551
|
Shrivastava S, TrehanPati N, Kottilil S, Sarin SK. Decline in immature transitional B cells after hepatitis B vaccination in hepatitis B positive newborns. Pediatr Infect Dis J 2013; 32:792-4. [PMID: 23838779 PMCID: PMC3708314 DOI: 10.1097/inf.0b013e31828df344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Humoral immune responses are protective against hepatitis B virus (HBV) infection. We characterized B-cell phenotypic changes in infants of hepatitis B surface antigen positive mothers compared with normal and hepatitis B surface antigen negative infants at birth and 1 year after HBV immunization. Hepatitis B surface antigen positive infants had higher immature transitional B cells at birth, which normalized a year after immunization. Immature B-cell response to neonatal HBV exposure is associated with maternal-child transmission of HBV.
Collapse
Affiliation(s)
- Shikha Shrivastava
- Department of Research, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | | | | |
Collapse
|
552
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
553
|
Ayieko C, Maue AC, Jura WGZO, Noland GS, Ayodo G, Rochford R, John CC. Changes in B Cell Populations and Merozoite Surface Protein-1-Specific Memory B Cell Responses after Prolonged Absence of Detectable P. falciparum Infection. PLoS One 2013; 8:e67230. [PMID: 23826242 PMCID: PMC3695086 DOI: 10.1371/journal.pone.0067230] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/16/2013] [Indexed: 12/05/2022] Open
Abstract
Clinical immunity to malaria declines in the absence of repeated parasite exposure. However, little is known about how B cell populations and antigen-specific memory B cells change in the absence of P. falciparum infection. A successful indoor residual insecticide spraying campaign in a highland area of western Kenya, led to an absence of blood-stage P. falciparum infection between March 2007 and April 2008. We assessed memory B cell responses in 45 adults at the beginning (April 2008) and end (April 2009) of a subsequent 12-month period during which none of the adults had evidence of asymptomatic parasitemia or clinical disease. Antibodies and memory B cells to the 42-kDa portion of the merozoite surface protein-1 (MSP-142) were measured using ELISA and ELISPOT assays, respectively. B cell populations were characterized by flow cytometry. From 2008 to 2009, the prevalence of MSP-142-specific memory B cells (45% vs. 55%, respectively, P = 0.32) or antibodies (91% vs. 82%, respectively, P = 0.32) did not differ significantly, although specific individuals did change from positive to negative and vice versa, particularly for memory B cells, suggesting possible low-level undetected parasitemia may have occurred in some individuals. The magnitude of MSP-142-specific memory B cells and levels of antibodies to MSP-142 also did not differ from 2008 to 2009 (P>0.10 for both). However, from 2008 to 2009 the proportions of both class-switched atypical (CD19+IgD-CD27-CD21-IgM-) and class-switched activated (CD19+IgD-CD27+CD21-IgM-) memory B cells decreased (both P<0.001). In contrast, class-switched resting classical memory B cells (CD19+IgD-CD27+CD21+IgM-) increased (P<0.001). In this area of seasonal malaria transmission, a one- year absence of detectable P. falciparum infection was not associated with changes in the prevalence or level of MSP-142 specific memory B cells, but was associated with major changes in overall memory B cell subsets.
Collapse
Affiliation(s)
| | - Alexander C. Maue
- SUNY Upstate Medical University, Syracuse, New York, United States of America
| | | | - Gregory S. Noland
- University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | | | - Rosemary Rochford
- SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Chandy C. John
- University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
554
|
Cossarizza A, De Biasi S, Gibellini L, Bianchini E, Bartolomeo R, Nasi M, Mussini C, Pinti M. Cytometry, immunology, and HIV infection: three decades of strong interactions. Cytometry A 2013; 83:680-91. [PMID: 23788450 DOI: 10.1002/cyto.a.22318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Flow cytometry (FCM) has been extensively used to investigate immunological changes that occur from infection with the human immunodeficiency virus (HIV). This review describes some of the most relevant cellular and molecular changes in the immune system that can be detected by FCM during HIV infection. Finally, it will be discussed how this technology has facilitated the understanding not only of the biology of the virus but also of the mechanisms that the immune system activates to fight HIV and is allowing to monitor the efficacy of antiretroviral therapy.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
555
|
Thiel J, Salzer U, Hässler F, Effelsberg NM, Hentze C, Sic H, Bartsch M, Miehle N, Peter HH, Warnatz K, Schlesier M, Voll RE, Venhoff N. B cell homeostasis is disturbed by immunosuppressive therapies in patients with ANCA-associated vasculitides. Autoimmunity 2013; 46:429-38. [PMID: 23742274 DOI: 10.3109/08916934.2013.798652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-lymphocytes play a pivotal role in ANCA-associated vasculitides (AAV). The homeostasis of peripheral human B-lymphocyte subpopulations is tightly regulated, but may be disturbed in autoimmune disease or following immunosuppressive therapies. To elucidate the effect of immunosuppression and the relevance of B-lymphocyte disturbances, the B-lymphocyte compartment was analysed in 61 AAV patients. After immunosuppressive treatment a general B-lymphocytopenia developed in AAV patients. Within the B-lymphocyte subpopulations transitional B cells are the first maturation stage found in the peripheral blood. Transitional B-lymphocytes were significantly lower in AAV patients after immunosuppressive therapy compared to healthy controls. Furthermore, marginal zone B cells--a B-lymphocyte population protecting against encapsulated bacteria--were markedly lowered after immunosuppressive therapy in AAV patients. AAV patients treated with immunosuppressants had lower numbers of naïve and memory B-lymphocytes. Numbers of marginal zone B cells, memory B cells and plasmablasts correlated with concentrations of immunoglobulins. We evaluated plasmablasts for a potential correlation with disease activity. Different from what has been reported for e.g. large vessel vasculitis, absolute numbers of plasmablasts were not increased in patients with AAV and showed no correlation to disease activity. As low transitional B cells after treatment with immunosuppressants indicated an impaired early B-lymphocyte development, seven patients treated with the B cell depleting agent rituximab (RTX) because of relapsing disease activity were analysed for their B cell repopulation kinetics. In the majority of these patients repopulation of the peripheral B cell compartment by newly formed transitional B cells after RTX treatment was constricted and delayed.
Collapse
Affiliation(s)
- Jens Thiel
- Department of Rheumatology and Clinical Immunology and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Abstract
OBJECTIVES During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. DESIGN B-cell phenotype and correlating factors were evaluated. METHODS Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. RESULTS Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. CONCLUSION Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.
Collapse
|
557
|
Buckner CM, Moir S, Ho J, Wang W, Posada JG, Kardava L, Funk EK, Nelson AK, Li Y, Chun TW, Fauci AS. Characterization of plasmablasts in the blood of HIV-infected viremic individuals: evidence for nonspecific immune activation. J Virol 2013; 87:5800-11. [PMID: 23487459 PMCID: PMC3648153 DOI: 10.1128/jvi.00094-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 01/08/2023] Open
Abstract
Terminal differentiation of B cells and hypergammaglobulinemia are hallmarks of B-cell hyperactivity in HIV disease. Plasmablasts are terminally differentiating B cells that circulate transiently in the blood following infection or vaccination; however, in HIV infection, they arise early and are maintained at abnormally high levels in viremic individuals. Here we show that only a small fraction of plasmablasts in the blood of viremic individuals is HIV specific. Assessment of plasmablast immunoglobulin isotype distribution revealed increased IgG(+) plasmablasts in early and most prominently during chronic HIV viremia, contrasting with a predominantly IgA(+) plasmablast profile in HIV-negative individuals or in aviremic HIV-infected individuals on treatment. Of note, IgG is the predominant immunoglobulin isotype of plasmablasts that arise transiently in the blood following parenteral immunization. Serum immunoglobulin levels were also elevated in HIV-infected viremic individuals, especially IgG, and correlated with levels of IgG(+) plasmablasts. Several soluble factors associated with immune activation were also increased in the sera of HIV-infected individuals, especially in viremic individuals, and correlated with serum immunoglobulin levels, particularly IgG. Thus, our data suggest that while plasmablasts in the blood may contribute to the HIV-specific immune response, the majority of these cells are not HIV specific and arise early, likely from indirect immune-activating effects of HIV replication, and reflect over time the effects of chronic antigenic stimulation. Such B-cell dysregulation may help explain why the antibody response is inadequate in HIV-infected individuals, even during early infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuxing Li
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, USA
- IAVI Center for Neutralizing Antibodies at TSRI
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
558
|
Scholzen A, Sauerwein RW. How malaria modulates memory: activation and dysregulation of B cells in Plasmodium infection. Trends Parasitol 2013; 29:252-62. [DOI: 10.1016/j.pt.2013.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
|
559
|
Zirakzadeh AA, Marits P, Sherif A, Winqvist O. Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. THE JOURNAL OF IMMUNOLOGY 2013; 190:5847-55. [PMID: 23630345 DOI: 10.4049/jimmunol.1203279] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
B lymphocytes contribute to immune surveillance, by tumor-specific Abs and Ag presentation to T lymphocytes, but are insufficiently studied in humans. In this article, we report a flow cytometric investigation of B lymphocyte subpopulations in blood, lymph nodes (LNs), and malignant tissues from 20 patients operated on because of advanced solid tumors. The CD19(+) compartment in peripheral blood was essentially unaltered in patients, as compared with healthy control subjects. In metastatic LNs, signs of B lymphocyte activation were observed, as evidenced by increased proportions of plasmablasts and CD86-expressing cells. In tumor-infiltrating B lymphocytes (TIL-B), both switched memory cells and plasmablasts were expanded, as compared with nonmalignant epithelium. Moreover, pronounced skewing of Igλ/Igκ ratio was evident among TIL-Bs. By spectratype analysis on IgH, we confirmed a monoclonal expansion of the Vh7 family in TIL-B, also present in a tumor-associated LN. Sequencing the clonally expanded Vh7 revealed signs of somatic hypermutation. In conclusion, B lymphocytes in cancer patients exhibit signs of activation in tumor-associated tissues, likely induced by recognition of tumor Ags. Increased numbers of switched memory cells and plasmablasts in combination with clonal expansion and signs of somatic hypermutation suggest a CD4(+) T lymphocyte-dependent antitumoral response, which may be exploited for immunotherapy.
Collapse
Affiliation(s)
- A Ali Zirakzadeh
- Department of Medicine, Unit of Translational Immunology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
560
|
Yeramilli VA, Knight KL. Development of CD27+ marginal zone B cells requires GALT. Eur J Immunol 2013; 43:1484-8. [PMID: 23468368 DOI: 10.1002/eji.201243205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/31/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
Abstract
In species other than mouse, little is known about the origin and development of marginal zone (MZ) B cells. Using cross-reactive antibodies, we identified and characterized splenic MZ B cells in rabbits as CD27(+) CD23(-). In rabbits in which organized gut-associated lymphoid tissue (GALT) was surgically removed at birth, we found only CD23(+) follicular (FO) B cells and almost no CD27(+) MZ B cells in the spleen, indicating that GALT is required for the development of splenic MZ B cells. These findings lead us to suggest that commensal microbiota contribute to the development of MZ B cells.
Collapse
Affiliation(s)
- Venkata A Yeramilli
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
| | | |
Collapse
|
561
|
Portugal S, Pierce SK, Crompton PD. Young lives lost as B cells falter: what we are learning about antibody responses in malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3039-46. [PMID: 23526829 PMCID: PMC3608210 DOI: 10.4049/jimmunol.1203067] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum malaria remains a major public health threat for which there is no licensed vaccine. Abs play a key role in malaria immunity, but Ab-mediated protection is only acquired after years of repeated infections, leaving children in endemic areas vulnerable to severe malaria and death. Many P. falciparum Ags are extraordinarily diverse and clonally variant, which likely contribute to the inefficient acquisition of protective Abs. However, mounting evidence suggests that there is more to the story and that infection-induced dysregulation of B cell function also plays a role. We herein review progress toward understanding the B cell biology of P. falciparum infection, focusing on what has been learned from population-based studies in malaria-endemic areas. We suggest ways in which advances in immunology and genomics-based technology can further improve our understanding of the B cell response in malaria and perhaps illuminate new pathways to the development of effective vaccines.
Collapse
Affiliation(s)
- Silvia Portugal
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
562
|
FCRL5 exerts binary and compartment-specific influence on innate-like B-cell receptor signaling. Proc Natl Acad Sci U S A 2013; 110:E1282-90. [PMID: 23509253 DOI: 10.1073/pnas.1215156110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Innate-like splenic marginal zone (MZ) and peritoneal cavity B1 B lymphocytes share critical responsibilities in humoral responses but have divergent B-cell receptor (BCR) signaling features. A discrete marker of these subsets with tyrosine-based dual regulatory potential termed "Fc receptor-like 5" (FCRL5) was investigated to explore this discrepancy. Although FCRL5 repressed the robust BCR activity that is characteristic of MZ B cells, it had no influence on antigen receptor stimulation that is blunted in peritoneal cavity-derived B1 B cells. The molecular basis for the receptor's inhibitory function derived from recruitment of the Src homology-2 domain-containing tyrosine phosphatase 1 (SHP-1) to a cytoplasmic immunoreceptor tyrosine-based inhibitory motif. Surprisingly, mutagenesis of this docking site unearthed coactivation properties for FCRL5 that were orchestrated by independent association of the Lyn Src-family kinase with an intracellular immunoreceptor tyrosine-based activation motif-like sequence. FCRL5's unique binary regulation directly correlated with SHP-1 and Lyn activity, which, like BCR function, differed between MZ and B1 B cells. These findings collectively imply a specialized counterregulatory role for FCRL molecules at the intersection of innate and adaptive immunity.
Collapse
|
563
|
Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 2013; 19:494-9. [PMID: 23475201 DOI: 10.1038/nm.3109] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.
Collapse
|
564
|
Labuda LA, Ateba-Ngoa U, Feugap EN, Heeringa JJ, van der Vlugt LEPM, Pires RBA, Mewono L, Kremsner PG, van Zelm MC, Adegnika AA, Yazdanbakhsh M, Smits HH. Alterations in peripheral blood B cell subsets and dynamics of B cell responses during human schistosomiasis. PLoS Negl Trop Dis 2013; 7:e2094. [PMID: 23505586 PMCID: PMC3591311 DOI: 10.1371/journal.pntd.0002094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
Antibody responses are thought to play an important role in control of Schistosoma infections, yet little is known about the phenotype and function of B cells in human schistosomiasis. We set out to characterize B cell subsets and B cell responses to B cell receptor and Toll-like receptor 9 stimulation in Gabonese schoolchildren with Schistosoma haematobium infection. Frequencies of memory B cell (MBC) subsets were increased, whereas naive B cell frequencies were reduced in the schistosome-infected group. At the functional level, isolated B cells from schistosome-infected children showed higher expression of the activation marker CD23 upon stimulation, but lower proliferation and TNF-α production. Importantly, 6-months after 3 rounds of praziquantel treatment, frequencies of naive B cells were increased, MBC frequencies were decreased and with the exception of TNF-α production, B cell responsiveness was restored to what was seen in uninfected children. These data show that S. haematobium infection leads to significant changes in the B cell compartment, both at the phenotypic and functional level. Schistosomiasis affects over 200 million people and especially children in developing countries. It causes general hyporesponsiveness of the immune system, which until now has predominantly been described for various T cell subsets as well as dendritic cells. B cells in this context have not yet been investigated. To address this question, we phenotyped B cell subsets present in peripheral blood from S. haematobium infected and uninfected schoolchildren living in an endemic area in Lambaréné, Gabon. Children with schistosomiasis had an increased frequency of various memory B cell subsets, including subsets associated with B cell exhaustion, and a concomitant decrease in naive B cells. To study the effect of Schistosoma infection on B cells in more detail we isolated peripheral blood B cells and found that B cells from infected children had a reduced capacity to proliferate and produce TNF-α in response to both B cell receptor and Toll-like receptor stimulation. These results provide new insights into the role of B cells in the host immune response to schistosomiasis and may provide a novel target for therapeutic strategies.
Collapse
Affiliation(s)
- Lucja A. Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Eliane Ngoune Feugap
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Jorn J. Heeringa
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Regina B. A. Pires
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Ludovic Mewono
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Ayola A. Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
565
|
|
566
|
Llano A, Carrillo J, Mothe B, Ruiz L, Marfil S, García E, Yuste E, Sánchez V, Clotet B, Blanco J, Brander C. Expansion of antibody secreting cells and modulation of neutralizing antibody activity in HIV infected individuals undergoing structured treatment interruptions. J Transl Med 2013; 11:48. [PMID: 23433486 PMCID: PMC3605223 DOI: 10.1186/1479-5876-11-48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/19/2013] [Indexed: 11/22/2022] Open
Abstract
Background HIV-1 infection generates numerous abnormalities in the B cell compartment which can be partly reversed by antiretroviral therapy. Our aim was to evaluate the effects that re-exposure to HIV antigens might have on the frequency and functionality of antibody secreting cells (ASC) in patients undergoing structured treatment interruptions (STI). As re-exposure to viral antigens may also boost the production of (neutralizing) antibodies, we also assessed the neutralizing activities during STI cycles. Methods Retrospective study of 10 patients undergoing 3 cycles of STI with 2 weeks on and 4 weeks off HAART. ASC frequencies were determined by flow cytometry in samples obtained at the beginning and the end of STI. Neutralization capacity, total IgG concentration and anti-gp120-IgG titres were evaluated. Results As expected, median viral loads were higher at the end of STI compared to on-HAART time points. The level of CD27 and CD38 expressing ACS followed the same pattern; with ASC being elevated up to 16 fold in some patients (median increase of 3.5% ± 4.13). Eight out of 10 patients maintained stable total IgG levels during the study. After purifying IgG fractions from plasma, HIV-neutralizing activity was observed in the two subjects with highest anti-gp120 titers. In one of these patients the neutralizing activity remained constant while the other showed elevated neutralizing Ab after first STI and once treatment was reinitiated after the 2nd STI. Conclusions Our data suggest that STI and its associated transient increases in viral load drive the frequencies of ASC in an antigen-specific manner. In some subjects, this re-exposure to autologous virus boosts the presence of neutralizing antibodies, similar to what is seen after influenza vaccination. STI may not boost clinically beneficial nAb levels but offers opportunities to isolate nAb producing cells at considerably higher levels than in subjects with completely suppressed viral replication.
Collapse
Affiliation(s)
- Anuska Llano
- Irsicaixa AIDS Research Institute - HIVACAT, Hospital Universitari Germans Trias y Pujol, Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
567
|
Weitzmann MN. The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. SCIENTIFICA 2013; 2013:125705. [PMID: 24278766 PMCID: PMC3820310 DOI: 10.1155/2013/125705] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/24/2012] [Indexed: 05/30/2023]
Abstract
Although it has long been recognized that inflammation, a consequence of immune-driven processes, significantly impacts bone turnover, the degree of centralization of skeletal and immune functions has begun to be dissected only recently. It is now recognized that formation of osteoclasts, the bone resorbing cells of the body, is centered on the key osteoclastogenic cytokine, receptor activator of NF- κ B ligand (RANKL). Although numerous inflammatory cytokines are now recognized to promote osteoclast formation and skeletal degradation, with just a few exceptions, RANKL is now considered to be the final downstream effector cytokine that drives osteoclastogenesis and regulates osteoclastic bone resorption. The biological activity of RANKL is moderated by its physiological decoy receptor, osteoprotegerin (OPG). New discoveries concerning the sources and regulation of RANKL and OPG in physiological bone turnover as well as under pathological (osteoporotic) conditions continue to be made, opening a window to the complex regulatory processes that control skeletal integrity and the depth of integration of the skeleton within the immune response. This paper will examine the interconnection between bone turnover and the immune system and the implications thereof for physiological and pathological bone turnover.
Collapse
Affiliation(s)
- M. Neale Weitzmann
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 1305 WMRB, Atlanta, GA 30322, USA
| |
Collapse
|
568
|
Morbach H, Wiegering V, Richl P, Schwarz T, Suffa N, Eichhorn EM, Eyrich M, Girschick HJ. Activated memory B cells may function as antigen-presenting cells in the joints of children with juvenile idiopathic arthritis. ACTA ACUST UNITED AC 2013; 63:3458-66. [PMID: 21792842 DOI: 10.1002/art.30569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE B cells impact the perpetuation of chronic inflammatory or autoimmune diseases in multiple ways. A role of B cells as antigen-presenting cells (APCs) in the pathogenesis of chronic arthritis in humans has been suggested; however, as of yet the presence of such B cells at the site of inflammation has not been demonstrated. This study was undertaken to investigate whether synovial B cells in patients with juvenile idiopathic arthritis (JIA) might display features of APCs. METHODS The frequency, phenotype, and immunoglobulin repertoire of synovial B cells were studied by flow cytometry and single-cell polymerase chain reaction (PCR). Cytokine expression by B cells was analyzed by real-time PCR, and interaction between B cells and T cells was investigated in a mixed lymphocyte culture. RESULTS CD27+IgD- and CD27-IgD- B cells accumulated in the joints of JIA patients and displayed an activated phenotype. Both B cell subsets expressed hypermutated and class-switched immunoglobulins, indicators of memory B cells. The accumulating memory B cells expressed the costimulatory molecules CD80/CD86 and showed a higher capacity to activate allogeneic T cells and prime a Th1 phenotype than their peripheral blood counterparts. CONCLUSION Activated immunoglobulin class-switched CD27- and CD27+ memory B cells, indicating a phenotype of APCs with expression of costimulatory molecules, accumulate in the joints of patients with JIA and might be involved in the amplification of pathogenic T cell activation. These findings provide evidence that B cells play an antibody-independent immunopathologic role in human chronic inflammatory arthritis of childhood.
Collapse
Affiliation(s)
- Henner Morbach
- Vivantes Children's Hospital, Berlin-Friedrichshain, Germany): Children's Hospital and University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
569
|
Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D, Busse CE, Esen M, Theisen M, Mordmüller B, Wardemann H. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. ACTA ACUST UNITED AC 2013; 210:389-99. [PMID: 23319701 PMCID: PMC3570107 DOI: 10.1084/jem.20121970] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plasmodium falciparum infection leads to the development of protective classical and atypical memory B cell antibody responses. Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired. We show at the single cell level that natural Pf infection induces the development of classical memory B cells (CM) and atypical memory B cells (AtM) that produce broadly neutralizing antibodies against blood stage Pf parasites. CM and AtM contribute to anti-Pf serum IgG production, but only AtM show signs of active antibody secretion. AtM and CM were also different in their IgG gene repertoire, suggesting that they develop from different precursors. The findings provide direct evidence that natural Pf infection leads to the development of protective memory B cell antibody responses and suggest that constant immune activation rather than impaired memory function leads to the accumulation of AtM in malaria. Understanding the memory B cell response to natural Pf infection may be key to the development of a malaria vaccine that induces long-lived protection.
Collapse
Affiliation(s)
- Matthias F Muellenbeck
- Max Planck Research Group Molecular Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
570
|
Concerted effect of lymphopenia, viraemia and T-cell activation on Fas expression of peripheral B cells in HIV-1-infected patients. AIDS 2013; 27:155-62. [PMID: 23238551 DOI: 10.1097/qad.0b013e32835b8c5e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Decreased memory B-cell maintenance during HIV-1 infection has been associated with the viraemia-induced accumulation of activated memory B cells, sensitive to Fas-mediated apoptosis. We aimed at clarifying whether other B-cell subsets might also be affected by an increased Fas expression in HIV-1-infected patients, and we studied the possible contribution of viraemia, lymphopenia or T-cell activation in Fas upregulation on B cells. We analysed whether Fas upregulation might have collaborative effects with the dysregulation of other B-cell modulatory molecules, leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) and programmed cell death protein 1 (PD-1), on B-cell homeostasis. DESIGN Fas, LAIR1 and PD-1 were analysed on B-cell subpopulations in HIV-1-infected patients who were treatment naive, nonlymphopenic; antiretroviral therapy (ART)-treated, nonlymphopenic; or ART-treated, lymphopenic or in noninfected controls. METHODS Flow cytometry was used to study B-cell subsets and Milliplex for serum cytokines. RESULTS Fas expression increased on all B-cell subpopulations of viraemic or lymphopenic individuals. The decreased ratio of resting memory B cells and their increased Fas expression were not normalized by ART. Cytokines associated with T-cell activation might influence Fas expression on the naive and transitional B cells. LAIR1 expression decreased in all HIV-1-infected patients, but only on memory B cells, whereas PD-1 increased on resting memory B cells in viraemic patients. CONCLUSION Fas is regulated by the concerted action of viraemia, lymphopenia and T-cell activation during HIV-1 infection, and Fas expression is altered on all peripheral B-cell subsets. Resting memory B-cell homeostasis shows the highest sensitivity to HIV-1-induced perturbations.
Collapse
|
571
|
Sciaranghella G, Tong N, Mahan AE, Suscovich TJ, Alter G. Decoupling activation and exhaustion of B cells in spontaneous controllers of HIV infection. AIDS 2013; 27:175-80. [PMID: 23135171 PMCID: PMC3729211 DOI: 10.1097/qad.0b013e32835bd1f0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To define the impact of chronic viremia and associated immune activation on B-cell exhaustion in HIV infection. DESIGN Progressive HIV infection is marked by B-cell anergy and exhaustion coupled with dramatic hypergammaglobulinemia. Although both upregulation of CD95 and loss of CD21 have been used as markers of infection-associated B-cell dysfunction, little is known regarding the specific profiles of dysfunctional B cells and whether persistent viral replication and its associated immune activation play a central role in driving B-cell dysfunction. METHODS Multiparameter flow cytometry was used to define the profile of dysfunctional B cells. The changes in the expression of CD21 and CD95 were tracked on B-cell subpopulations in patients with differential control of viral replication. RESULTS : Although the emergence of exhausted, CD21 tissue-like memory B cells followed similar patterns in both progressors and controllers, the frequency of CD21 activated memory B cells was lower in spontaneous controllers. CONCLUSION Our results suggest that the loss of CD21 and the upregulation of CD95 occur as separate events during the development of B-cell dysfunction. The loss of CD21 is a marker of B-cell exhaustion induced in the absence of appreciable viral replication, whereas the upregulation of CD95 is tightly linked to persistent viral replication and its associated immune activation. Thus, these dysfunctional profiles potentially represent two functionally distinct states within the B-cell compartment.
Collapse
Affiliation(s)
- Gaia Sciaranghella
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
572
|
van Zelm MC, Berkowska MA, van Dongen JJM. Studying the replication history of human B lymphocytes by real-time quantitative (RQ)-PCR. Methods Mol Biol 2013; 971:113-22. [PMID: 23296960 DOI: 10.1007/978-1-62703-269-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative (RQ-)PCR-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring intronRSS-Kde rearrangements in the IGK light chain locus. The approach is useful to study basic B-cell biology as well as abnormal proliferation in human diseases.
Collapse
Affiliation(s)
- Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
573
|
Clonal expansion and functional exhaustion of monoclonal marginal zone B cells in mixed cryoglobulinemia: The yin and yang of HCV-driven lymphoproliferation and autoimmunity. Autoimmun Rev 2013; 12:430-5. [DOI: 10.1016/j.autrev.2012.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2012] [Indexed: 12/29/2022]
|
574
|
van Zelm MC, Berkowska MA, van der Burg M, van Dongen JJM. Real-time quantitative (RQ-)PCR approach to quantify the contribution of proliferation to B lymphocyte homeostasis. Methods Mol Biol 2013; 979:133-45. [PMID: 23397393 DOI: 10.1007/978-1-62703-290-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T-cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are relatively stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative polymerase chain reaction (RQ-PCR)-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring kappa-deleting rearrangements in the IGK light chain loci in man and mouse. The approach is useful to study the contribution of proliferation to B-cell homeostasis in health and disease.
Collapse
Affiliation(s)
- Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
575
|
Blount RJ, Jarlsberg LG, Daly KR, Worodria W, Davis JL, Cattamanchi A, Djawe K, Andama A, Koch J, Walzer PD, Huang L. Serologic responses to recombinant Pneumocystis jirovecii major surface glycoprotein among Ugandan patients with respiratory symptoms. PLoS One 2012; 7:e51545. [PMID: 23284710 PMCID: PMC3528778 DOI: 10.1371/journal.pone.0051545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 11/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little is known about the serologic responses to Pneumocystis jirovecii major surface glycoprotein (Msg) antigen in African cohorts, or the IgM responses to Msg in HIV-positive and HIV-negative persons with respiratory symptoms. METHODS We conducted a prospective study of 550 patients, both HIV-positive (n = 467) and HIV-negative (n = 83), hospitalized with cough ≥2 weeks in Kampala, Uganda, to evaluate the association between HIV status, CD4 cell count, and other clinical predictors and antibody responses to P. jirovecii. We utilized ELISA to measure the IgM and IgG serologic responses to three overlapping recombinant fragments that span the P. jirovecii major surface glycoprotein: MsgA (amino terminus), MsgB (middle portion) and MsgC1 (carboxyl terminus), and to three variations of MsgC1 (MsgC3, MsgC8 and MsgC9). RESULTS HIV-positive patients demonstrated significantly lower IgM antibody responses to MsgC1, MsgC3, MsgC8 and MsgC9 compared to HIV-negative patients. We found the same pattern of low IgM antibody responses to MsgC1, MsgC3, MsgC8 and MsgC9 among HIV-positive patients with a CD4 cell count <200 cells/µl compared to those with a CD4 cell count ≥200 cells/µl. HIV-positive patients on PCP prophylaxis had significantly lower IgM responses to MsgC3 and MsgC9, and lower IgG responses to MsgA, MsgC1, MsgC3, and MsgC8. In contrast, cigarette smoking was associated with increased IgM antibody responses to MsgC1 and MsgC3 but was not associated with IgG responses. We evaluated IgM and IgG as predictors of mortality. Lower IgM responses to MsgC3 and MsgC8 were both associated with increased in-hospital mortality. CONCLUSIONS HIV infection and degree of immunosuppression are associated with reduced IgM responses to Msg. In addition, low IgM responses to MsgC3 and MsgC8 are associated with increased mortality.
Collapse
Affiliation(s)
- Robert J Blount
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, Crompton PD, Marsh K, Ndungu FM. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. THE JOURNAL OF IMMUNOLOGY 2012; 190:1038-47. [PMID: 23264654 DOI: 10.4049/jimmunol.1202438] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Naturally acquired immunity to malaria develops slowly, requiring several years of repeated exposure to be effective. The cellular and molecular factors underlying this observation are only partially understood. Recent studies suggest that chronic Plasmodium falciparum exposure may induce functional exhaustion of lymphocytes, potentially impeding optimal control of infection. However, it remains unclear whether the "atypical" memory B cells (MBCs) and "exhausted" CD4 T cells described in humans exposed to endemic malaria are driven by P. falciparum per se or by other factors commonly associated with malaria, such as coinfections and malnutrition. To address this critical question we took advantage of a "natural" experiment near Kilifi, Kenya, and compared profiles of B and T cells of children living in a rural community where P. falciparum transmission is ongoing to the profiles of age-matched children living under similar conditions in a nearby community where P. falciparum transmission ceased 5 y prior to this study. We found that continuous exposure to P. falciparum drives the expansion of atypical MBCs. Persistent P. falciparum exposure was associated with an increased frequency of CD4 T cells expressing phenotypic markers of exhaustion, both programmed cell death-1 (PD-1) alone and PD-1 in combination with lymphocyte-activation gene-3 (LAG-3). This expansion of PD-1-expressing and PD-1/LAG-3-coexpressing CD4 T cells was largely confined to CD45RA(+) CD4 T cells. The percentage of CD45RA(+)CD27(+) CD4 T cells coexpressing PD-1 and LAG-3 was inversely correlated with frequencies of activated and classical MBCs. Taken together, these results suggest that P. falciparum infection per se drives the expansion of atypical MBCs and phenotypically exhausted CD4 T cells, which has been reported in other endemic areas.
Collapse
Affiliation(s)
- Joseph Illingworth
- Kenya Medical Research Institute, Centre for Geographical Medicine Research Coast, Kilifi, Kenya
| | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Demberg T, Brocca-Cofano E, Xiao P, Venzon D, Vargas-Inchaustegui D, Lee EM, Kalisz I, Kalyanaraman VS, DiPasquale J, McKinnon K, Robert-Guroff M. Dynamics of memory B-cell populations in blood, lymph nodes, and bone marrow during antiretroviral therapy and envelope boosting in simian immunodeficiency virus SIVmac251-infected rhesus macaques. J Virol 2012; 86:12591-604. [PMID: 22973034 PMCID: PMC3497654 DOI: 10.1128/jvi.00298-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection causes B-cell dysregulation and the loss of memory B cells in peripheral blood mononuclear cells (PBMC). These effects are not completely reversed by antiretroviral treatment (ART). To further elucidate B-cell changes during chronic SIV infection and treatment, we investigated memory B-cell subpopulations and plasma cells/plasmablasts (PC/PB) in blood, bone marrow, and lymph nodes of rhesus macaques during ART and upon release from ART. Macaques previously immunized with SIV recombinants and the gp120 protein were included to assess the effects of prior vaccination. ART was administered for 11 weeks, with or without gp120 boosting at week 9. Naïve and resting, activated, and tissue-like memory B cells and PC/PB were evaluated by flow cytometry. Antibody-secreting cells (ASC) and serum antibody titers were assessed. No lasting changes in B-cell memory subpopulations occurred in bone marrow and lymph nodes, but significant decreases in numbers of activated memory B cells and increases in numbers of tissue-like memory B cells persisted in PBMC. Macaque PC/PB were found to be either CD27(+) or CD27(-) and therefore were defined as CD19(+) CD38(hi) CD138(+). The numbers of these PC/PB were transiently increased in both PBMC and bone marrow following gp120 boosting of the unvaccinated and vaccinated macaque groups. Similarly, ASC numbers in PBMC and bone marrow of the two macaque groups also transiently increased following envelope boosting. Nevertheless, serum binding titers against SIVgp120 remained unchanged. Thus, even during chronic SIV infection, B cells respond to antigen, but long-term memory does not develop, perhaps due to germinal center destruction. Earlier and/or prolonged treatment to allow the generation of virus-specific long-term memory B cells should benefit ART/therapeutic vaccination regimens.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Peng Xiao
- Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Eun Mi Lee
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, USA
| | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, USA
| | | | - Janet DiPasquale
- Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
578
|
Cagigi A, Cotugno N, Giaquinto C, Nicolosi L, Bernardi S, Rossi P, Douagi I, Palma P. Immune reconstitution and vaccination outcome in HIV-1 infected children: present knowledge and future directions. Hum Vaccin Immunother 2012; 8:1784-94. [PMID: 22906931 PMCID: PMC3656066 DOI: 10.4161/hv.21827] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 01/09/2023] Open
Abstract
Current evidence on routine immunization of HIV-1 infected children point out the need for a special vaccine schedule in this population. However, optimal strategies for identifying individuals susceptible to infections, and then offering them sustained protection through appropriate immunization schedule, both in terms of timing and number of vaccine doses, still remain to be elucidated. Understanding the degree of immune recovery after HAART initiation is important in guiding administration of routine vaccination in HIV-1 infected children. Although quantitative measures (e.g., CD4+ T-cell counts and immunoglobulin levels) are frequently performed to evaluate immune parameters, these measures do not fully mirror functional immune recovery. Here, we will review the status of single mandatory and recommended vaccines for HIV-1 infected children in relation to immune recovery after HAART initiation with the aim of identifying new means to help design personalized vaccine schedules for this population.
Collapse
Affiliation(s)
- Alberto Cagigi
- University Department of Pediatrics; DPUO; Unit of Immunology and Infectious Diseases; Children's Hospital Bambino Gesù; Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics; University of Rome “Tor Vergata”; Rome, Italy
| | | | - Luciana Nicolosi
- Department of Pediatric Medicine; Bambino Gesù Children’s Hospital; Rome, Italy
| | - Stefania Bernardi
- University Department of Pediatrics; DPUO; Unit of Immunology and Infectious Diseases; Children's Hospital Bambino Gesù; Rome, Italy
| | - Paolo Rossi
- University Department of Pediatrics; DPUO; Unit of Immunology and Infectious Diseases; Children's Hospital Bambino Gesù; Rome, Italy
- Chair of Pediatrics; University of Rome “Tor Vergata”; Rome, Italy
| | - Iyadh Douagi
- Center for Hematology and Regenerative Medicine; Karolinska Institutet; Huddinge, Sweden
| | - Paolo Palma
- University Department of Pediatrics; DPUO; Unit of Immunology and Infectious Diseases; Children's Hospital Bambino Gesù; Rome, Italy
| |
Collapse
|
579
|
Garcia-Bates TM, Cordeiro MT, Nascimento EJM, Smith AP, Soares de Melo KM, McBurney SP, Evans JD, Marques ETA, Barratt-Boyes SM. Association between magnitude of the virus-specific plasmablast response and disease severity in dengue patients. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23203929 DOI: 10.4049/jimmunol.1103350] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dengue is a globally expanding disease caused by infection with dengue virus (DENV) that ranges from febrile illness to acute disease with serious complications. Secondary infection predisposes individuals to more severe disease, and B lymphocytes may play a role in this phenomenon through production of Ab that enhance infection. To better define the acute B cell response during dengue, we analyzed peripheral B cells from an adult Brazilian hospital cohort with primary and secondary DENV infections of varying clinical severity. Circulating B cells in dengue patients were proliferating, activated, and apoptotic relative to individuals with other febrile illnesses. Severe secondary DENV infection was associated with extraordinary peak plasmablast frequencies between 4 and 7 d of illness, averaging 46% and reaching 87% of B cells, significantly greater than those seen in mild illness or primary infections. On average >70% of IgG-secreting cells in individuals with severe secondary DENV infection were DENV specific. Plasmablasts produced Ab that cross-reacted with heterotypic DENV serotypes, but with a 3-fold greater reactivity to DENV-3, the infecting serotype. Plasmablast frequency did not correlate with acute serum-neutralizing Ab titers to any DENV serotype regardless of severity of disease. These findings indicate that massive expansion of DENV-specific and serotype cross-reactive plasmablasts occurs in acute secondary DENV infection of adults in Brazil, which is associated with increasing disease severity.
Collapse
|
580
|
Garraud O, Borhis G, Badr G, Degrelle S, Pozzetto B, Cognasse F, Richard Y. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol 2012; 13:63. [PMID: 23194300 PMCID: PMC3526508 DOI: 10.1186/1471-2172-13-63] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/05/2012] [Indexed: 01/19/2023] Open
Abstract
The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40(+) antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology.
Collapse
Affiliation(s)
- Olivier Garraud
- EA3064–GIMAP, Université de Lyon, Saint-Etienne, France
- EFS Auvergne-Loire, Saint-Etienne, France
- Vice-Rectorate for Graduate Studies and Research-Visiting Professor Program, King Saud University, Riyadh, Saudi Arabia
- Etablissement Français du Sang Auvergne-Loire, 42023, Saint-Etienne cedex 02, France
| | - Gwenoline Borhis
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
- Princes Johara Alibrahim Center for Cancer Research, Prostate Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Séverine Degrelle
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Pozzetto
- EA3064–GIMAP, Université de Lyon, Saint-Etienne, France
- Laboratoire de Microbiologie et Hygiène, CHU de Saint-Etienne, Saint-Etienne, France
| | - Fabrice Cognasse
- EA3064–GIMAP, Université de Lyon, Saint-Etienne, France
- EFS Auvergne-Loire, Saint-Etienne, France
| | - Yolande Richard
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
581
|
Brenchley JM, Vinton C, Tabb B, Hao XP, Connick E, Paiardini M, Lifson JD, Silvestri G, Estes JD. Differential infection patterns of CD4+ T cells and lymphoid tissue viral burden distinguish progressive and nonprogressive lentiviral infections. Blood 2012; 120:4172-81. [PMID: 22990012 PMCID: PMC3501715 DOI: 10.1182/blood-2012-06-437608] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/31/2012] [Indexed: 01/14/2023] Open
Abstract
Nonhuman primate natural hosts for simian immunodeficiency viruses (SIV) develop a nonresolving chronic infection but do not develop AIDS. Mechanisms to explain the nonprogressive nature of SIV infection in natural hosts that underlie maintained high levels of plasma viremia without apparent loss of target cells remain unclear. Here we used comprehensive approaches (ie, FACS sorting, quantitative RT-PCR, immunohistochemistry, and in situ hybridization) to study viral infection within subsets of peripheral blood and lymphoid tissue (LT) CD4(+) T cells in cohorts of chronically SIV-infected rhesus macaques (RMs), HIV-infected humans, and SIVsmm-infected sooty mangabeys (SMs). We find: (1) infection frequencies among CD4(+) T cells in chronically SIV-infected RMs are significantly higher than those in SIVsmm-infected SMs; (2) infected cells are found in distinct anatomic LT niches and different CD4(+) T-cell subsets in SIV-infected RMs and SMs, with infection patterns of RMs reflecting HIV infection in humans; (3) T(FH) cells are infected at higher frequencies in RMs and humans than in SMs; and (4) LT viral burden, including follicular dendritic cell deposition of virus, is increased in RMs and humans compared with SMs. These data provide insights into how natural hosts are able to maintain high levels of plasma viremia while avoiding development of immunodeficiency.
Collapse
Affiliation(s)
- Jason M Brenchley
- Program in Barrier Immunity and Repair, National Institute of Allergy and Infectious Diseases, National Institutes ofHealth, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, Pittaluga S, Matthews HF, Schmitz R, Jhavar S, Kuchen S, Kardava L, Wang W, Lamborn IT, Jing H, Raffeld M, Moir S, Fleisher TA, Staudt LM, Su HC, Lenardo MJ. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. ACTA ACUST UNITED AC 2012; 209:2247-61. [PMID: 23129749 PMCID: PMC3501355 DOI: 10.1084/jem.20120831] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline mutations in CARD11 that result in constitutive NF-κB activation and selective B cell expansion underlie congenital B cell lymphocytosis. Nuclear factor-κB (NF-κB) controls genes involved in normal lymphocyte functions, but constitutive NF-κB activation is often associated with B cell malignancy. Using high-throughput whole transcriptome sequencing, we investigated a unique family with hereditary polyclonal B cell lymphocytosis. We found a novel germline heterozygous missense mutation (E127G) in affected patients in the gene encoding CARD11, a scaffolding protein required for antigen receptor (AgR)–induced NF-κB activation in both B and T lymphocytes. We subsequently identified a second germline mutation (G116S) in an unrelated, phenotypically similar patient, confirming mutations in CARD11 drive disease. Like somatic, gain-of-function CARD11 mutations described in B cell lymphoma, these germline CARD11 mutants spontaneously aggregate and drive constitutive NF-κB activation. However, these CARD11 mutants rendered patient T cells less responsive to AgR-induced activation. By reexamining this rare genetic disorder first reported four decades ago, our findings provide new insight into why activating CARD11 mutations may induce B cell expansion and preferentially predispose to B cell malignancy without dramatically perturbing T cell homeostasis.
Collapse
Affiliation(s)
- Andrew L Snow
- Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
583
|
Ruffin N, Lantto R, Pensieroso S, Sammicheli S, Hejdeman B, Rethi B, Chiodi F. Immune activation and increased IL-21R expression are associated with the loss of memory B cells during HIV-1 infection. J Intern Med 2012; 272:492-503. [PMID: 22530560 DOI: 10.1111/j.1365-2796.2012.02550.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Microbial translocation and chronic immune activation were previously shown to be associated with impairment of T cell functions and disease progression during infection with human immunodeficiency virus type-1 (HIV-1); however, their impact on B cell function and number remains unknown. By measuring markers of immune activation and molecules involved in apoptosis regulation, we have evaluated the association between microbial translocation and loss of memory B cells in HIV-1-infected patients. METHODS Markers of activation [the interleukin-21 receptor (IL-21R) and CD38] and apoptosis (Bim, Bcl-2 and annexin V) were measured in B cell subpopulations by multicolour flow cytometry. Levels of soluble CD14 (sCD14) and lipopolysaccharide (LPS), measures of microbial translocation, were determined in plasma. Purified B cells were also exposed in vitro to Toll-like receptor (TLR) ligands. RESULTS IL-21R expression was higher in cells from HIV-1-infected patients, compared with control subjects, with the highest levels in nontreated patients. An inverse correlation was observed between IL-21R expression and percentages of circulating resting memory (RM) B cells. IL-21R-positive memory B cells were also more susceptible to spontaneous apoptosis and displayed lower levels of Bcl-2. It is interesting that the levels of sCD14, which are increased during HIV-1 infection, were correlated with decreased percentages of RM B cells and high IL-21R expression. In the plasma of HIV-1-infected individuals, a correlation was found between sCD14 and LPS levels. TLR activation of B cells in vitro resulted in IL-21R up-regulation. CONCLUSIONS Microbial translocation and the associated immune activation during HIV-1 infection may lead to high expression levels of the IL-21R activation marker in RM B cells, a feature associated with increased apoptosis and a reduced number of these cells in the circulation.
Collapse
Affiliation(s)
- N Ruffin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Venhälsan, South Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
584
|
Stromberg SP, Antia R. On the role of CD8 T cells in the control of persistent infections. Biophys J 2012; 103:1802-10. [PMID: 23083724 DOI: 10.1016/j.bpj.2012.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
The control of pathogen density during infections is typically assumed to be the result of a combination of resource limitation (loss of target cells that the pathogen can infect), innate immunity, and specific immunity. The contributions of these factors have been considered in acute infections, which are characterized by having a short duration. What controls the pathogen during persistent infections is less clear, and is complicated by two factors. First, specific immune responses become exhausted if they are subject to chronic stimulation. Exhaustion has been best characterized for CD8 T cell responses, and occurs through a combination of cell death and loss of functionality of surviving cells. Second, new nonexhausted T cells can immigrate from the thymus during the infection, and may play a role in the control of the infection. In this article, we formulate a partial-differential-equation model to describe the interaction between these processes, and use this model to explore how thymic influx and exhaustion might affect the ability of CD8 T cell responses to control persistent infections. We find that although thymic influx can play a critical role in the maintenance of a limited CD8 T cell response during persistent infections, this response is not sufficiently large to play a significant role in controlling the infection. In doing so, our results highlight the importance of resource limitation and innate immunity in the control of persistent infections.
Collapse
|
585
|
Molecular signature in HCV-positive lymphomas. Clin Dev Immunol 2012; 2012:623465. [PMID: 22952554 PMCID: PMC3431075 DOI: 10.1155/2012/623465] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL). Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.
Collapse
|
586
|
Haddad EK, Hiscott J. Cytokine networks during HIV infection: Shifting the balance. Cytokine Growth Factor Rev 2012; 23:139-41. [DOI: 10.1016/j.cytogfr.2012.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
587
|
Boliar S, Murphy MK, Tran TC, Carnathan DG, Armstrong WS, Silvestri G, Derdeyn CA. B-lymphocyte dysfunction in chronic HIV-1 infection does not prevent cross-clade neutralization breadth. J Virol 2012; 86:8031-40. [PMID: 22623771 PMCID: PMC3421653 DOI: 10.1128/jvi.00771-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023] Open
Abstract
Aberrant expression of regulatory receptors programmed death-1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) is linked with dysregulation and exhaustion of T lymphocytes during chronic human immunodeficiency virus type 1 (HIV-1) infection; however, less is known about whether a similar process impacts B-lymphocyte function during HIV-1 infection. We reasoned that disruption of the peripheral B cell compartment might be associated with decreased neutralizing antibody activity. Expression of markers that indicate dysregulation (BTLA and PD-1), immune activation (CD95), and proliferation (Ki-67) was evaluated in B cells from HIV-1-infected viremic and aviremic subjects and healthy subjects, in conjunction with immunoglobulin production and CD4 T cell count. Viral load and cross-clade neutralizing activity in plasma from viremic subjects were also assessed. Dysregulation of B lymphocytes was indicated by a marked disruption of peripheral B cell subsets, increased levels of PD-1 expression, and decreased levels of BTLA expression in viremic subjects compared to aviremic subjects and healthy controls. PD-1 and BTLA were correlated in a divergent fashion with immune activation, CD4 T cell count, and the total plasma IgG level, a functional correlate of B cell dysfunction. Within viremic subjects, the total IgG level correlated directly with cross-clade neutralizing activity in plasma. The findings demonstrate that even in chronically infected subjects in which B lymphocytes display multiple indications of dysfunction, antibodies that mediate cross-clade neutralization breadth continue to circulate in plasma.
Collapse
Affiliation(s)
- Saikat Boliar
- Emory Vaccine Center at Yerkes National Primate Research Center
| | - Megan K. Murphy
- Emory Vaccine Center at Yerkes National Primate Research Center
- Immunology and Molecular Pathogenesis Graduate Program
| | - T. Cameron Tran
- Center for AIDS Research
- Division of Infectious Diseases, Department of Medicine
| | | | | | - Guido Silvestri
- Emory Vaccine Center at Yerkes National Primate Research Center
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
588
|
Perisé-Barrios AJ, Muñoz-Fernandez MÁ, Pion M. Direct phenotypical and functional dysregulation of primary human B cells by human immunodeficiency virus (HIV) type 1 in vitro. PLoS One 2012; 7:e39472. [PMID: 22768302 PMCID: PMC3388069 DOI: 10.1371/journal.pone.0039472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/21/2012] [Indexed: 12/23/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) induces a general dysregulation of immune system. Dysregulation of B cell compartment is generally thought to be induced by HIV-related immune activation and lymphopenia. However, a direct influence of HIV-1 particles on B cells was recently proposed as the third pathway of B cells dysregulation. Methods/Principal Findings We evaluated the direct and specific consequences of HIV-1 contact on activation, survival, proliferation and phenotype of primary B cells in vitro. Moreover, we examined expression of activation-induced cytidine deaminase (AID) mRNA that is responsible for class switch recombination (CSR) and somatic hypermutation (SHM). Here, we report that changes observed in cellular proliferation, phenotypes and activation of B cells could be caused by direct contact between HIV-1 particles and primary B cells in vitro. Finally, direct HIV-1-derived B cells activation led to the increase of AID mRNA expression and its subsequent CSR function was detected in vitro. Conclusion/Significance We showed that HIV-1 could directly induce primary B cells dysregulation triggering phenotypical and functional abilities of B cells in vitro that could explain in some extent early B-cell abnormalities in HIV disease.
Collapse
Affiliation(s)
- Ana Judith Perisé-Barrios
- Laboratorio Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Ángeles Muñoz-Fernandez
- Laboratorio Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Red Temática de Investigación Cooperativa Sanitaria del Instituto de Salud Carlos III (RETIC), Red de Investigación Sanitaria (RIS) HIV-Vaccine group, Madrid, Spain
| | - Marjorie Pion
- Laboratorio Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- * E-mail:
| |
Collapse
|
589
|
Lambotin M, Barth H, Moog C, Habersetzer F, Baumert TF, Stoll-Keller F, Fafi-Kremer S. Challenges for HCV vaccine development in HIV-HCV coinfection. Expert Rev Vaccines 2012; 11:791-804. [PMID: 22913257 DOI: 10.1586/erv.12.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is estimated that 4-5 million HIV-infected patients are coinfected with HCV. The impact of HIV on the natural course of HCV infection is deleterious. This includes a higher rate of HCV persistence and a faster rate of fibrosis progression. Coinfected patients show poor treatment outcome following standard HCV therapy. Although direct antiviral agents offer new therapeutic options, their use is hindered by potential drug interactions and toxicity in HIV-infected patients under HAART. Overtime, a large reservoir of HCV genotype 1 patients will accumulate in resource poor countries where the hepatitis C treatment is not easily affordable and HIV therapy remains the primary health issue for coinfected individuals. HCV vaccines represent a promising strategy as an adjunct or alternative to current HCV therapy. Here, the authors review the pathogenesis of hepatitis C in HIV-infected patients, with a focus on the impact of HIV on HCV-specific immune responses and discuss the challenges for vaccine development in HIV-HCV coinfection.
Collapse
|
590
|
Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep 2012; 2:472. [PMID: 22737405 PMCID: PMC3382734 DOI: 10.1038/srep00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Characterisation of protective helminth acquired immunity in humans or experimental models has focused on effector responses with little work conducted on memory responses. Here we show for the first time, that human helminth infection is associated with altered proportions of the CD4+ memory T cells, with an associated alteration of TH1 responses. The reduced CD4+ memory T cell proportions are associated with a significantly lower ratio of schistosome-specific IgE/IgG4 (marker for resistance to infection/re-infection) in uninfected older people. Helminth infection does not affect the CD8+ memory T cell pool. Furthermore, we show for the first time in a helminth infection that the CD4+ memory T cell proportions decline following curative anti-helminthic treatment despite increased CD4+ memory cell replication. Reduced accumulation of the CD4+ memory T cells in schistosome-infected people has implications for the development of natural or vaccine induced schistosome-specific protective immunity as well as for unrelated pathogens.
Collapse
|
591
|
González R, Ataíde R, Naniche D, Menéndez C, Mayor A. HIV and malaria interactions: where do we stand? Expert Rev Anti Infect Ther 2012; 10:153-65. [PMID: 22339190 DOI: 10.1586/eri.11.167] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversing the spread of HIV infection and the incidence of malaria constitute two of the Millenium Development Goals. However, despite recent achievements, both diseases still entail global heath problems. Furthermore, their overlapping geographical distribution raises concerns and challenges for potential immunological, clinical and therapeutic interactions. It has been reported that HIV infection increases malaria susceptibility and reduces the efficacy of antimalarial drugs. On the other hand, the effect of malaria on HIV-infected individuals has also been explored, with the parasitic infection increasing the risk of HIV disease progression and mother-to-child transmission of HIV. The spread of malaria and parasite resistance to antimalarials could also be accelerated by HIV-associated immunosuppresion. Current knowledge of the epidemiological, clinical, immunological and therapeutic interactions of the two diseases is reviewed in this article. We focus on the latest available data, pointing out key future research areas and challenges of the field.
Collapse
Affiliation(s)
- Raquel González
- Barcelona Centre for International Heath Research (CRESIB), Hospital Clínic/IDIBAPS, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
592
|
Visentini M, Cagliuso M, Conti V, Carbonari M, Cibati M, Siciliano G, Cristofoletti C, Russo G, Casato M, Fiorilli M. Clonal B cells of HCV-associated mixed cryoglobulinemia patients contain exhausted marginal zone-like and CD21low cells overexpressing Stra13. Eur J Immunol 2012; 42:1468-76. [DOI: 10.1002/eji.201142313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcella Visentini
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Maria Cagliuso
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Valentina Conti
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Maurizio Carbonari
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Marina Cibati
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Giulia Siciliano
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Cristina Cristofoletti
- Laboratory of Molecular Oncology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome; Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome; Italy
| | - Milvia Casato
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| | - Massimo Fiorilli
- Department of Clinical Immunology; Sapienza University of Rome; Rome; Italy
| |
Collapse
|
593
|
Odorizzi PM, Wherry EJ. Inhibitory receptors on lymphocytes: insights from infections. THE JOURNAL OF IMMUNOLOGY 2012; 188:2957-65. [PMID: 22442493 DOI: 10.4049/jimmunol.1100038] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Costimulatory and inhibitory receptors are critical regulators of adaptive immune cell function. These pathways regulate the initiation and termination of effective immune responses to infections while limiting autoimmunity and/or immunopathology. This review focuses on recent advances in our understanding of inhibitory receptor pathways and their roles in different diseases and/or infections, emphasizing potential clinical applications and important unanswered mechanistic questions. Although significant progress has been made in defining the influence of inhibitory receptors at the cellular level, relatively little is known about the underlying molecular pathways. We discuss our current understanding of the molecular mechanisms for key inhibitory receptor pathways, highlight major gaps in knowledge, and explore current and future clinical applications.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Microbiology, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
594
|
Thirty Years with HIV Infection-Nonprogression Is Still Puzzling: Lessons to Be Learned from Controllers and Long-Term Nonprogressors. AIDS Res Treat 2012; 2012:161584. [PMID: 22693657 PMCID: PMC3368166 DOI: 10.1155/2012/161584] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
In the early days of the HIV epidemic, it was observed that a minority of the infected patients did not progress to AIDS or death and maintained stable CD4+ cell counts. As the technique for measuring viral load became available it was evident that some of these nonprogressors in addition to preserved CD4+ cell counts had very low or even undetectable viral replication. They were therefore termed controllers, while those with viral replication were termed long-term nonprogressors (LTNPs). Genetics and virology play a role in nonprogression, but does not provide a full explanation. Therefore, host differences in the immunological response have been proposed. Moreover, the immunological response can be divided into an immune homeostasis resistant to HIV and an immune response leading to viral control. Thus, non-progression in LTNP and controllers may be due to different immunological mechanisms. Understanding the lack of disease progression and the different interactions between HIV and the immune system could ideally teach us how to develop a functional cure for HIV infection. Here we review immunological features of controllers and LTNP, highlighting differences and clinical implications.
Collapse
|
595
|
Chronic hepatitis C virus infection breaks tolerance and drives polyclonal expansion of autoreactive B cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1027-37. [PMID: 22623650 DOI: 10.1128/cvi.00194-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic Hepatitis C virus (HCV) infection has been linked with B cell lymphoproliferative disorders and several autoimmune-related diseases. The mechanisms of how chronic viral infection affects B cell development and predisposes the patients to autoimmune manifestations are poorly understood. In this study, we established an experimental system to probe the B cell responses and characterize the antibodies from chronic-HCV-infected individuals. We identified an unusual polyclonal expansion of the IgM memory B cell subset in some patients. This B cell subset is known to be tightly regulated, and autoreactive cells are eliminated by tolerance mechanisms. Genetic analysis of the immunoglobulin (Ig) heavy chain variable gene (V(H)) sequences of the expanded cell population showed that the levels of somatic hypermutation (SHM) correlate with the extent of cell expansion in the patients and that the V(H) genes exhibit signs of antigen-mediated selection. Functional analysis of the cloned B cell receptors demonstrated autoreactivity in some of the expanded IgM memory B cells in the patients which is not found in healthy donors. In summary, this study demonstrated that, in some patients, chronic HCV infection disrupts the tolerance mechanism that normally deletes autoreactive B cells, therefore increasing the risk of developing autoimmune antibodies. Long-term follow-up of this expanded B cell subset within the infected individuals will help determine whether these cells are predictors of more-serious clinical manifestations.
Collapse
|
596
|
Quiros-Roldan E, Serana F, Chiarini M, Zanotti C, Sottini A, Gotti D, Torti C, Caimi L, Imberti L. Effects of combined antiretroviral therapy on B- and T-cell release from production sites in long-term treated HIV-1+ patients. J Transl Med 2012; 10:94. [PMID: 22591651 PMCID: PMC3481359 DOI: 10.1186/1479-5876-10-94] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immune system reconstitution in HIV-1- infected patients undergoing combined antiretroviral therapy is routinely evaluated by T-cell phenotyping, even though the infection also impairs the B-cell mediated immunity. To find new laboratory markers of therapy effectiveness, both B- and T- immune recovery were evaluated by means of a follow-up study of long-term treated HIV-1- infected patients, with a special focus on the measure of new B- and T-lymphocyte production. METHODS A longitudinal analysis was performed in samples obtained from HIV-1-infected patients before therapy beginning and after 6, 12, and 72 months with a duplex real-time PCR allowing the detection of K-deleting recombination excision circles (KRECs) and T-cell receptor excision circles (TRECs), as measures of bone-marrow and thymic output, respectively. A cross sectional analysis was performed to detect B- and T-cell subsets by flow cytometry in samples obtained at the end of the follow-up, which were compared to those of untreated HIV-1-infected patients and uninfected controls. RESULTS The kinetics and the timings of B- and T-cell release from the bone marrow and thymus during antiretroviral therapy were substantially different, with a decreased B-cell release and an increased thymic output after the prolonged therapy. The multivariable regression analysis showed that a longer pre-therapy infection duration predicts a minor TREC increase and a major KREC reduction. CONCLUSIONS The quantification of KRECs and TRECs represents an improved method to monitor the effects of therapies capable of influencing the immune cell pool composition in HIV-1-infected patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Laboratory of Biotechnology, Diagnostics Department, Spedali Civili of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Portugal S, Doumtabe D, Traore B, Miller LH, Troye-Blomberg M, Doumbo OK, Dolo A, Pierce SK, Crompton PD. B cell analysis of ethnic groups in Mali with differential susceptibility to malaria. Malar J 2012; 11:162. [PMID: 22577737 PMCID: PMC3507766 DOI: 10.1186/1475-2875-11-162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies indicate that people of the Fulani ethnic group are less susceptible to malaria compared to those of other ethnic groups living sympatrically in Africa, including the Dogon ethnic group. Although the mechanisms of this protection remain unclear, the Fulani are known to have higher levels of Plasmodium falciparum-specific antibodies of all Ig classes as compared to the Dogon. However, the proportions of B cell subsets in the Fulani and Dogon that may account for differences in the levels of Ig have not been characterized. METHODS In this cross-sectional study, venous blood was collected from asymptomatic Fulani (n = 25) and Dogon (n = 25) adults in Mali during the malaria season, and from P. falciparum-naïve adults in the U.S. (n = 8). At the time of the blood collection, P. falciparum infection was detected by blood-smear in 16% of the Fulani and 36% of the Dogon volunteers. Thawed lymphocytes were analysed by flow cytometry to quantify B cell subsets, including immature and naïve B cells; plasma cells; and classical, activated, and atypical memory B cells (MBCs). RESULTS The overall distribution of B cell subsets was similar between Fulani and Dogon adults, although the percentage of activated MBCs was higher in the Fulani group (Fulani: 11.07% [95% CI: 9.317 - 12.82]; Dogon: 8.31% [95% CI: 6.378 - 10.23]; P = 0.016). The percentage of atypical MBCs was similar between Fulani and Dogon adults (Fulani: 28.3% [95% CI: 22.73 - 34.88]; Dogon: 29.3% [95% CI: 25.06 - 33.55], but higher than U.S. adults (U.S.: 3.0% [95% CI: -0.21 - 6.164]; P < 0.001). Plasmodium falciparum infection was associated with a higher percentage of plasma cells among Fulani (Fulani infected: 3.3% [95% CI: 1.788 - 4.744]; Fulani uninfected: 1.71% [95% CI: 1.33 - 2.08]; P = 0.011), but not Dogon adults. CONCLUSION These data show that the malaria-resistant Fulani have a higher percentage of activated MBCs compared to the Dogon, and that P. falciparum infection is associated with a higher percentage of plasma cells in the Fulani compared to the Dogon, findings that may account for the higher levels of P. falciparum antibodies in the Fulani.
Collapse
Affiliation(s)
- Silvia Portugal
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
598
|
9G4 autoreactivity is increased in HIV-infected patients and correlates with HIV broadly neutralizing serum activity. PLoS One 2012; 7:e35356. [PMID: 22530008 PMCID: PMC3329433 DOI: 10.1371/journal.pone.0035356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
The induction of a broadly neutralizing antibody (BNAb) response against HIV-1 would be a desirable feature of a protective vaccine. Vaccine strategies thus far have failed to elicit broadly neutralizing antibody responses; however a minority of HIV-infected patients do develop circulating BNAbs, from which several potent broadly neutralizing monoclonal antibodies (mAbs) have been isolated. The findings that several BNmAbs exhibit autoreactivity and that autoreactive serum antibodies are observed in some HIV patients have advanced the possibility that enforcement of self-tolerance may contribute to the rarity of BNAbs. To examine the possible breakdown of tolerance in HIV patients, we utilized the 9G4 anti-idiotype antibody system, enabling resolution of both autoreactive VH4-34 gene-expressing B cells and serum antibodies. Compared with healthy controls, HIV patients had significantly elevated 9G4+ serum IgG antibody concentrations and frequencies of 9G4+ B cells, a finding characteristic of systemic lupus erythematosus (SLE) patients, both of which positively correlated with HIV viral load. Compared to the global 9G4-IgD--memory B cell population, the 9G4+IgD--memory fraction in HIV patients was dominated by isotype switched IgG+ B cells, but had a more prominent bias toward "IgM only" memory. HIV envelope reactivity was observed both in the 9G4+ serum antibody and 9G4+ B cell population. 9G4+ IgG serum antibody levels positively correlated (r = 0.403, p = 0.0019) with the serum HIV BNAbs. Interestingly, other serum autoantibodies commonly found in SLE (anti-dsDNA, ANA, anti-CL) did not correlate with serum HIV BNAbs. 9G4-associated autoreactivity is preferentially expanded in chronic HIV infection as compared to other SLE autoreactivities. Therefore, the 9G4 system provides an effective tool to examine autoreactivity in HIV patients. Our results suggest that the development of HIV BNAbs is not merely a consequence of a general breakdown in tolerance, but rather a more intricate expansion of selective autoreactive B cells and antibodies.
Collapse
|
599
|
Suboptimal immune reconstitution in vertically HIV infected children: a view on how HIV replication and timing of HAART initiation can impact on T and B-cell compartment. Clin Dev Immunol 2012; 2012:805151. [PMID: 22550537 PMCID: PMC3328919 DOI: 10.1155/2012/805151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/21/2011] [Accepted: 12/10/2011] [Indexed: 11/18/2022]
Abstract
Today, HIV-infected children who have access to treatment face a chronic rather than a progressive and fatal disease. As a result, new challenges are emerging in the field. Recent lines of evidence outline several factors that can differently affect the ability of the immune system to fully reconstitute and to mount specific immune responses in children receiving HAART. In this paper, we review the underlying mechanisms of immune reconstitution after HAART initiation among vertically HIV-infected children analyzing the possible causes of suboptimal responses.
Collapse
|
600
|
Abstract
HIV infection and antiretroviral therapy (ART) are now established independent risk factors for osteoporosis. With a spate of recent studies reporting significant elevations in fracture prevalence in HIV patients, and a rapidly aging demographic, defining the mechanisms underlying HIV/ART-induced skeletal decline has become imperative. The recent emergence of the field of "osteoimmunology" has provided a conceptual framework to explain how the immune and skeletal systems interact. Furthermore, it is becoming clear that inflammatory states leading to perturbations in the immuno-skeletal interface, a convergence of common cells and cytokine mediators that regulate both immune and skeletal systems, conspire to imbalance bone turnover and induce osteoporosis. In this review we examine the role of inflammation in the bone loss associated with diverse inflammatory conditions and new concepts into how the underlying mechanisms by which inflammation and immune dysregulation impact bone turnover may be pertinent to the mechanisms involved in HIV/ART-induced bone loss.
Collapse
Affiliation(s)
- Ighovwerha Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|