processing and manipulation of biological signals require bioelectronic devices with integrated components capable of signal amplification, processing, and stimulation. Transistors form the backbone of such circuits, but numerous criteria must be met for efficient and safe operation in biological environments. Here, we introduce an internal ion-gated organic electrochemical transistor (IGT) that uses contained mobile ions within the conducting polymer channel to permit both volumetric capacitance and shortened ionic transit time. The IGT has high transconductance, fast speed, and can be independently gated to create scalable conformable integrated circuits. We demonstrate the ability of the IGT to provide a miniaturized, comfortable interface with human skin using local amplification to record high-quality brain neurophysiological activity. The IGT is an effective transistor architecture for enabling integrated, real-time sensing and stimulation of signals from living organisms.
Collapse
Affiliation(s)
| | - Jennifer N. Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
- Institute for Genomic Medicine, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
562
|
Abstract
Well-being requires the maintenance of energy stores, water, and sodium within permissive zones. The brain, as ringleader, orchestrates their homeostatic control. It senses disturbances, decides what needs to be done next, and then restores balance by altering physiological processes and ingestive drives (i.e., hunger, thirst, and salt appetite). But how the brain orchestrates this control has been unknown until recently — largely because we have lacked the ability to elucidate and then probe the underlying neuronal “wiring diagrams.” This has changed with the advent of new, transformative neuroscientific tools. When targeted to specific neurons, these tools make it possible to selectively map a neuron’s connections, measure its responses to various homeostatic challenges, and experimentally manipulate its activity. This review examines these approaches and then highlights how they are advancing, and in some cases profoundly changing, our understanding of energy, water, and salt homeostasis and the linked ingestive drives.
Collapse
Affiliation(s)
- Bradford B Lowell
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and the Program in Neuroscience, Harvard Medical School - both in Boston
| |
Collapse
|
563
|
Morton A, Murawski C, Deng Y, Keum C, Miles GB, Tello JA, Gather MC. Photostimulation for In Vitro Optogenetics with High‐Power Blue Organic Light‐Emitting Diodes. ACTA ACUST UNITED AC 2019; 3:e1800290. [DOI: 10.1002/adbi.201800290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/14/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew Morton
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Caroline Murawski
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Yali Deng
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Changmin Keum
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Gareth B. Miles
- School of Psychology and Neuroscience University of St Andrews St Mary's Quad, South Street KY16 9JP St Andrews UK
| | - Javier A. Tello
- School of Medicine University of St Andrews Medical and Biological Sciences Building North Haugh KY16 9TF St Andrews UK
| | - Malte C. Gather
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| |
Collapse
|
564
|
Losi G, Lia AM, Gomez-Gonzalo M, Zonta M, Carmignoto G. Optogenetic Interneuron Stimulation and Calcium Imaging in Astrocytes. Methods Mol Biol 2019; 1925:173-182. [PMID: 30674027 DOI: 10.1007/978-1-4939-9018-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In brain networks, neurons are constantly involved in a dynamic interaction with the other cell populations and, particularly, with astrocytes, the most abundant glial cells in the brain. Astrocytes respond to neurotransmitters with Ca2+ elevations which represent a key event in the modulation of local brain circuits played by these glial cells. Due to technical limitations, the study of Ca2+ signal dynamics in astrocytes has focused for decades almost exclusively on somatic and perisomatic regions. Accordingly, Ca2+ signal in astrocytic fine protrusions, which are in close contact with the synapse, has been poorly investigated. Over the last years, the diffusion of novel tools such as the viral vector gene delivery of genetically encoded Ca2+ indicators (GECI), the optogenetics, and multiphoton laser scanning microscopy has boosted significantly our capability to study astrocytic Ca2+ signals in the different subcellular compartments. Here we report a protocol that combines these techniques to study astrocyte Ca2+ signaling in response to somatostatin (SST)-expressing interneurons, one of the main classes of GABAergic inhibitory interneurons.
Collapse
Affiliation(s)
- Gabriele Losi
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy.
- Department of Biomedical Science, University of Padua, Padua, Italy.
| | - Anna Maria Lia
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Marta Gomez-Gonzalo
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Micaela Zonta
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy
- Department of Biomedical Science, University of Padua, Padua, Italy
| |
Collapse
|
565
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
566
|
Wang Z, Hu M, Ai X, Zhang Z, Xing B. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics. ADVANCED BIOSYSTEMS 2019; 3:e1800233. [PMID: 32627341 DOI: 10.1002/adbi.201800233] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Membrane ion channels are ultimately responsible for the propagation and integration of electrical signals in the nervous, muscular, and other systems. Their activation or malfunctioning plays a significant role in physiological and pathophysiological processes. Using optogenetics to dynamically and spatiotemporally control ion channels has recently attracted considerable attention. However, most of the established optogenetic tools (e.g., channelrhodopsins, ChRs) for optical manipulations, are mainly stimulated by UV or visible light, which raises the concerns of potential photodamage, limited tissue penetration, and high-invasive implantation of optical fiber devices. Near-infrared (NIR) upconversion nanoparticle (UCNP)-mediated optogenetic systems provide great opportunities for overcoming the problems encountered in the manipulation of ion channels in deep tissues. Hence, this review focuses on the recent advances in NIR regulation of membrane ion channels via upconversion optogenetics in biomedical research. The engineering and applications of upconversion optogenetic systems by the incorporation multiple emissive UCNPs into various light-gated ChRs/ligands are first elaborated, followed by a detailed discussion of the technical improvements for more precise and efficient control of membrane channels. Finally, the future perspectives for refining and advancing NIR-mediated upconversion optogenetics into in vivo even in clinical applications are proposed.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhijun Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
567
|
Miyazaki T, Chowdhury S, Yamashita T, Matsubara T, Yawo H, Yuasa H, Yamanaka A. Large Timescale Interrogation of Neuronal Function by Fiberless Optogenetics Using Lanthanide Micro-particles. Cell Rep 2019; 26:1033-1043.e5. [DOI: 10.1016/j.celrep.2019.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 10/08/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
|
568
|
Vaez Ghaemi R, Co IL, McFee MC, Yadav VG. Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. ACTA ACUST UNITED AC 2019; 3:e1800174. [PMID: 32627343 DOI: 10.1002/adbi.201800174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Indexed: 12/22/2022]
Abstract
Brain organoids are self-assembled, three-dimensionally structured tissues that are typically derived from pluripotent stem cells. They are multicellular aggregates that more accurately recapitulate the tissue microenvironment compared to the other cell culture systems and can also reproduce organ function. They are promising models for evaluating drug leads, particularly those that target neurodegeneration, since they are genetically and phenotypically stable over prolonged durations of culturing and they reasonably reproduce critical physiological phenomena such as biochemical gradients and responses by the native tissue to stimuli. Beyond drug discovery, the use of brain organoids could also be extended to investigating early brain development and identifying the mechanisms that elicit neurodegeneration. Herein, the current state of the fabrication and use of brain organoids in drug development and medical research is summarized. Although the use of brain organoids represents a quantum leap over existing investigational tools used by the pharmaceutical industry, they are nonetheless imperfect systems that could be greatly improved through bioengineering. To this end, some key scientific challenges that would need to be addressed in order to enhance the relevance of brain organoids as model tissue are listed. Potential solutions to these challenges, including the use of bioprinting, are highlighted thereafter.
Collapse
Affiliation(s)
- Roza Vaez Ghaemi
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ileana L Co
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Matthew C McFee
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
569
|
Izquierdo A, Aguirre C, Hart EE, Stolyarova A. Rodent Models of Adaptive Value Learning and Decision-Making. Methods Mol Biol 2019; 2011:105-119. [PMID: 31273696 DOI: 10.1007/978-1-4939-9554-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Real-world decisions are rarely as straightforward as choosing between clearly "good" vs. "bad" options. More often, options must be evaluated carefully because they differ in relative value. For example, we typically learn about (and make decisions between) options in comparison, where one outcome may be more costly or risky than the other. Several neuropsychiatric conditions are characterized by atypical evaluation of effort and risk costs, including major depression, schizophrenia, autism, obsessive-compulsive disorder, and substance use disorders. Aberrant value learning and decision-making have long been considered a cognitive-behavioral endophenotype of these disorders and can be modeled in rodents. This chapter presents two general methodological domains that the experimenter can manipulate in animal decision-making tasks: risk and effort. Here, we present detailed methods of rodent tasks frequently employed within these domains: probabilistic reversal learning (PRL) and effort choice. These tasks recruit regions within rodent frontal cortex, the amygdala, and the striatum, and performance is heavily modulated by dopamine, making these assays highly valid measures in the study of behavioral and substance addictions, in particular.
Collapse
Affiliation(s)
- Alicia Izquierdo
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA. .,The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA. .,Integrative Center for Learning and Memory, University of California at Los Angeles, Los Angeles, CA, USA. .,Integrative Center for Addictions, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Claudia Aguirre
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Evan E Hart
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alexandra Stolyarova
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
570
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
571
|
Desjardins M, Kılıç K, Thunemann M, Mateo C, Holland D, Ferri CGL, Cremonesi JA, Li B, Cheng Q, Weldy KL, Saisan PA, Kleinfeld D, Komiyama T, Liu TT, Bussell R, Wong EC, Scadeng M, Dunn AK, Boas DA, Sakadžić S, Mandeville JB, Buxton RB, Dale AM, Devor A. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:533-542. [PMID: 30691968 DOI: 10.1016/j.bpsc.2018.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) in awake behaving mice is well positioned to bridge the detailed cellular-level view of brain activity, which has become available owing to recent advances in microscopic optical imaging and genetics, to the macroscopic scale of human noninvasive observables. However, though microscopic (e.g., two-photon imaging) studies in behaving mice have become a reality in many laboratories, awake mouse fMRI remains a challenge. Owing to variability in behavior among animals, performing all types of measurements within the same subject is highly desirable and can lead to higher scientific rigor. METHODS We demonstrated blood oxygenation level-dependent fMRI in awake mice implanted with long-term cranial windows that allowed optical access for microscopic imaging modalities and optogenetic stimulation. We started with two-photon imaging of single-vessel diameter changes (n = 1). Next, we implemented intrinsic optical imaging of blood oxygenation and flow combined with laser speckle imaging of blood flow obtaining a mesoscopic picture of the hemodynamic response (n = 16). Then we obtained corresponding blood oxygenation level-dependent fMRI data (n = 5). All measurements could be performed in the same mice in response to identical sensory and optogenetic stimuli. RESULTS The cranial window did not deteriorate the quality of fMRI and allowed alternation between imaging modalities in each subject. CONCLUSIONS This report provides a proof of feasibility for multiscale imaging approaches in awake mice. In the future, this protocol could be extended to include complex cognitive behaviors translatable to humans, such as sensory discrimination or attention.
Collapse
Affiliation(s)
- Michèle Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, California.
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Martin Thunemann
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, California
| | - Dominic Holland
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Christopher G L Ferri
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Jonathan A Cremonesi
- Biology Undergraduate Program, University of California, San Diego, La Jolla, California
| | - Baoqiang Li
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Qun Cheng
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Kimberly L Weldy
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Payam A Saisan
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California; Section of Neurobiology, University of California, San Diego, La Jolla, California; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California
| | - Takaki Komiyama
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Section of Neurobiology, University of California, San Diego, La Jolla, California
| | - Thomas T Liu
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Robert Bussell
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Eric C Wong
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Joseph B Mandeville
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Anna Devor
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| |
Collapse
|
572
|
Sakmar TP, Huber T. Ancient Family of Retinal Proteins Brought to Light "Sight-Unseen". Biochemistry 2018; 57:6735-6737. [PMID: 30499659 DOI: 10.1021/acs.biochem.8b01188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction , The Rockefeller University , 1230 York Avenue , New York , New York 10065 , United States
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction , The Rockefeller University , 1230 York Avenue , New York , New York 10065 , United States
| |
Collapse
|
573
|
Li G, Yang J, Wang Y, Wang W, Liu L. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities. NANOSCALE 2018; 10:21046-21051. [PMID: 30276394 DOI: 10.1039/c8nr05014g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optogenetic techniques have changed the landscape of neuroscience by offering high temporal and spatial mapping of the activities of genetically defined population of cells with optical controlling tools. The mapping of optogenetic activities demands optogenetic indicators whose optical properties change in response to cellular activities, but the existing optogenetic indicators only specifically characterize limited optogenetic activities. Here, we propose a novel optogenetic indicator based on cellular deformation to characterize the activities of optogenetically engineered cells. The cellular activities triggered by light stimulation lead to changes in the cell membrane structure and result in cellular deformation, which is measured by atomic force microscopy. The deformation recordings of the cells expressing channelrhodopsin-2 (ChR2) and the corresponding control experiments together confirm that the deformation is generated generally when the cells are exposed to light, which is also validated indirectly via the change in the Young's modulus of the cells before and after absorption of photons. The activities of cells expressing different subtypes of opsins were also recorded using the optogenetic indicator of cellular deformation. This study provides a novel and general optogenetic indicator based on cellular deformation for monitoring the activities of optogenetically engineered cells. Moreover, this new optogenetic indicator offers ever-better tools for the applications of optogenetic activity mapping and neural and brain imaging.
Collapse
Affiliation(s)
- Gongxin Li
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
574
|
de Boer WDAM, Hirtz JJ, Capretti A, Gregorkiewicz T, Izquierdo-Serra M, Han S, Dupre C, Shymkiv Y, Yuste R. Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. LIGHT, SCIENCE & APPLICATIONS 2018; 7:100. [PMID: 30534369 PMCID: PMC6279767 DOI: 10.1038/s41377-018-0103-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 05/05/2023]
Abstract
Optical activation of neurons requires genetic manipulation or the use of chemical photoactivators with undesirable side effects. As a solution to these disadvantages, here, we demonstrate optically evoked neuronal activity in mouse cortical neurons in acute slices and in vivo by nonlinear excitation of gold nanoparticles. In addition, we use this approach to stimulate individual epitheliomuscular cells and evoke body contractions in Hydra vulgaris. To achieve this, we use a low-power pulsed near-infrared excitation at the double-wavelength of the plasmon resonance of gold nanoparticles, which enables optical sectioning and allows for high spatial precision and large penetration depth. The effect is explained by second-harmonic Mie scattering, demonstrating light absorption by a second-order nonlinear process, which enables photothermal stimulation of the cells. Our approach also minimizes photodamage, demonstrating a major advancement towards precise and harmless photoactivation for neuroscience and human therapeutics.
Collapse
Affiliation(s)
- Wieteke D. A. M. de Boer
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Jan J. Hirtz
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Antonio Capretti
- Van der Waals–Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Tom Gregorkiewicz
- Van der Waals–Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Mercè Izquierdo-Serra
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
- Present Address: Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Shuting Han
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Christophe Dupre
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Yuriy Shymkiv
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
575
|
Alpár A, Harkany T. Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. J Intern Med 2018; 284:568-580. [PMID: 30027599 DOI: 10.1111/joim.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian hypothalamus contains an astounding heterogeneity of neurons to achieve its role in coordinating central responses to virtually any environmental stressor over the life-span of an individual. Therefore, while core features of intrahypothalamic neuronal modalities and wiring patterns are stable during vertebrate evolution, integration of the hypothalamus into hierarchical brain-wide networks evolved to coordinate its output with emotionality, cognition and conscious decision-making. The advent of single-cell technologies represents a recent milestone in the study of hypothalamic organization by allowing the dissection of cellular heterogeneity and establishing causality between opto- and chemogenetic activity modulation of molecularly-resolved neuronal contingents and specific behaviours. Thus, organizational rules to accumulate an unprecedented variety of hierarchical neuroendocrine command networks into a minimal brain volume are being unravelled. Here, we review recent understanding at nanoscale resolution on how neuronal heterogeneity in the mammalian hypothalamus underpins the diversification of hormonal and synaptic output and keeps those sufficiently labile for continuous adaptation to meet environmental demands. Particular emphasis is directed towards the dissection of neuronal circuitry for aggression and food intake. Mechanistic data encompass cell identities, synaptic connectivity within and outside the hypothalamus to link vegetative and conscious levels of innate behaviours, and context- and circadian rhythm-dependent rules of synaptic neurophysiology to distinguish hypothalamic foci that either tune the body's metabolic set-point or specify behaviours. Consequently, novel insights emerge to explain the evolutionary advantages of non-laminar organization for neuroendocrine circuits coincidently using fast neurotransmitters and neuropeptides. These are then accrued into novel therapeutic principles that meet therapeutic criteria for human metabolic diseases.
Collapse
Affiliation(s)
- A Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - T Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
576
|
Abstract
Drug addiction is a chronic, relapsing brain disorder. Multiple neural networks in the brain including the reward system (e.g., the mesocorticolimbic system), the anti-reward/stress system (e.g., the extended amygdala), and the central immune system, are involved in the development of drug addiction and relapse after withdrawal from drugs of abuse. Preclinical and clinical studies have demonstrated that it is promising to control drug addiction by pharmacologically targeting the addiction-related systems in the brain. Here we review the pharmacological targets within the dopamine system, glutamate system, trace amine system, anti-reward system, and central immune system, which are of clinical interests. Furthermore, we discuss other potential therapies, e.g., brain stimulation, behavioral treatments, and therapeutic gene modulation, which could be effective to treat drug addiction. We conclude that, although drug addiction is a complex disorder that involves complicated neural mechanisms and psychological processes, this mental disorder is treatable and may be curable by therapies such as gene modulation in the future.
Collapse
|
577
|
Jiao ZF, Shang CF, Wang YF, Yang Z, Yang C, Li FN, Xie JZ, Pan JW, Fu L, Du JL. All-optical imaging and manipulation of whole-brain neuronal activities in behaving larval zebrafish. BIOMEDICAL OPTICS EXPRESS 2018; 9:6154-6169. [PMID: 31065420 PMCID: PMC6491009 DOI: 10.1364/boe.9.006154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
All-optical interrogation of population neuron activity is a promising approach to deciphering the neural circuit mechanisms supporting brain functions. However, this interrogation is currently limited to local brain areas. Here, we incorporate patterned photo-stimulation into light-sheet microscopy, allowing simultaneous targeted optogenetic manipulation and brain-wide monitoring of the neuronal activities of head-restrained behaving larval zebrafish. Using this system, we photo-stimulate arbitrarily selected neurons (regions as small as ~10-20 neurons in 3D) in zebrafish larvae with pan-neuronal expression of a spectrally separated calcium indicator, GCaMP6f, and an activity actuator, ChrimsonR, and observe downstream neural circuit activation and behavior generation. This approach allows us to dissect the causal role of neural circuits in brain functions and behavior generation.
Collapse
Affiliation(s)
- Zhen-Fei Jiao
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- These authors contributed equally to this work
| | - Chun-Feng Shang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- These authors contributed equally to this work
| | - Yu-Fan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- These authors contributed equally to this work
| | - Zhe Yang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chen Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Fu-Ning Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jin-Ze Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jing-Wei Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
578
|
Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function. Nat Methods 2018; 15:1117-1125. [DOI: 10.1038/s41592-018-0221-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
|
579
|
Dalesio NM, Barreto Ortiz SF, Pluznick JL, Berkowitz DE. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front Physiol 2018; 9:1673. [PMID: 30542293 PMCID: PMC6278613 DOI: 10.3389/fphys.2018.01673] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many ‘non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Sebastian F Barreto Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
580
|
Ait Ouares K, Beurrier C, Canepari M, Laverne G, Kuczewski N. Opto nongenetics inhibition of neuronal firing. Eur J Neurosci 2018; 49:6-26. [PMID: 30387216 DOI: 10.1111/ejn.14251] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
Optogenetics is based on the selective expression of exogenous opsins by neurons allowing experimental control of their electrical activity using visible light. The interpretation of the results of optogenetic experiments is based on the assumption that light stimulation selectively acts on those neurons expressing the exogenous opsins without perturbing the activity of naive ones. Here, we report that light stimulation, of wavelengths and power in the range of those normally used in optogenetic experiments, consistently reduces the firing activity of naive Mitral Cells (MCs) and Tufted Neurons in the olfactory bulb as well as in Medium Spiny Neurons (MSNs) in the striatum. No such effect was observed for cerebellar Purkinje and hippocampal CA1 neurons. The effects on MC firing appear to be mainly due to a light-induced increase in tissue temperature, between 0.1 and 0.4°C, associated with the generation of a hyperpolarizing current and a modification of action potential (AP) shape. Therefore, light in the visible range can affect neuronal physiology in a cell-specific manner. Beside the implications for optogenetic studies, our results pave the way to investigating the use of visible light for therapeutic purposes in pathologies associated with neuronal hyperexcitability.
Collapse
Affiliation(s)
- Karima Ait Ouares
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France
| | - Corinne Beurrier
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France.,Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Marco Canepari
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France.,Institut National de la Santé et Recherche Médicale, Paris, France
| | | | - Nicola Kuczewski
- CNRS, UMR 5292, INSERM, U1028, Lyon, France.,Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, Lyon, France.,University Lyon, Lyon, Franc.,University Lyon1, Villeurbanne, France
| |
Collapse
|
581
|
Rossato JI, Moreno A, Genzel L, Yamasaki M, Takeuchi T, Canals S, Morris RGM. Silent Learning. Curr Biol 2018; 28:3508-3515.e5. [PMID: 30415706 DOI: 10.1016/j.cub.2018.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/14/2017] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
We introduce the concept of "silent learning"-the capacity to learn despite neuronal cell-firing being largely absent. This idea emerged from thinking about dendritic computation [1, 2] and examining whether the encoding, expression, and retrieval of hippocampal-dependent memory could be dissociated using the intrahippocampal infusion of pharmacological compounds. We observed that very modest enhancement of GABAergic inhibition with low-dose muscimol blocked both cell-firing and the retrieval of an already-formed memory but left induction of long-term potentiation (LTP) and new spatial memory encoding intact (silent learning). In contrast, blockade of hippocampal NMDA receptors by intrahippocampal D-AP5 impaired both the induction of LTP and encoding but had no effect on memory retrieval. Blockade of AMPA receptors by CNQX impaired excitatory synaptic transmission and cell-firing and both memory encoding and retrieval. Thus, in keeping with the synaptic plasticity and memory hypothesis [3], the hippocampal network can mediate new memory encoding when LTP induction is intact even under conditions in which somatic cell-firing is blocked.
Collapse
Affiliation(s)
- Janine I Rossato
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Andrea Moreno
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK; Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomonori Takeuchi
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Santiago Canals
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain
| | - Richard G M Morris
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK; Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
582
|
Elman I, Upadhyay J, Langleben DD, Albanese M, Becerra L, Borsook D. Reward and aversion processing in patients with post-traumatic stress disorder: functional neuroimaging with visual and thermal stimuli. Transl Psychiatry 2018; 8:240. [PMID: 30389908 PMCID: PMC6214971 DOI: 10.1038/s41398-018-0292-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
In patients with post-traumatic stress disorder (PTSD), a decrease in the brain reward function was reported in behavioral- and in neuroimaging studies. While pathophysiological mechanisms underlying this response are unclear, there are several lines of evidence suggesting over-recruitment of the brain reward regions by aversive stimuli rendering them unavailable to respond to reward-related content. The purpose of this study was to juxtapose brain responses to functional neuroimaging probes that reliably produce rewarding and aversive experiences in PTSD subjects and in healthy controls. The stimuli used were pleasant, aversive and neutral images selected from the International Affective Picture System (IAPS) along with pain-inducing heat applied to the dorsum of the left hand; all were administered during 3 T functional magnetic resonance imaging. Analyses of IAPS responses for the pleasant images revealed significantly decreased subjective ratings and brain activations in PTSD subjects that included striatum and medial prefrontal-, parietal- and temporal cortices. For the aversive images, decreased activations were observed in the amygdala and in the thalamus. PTSD and healthy subjects provided similar subjective ratings of thermal sensory thresholds and each of the temperatures. When 46 °C (hot) and 42 °C (neutral) temperatures were contrasted, voxelwise between-group comparison revealed greater activations in the striatum, amygdala, hippocampus and medial prefrontal cortex in the PTSD subjects. These latter findings were for the most part mirrored by the 44 vs. 42 °C contrast. Our data suggest different brain alterations patterns in PTSD, namely relatively diminished corticolimbic response to pleasant and aversive psychosocial stimuli in the face of exaggerated response to heat-related pain. The present findings support the hypothesis that brain sensitization to pain in PTSD may interfere with the processing of psychosocial stimuli whether they are of rewarding or aversive valence.
Collapse
Affiliation(s)
- Igor Elman
- Department of Psychiatry, Cooper Medical School, Rowan University, Glassboro, NJ, USA.
| | - Jaymin Upadhyay
- 000000041936754Xgrid.38142.3cCenter for Pain and the Brain, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Daniel D. Langleben
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Mark Albanese
- 000000041936754Xgrid.38142.3cCambridge Health Alliance, Harvard Medical School, Boston, MA USA
| | - Lino Becerra
- 000000041936754Xgrid.38142.3cCenter for Pain and the Brain, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - David Borsook
- 000000041936754Xgrid.38142.3cCenter for Pain and the Brain, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
583
|
Yu AJ, McDiarmid TA, Ardiel EL, Rankin CH. High-Throughput Analysis of Behavior Under the Control of Optogenetics in Caenorhabditis elegans. ACTA ACUST UNITED AC 2018; 86:e57. [DOI: 10.1002/cpns.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alex J. Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia; Vancouver British Columbia Canada
| | - Troy A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia; Vancouver British Columbia Canada
| | - Evan L. Ardiel
- Department of Molecular Biology, Massachusetts General Hospital; Boston Massachusetts
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia; Vancouver British Columbia Canada
- Department of Psychology, University of British Columbia; Vancouver, British Columbia Canada
| |
Collapse
|
584
|
Flores Á, Fullana MÀ, Soriano-Mas C, Andero R. Lost in translation: how to upgrade fear memory research. Mol Psychiatry 2018; 23:2122-2132. [PMID: 29298989 DOI: 10.1038/s41380-017-0006-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
We address some of the current limitations of translational research in fear memory and suggest alternatives that might help to overcome them. Appropriate fear responses are adaptive, but disruption of healthy fear memory circuits can lead to anxiety and fear-based disorders. Stress is one of the main environmental factors that can disrupt memory circuits and constitutes as a key factor in the etiopathology of these psychiatric conditions. Current therapies for anxiety and fear-based disorders have limited success rate, revealing a clear need for an improved understanding of their neurobiological basis. Although animal models are excellent for dissecting fear memory circuits and have driven tremendous advances in the field, translation of these findings into the clinic has been limited so far. Animal models of stress-induced pathological fear combined with powerful cutting-edge techniques would help to improve the translational value of preclinical studies. We also encourage combining animal and human research, including psychiatric patients in order to find new pharmacological targets with real therapeutic potential that will improve the extrapolation of the findings. Finally, we highlight novel neuroimaging approaches that improve our understanding of anxiety and fear-based disorders.
Collapse
Affiliation(s)
- África Flores
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miquel À Fullana
- FIDMAG Germanes Hospitalàries-CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- Department of Psychiatry, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Spain
- CIBERSAM-G17, Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Raül Andero
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain.
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
585
|
Han SY, Clarkson J, Piet R, Herbison AE. Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology 2018; 159:3822-3833. [PMID: 30304401 DOI: 10.1210/en.2018-00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022]
Abstract
Developments in optical imaging and optogenetics are transforming the functional investigation of neuronal networks throughout the brain. Recent studies in the neuroendocrine field have used genetic mouse models combined with a variety of light-activated optical tools as well as GCaMP calcium imaging to interrogate the neural circuitry controlling hormone secretion. The present review highlights the benefits and caveats of these approaches for undertaking both acute brain slice and functional studies in vivo. We focus on the use of channelrhodopsin and the inhibitory optogenetic tools, archaerhodopsin and halorhodopsin, in addition to GCaMP imaging of individual cells in vitro and neural populations in vivo using fiber photometry. We also address issues around the use of genetic vs viral delivery of encoded proteins to specific Cre-expressing cell populations, their quantification, and the use of conscious vs anesthetized animal models. To date, optogenetics and GCaMP imaging have proven useful in dissecting functional circuitry within the brain and are likely to become essential investigative tools for deciphering the different neural networks controlling hormone secretion.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
586
|
Ebbesen CL, Insanally MN, Kopec CD, Murakami M, Saiki A, Erlich JC. More than Just a "Motor": Recent Surprises from the Frontal Cortex. J Neurosci 2018; 38:9402-9413. [PMID: 30381432 PMCID: PMC6209835 DOI: 10.1523/jneurosci.1671-18.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Motor and premotor cortices are crucial for the control of movements. However, we still know little about how these areas contribute to higher-order motor control, such as deciding which movements to make and when to make them. Here we focus on rodent studies and review recent findings, which suggest that-in addition to motor control-neurons in motor cortices play a role in sensory integration, behavioral strategizing, working memory, and decision-making. We suggest that these seemingly disparate functions may subserve an evolutionarily conserved role in sensorimotor cognition and that further study of rodent motor cortices could make a major contribution to our understanding of the evolution and function of the mammalian frontal cortex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016,
- Center for Neural Science, New York University, New York, New York 10003
| | - Michele N Insanally
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Masayoshi Murakami
- Department of Neurophysiology, Division of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Akiko Saiki
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Jeffrey C Erlich
- New York University Shanghai, Shanghai, China 200122
- NYU-ECNU Institute for Brain and Cognitive Science at NYU Shanghai, Shanghai, China 200062, and
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China 200062
| |
Collapse
|
587
|
Wang X, Qiao Y, Dai Z, Sui N, Shen F, Zhang J, Liang J. Medium spiny neurons of the anterior dorsomedial striatum mediate reversal learning in a cell-type-dependent manner. Brain Struct Funct 2018; 224:419-434. [PMID: 30367246 DOI: 10.1007/s00429-018-1780-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022]
Abstract
The striatum has been implicated in the regulation of cognitive flexibility. Abnormalities in the anterior dorsomedial striatum (aDMS) are revealed in many mental disorders in which cognitive inflexibility is commonly observed. However, it remains poorly understood whether the aDMS plays a special role in flexible cognitive control and what the regulation pattern is in different neuronal populations. Based on the reversal learning task in mice, we showed that optogenetic activation in dopamine receptor 1-expressing medium spiny neurons (D1R-MSNs) of the aDMS impaired flexibility; meanwhile, suppressing these neurons facilitated behavioral performance. Conversely, D2R-MSN activation accelerated reversal learning, but it induced no change through neuronal suppression. The acquisition and retention of discrimination learning were unaffected by the manipulation of any type of MSN. Through bi-direct optogenetic modulation in D1R-MSNs of the same subject in a serial reversal learning task, we further revealed the function of D1R-MSNs during different stages of reversal learning, where inhibiting and exciting the same group of neurons reduced perseverative errors and increased regressive errors. Following D1R- and D2R-MSN activation in the aDMS, neuronal activity of the mediodorsal thalamus decreased and increased, respectively, in parallel with behavioral impairment and facilitation, but not as a direct result of the activation of the striatal MSNs. We propose that D1R- and D2R-MSN sub-populations in the aDMS exert opposing functions in cognitive flexibility regulation, with more important and complex roles of D1R-MSNs involved. Mental disorders with cognitive flexibility problems may feature an underlying functional imbalance in the aDMS' two types of neurons.
Collapse
Affiliation(s)
- Xingyue Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qiao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
588
|
Josselyn SA. The past, present and future of light-gated ion channels and optogenetics. eLife 2018; 7:42367. [PMID: 30343681 PMCID: PMC6197853 DOI: 10.7554/elife.42367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 01/15/2023] Open
Abstract
The discovery of the mechanisms underlying light-gated ion channels called channelrhodospins and the subsequent development of optogenetics illustrates how breakthroughs in science and technology can span multiple levels of scientific inquiry. Our knowledge of how channelrhodopsins work emerged from research at the microscopic level that investigated the structure and function of algal proteins. Optogenetics, on the other hand, exploits the power of channelrhodospins and similar proteins to investigate phenomena at the supra-macroscopic level, notably the neural circuits involved in animal behavior that may be relevant for understanding neuropsychiatric disease. This article is being published to celebrate Peter Hegemann, Karl Deisseroth and Ed Boyden receiving a 2018 Canada Gairdner International Award "for the discovery of light-gated ion channel mechanisms, and for the discovery of optogenetics, a technology that has revolutionized neuroscience".
Collapse
Affiliation(s)
- Sheena A Josselyn
- Program in Neurosciences
& Mental HealthHospital for Sick
ChildrenTorontoCanada
- Department of
PsychologyUniversity of
TorontoTorontoCanada
- Department of
PhysiologyUniversity of
TorontoTorontoCanada
- Institute of Medical
SciencesUniversity of
TorontoTorontoCanada
- Brain, Mind &
Consciousness ProgramCanadian Institute for Advanced
ResearchTorontoCanada
| |
Collapse
|
589
|
Understanding Colour Tuning Rules and Predicting Absorption Wavelengths of Microbial Rhodopsins by Data-Driven Machine-Learning Approach. Sci Rep 2018; 8:15580. [PMID: 30349075 PMCID: PMC6197263 DOI: 10.1038/s41598-018-33984-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/07/2018] [Indexed: 11/09/2022] Open
Abstract
The light-dependent ion-transport function of microbial rhodopsin has been widely used in optogenetics for optical control of neural activity. In order to increase the variety of rhodopsin proteins having a wide range of absorption wavelengths, the light absorption properties of various wild-type rhodopsins and their artificially mutated variants were investigated in the literature. Here, we demonstrate that a machine-learning-based (ML-based) data-driven approach is useful for understanding and predicting the light-absorption properties of microbial rhodopsin proteins. We constructed a database of 796 proteins consisting of microbial rhodopsin wildtypes and their variants. We then proposed an ML method that produces a statistical model describing the relationship between amino-acid sequences and absorption wavelengths and demonstrated that the fitted statistical model is useful for understanding colour tuning rules and predicting absorption wavelengths. By applying the ML method to the database, two residues that were not considered in previous studies are newly identified to be important to colour shift.
Collapse
|
590
|
Abstract
Understanding how activity patterns in specific neural circuits coordinate an animal’s behavior remains a key area of neuroscience research. Genetic tools and a brain of tractable complexity make Drosophila a premier model organism for these studies. Here, we review the wealth of reagents available to map and manipulate neuronal activity with light.
Collapse
|
591
|
Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi‐Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700931. [PMID: 30356969 PMCID: PMC6193179 DOI: 10.1002/advs.201700931] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/24/2018] [Indexed: 05/22/2023]
Abstract
At the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities. The resulting advances have been made possible by the emergence of conformal and soft electronic materials that can readily integrate with the curvilinear, dynamic, delicate, and flexible human body. This article discusses the recent rapid pace of development in the field of cybernetics with special emphasis on the important role that flexible and electrically active materials have played therein.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Sara Bagherifard
- Department of Mechanical EngineeringPolitecnico di Milano20156MilanItaly
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Ashish Thakur
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Bahram Mirani
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Mohammad Mehrali
- Process and Energy DepartmentDelft University of TechnologyLeeghwaterstraat 392628CBDelftThe Netherlands
| | - Masoud Hasany
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
| | - Paramita Das
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jenny Emneus
- Technical University of DenmarkDTU Nanotech2800KgsDenmark
| | - Thomas L. Andresen
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | | |
Collapse
|
592
|
Kilias A, Canales A, Froriep UP, Park S, Egert U, Anikeeva P. Optogenetic entrainment of neural oscillations with hybrid fiber probes. J Neural Eng 2018; 15:056006. [PMID: 29923505 PMCID: PMC6125198 DOI: 10.1088/1741-2552/aacdb9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Optogenetic modulation of neural activity is a ubiquitous tool for basic investigation of brain circuits. While the majority of optogenetic paradigms rely on short light pulses to evoke synchronized activity of optically sensitized cells, many neurobiological processes are associated with slow local field potential (LFP) oscillations. Therefore, we developed a hybrid fiber probe capable of simultaneous electrophysiological recording and optical stimulation and used it to investigate the utility of sinusoidal light stimulation for evoking oscillatory neural activity in vivo across a broad frequency range. APPROACH We fabricated hybrid fiber probes comprising a hollow cylindrical array of 9 electrodes and a flexible optical waveguide integrated within the core. We implanted these probes in the hippocampus of transgenic Thy1-ChR2-YFP mice that broadly express the blue-light sensitive cation channel channelrhodopsin 2 (ChR2) in excitatory neurons across the brain. The effects of the sinusoidal light stimulation were characterized and contrasted with those corresponding to pulsed stimulation in the frequency range of physiological LFP rhythms (3-128 Hz). MAIN RESULTS Within hybrid probes, metal electrode surfaces were vertically aligned with the waveguide tip, which minimized optical stimulation artifacts in neurophysiological recordings. Sinusoidal stimulation resulted in reliable and coherent entrainment of LFP oscillations up to 70 Hz, the cutoff frequency of ChR2, with response amplitudes inversely scaling with the stimulation frequencies. Effectiveness of the stimulation was maintained for two months following implantation. SIGNIFICANCE Alternative stimulation patterns complementing existing pulsed protocols, in particular sinusoidal light stimulation, are a prerequisite for investigating the physiological mechanisms underlying brain rhythms. So far, studies applying sinusoidal stimulation in vivo were limited to single stimulation frequencies. We show the feasibility of sinusoidal stimulation in vivo to induce coherent LFP oscillations across the entire frequency spectrum supported by the gating dynamics of ChR2 and introduce a hybrid fiber probe tailored to continuous light stimulation.
Collapse
Affiliation(s)
- Antje Kilias
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Biomicrotechnology, Institute for Microsystems Engineering, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ulrich P. Froriep
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Simons Center for the Social Brain, Massachusetts Institute of Technology, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Seongjun Park
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ulrich Egert
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Biomicrotechnology, Institute for Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
593
|
Hutchinson MR, Stoddart PR, Mahadevan-Jansen A. Challenges and opportunities in neurophotonics discussed at the International Conference on Biophotonics 2017. NEUROPHOTONICS 2018; 5:040402. [PMID: 30450362 PMCID: PMC6225684 DOI: 10.1117/1.nph.5.4.040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Neurophotonics is an exploding field that spans the intersection of light and neurons for fundamental discovery and clinical translation. Optical technologies have significantly impacted brain research by probing into the mysteries of the brain, modulating brain activity, and improving patient care. Based on a discussion held at the International Conference on Biophotonics 2017, a group of leading researchers brainstormed to identify areas of unmet need in neuroscience and medicine, where biophotonics research could have the highest affect. We present two areas of future growth that spans basic research and clinical needs: management of chronic pain and interventional neuroimmunology. There are many directions within these areas that could be pursued for the ultimate goal of improved understanding of the brain and enhanced care of patients with neurological disorders.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- University of Adelaide, ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Adelaide, Australia
| | - Paul R. Stoddart
- Swinburne University of Technology, ARC Training Center in Biodevices, Melbourne, Australia
| | - Anita Mahadevan-Jansen
- Vanderbilt University, Biophotonics Center and Department of Biomedical Engineering, Nashville, Tennessee, United States
| |
Collapse
|
594
|
Majumder R, Feola I, Teplenin AS, de Vries AA, Panfilov AV, Pijnappels DA. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. eLife 2018; 7:41076. [PMID: 30260316 PMCID: PMC6195347 DOI: 10.7554/elife.41076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the aforementioned hypothesis in silico, with subsequent in vitro validation in optogenetically modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system. From a spinning galaxy to a swarm of honeybees, rotating spirals are widespread in nature. Even within the muscles of the heart, waves of electrical activity sometimes rotate spirally, leading to irregular heart rhythms or arrhythmia – a condition that can be fatal. Irrespective of where they occur, spiral waves organize around a center or core with different biophysical properties compared to the rest of the medium. The properties of the core determine the overall dynamics of the spiral. This means that, theoretically, it should be possibly to completely control a spiral wave just by manipulating its core. Now, Majumder, Feola et al. have tested this long-standing hypothesis using a combination of computer modeling and experiments with single layers of rat heart cells grown in a laboratory. First, the heart cells were genetically modified so that their electrical properties could be altered with light; in other words, the cells were put under optical control. Next, by using of a narrow beam of light, Majumder, Feola et al. precisely controlled the electrical properties of a small number of cells, which then attracted and supported a rotating spiral wave by acting as its new core. Moving the light beam allowed the core of the spiral wave to be shifted too, meaning the spiral wave could now be steered along any desired path in the cell layer. Majumder, Feola et al. hope that these underlying principles may one day provide the basis of new treatments for irregular heartbeats that are more effective and less damaging to the heart than existing options. Yet first, more work is needed to translate these findings from single layers of cells to actual hearts.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander S Teplenin
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoine Af de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Gent University, Gent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Daniel A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
595
|
Kubota R, Nomura W, Iwasaka T, Ojima K, Kiyonaka S, Hamachi I. Chemogenetic Approach Using Ni(II) Complex-Agonist Conjugates Allows Selective Activation of Class A G-Protein-Coupled Receptors. ACS CENTRAL SCIENCE 2018; 4:1211-1221. [PMID: 30276255 PMCID: PMC6161059 DOI: 10.1021/acscentsci.8b00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 05/04/2023]
Abstract
Investigating individual G-protein-coupled receptors (GPCRs) involved in various signaling cascades can unlock a myriad of invaluable physiological findings. One of the promising strategies for addressing the activity of each subtype of receptor is to design chemical turn-on switches on the target receptors. However, valid methods to selectively control class A GPCRs, the largest receptor family encoded in the human genome, remain limited. Here, we describe a novel approach to chemogenetically manipulate activity of engineered class A GPCRs carrying a His4 tag, using metal complex-agonist conjugates (MACs). This manipulation is termed coordination tethering. With the assistance of coordination bonds, MACs showed 10-100-fold lower EC50 values in the engineered receptors, compared with wild-type receptors. Such coordination tethering enabled selective activation of β2-adrenoceptors and muscarinic acetylcholine receptors, without loss of natural receptor responses, in living mammalian cells, including primary cultured astrocytes. Our generalized, modular chemogenetic approach should facilitate more precise control and deeper understanding of individual GPCR signaling pathways in living systems.
Collapse
Affiliation(s)
- Ryou Kubota
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Nomura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Iwasaka
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kento Ojima
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
- E-mail:
| |
Collapse
|
596
|
Xu X, Du Z, Liu R, Li T, Zhao Y, Chen X, Yang Y. A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells. ACS Synth Biol 2018; 7:2045-2053. [PMID: 30157641 DOI: 10.1021/acssynbio.8b00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Light is a highly attractive actuator that allows spatiotemporal control of diverse cellular activities. In this study, we developed a single-component light-switchable gene expression system for yeast cells, termed yLightOn system. The yLightOn system is independent of exogenous cofactors, and exhibits more than a 500-fold ON/OFF ratio, extremely low leakage, fast expression kinetics, and high spatial resolution. We demonstrated the usefulness of the yLightOn system in regulating cell growth and cell cycle by stringently controlling the expression of His3 and ΔN Sic1 genes, respectively. Furthermore, we engineered a bidirectional expression module that allows the simultaneous control of the expression of two genes by light. With ClpX and ClpP as the reporters, the fast, quantitative, and spatially specific degradation of ssrA-tagged protein was observed. We suggest that this single-component optogenetic system will be immensely helpful in understanding cellular gene regulatory networks and in the design of robust genetic circuits for synthetic biology.
Collapse
Affiliation(s)
- Xiaopei Xu
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zhaoxia Du
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Renmei Liu
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Ting Li
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yuzheng Zhao
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xianjun Chen
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yi Yang
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| |
Collapse
|
597
|
Farrants H, Gutzeit VA, Acosta-Ruiz A, Trauner D, Johnsson K, Levitz J, Broichhagen J. SNAP-Tagged Nanobodies Enable Reversible Optical Control of a G Protein-Coupled Receptor via a Remotely Tethered Photoswitchable Ligand. ACS Chem Biol 2018; 13:2682-2688. [PMID: 30141622 DOI: 10.1021/acschembio.8b00628] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors (GPCRs) mediate the transduction of extracellular signals into complex intracellular responses. Despite their ubiquitous roles in physiological processes and as drug targets for a wide range of disorders, the precise mechanisms of GPCR function at the molecular, cellular, and systems levels remain partially understood. To dissect the function of individual receptor subtypes with high spatiotemporal precision, various optogenetic and photopharmacological approaches have been reported that use the power of light for receptor activation and deactivation. Here, we introduce a novel and, to date, most remote way of applying photoswitchable orthogonally remotely tethered ligands by using a SNAP-tag fused nanobody. Our nanobody-photoswitch conjugates can be used to target a green fluorescent protein-fused metabotropic glutamate receptor by either gene-free application of purified complexes or coexpression of genetically encoded nanobodies to yield robust, reversible control of agonist binding and subsequent downstream activation. By harboring and combining the selectivity and flexibility of both nanobodies and self-labeling proteins (or suicide enzymes), we set the stage for targeting endogenous receptors in vivo.
Collapse
Affiliation(s)
- Helen Farrants
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- École Polytechnique Fédérale de Lausanne, ISIC, SB, Laboratory of Protein Engineering, Av. Forel 2, 1015 Lausanne, Switzerland
| | - Vanessa A. Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10024, United States
| | - Amanda Acosta-Ruiz
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10024, United States
| | - Dirk Trauner
- Department of Chemistry, Ludwig Maximilians University of Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- École Polytechnique Fédérale de Lausanne, ISIC, SB, Laboratory of Protein Engineering, Av. Forel 2, 1015 Lausanne, Switzerland
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10024, United States
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- École Polytechnique Fédérale de Lausanne, ISIC, SB, Laboratory of Protein Engineering, Av. Forel 2, 1015 Lausanne, Switzerland
| |
Collapse
|
598
|
Tu CH, Yi HP, Hsieh SY, Lin HS, Yang CS. Overexpression of Different Types of Microbial Rhodopsins with a Highly Expressible Bacteriorhodopsin from Haloarcula marismortui as a Single Protein in E. coli. Sci Rep 2018; 8:14026. [PMID: 30232361 PMCID: PMC6145879 DOI: 10.1038/s41598-018-32399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Microbial rhodopsins (M-Rho) are found in Archaea, Bacteria and some species of Eukarya and serve as light-driven ion pumps or mediate phototaxis responses in various biological systems. We previously reported an expression system using a highly expressible mutant, D94N-HmBRI (HEBR) from Haloarcula marismortui, as a leading tag to assist in the expression of membrane proteins that were otherwise difficult to express in E. coli. In this study, we show a universal strategy for the expression of two M-Rho proteins, either the same or different types, as one fusion protein with the HEBR system. One extra transmembrane domain was engineered to the C-terminal of HEBR to express another target M-Rho. The average expression yield in this new system reached a minimum of 2 mg/L culture, and the maximum absorbance of the target M-Rho remained unaltered in the fusion forms. The fusion protein showed a combined absorbance spectrum of a lone HEBR and target M-Rho. The function of the target M-Rho was not affected after examination with functional tests, including the photocycle and proton pumping activity of fusion proteins. In addition, an otherwise unstable sensory rhodopsin, HmSRM, showed the same or even improved stability under various temperatures, salt concentrations, and a wide range of pH conditions. This HEBR platform provides the possibility to construct multi-functional, stoichiometric and color-tuning fusion proteins using M-Rho from haloarchaea.
Collapse
Affiliation(s)
- Cheng-Hong Tu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hsiu-Ping Yi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Shiang-Yuan Hsieh
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hong-Syuan Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan.
| |
Collapse
|
599
|
Goncalves SB, Palha JM, Fernandes HC, Souto MR, Pimenta S, Dong T, Yang Z, Ribeiro JF, Correia JH. LED Optrode with Integrated Temperature Sensing for Optogenetics. MICROMACHINES 2018; 9:E473. [PMID: 30424406 PMCID: PMC6187356 DOI: 10.3390/mi9090473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 12/02/2022]
Abstract
In optogenetic studies, the brain is exposed to high-power light sources and inadequate power density or exposure time can cause cell damage from overheating (typically temperature increasing of 2 ∘ C). In order to overcome overheating issues in optogenetics, this paper presents a neural tool capable of assessing tissue temperature over time, combined with the capability of electrical recording and optical stimulation. A silicon-based 8 mm long probe was manufactured to reach deep neural structures. The final proof-of-concept device comprises a double-sided function: on one side, an optrode with LED-based stimulation and platinum (Pt) recording points; and, on the opposite side, a Pt-based thin-film thermoresistance (RTD) for temperature assessing in the photostimulation site surroundings. Pt thin-films for tissue interface were chosen due to its biocompatibility and thermal linearity. A single-shaft probe is demonstrated for integration in a 3D probe array. A 3D probe array will reduce the distance between the thermal sensor and the heating source. Results show good recording and optical features, with average impedance magnitude of 371 k Ω , at 1 kHz, and optical power of 1.2 mW·mm - 2 (at 470 nm), respectively. The manufactured RTD showed resolution of 0.2 ∘ C at 37 ∘ C (normal body temperature). Overall, the results show a device capable of meeting the requirements of a neural interface for recording/stimulating of neural activity and monitoring temperature profile of the photostimulation site surroundings, which suggests a promising tool for neuroscience research filed.
Collapse
Affiliation(s)
- S Beatriz Goncalves
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - José M Palha
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Helena C Fernandes
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Márcio R Souto
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Sara Pimenta
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Tao Dong
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Institute for Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway (USN), Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - João F Ribeiro
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - José H Correia
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| |
Collapse
|
600
|
X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Sci Rep 2018; 8:13123. [PMID: 30177765 PMCID: PMC6120890 DOI: 10.1038/s41598-018-31370-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 11/12/2022] Open
Abstract
Bacteriorhodopsin (bR) of Halobacterium salinarum is a membrane protein that acts as a light-driven proton pump. bR and its homologues have recently been utilized in optogenetics and other applications. Although the structures of those have been reported so far, the resolutions are not sufficient for elucidation of the intrinsic structural features critical to the color tuning and ion pumping properties. Here we report the accurate crystallographic analysis of bR in the ground state. The influence of X-rays was suppressed by collecting the data under a low irradiation dose at 15 K. Consequently, individual atoms could be separately observed in the electron density map at better than 1.3 Å resolution. Residues from Thr5 to Ala233 were continuously constructed in the model. The twist of the retinal polyene was determined to be different from those in the previous models. Two conformations were observed for the proton release region. We discuss the meaning of these fine structural features.
Collapse
|