551
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
552
|
Yin J, Ren Y, Yang K, Wang W, Wang T, Xiao W, Yang H. The role of hypoxia-inducible factor 1-alpha in inflammatory bowel disease. Cell Biol Int 2021; 46:46-51. [PMID: 34658125 DOI: 10.1002/cbin.11712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) develops as a result of a combination of genetic predisposition, dysbiosis of the gut microbiota, and environmental influences, which is mainly represented by ulcerative colitis (UC) and Crohn's disease (CD). IBDs can result in inflammatory hypoxia by causing intestinal inflammation and vascular damage. The hypoxia-inducible factor 1-alpha (HIF-1α), as a transcription factor, can regulate the cellular adaptation to low oxygen levels and support the development and function of the gut barrier. HIF-αplays its functions through translocating into the nucleus, dimerizing with HIF-1β, and binding to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in murine models of IBD. In this review, we aim to outline the major roles of HIF-1α in the IBD.
Collapse
Affiliation(s)
- Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yanbei Ren
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Kunqiu Yang
- Department of General Surgery, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Ting Wang
- Nursing Department, Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| |
Collapse
|
553
|
Wu Y, Xu H, Tu X, Gao Z. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front Microbiol 2021; 12:730809. [PMID: 34650536 PMCID: PMC8506212 DOI: 10.3389/fmicb.2021.730809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, and its development involves multiple mechanisms. Gut microbiota has been reported to be closely linked to hypertension. Short-chain fatty acids (SCFAs)-the metabolites of gut microbiota-participate in hypertension development through various pathways, including specific receptors, immune system, autonomic nervous system, metabolic regulation and gene transcription. This article reviews the possible mechanisms of SCFAs in regulating blood pressure and the prospects of SCFAs as a target to prevent and treat hypertension.
Collapse
Affiliation(s)
- Yeshun Wu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hongqing Xu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaoming Tu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhenyan Gao
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
554
|
Sun Y, Zhang Z, Cheng L, Zhang X, Liu Y, Zhang R, Weng P, Wu Z. Polysaccharides confer benefits in immune regulation and multiple sclerosis by interacting with gut microbiota. Food Res Int 2021; 149:110675. [PMID: 34600677 DOI: 10.1016/j.foodres.2021.110675] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pharmacological and clinical studies have consistently demonstrated that polysaccharides exhibit great potential on immune regulation. Polysaccharides can interact directly or indirectly with the immune system, triggering cell-cell communication and molecular recognition, leading to immunostimulatory responses. Gut microbiota is adept at foraging polysaccharides as energy sources and confers benefits in the context of immunity and chronic autoimmune disease, such as multiple sclerosis. A compelling set of interconnectedness between the gut microbiota, natural polysaccharides, and immune regulation has emerged. In this review, we highlighted the available avenues supporting the existence of these interactions, with a focus on cytokines-mediated and SCFAs-mediated pathways. Additionally, the neuroimmune mechanisms for gut microbiota communication with the brain in multiple sclerosis are also discussed, which will lay the ground for ameliorate multiple sclerosis via polysaccharide intervention.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhepeng Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Lu Cheng
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
555
|
Zhou Z, Cao J, Liu X, Li M. Evidence for the butyrate metabolism as key pathway improving ulcerative colitis in both pediatric and adult patients. Bioengineered 2021; 12:8309-8324. [PMID: 34592880 PMCID: PMC8806981 DOI: 10.1080/21655979.2021.1985815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence has shown many similarities and differences of gene profiles and pathways between pediatric and adult ulcerative colitis (UC) patients. In this study, we aimed to investigate the shared genes and pathways in intestinal tissues of pediatric and adult UC. Differentially expressed genes (DEGs) between pediatric and adult UC were identified via bioinformatic analysis of Gene Expression Omnibus datasets GSE87473 and GSE126124. Gene Ontology and pathway enrichment were used to analyze overlapped and distinguished DEGs. Gene Set Variation Analysis (GSVA) was utilized for contrast consistency. Mice colitis models were induced by dextran sulfate sodium (DSS) and Citrobacter rodentium. 2616 DEGs were screened out in intestinal tissues of adult UC compared with those of adult healthy controls, and 1195 DEGs in pediatrics. Same pathways between pediatric and adult UC were enriched using overlapped DEGs, mainly related to immune responses and metabolic processes, including butyrate metabolism, which was also identified by GSVA analysis. Of note, butyrate metabolism was the exclusive down-regulated pathway enriched by these two analyses, indicating that butyrate metabolism is one of the key pathways associated with both pediatric and adult UC. In addition, butyrate suppressed DSS-induced and Citrobacter rodentium-induced intestinal inflammation in mice. Therefore, the study revealed that butyrate metabolism was critical in both pediatric and adult UC. And butyrate suppressed colitis in mice, which provided a theoretical basis for the potential treatment of butyrate for UC patients. Abbreviations: UC, Ulcerative colitis; IBD, Inflammatory bowel disease; DEGs, Differentially expressed genes; GEO, Gene Expression Omnibus; SVA, Spatial variant apodization; LIMMA, Linear models for the microarray data; FC, Fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene Set Variation Analysis; MSigDB, Molecular Signatures Database; WT, Wild-type; DSS, Dextran sulfate sodium; HC, Healthy control; SD, Standard deviation; SNHG5, Small nucleolar RNA host gene 5; GLP-2, Glucagon-like peptide 2; GSE, Gene set enrichment; ECM, Extracellular matrix; TCA, Tricarboxylic acid cycle; NA, Not available.
Collapse
Affiliation(s)
- Zheng Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, China
| | - Xiaoming Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.,Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510000, China
| |
Collapse
|
556
|
Bishai JD, Palm NW. Small Molecule Metabolites at the Host-Microbiota Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1725-1733. [PMID: 34544815 PMCID: PMC8500551 DOI: 10.4049/jimmunol.2100528] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023]
Abstract
The trillions of bacteria that constitutively colonize the human gut collectively generate thousands of unique small molecules. These microbial metabolites can accumulate both locally and systemically and potentially influence nearly all aspects of mammalian biology, including immunity, metabolism, and even mood and behavior. In this review, we briefly summarize recent work identifying bioactive microbiota metabolites, the means through which they are synthesized, and their effects on host physiology. Rather than offering an exhaustive list of all known bioactive microbial small molecules, we select a few examples from each key class of metabolites to illustrate the diverse impacts of microbiota-derived compounds on the host. In addition, we attempt to address the microbial logic behind specific biotransformations. Finally, we outline current and emerging strategies for identifying previously undiscovered bioactive microbiota metabolites that may shape human health and disease.
Collapse
Affiliation(s)
- Jason D Bishai
- Department of Microbial Pathogenesis, Yale School of Medicine, Yale University, New Haven, CT; and
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
557
|
Microbiota and Its Impact on the Immune System in COVID-19-A Narrative Review. J Clin Med 2021; 10:jcm10194537. [PMID: 34640553 PMCID: PMC8509181 DOI: 10.3390/jcm10194537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The microbiota is of interest for the development of a therapeutic strategy against SARS-CoV-2 coronavirus disease 2019 (COVID-19) due to its impact on the host immune system. Proven communications of the gut microbiota with the pulmonary microbiota (gut-lung axis) and the pathway of neural connections between the gut and brain (gut-brain axis) may be important in the face of the pandemic. SARS-CoV-2 was shown to affect almost all organs because of the presence of a host receptor known as angiotensin converting enzyme 2 (ACE2). The ACE2 receptor is mainly present in the brush border of intestinal enterocytes, ciliary cells, and type II alveolar epithelial cells in the lungs. The transport function of ACE2 has been linked to the ecology of gut microbes in the digestive tract, suggesting that COVID-19 may be related to the gut microbiota. The severity of COVID-19 may be associated with a number of comorbidities, such as hypertension, diabetes, obesity, and/or old age; therefore, attention is also paid to multiple morbidities and the modulation of microbiota through comorbidities and medications. This paper reviews the research in the context of the state of the intestinal microbiota and its impact on the cells of the immune system during the SARS-CoV-2 pandemic.
Collapse
|
558
|
Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants (Basel) 2021; 10:antiox10101563. [PMID: 34679698 PMCID: PMC8533511 DOI: 10.3390/antiox10101563] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary components have an important role on the structure and function of host gut microbial communities. Even though, various dietary components, such as carbohydrates, fats, proteins, fibers, and vitamins, have been studied in depth for their effect on gut microbiomes, little attention has been paid regarding the impact of several food antioxidants on the gut microbiome. The long-term exposure to reactive oxygen species (ROS) can cause microbial dysbiosis which leads to numerous intestinal diseases such as microbiota dysbiosis, intestinal injury, colorectal cancers, enteric infections, and inflammatory bowel diseases. Recently, it has been shown that the food derived antioxidant compounds might protect the host from intestinal oxidative stress via modulating the composition of beneficial microbial species in the gut. The present review summarizes the impact of food antioxidants including antioxidant vitamins, dietary polyphenols, carotenoids, and bioactive peptides on the structure as well as function of host gut microbial communities. Several in vitro, animal model, and clinical studies indicates that food antioxidants might modify the host gut microbial communities and their health status. However, still further clarification is needed as to whether changes in certain microbial species caused by food additives may lead to changes in metabolism and immune function.
Collapse
|
559
|
Yuan X, Xue J, Tan Y, Yang Q, Qin Z, Bao X, Li S, Pan L, Jiang Z, Wang Y, Lou Y, Jiang L, Du J. Albuca Bracteate Polysaccharides Synergistically Enhance the Anti-Tumor Efficacy of 5-Fluorouracil Against Colorectal Cancer by Modulating β-Catenin Signaling and Intestinal Flora. Front Pharmacol 2021; 12:736627. [PMID: 34552494 PMCID: PMC8450769 DOI: 10.3389/fphar.2021.736627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
The first-line treatment for colorectal cancer (CRC) is 5-fluorouracil (5-FU). However, the efficacy of this treatment is sometimes limited owing to chemoresistance as well as treatment-associated intestinal mucositis and other adverse events. Growing evidence suggests that certain phytochemicals have therapeutic and cancer-preventing properties. Further, the synergistic interactions between many such plant-derived products and chemotherapeutic drugs have been linked to improved therapeutic efficacy. Polysaccharides extracted from Albuca bracteata (Thunb.) J.C.Manning and Goldblatt (ABP) have been reported to exhibit anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, murine CRC cells (CT26) and a murine model of CRC were used to examine the anti-tumor properties of ABP and explore the mechanism underlying the synergistic interactions between ABP and 5-FU. Our results revealed that ABP could inhibit tumor cell proliferation, invasion, and migratory activity in vitro and inhibited tumor progression in vivo by suppressing β-catenin signaling. Additionally, treatment with a combination of ABP and 5-FU resulted in better outcomes than treatment with either agent alone. Moreover, this combination therapy resulted in the specific enrichment of Ruminococcus, Anaerostipes, and Oscillospira in the intestinal microbiota and increased fecal short-chain fatty acid (SCFA) levels (acetic acid, propionic acid, and butyric acid). The improvement in the intestinal microbiota and the increase in beneficial SCFAs contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Together, these data suggest that ABP exhibits anti-neoplastic activity and can effectively enhance the efficacy of 5-FU in CRC treatment. Therefore, further research on the application of ABP in the development of novel anti-tumor drugs and adjuvant compounds is warranted and could improve the outcomes of CRC patients.
Collapse
Affiliation(s)
- Xinyu Yuan
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiao Xue
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yingxia Tan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingguo Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ziyan Qin
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Bao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ziqing Jiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
560
|
Xie T, Jin F, Jia X, Mao H, Xu Y, Zhang S. High cellulose diet promotes intestinal motility through regulating intestinal immune homeostasis and serotonin biosynthesis. Biol Chem 2021; 403:279-292. [PMID: 34536342 DOI: 10.1515/hsz-2021-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
It is widely accepted dietary fiber intimately linked to inflammatory and nervous diseases, which often been described with altered gastrointestinal (GI) motility. However, how dose dietary fiber modulate inflammation and crosstalk influence GI function has not been explained in detail. We found fiber-free diet reduced intestinal motility, accompanied by upregulated proinflammatory immunocytes and inflammatory cytokines in colon of mice. We also discovered high-cellulose diet increased synthesis of serotonin and expression of neurotrophic factors, both of that have been reported involved in promoting intestinal motility. In addition, metabolomics analysis showed increased tryptophan metabolites in high-cellulose diet mice, which happened to be required for serotonin biosynthesis. Further analysis revealed high-cellulose diet changed the composition of gut microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes, consequently, concentration of short-chain fatty acids (SCFAs), especially acetate. Orally administration of acetate confirmed its modulating to serotonin synthesis, neurotrophic factors expression and immunocyte differentiation through regulating histone deacetylase (HDAC3) activity in colon. Together, our results demonstrated high-cellulose diet promote intestinal motility through regulating intestinal homeostasis and enteric nervous system by increasing acetate production and HDAC3 inhibition. Thus, rich cellulose diet or acetate supplement can be considered as dietary advice to improve clinically intestinal motility insufficiency.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Fa Jin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Xiaokun Jia
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Hengxu Mao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Yuting Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Shizhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| |
Collapse
|
561
|
Gu J, Sun R, Wang Q, Liu F, Tang D, Chang X. Standardized Astragalus Mongholicus Bunge- Curcuma Aromatica Salisb. Extract Efficiently Suppresses Colon Cancer Progression Through Gut Microbiota Modification in CT26-Bearing Mice. Front Pharmacol 2021; 12:714322. [PMID: 34531745 PMCID: PMC8438123 DOI: 10.3389/fphar.2021.714322] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Altered gut microbiota and a damaged colon mucosal barrier have been implicated in the development of colon cancer. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ACE) is a common herbal drug pair that widely used clinically to treat cancer. However, whether the anti-cancer effect of ACE is related to gut microbiota remains unclear yet. We standardized ACE and investigated the effects of ACE on tumour suppression and analyze the related mechanisms on gut microbiota in CT26 colon cancer-bearing mice in the present study. Firstly, four flavonoids (calycosin-7-glucoside, ononin, calycosin, formononetin) and three astragalosides (astragaloside A, astragaloside II, astragaloside I) riched in Astragalus mongholicus Bunge, three curcumins (bisdemethoxycurcumin, demethoxycurcumin, curcumin) and four essential oils (curdione, curzerene, germacrone and β-elemene) from Curcuma aromatica Salisb., in concentrations from 0.08 to 2.07 mg/g, were examined in ACE. Then the results in vivo studies indicated that ACE inhibited solid tumours, liver and spleen metastases of colon cancer while simultaneously reducing pathological tissue damage. Additionally, ACE regulated gut microbiota dysbiosis and the short chain fatty acid content in the gut, repaired intestinal barrier damage. ACE treatment suppressed the overgrowth of conditional pathogenic gut bacteria, including Escherichia-Shigella, Streptococcus and Enterococcus, while the probiotic gut microbiota like Lactobacillus, Roseburia, Prevotellaceae_UCG-001 and Mucispirillum were increased. More interestingly, the content level of SCFAs such as propionic acid and butyric acid was increased after ACE administration, which further mediates intestinal SDF-1/CXCR4 signalling pathway to repair the integrity of the intestinal barrier, decrease Cyclin D1 and C-myc expressions, eventually suppress the tumor the growth and metastasis of colon cancer. To sum up, the present study demonstrated that ACE could efficiently suppress colon cancer progression through gut microbiota modification, which may provide a new explanation of the mechanism of ACE against colon cancer.
Collapse
Affiliation(s)
- Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiaohan Wang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangwei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
562
|
Benner M, Lopez-Rincon A, Thijssen S, Garssen J, Ferwerda G, Joosten I, van der Molen RG, Hogenkamp A. Antibiotic Intervention Affects Maternal Immunity During Gestation in Mice. Front Immunol 2021; 12:685742. [PMID: 34512624 PMCID: PMC8428513 DOI: 10.3389/fimmu.2021.685742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pregnancy is a portentous stage in life, during which countless events are precisely orchestrated to ensure a healthy offspring. Maternal microbial communities are thought to have a profound impact on development. Although antibiotic drugs may interfere in these processes, they constitute the most frequently prescribed medication during pregnancy to prohibit detrimental consequences of infections. Gestational antibiotic intervention is linked to preeclampsia and negative effects on neonatal immunity. Even though perturbations in the immune system of the mother can affect reproductive health, the impact of microbial manipulation on maternal immunity is still unknown. Aim To assess whether antibiotic treatment influences maternal immunity during pregnancy. Methods Pregnant mice were treated with broad-spectrum antibiotics. The maternal gut microbiome was assessed. Numerous immune parameters throughout the maternal body, including placenta and amniotic fluid were investigated and a novel machine-learning ensemble strategy was used to identify immunological parameters that allow distinction between the control and antibiotic-treated group. Results Antibiotic treatment reduced diversity of maternal microbiota, but litter sizes remained unaffected. Effects of antibiotic treatment on immunity reached as far as the placenta. Four immunological features were identified by recursive feature selection to contribute to the most robust classification (splenic T helper 17 cells and CD5+ B cells, CD4+ T cells in mesenteric lymph nodes and RORγT mRNA expression in placenta). Conclusion In the present study, antibiotic treatment was able to affect the carefully coordinated immunity during pregnancy. These findings highlight the importance of inclusion of immunological parameters when studying the effects of medication used during gestation.
Collapse
Affiliation(s)
- Marilen Benner
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Gerben Ferwerda
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Renate G van der Molen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
563
|
Hou Y, Wang X, Zhang Y, Wang S, Meng X. Highland mate: Edible and functional foods in traditional medicine for the prevention and treatment of hypoxia-related symptoms. Curr Opin Pharmacol 2021; 60:306-314. [PMID: 34508939 DOI: 10.1016/j.coph.2021.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The highlands evoke both fascination and awe. Regardless of the reason to live in the highlands, symptoms related to altitude sickness are unbearable because of low atmospheric pressure, low oxygen concentration, strong ultraviolet radiation, cold, and psychological factors. Food and herbal medicines and/or health-care foods have protected highland dwellers owing to their multisystem regulation. These versatile products combine health-care properties with medical values by enhancing immunity, relieving physical fatigue, improving sleep, and augmenting hypoxia tolerance, with rare side effects. We therefore aimed to provide a more comprehensive analysis of these nutraceuticals, which can be used to prevent and treat symptoms of altitude hypoxia in the Chinese market. Finally, we dissect a new perspective for their promotion and development from molecular aspects.
Collapse
Affiliation(s)
- Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
564
|
Fei N, Choo-Kang C, Reutrakul S, Crowley SJ, Rae D, Bedu-Addo K, Plange-Rhule J, Forrester TE, Lambert EV, Bovet P, Riesen W, Korte W, Luke A, Layden BT, Gilbert JA, Dugas LR. Gut microbiota alterations in response to sleep length among African-origin adults. PLoS One 2021; 16:e0255323. [PMID: 34495955 PMCID: PMC8425534 DOI: 10.1371/journal.pone.0255323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are increasingly being characterized in modern society as contributing to a host of serious medical problems, including obesity and metabolic syndrome. Changes to the microbial community in the human gut have been reportedly associated with many of these cardiometabolic outcomes. In this study, we investigated the impact of sleep length on the gut microbiota in a large cohort of 655 participants of African descent, aged 25-45, from Ghana, South Africa (SA), Jamaica, and the United States (US). The sleep duration was self-reported via a questionnaire. Participants were classified into 3 sleep groups: short (<7hrs), normal (7-<9hrs), and long (≥9hrs). Forty-seven percent of US participants were classified as short sleepers and 88% of SA participants as long sleepers. Gut microbial composition analysis (16S rRNA gene sequencing) revealed that bacterial alpha diversity negatively correlated with sleep length (p<0.05). Furthermore, sleep length significantly contributed to the inter-individual beta diversity dissimilarity in gut microbial composition (p<0.01). Participants with both short and long-sleep durations exhibited significantly higher abundances of several taxonomic features, compared to normal sleep duration participants. The predicted relative proportion of two genes involved in the butyrate synthesis via lysine pathway were enriched in short sleep duration participants. Finally, co-occurrence relationships revealed by network analysis showed unique interactions among the short, normal and long duration sleepers. These results suggest that sleep length in humans may alter gut microbiota by driving population shifts of the whole microbiota and also specific changes in Exact Sequence Variants abundance, which may have implications for chronic inflammation associated diseases. The current findings suggest a possible relationship between disrupted sleep patterns and the composition of the gut microbiota. Prospective investigations in larger and more prolonged sleep researches and causally experimental studies are needed to confirm these findings, investigate the underlying mechanism and determine whether improving microbial homeostasis may buffer against sleep-related health decline in humans.
Collapse
Affiliation(s)
- Na Fei
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States of America
| | - Sirimon Reutrakul
- Department of Psychiatry & Behavioral Sciences, Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, United States of America
| | - Stephanie J. Crowley
- Department of Psychiatry & Behavioral Sciences, Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, United States of America
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Kweku Bedu-Addo
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacob Plange-Rhule
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Terrence E. Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V. Lambert
- Department of Physiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | - Walter Riesen
- University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | - Wolfgang Korte
- Center for Laboratory Medicine, Canton Hospital, St. Gallen, Switzerland
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States of America
| | - Brian T. Layden
- Department of Psychiatry & Behavioral Sciences, Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Jack A. Gilbert
- University of California San Diego, San Diego, California, United States of America
| | - Lara R. Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States of America
- Division of Epidemiology & Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
565
|
Tudela H, Claus SP, Saleh M. Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Front Cell Dev Biol 2021; 9:719072. [PMID: 34540837 PMCID: PMC8440917 DOI: 10.3389/fcell.2021.719072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The community of the diverse microorganisms residing in the gastrointestinal tract, known as the gut microbiota, is exceedingly being studied for its impact on health and disease. This community plays a major role in nutrient metabolism, maintenance of the intestinal epithelial barrier but also in local and systemic immunomodulation. A dysbiosis of the gut microbiota, characterized by an unbalanced microbial ecology, often leads to a loss of essential functions that may be associated with proinflammatory conditions. Specifically, some key microbes that are depleted in dysbiotic ecosystems, called keystone species, carry unique functions that are essential for the balance of the microbiota. In this review, we discuss current understanding of reported keystone species and their proposed functions in health. We also elaborate on current and future bioinformatics tools needed to identify missing functions in the gut carried by keystone species. We propose that the identification of such keystone species functions is a major step for the understanding of microbiome dynamics in disease and toward the development of microbiome-based therapeutics.
Collapse
Affiliation(s)
- Héloïse Tudela
- YSOPIA Bioscience, Bordeaux, France
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | | | - Maya Saleh
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
566
|
Yang Y, Li X, Yang Y, Shoaie S, Zhang C, Ji B, Wei Y. Advances in the Relationships Between Cow's Milk Protein Allergy and Gut Microbiota in Infants. Front Microbiol 2021; 12:716667. [PMID: 34484158 PMCID: PMC8415629 DOI: 10.3389/fmicb.2021.716667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cow's milk protein allergy (CMPA) is an immune response to cow's milk proteins, which is one of the most common food allergies in infants and young children. It is estimated that 2-3% of infants and young children have CMPA. The diet, gut microbiota, and their interactions are believed to be involved in the alterations of mucosal immune tolerance, which might lead to the development of CMPA and other food allergies. In this review, the potential molecular mechanisms of CMPA, including omics technologies used for analyzing microbiota, impacts of early microbial exposures on CMPA development, and microbiota-host interactions, are summarized. The probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and other modulation strategies for gut microbiota and the potential application of microbiota-based design of diets for the CMPA treatment are also discussed. This review not only summarizes the current studies about the interactions of CMPA with gut microbiota but also gives insights into the possible CMPA treatment strategies by modulating gut microbiota, which might help in improving the life quality of CMPA patients in the future.
Collapse
Affiliation(s)
- Yudie Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoqi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Yang
- Jing’an District Central Hospital of Shanghai, Jing’an Branch, Huashan Hospital, Fudan University, Shanghai, China
| | - Saeed Shoaie
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| | - Cheng Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
567
|
Gut Microbiota and Development of Vibrio cholerae-Specific Long-Term Memory B Cells in Adults after Whole-Cell Killed Oral Cholera Vaccine. Infect Immun 2021; 89:e0021721. [PMID: 34228490 PMCID: PMC8370679 DOI: 10.1128/iai.00217-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholera is a diarrheal disease caused by Vibrio cholerae that continues to be a major public health concern in populations without access to safe water. IgG- and IgA-secreting memory B cells (MBC) targeting the V. cholerae O-specific polysaccharide (OSP) correlate with protection from infection in persons exposed to V. cholerae and may be a major determinant of long-term protection against cholera. Shanchol, a widely used oral cholera vaccine (OCV), stimulates OSP MBC responses in only some people after vaccination, and the gut microbiota is a possible determinant of variable immune responses observed after OCV. Using 16S rRNA sequencing of feces from the time of vaccination, we compared the gut microbiota among adults with and without MBC responses to OCV. Gut microbial diversity measures were not associated with MBC isotype or OSP-specific responses, but individuals with a higher abundance of Clostridiales and lower abundance of Enterobacterales were more likely to develop an MBC response. We applied protein-normalized fecal supernatants of high and low MBC responders to THP-1-derived human macrophages to investigate the effect of microbial factors at the time of vaccination. Feces from individuals with higher MBC responses induced significantly different IL-1β and IL-6 levels than individuals with lower responses, indicating that the gut microbiota at the time of vaccination may "prime" the mucosal immune response to vaccine antigens. Our results suggest the gut microbiota could impact immune responses to OCVs, and further study of microbial metabolites as potential vaccine adjuvants is warranted.
Collapse
|
568
|
Chen Y, Chen YX. Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers (Basel) 2021; 13:4054. [PMID: 34439208 PMCID: PMC8394439 DOI: 10.3390/cancers13164054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.
Collapse
Affiliation(s)
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200001, China;
| |
Collapse
|
569
|
Schnepf D, Hernandez P, Mahlakõiv T, Crotta S, Sullender ME, Peterson ST, Ohnemus A, Michiels C, Gentle I, Dumoutier L, Reis CA, Diefenbach A, Wack A, Baldridge MT, Staeheli P. Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PLoS One 2021; 16:e0247738. [PMID: 34383769 PMCID: PMC8360596 DOI: 10.1371/journal.pone.0247738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
The commensal microbiota regulates susceptibility to enteric pathogens by fine-tuning mucosal innate immune responses, but how susceptibility to enteric viruses is shaped by the microbiota remains incompletely understood. Past reports have indicated that commensal bacteria may either promote or repress rotavirus replication in the small intestine of mice. We now report that rotavirus replicated more efficiently in the intestines of germ-free and antibiotic-treated mice compared to animals with an unmodified microbiota. Antibiotic treatment also facilitated rotavirus replication in type I and type III interferon (IFN) receptor-deficient mice, revealing IFN-independent proviral effects. Expression of interleukin-22 (IL-22) was strongly diminished in the intestine of antibiotic-treated mice. Treatment with exogenous IL-22 blocked rotavirus replication in microbiota-depleted wild-type and Stat1-/- mice, demonstrating that the antiviral effect of IL-22 in animals with altered microbiome is not dependent on IFN signaling. In antibiotic-treated animals, IL-22-induced a specific set of genes including Fut2, encoding fucosyl-transferase 2 that participates in the biosynthesis of fucosylated glycans which can mediate rotavirus binding. Interestingly, IL-22 also blocked rotavirus replication in antibiotic-treated Fut2-/- mice. Furthermore, IL-22 inhibited rotavirus replication in antibiotic-treated mice lacking key molecules of the necroptosis or pyroptosis pathways of programmed cell death. Taken together, our results demonstrate that IL-22 determines rotavirus susceptibility of antibiotic-treated mice, yet the IL-22-induced effector molecules conferring rotavirus resistance remain elusive.
Collapse
Affiliation(s)
- Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Pedro Hernandez
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Development and Homeostasis of Mucosal Tissues Group, Paris, France
| | - Tanel Mahlakõiv
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Meagan E. Sullender
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Stefan T. Peterson
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Camille Michiels
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ian Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Andreas Diefenbach
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Gemeinschaft, Berlin, Germany
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
570
|
Rosa Neto JC, Calder PC, Curi R, Newsholme P, Sethi JK, Silveira LS. The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes. Int J Mol Sci 2021; 22:ijms22168460. [PMID: 34445165 PMCID: PMC8395092 DOI: 10.3390/ijms22168460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and lymphocytes demonstrate metabolic plasticity, which is dependent partly on their state of activation and partly on the availability of various energy yielding and biosynthetic substrates (fatty acids, glucose, and amino acids). These substrates are essential to fuel-based metabolic reprogramming that supports optimal immune function, including the inflammatory response. In this review, we will focus on metabolism in macrophages and lymphocytes and discuss the role of fatty acids in governing the phenotype, activation, and functional status of these important cells. We summarize the current understanding of the pathways of fatty acid metabolism and related mechanisms of action and also explore possible new perspectives in this exciting area of research.
Collapse
Affiliation(s)
- Jose Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
- LIM-26, Hospital das Clínicas of the University of São Paulo, Sao Paulo 01246-903, Brazil
- Correspondence:
| | - Philip C. Calder
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK; (P.C.C.); (J.K.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil;
| | - Philip Newsholme
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Jaswinder K. Sethi
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK; (P.C.C.); (J.K.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Loreana S. Silveira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| |
Collapse
|
571
|
Jujube Powder Enhances Cyclophosphamide Efficiency against Murine Colon Cancer by Enriching CD8 + T Cells While Inhibiting Eosinophilia. Nutrients 2021; 13:nu13082700. [PMID: 34444860 PMCID: PMC8401958 DOI: 10.3390/nu13082700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclophosphamide (CTX) is widely applied in cancer treatment. However, the outcome is often compromised by lymphopenia, myelosuppression, and gut dysbiosis. Here, we used jujube powder to enhance CTX efficiency through nurturing gut microbiota in order to facilitate favorable metabolisms. It was observed that the oral administration of jujube powder enriched CD8+ T cells in mouse MC38 colon tumor microenvironment and increased the diversity of gut microbiota and the abundance of Bifidobacteriales, which is helpful to the production of butyrate in the cecum content. The application of jujube powder also stimulated the production of white blood cells, especially CD8+ T cells in peripheral and bone marrow, while inhibiting the growth of eosinophils in peripheral blood and the production of IL-7 and GM-CSF in serum. All these are conductive to the significant inhibition of the tumor growth, suggesting the high potential of nurturing gut microbiota with natural products for improving the efficiency of chemotherapy.
Collapse
|
572
|
Caballero-Flores G, Pickard JM, Núñez G. Regulation of Citrobacter rodentium colonization: virulence, immune response and microbiota interactions. Curr Opin Microbiol 2021; 63:142-149. [PMID: 34352594 DOI: 10.1016/j.mib.2021.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
Citrobacter rodentium is a mouse-specific pathogen commonly used to model infection by human Enteropathogenic Escherichia coli, an important cause of infant diarrhea and mortality worldwide. In the early phase of infection, C. rodentium overcomes competition by the gut microbiota for successful replication. Then, the pathogen uses a type three secretion system (T3SS) to inject effector proteins into intestinal epithelial cells and induce metabolic and inflammatory conditions that promote colonization of the intestinal epithelium. C. rodentium also elicits highly coordinated innate and adaptive immune responses in the gut that regulate pathogen colonization and eradication. In this review, we highlight recent work on the regulation and function of the C. rodentium T3SS, the mechanisms employed by the pathogen to evade competition by the microbiota, and the function of the host immune response against infection.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
573
|
Ngo VL, Gewirtz AT. Microbiota as a potentially-modifiable factor influencing COVID-19. Curr Opin Virol 2021; 49:21-26. [PMID: 34000641 PMCID: PMC8059947 DOI: 10.1016/j.coviro.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Impacts of respiratory tract viruses have long been appreciated to highly heterogeneous both between and within various populations. The SARS-CoV-2 pandemic, which is the first time that a pathogen's spread across the globe has been extensively monitored by direct detection of the pathogen itself rather just than the morbidity left in its wake, indicates such heterogeneity is not limited to outcomes of infections but whether infection of a particular host occurs at all. This suggests an important role for yet to be discovered environmental (i.e. non-genetic) factors that influence whether an exposure to the virus initiates a productive infection and, moreover, the severity of disease that results. This article discusses the emerging hypothesis that the composition of a host's commensal microbial communities, that is, its 'microbiome', may be one such determinant that influences outcomes following encounters with respiratory viral pathogens in general and SARS-CoV-2 in particular. Specifically, we will review the rationales and evidence that supports this hypothesis and, moreover, speculate as to possible approaches to manipulate microbiota to ameliorate disease induced by respiratory viral pathogens.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
574
|
Huo HJ, Chen SN, Laghari ZA, Li L, Hou J, Gan Z, Huang L, Li N, Nie P. Specific bioactivity of IL-22 in intestinal cells as revealed by the expression of IL-22RA1 in Mandarin fish, Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104107. [PMID: 33878363 DOI: 10.1016/j.dci.2021.104107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
IL-22, a multifunctional cytokine, acts as an important regulator in host immunity in mammals. IL-22 homologues have been characterized in several species of fish, with its expression found in multiple tissues/cells in fish, but its target cells have not been fully analyzed. In the present research, different organ/tissue isolated cells were examined for the expression of IL-22 and the induced IL-22 responses in mandarin fish. The mandarin fish IL-22 was found to be expressed in all these tested cells with high basal expression in intestinal cells. The HKLs showed low basal expression but significant increase in expression of IL-22 after LPS treatment or bacterial infection. Only intestinal cells showed response to IL-22 by enhanced expression of hepcidin, LEAP2 and IL-22BP, with unresponsiveness observed in other tested cells, which indicated the cell-specificity of IL-22 bioactivity in mandarin fish. One of the heterodimeric receptor components for IL-22, the IL-22RA1, was cloned in mandarin fish, with four tandem fibronectin type III (FNIII) domains identified in its extracellular part. IL-22RA1 exhibited an intestinal cell-specific expression pattern, although another receptor component of IL-22, IL-10R2, displayed constitutive expressions in all these tested cells. The present study reveals that the mandarin fish IL-22 exhibits its bioactivity in a cell-specific manner in intestinal cells, which is reflected in the restrictive expression of its receptor unit, IL-22RA1.
Collapse
Affiliation(s)
- Hui Jun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
575
|
Intestinal Microbial Metabolites in Ankylosing Spondylitis. J Clin Med 2021; 10:jcm10153354. [PMID: 34362137 PMCID: PMC8347740 DOI: 10.3390/jcm10153354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by inflammation of axial joints and the pelvis. It is known that intestinal dysbiosis may exert direct pathogenic effects on gut homeostasis and may act as a triggering factor for the host innate immune system to activate and cause inflammation in extraintestinal sites in the so-called "gut-joint axis", contributing to AS pathogenesis. However, although the intestinal microbiota's influence on the clinical manifestation of AS is widely accepted, the mechanisms mediating the cross-talk between the intestinal lumen and the immune system are still not completely defined. Recent evidence suggests that the metabolism of microbial species may be a source of metabolites and small molecules participating in the complex network existing between bacteria and host cells. These findings may give inputs for further research of novel pharmacological targets and pave the way to applying dietary interventions to prevent the onset and ameliorate the clinical presentation of the disease. In this review, we discuss the role of some of the biological mediators of microbial origin, with a particular focus on short-chain fatty acids, tryptophan and vitamin B derivatives, and their role in barrier integrity and type 3 immunity in the context of AS.
Collapse
|
576
|
Stockinger B. T cell subsets and environmental factors in Citrobacter rodentium infection. Curr Opin Microbiol 2021; 63:92-97. [PMID: 34298480 DOI: 10.1016/j.mib.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Infection with Citrobacter rodentium constitutes an attack on the intestinal barrier and results in concerted action by innate and adaptive immune responses to limit bacterial translocation and destroy those bacteria that have breached the intestinal barrier. Among the many immune cell types that are involved in the defence against this infection, Th17 cells as the major producers of the barrier protective cytokine IL-22 during the adaptive phase of the response are most numerous. Their extensive plasticity furthermore results in the production of additional cytokines that previously were ascribed to Th1 cells, such as IFNγ. The timely and coordinated repair of damaged epithelium requires input from environmental factors derived from diet and microbiota metabolism of tryptophan which are transmitted through the aryl hydrocarbon receptor (AHR). Thus, the combination of a robust immune response, coupled with intestinal stem cell differentiation guided by environmental factors, ensures resistance to barrier destruction by intestinal infection.
Collapse
|
577
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1164] [Impact Index Per Article: 291.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
578
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis. Food Funct 2021; 12:5703-5718. [PMID: 34048514 DOI: 10.1039/d0fo03468a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
579
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
580
|
Healey GR, Tsai K, Schick A, Lisko DJ, Cook L, Vallance BA, Jacobson K. Prebiotic Enriched Exclusive Enteral Nutrition Suppresses Colitis via Gut Microbiome Modulation and Expansion of Anti-inflammatory T Cells in a Mouse Model of Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:1251-1266. [PMID: 34214707 PMCID: PMC8453203 DOI: 10.1016/j.jcmgh.2021.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Exclusive enteral nutrition (EEN) is used to treat pediatric Crohn's disease (CD), but therapeutic benefits are variable, and EEN can lead to microbial dysbiosis. Because of reported lower efficacy EEN is not routinely used to treat pediatric ulcerative colitis (UC). Inulin-type fructans (IN) beneficially modulate the gut microbiome and promote expansion of anti-inflammatory immune cells. We hypothesized that enriching EEN with IN (EEN IN) would enhance treatment efficacy. To test this, we examined the effects of EEN IN on colitis development, the gut microbiome, and CD4+ T cells using an adoptive T-cell transfer model of colitis. METHODS TCR-β deficient (-/-) mice were randomized to 1 of 4 groups: (1) Control, (2) Chow, (3) EEN, and (4) EEN IN, and naive CD4+ T cells were adoptively transferred into groups 2-4, after which mice were monitored for 5 weeks before experimental endpoint. RESULTS Mice fed EEN IN showed greater colitis protection, with colonic shortening, goblet cell, and crypt density loss reduced compared with EEN fed mice and reduced disease activity and immune cell infiltration compared with chow fed mice, and less crypt hyperplasia and higher survival compared with both groups. EEN IN mice had less deterioration in the colonic mucus layer and had increased levels of Foxp3+IL-10+ and Rorγt+IL-22+ and reduced levels of Tbet+IFNγ+ and Tbet+TNF+ CD4+ T cells. EEN IN also led to higher butyrate concentrations, Bifidobacterium spp. and Anaerostipes caccae relative abundance, and lower [Clostridium] innocuum group spp. and Escherichia-Shigella spp. relative abundance. CONCLUSIONS The EEN IN group showed reduced colitis development as compared with the chow and EEN groups. This highlights the potential benefits of EEN IN as a novel induction therapy for pediatric CD and UC patients.
Collapse
Affiliation(s)
- Genelle R. Healey
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Gut4Health Microbiome Core Facility, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Kevin Tsai
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alana Schick
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Gut4Health Microbiome Core Facility, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Daniel J. Lisko
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Cook
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A. Vallance
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Gut4Health Microbiome Core Facility, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada,Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital, Vancouver, Canada,Correspondence Address correspondence to: Bruce A. Vallance, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada. Phone: (604) 875-2345 ext 5112.
| | - Kevan Jacobson
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital, Vancouver, Canada,Kevan Jacobson, MBBCh, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada. Phone: (604) 875-2332 ext 1.
| |
Collapse
|
581
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
582
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
583
|
Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci 2021; 22:6262. [PMID: 34200820 PMCID: PMC8230539 DOI: 10.3390/ijms22126262] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most frequently diagnosed carcinomas and one of the leading causes of cancer-related death worldwide. Metabolic reprogramming, a hallmark of cancer, is closely related to the initiation and progression of carcinomas, including CRC. Accumulating evidence shows that activation of oncogenic pathways and loss of tumor suppressor genes regulate the metabolic reprogramming that is mainly involved in glycolysis, glutaminolysis, one-carbon metabolism and lipid metabolism. The abnormal metabolic program provides tumor cells with abundant energy, nutrients and redox requirements to support their malignant growth and metastasis, which is accompanied by impaired metabolic flexibility in the tumor microenvironment (TME) and dysbiosis of the gut microbiota. The metabolic crosstalk between the tumor cells, the components of the TME and the intestinal microbiota further facilitates CRC cell proliferation, invasion and metastasis and leads to therapy resistance. Hence, to target the dysregulated tumor metabolism, the TME and the gut microbiota, novel preventive and therapeutic applications are required. In this review, the dysregulation of metabolic programs, molecular pathways, the TME and the intestinal microbiota in CRC is addressed. Possible therapeutic strategies, including metabolic inhibition and immune therapy in CRC, as well as modulation of the aberrant intestinal microbiota, are discussed.
Collapse
Affiliation(s)
| | | | | | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, University Hospital Jena, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
584
|
van den Bogaard EH, Esser C, Perdew GH. The aryl hydrocarbon receptor at the forefront of host-microbe interactions in the skin: A perspective on current knowledge gaps and directions for future research and therapeutic applications. Exp Dermatol 2021; 30:1477-1483. [PMID: 34105853 PMCID: PMC8518783 DOI: 10.1111/exd.14409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
The skin is home to a community of skin microbiota including bacteria, viruses and fungi, which are widely accepted to be of importance for skin homeostasis but also associated with skin diseases. Detailed knowledge on the skin microbiota composition and its changes in a number of skin diseases is available. Yet, specific interactions between microbes and the host skin cells or how they communicate with each other are less well understood. To identify, understand and eventually therapeutically exploit causal relationships of microbial dysbiosis with disease, studies are required that address the receptors and mediators involved in host‐microbe interactions. In this perspective article, we provide an outlook on one of such receptors, namely the aryl hydrocarbon receptor (AHR). The AHR is well known for being a ligand‐activated transcription factor regulating the proliferation, differentiation and function of many cell types present in the skin. Its targeting by anti‐inflammatory therapeutics such as coal tar and Tapinarof is effective in atopic dermatitis and psoriasis. AHR signalling is activated upon binding of wide variety of small chemicals or ligands, including microbiota‐derived metabolites. New evidence has emerged pointing towards a key role for epidermal AHR signalling through skin microbiota‐derived metabolites. In response, AHR‐driven expression of antimicrobial peptides and stratum corneum formation may alter the skin microbiota composition. This a self‐perpetuating feedback loop calls for novel therapeutic intervention strategies for which we herein discuss the requirements in future mechanistic studies.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
585
|
Stojanović I, Saksida T, Miljković Đ, Pejnović N. Modulation of Intestinal ILC3 for the Treatment of Type 1 Diabetes. Front Immunol 2021; 12:653560. [PMID: 34149694 PMCID: PMC8209467 DOI: 10.3389/fimmu.2021.653560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Gut-associated lymphoid tissue (GALT) is crucial for the maintenance of the intestinal homeostasis, but it is also the potential site of the activation of autoreactive cells and initiation/propagation of autoimmune diseases in the gut and in the distant organs. Type 3 innate lymphoid cells (ILC3) residing in the GALT integrate signals from food ingredients and gut microbiota metabolites in order to control local immunoreactivity. Notably, ILC3 secrete IL-17 and GM-CSF that activate immune cells in combating potentially pathogenic microorganisms. ILC3 also produce IL-22 that potentiates the strength and integrity of epithelial tight junctions, production of mucus and antimicrobial peptides thus enabling the proper function of the intestinal barrier. The newly discovered function of small intestine ILC3 is the secretion of IL-2 and the promotion of regulatory T cell (Treg) generation and function. Since the intestinal barrier dysfunction, together with the reduction in small intestine ILC3 and Treg numbers are associated with the pathogenesis of type 1 diabetes (T1D), the focus of this article is intestinal ILC3 modulation for the therapy of T1D. Of particular interest is free fatty acids receptor 2 (FFAR2), predominantly expressed on intestinal ILC3, that can be stimulated by available selective synthetic agonists. Thus, we propose that FFAR2-based interventions by boosting ILC3 beneficial functions may attenuate autoimmune response against pancreatic β cells during T1D. Also, it is our opinion that treatments based on ILC3 stimulation by functional foods can be used as prophylaxis in individuals that are genetically predisposed to develop T1D.
Collapse
Affiliation(s)
- Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
586
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ubiquitously expressed ligand-activated transcription factor with multifaceted physiological functions. In the immune system, AHR has been unequivocally identified as a key regulatory factor that can integrate environmental, dietary, or microbial signals into innate and adaptive immune responses. Correspondingly, AHR activity seems to be most important at barrier organs, such as the gut, skin, and lung. The liver is likewise prominently exposed to gut-derived dietary or microbial AHR ligands and, moreover, generates plenty of AHR ligands itself. Yet, surprisingly little is known about the role of AHR in the regulation of hepatic immune responses, which are normally biased towards tolerance, preventing harmful inflammation in response to innocuous stimuli. In this review, we summarize the current knowledge about the role of AHR in hepatic immune responses in the healthy liver as well as in inflammatory liver disease. Moreover, we discuss AHR as a potential therapeutic target in hepatic disorders, including autoimmune liver disease, liver fibrosis, and liver cancer.
Collapse
|
587
|
Zhao ZH, Wang ZX, Zhou D, Han Y, Ma F, Hu Z, Xin FZ, Liu XL, Ren TY, Zhang F, Xue Y, Cui A, Liu Z, Bai J, Liu Y, Cai G, Su W, Dai X, Shen F, Pan Q, Li Y, Fan JG. Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cell Mol Gastroenterol Hepatol 2021; 12:857-871. [PMID: 33989817 PMCID: PMC8346675 DOI: 10.1016/j.jcmgh.2021.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Butyric acid is an intestinal microbiota-produced short-chain fatty acid, which exerts salutary effects on alleviating nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism of butyrate on regulating hepatic lipid metabolism is largely unexplored. METHODS A mouse model of NAFLD was induced with high-fat diet feeding, and sodium butyrate (NaB) intervention was initiated at the eighth week and lasted for 8 weeks. Hepatic steatosis was evaluated and metabolic pathways concerning lipid homeostasis were analyzed. RESULTS Here, we report that administration of NaB by gavage once daily for 8 weeks causes an augmentation of insulin-induced gene (Insig) activity and inhibition of lipogenic gene in mice fed with high-fat diet. Mechanistically, NaB is sufficient to enhance the interaction between Insig and its upstream kinase AMP-activated protein kinase (AMPK). The stimulatory effects of NaB on Insig-1 activity are abolished in AMPKα1/α2 double knockout (AMPK-/-) mouse primary hepatocytes. Moreover, AMPK activation by NaB is mediated by LKB1, as evidenced by the observations showing NaB-mediated induction of phosphorylation of AMPK, and its downstream target acetyl-CoA carboxylase is diminished in LKB1-/- mouse embryonic fibroblasts. CONCLUSIONS These studies indicate that NaB serves as a negative regulator of hepatic lipogenesis in NAFLD and that NaB attenuates hepatic steatosis and improves lipid profile and liver function largely through the activation of LKB1-AMPK-Insig signaling pathway. Therefore, NaB has therapeutic potential for treating NAFLD and related metabolic diseases.
Collapse
Affiliation(s)
- Ze-Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Zi-Xuan Wang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Zhou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng-Zhi Xin
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lin Liu
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tian-Yi Ren
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaozhen Dai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China,Correspondence Address correspondence to Yu Li, PhD, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Life Science Research Building A1816, Shanghai 200031, China.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China,Jian-Gao Fan, PhD, Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, 1665 Kong Jiang Road, Shanghai 200092, China.
| |
Collapse
|
588
|
Mo Y, Sun H, Zhang L, Geng W, Wang L, Zou C, Wu Y, Ji C, Liu X, Lu Z. Microbiome-Metabolomics Analysis Reveals the Protection Mechanism of α-Ketoacid on Adenine-Induced Chronic Kidney Disease in Rats. Front Pharmacol 2021; 12:657827. [PMID: 34045965 PMCID: PMC8144710 DOI: 10.3389/fphar.2021.657827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: As nitrogen-free precursors of corresponding essential amino, α-ketoacid have been widely prescribed to end-stage renal disease patients together with a low protein diet However, the impact of α-ketoacid on intestinal microbiota in chronic kidney disease (CKD) individuals is unknown. The study aims at investigating the variation in the intestinal microbiota and metabolic profile in response to α-ketoacid treatment in an adenine-induced CKD rat model. Design: Rats in the treatment groups were given solution of compound α-ketoacid tablets. At the end of the study, blood, feces, colon tissues and kidney tissues were collected and processed for biochemical analyses, histological and western blot analyses, 16S rRNA sequence and untargeted metabolomic analyses. Results: α-Ketoacid treatment reduced serum creatinine, blood urea nitrogen and 24 h urine protein, and alleviated tubular atrophy, glomerulosclerosis and interstitial fibrosis in adenine-induced CKD rats. Moreover, α-ketoacid significantly improved intestinal barrier and increased the abundance of Methanobrevibacter, Akkermansia, Blautia and Anaerositipes while reduced the abundance of Anaerovorax and Coprococcus_3 at the genus level. In addition, our results also demonstrated that α-ketoacid significantly reduced the concentrations of indoxyl sulfate, betaine, choline and cholesterol. Spearman's correlation analysis revealed that the abundance of Coprococcus_3 was positively correlated with serum level of betaine, trimethylamine N-oxide, indoxyl sulfate, cholic acid and deoxycholic acid. Conclusion: α-Ketoacid has a reno-protective effect against adenine-induced CKD, which may be mediated regulation of serum metabolic profiles via affecting intestinal microbial community.
Collapse
Affiliation(s)
- Yenan Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Sun
- Department of Emergency, TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Geng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Wang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Zou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchi Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunlan Ji
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyu Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
589
|
Isibor PO, Akinduti PA, Aworunse OS, Oyewale JO, Oshamika O, Ugboko HU, Taiwo OS, Ahuekwe EF, Obafemi YD, Onibokun EA, Oziegbe O, Oniha MI, Olopade BK, Atolagbe OM, Adekeye BT, Ajiboye IB, Bello OA, Popoola JO, Ayanda OI, Akinnola OO, Olasehinde GI, Eni AO, Nwinyi OC, Omonhinmin CA, Oranusi SU, Obembe OO. Significance of African Diets in Biotherapeutic Modulation of the Gut Microbiome. Bioinform Biol Insights 2021; 15:11779322211012697. [PMID: 33994782 PMCID: PMC8107938 DOI: 10.1177/11779322211012697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/04/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays an essential role in human development and growth, contributing to health and well-being. The socio-economic values, cultural perspectives, and dietary formulation in sub-Saharan Africa can influence gut health and disease prevention. The vast microbial ecosystems in the human gut frequently interrelate to maintain a healthy, well-coordinated cellular and humoral immune signalling to prevent metabolic dysfunction, pathogen dominance, and induction of systemic diseases. The diverse indigenous diets could differentially act as biotherapeutics to modulate microbial abundance and population characteristics. Such modulation could prevent stunted growth, malnutrition, induction of bowel diseases, attenuated immune responses, and mortality, particularly among infants. Understanding the associations between specific indigenous African diets and the predictability of the dynamics of gut bacteria genera promises potential biotherapeutics towards improving the prevention, control, and treatment of microbiome-associated diseases such as cancer, inflammatory bowel disease, obesity, type 2 diabetes, and cardiovascular disease. The dietary influence of many African diets (especially grain-base such as millet, maize, brown rice, sorghum, soya, and tapioca) promotes gut lining integrity, immune tolerance towards the microbiota, and its associated immune and inflammatory responses. A fibre-rich diet is a promising biotherapeutic candidate that could effectively modulate inflammatory mediators' expression associated with immune cell migration, lymphoid tissue maturation, and signalling pathways. It could also modulate the stimulation of cytokines and chemokines involved in ensuring balance for long-term microbiome programming. The interplay between host and gut microbial digestion is complex; microbes using and competing for dietary and endogenous proteins are often attributable to variances in the comparative abundances of Enterobacteriaceae taxa. Many auto-inducers could initiate the process of quorum sensing and mammalian epinephrine host cell signalling system. It could also downregulate inflammatory signals with microbiota tumour taxa that could trigger colorectal cancer initiation, metabolic type 2 diabetes, and inflammatory bowel diseases. The exploitation of essential biotherapeutic molecules derived from fibre-rich indigenous diet promises food substances for the downregulation of inflammatory signalling that could be harmful to gut microbiota ecological balance and improved immune response modulation.
Collapse
Affiliation(s)
- PO Isibor
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - PA Akinduti
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OS Aworunse
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - JO Oyewale
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - O Oshamika
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - HU Ugboko
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OS Taiwo
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - EF Ahuekwe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - YD Obafemi
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - EA Onibokun
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - O Oziegbe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - MI Oniha
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - BK Olopade
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OM Atolagbe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - BT Adekeye
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - IB Ajiboye
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OA Bello
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - JO Popoola
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OI Ayanda
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OO Akinnola
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - GI Olasehinde
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - AO Eni
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OC Nwinyi
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - CA Omonhinmin
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - SU Oranusi
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OO Obembe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
590
|
Miljković Đ, Jevtić B, Stojanović I, Dimitrijević M. ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Front Immunol 2021; 12:657622. [PMID: 33912185 PMCID: PMC8071931 DOI: 10.3389/fimmu.2021.657622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gut immune cells have been increasingly appreciated as important players in the central nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS research, as they represent the innate cell counterpart of the major pathogenic cell population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal models of autoimmune diseases. Besides, they are also well known for their ability to stabilize the intestinal barrier and to shape the immune response to the gut microbiota. Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17 cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3 functional modulation for the benefit of MS patients will be addressed, as well.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
591
|
Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 2021; 18:866-877. [PMID: 33707689 PMCID: PMC8115644 DOI: 10.1038/s41423-021-00661-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.
Collapse
|
592
|
Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22063061. [PMID: 33802759 PMCID: PMC8002420 DOI: 10.3390/ijms22063061] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.
Collapse
Affiliation(s)
- Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-989-059-222
| |
Collapse
|
593
|
Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci Rep 2021; 11:5244. [PMID: 33664396 PMCID: PMC7933417 DOI: 10.1038/s41598-021-84881-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Altered composition of gut bacteria and changes to the production of their bioactive metabolites, the short-chain fatty acids (SCFAs), have been implicated in the development of multiple sclerosis (MS). However, the immunomodulatory actions of SCFAs and intermediaries in their ability to influence MS pathogenesis are uncertain. In this study, levels of serum SCFAs were correlated with immune cell abundance and phenotype as well as with other relevant serum factors in blood samples taken at first presentation of Clinically Isolated Syndrome (CIS; an early form of MS) or MS and compared to healthy controls. There was a small but significant reduction in propionate levels in the serum of patients with CIS or MS compared with healthy controls. The frequencies of circulating T follicular regulatory cells and T follicular helper cells were significantly positively correlated with serum levels of propionate. Levels of butyrate associated positively with frequencies of IL-10-producing B-cells and negatively with frequencies of class-switched memory B-cells. TNF production by polyclonally-activated B-cells correlated negatively with acetate levels. Levels of serum SCFAs associated with changes in circulating immune cells and biomarkers implicated in the development of MS.
Collapse
|
594
|
Tan J, Ni D, Ribeiro RV, Pinget GV, Macia L. How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients 2021; 13:823. [PMID: 33801480 PMCID: PMC7999246 DOI: 10.3390/nu13030823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.
Collapse
Affiliation(s)
- Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rosilene V. Ribeiro
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriela V. Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
595
|
Huang W, Kong D. The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD. Biomed Pharmacother 2021; 135:111235. [DOI: 10.1016/j.biopha.2021.111235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
|
596
|
Armstrong H, Bording-Jorgensen M, Wine E. The Multifaceted Roles of Diet, Microbes, and Metabolites in Cancer. Cancers (Basel) 2021; 13:cancers13040767. [PMID: 33673140 PMCID: PMC7917909 DOI: 10.3390/cancers13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Many studies performed to date have implicated select microbes and dietary factors in a variety of cancers, yet the complexity of both these diseases and the relationship between these factors has limited the ability to translate findings into therapies and preventative guidelines. Here we begin by discussing recently published studies relating to dietary factors, such as vitamins and chemical compounds used as ingredients, and their contribution to cancer development. We further review recent studies, which display evidence of the microbial-diet interaction in the context of cancer. The field continues to advance our understanding of the development of select cancers and how dietary factors are related to the development, prevention, and treatment of these cancers. Finally, we highlight the science available in the discussion of common misconceptions with regards to cancer and diet. We conclude this review with thoughts on where we believe future research should focus in order to provide the greatest impact towards human health and preventative medicine.
Collapse
Affiliation(s)
- Heather Armstrong
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| | - Michael Bording-Jorgensen
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Eytan Wine
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| |
Collapse
|
597
|
Xiao Z, Liu L, Jin Y, Pei X, Sun W, Wang M. Clostridium tyrobutyricum Protects against LPS-Induced Colonic Inflammation via IL-22 Signaling in Mice. Nutrients 2021; 13:215. [PMID: 33451114 PMCID: PMC7828631 DOI: 10.3390/nu13010215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of Clostridium tyrobutyricum (C. tyrobutyricum) on colonic immunity and the role of IL-22 in the protective function of C. tyrobutyricum. Mice were supplemented with 108 CFU/mL C. tyrobutyricum daily for 20 days, followed by injecting with LPS for 24 h. In vivo interference of IL-22 via injecting with an adeno-associated virus was conducted to elucidate the role of IL-22 in C. tyrobutyricum attenuating colonic inflammation. The results showed that C. tyrobutyricum decreased the mRNA expression of IL-6 and IL-1β. C. tyrobutyricum enhanced the mRNA expression of IL-22 and the expression of MUC2 in the colon. The in vivo interference results showed that C. tyrobutyricum enhanced the mRNA expression of IL-6 and IL-1β while decreased the expression of MUC2 after knocking down IL-22. The flow cytometric analysis showed that C. tyrobutyricum decreased the proportions of macrophages, DCs, and mast cells and effectively regulated the proportion of Th17 cells, indicating that C. tyrobutyricum may stimulate the expression of IL-22 via regulating Th17 cells. Our study concluded that C. tyrobutyricum protected against LPS-induced colonic barrier dysfunction and inflammation via IL-22 signaling, suggesting that C. tyrobutyricum could be a potential probiotic in regulating colonic health.
Collapse
Affiliation(s)
| | | | | | | | | | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (L.L.); (Y.J.); (X.P.); (W.S.)
| |
Collapse
|
598
|
Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021; 10:cells10010111. [PMID: 33435303 PMCID: PMC7827439 DOI: 10.3390/cells10010111] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.
Collapse
|
599
|
Gut Microbiota-Derived Metabolites in the Development of Diseases. ACTA ACUST UNITED AC 2021; 2021:6658674. [PMID: 33505541 PMCID: PMC7815404 DOI: 10.1155/2021/6658674] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota is increasingly recognized as a metabolic organ essential for human health. Compelling evidences show a variety set of links between diets and gut microbial homeostasis. Changes in gut microbial flora would probably contribute to the development of certain diseases such as diabetes, heart disease, allergy, and psychiatric diseases. In addition to the composition of gut microbiota, the metabolites derived from gut microbiota have emerged as a pivotal regulator in diseases development. Since high-fat and high-protein diets substantially affect the gut microbial ecology and human health, the current review summarizes the gut microbiota-derived metabolites such as short-chain fatty acids (SCFAs), amino acids, and their derivatives and highlights the mechanisms underlying the host responses to these bioactive substances.
Collapse
|
600
|
Gu BH, Kim M, Yun CH. Regulation of Gastrointestinal Immunity by Metabolites. Nutrients 2021; 13:nu13010167. [PMID: 33430497 PMCID: PMC7826526 DOI: 10.3390/nu13010167] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract contains multiple types of immune cells that maintain the balance between tolerance and activation at the first line of host defense facing non-self antigens, including dietary antigens, commensal bacteria, and sometimes unexpected pathogens. The maintenance of homeostasis at the gastrointestinal tract requires stringent regulation of immune responses against various environmental conditions. Dietary components can be converted into gut metabolites with unique functional activities through host as well as microbial enzymatic activities. Accumulating evidence demonstrates that gastrointestinal metabolites have significant impacts on the regulation of intestinal immunity and are further integrated into the immune response of distal mucosal tissue. Metabolites, especially those derived from the microbiota, regulate immune cell functions in various ways, including the recognition and activation of cell surface receptors, the control of gene expression by epigenetic regulation, and the integration of cellular metabolism. These mucosal immune regulations are key to understanding the mechanisms underlying the development of gastrointestinal disorders. Here, we review recent advancements in our understanding of the role of gut metabolites in the regulation of gastrointestinal immunity, highlighting the cellular and molecular regulatory mechanisms by macronutrient-derived metabolites.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Myunghoo Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| |
Collapse
|