551
|
Soyer EM, Frost MC, Fletcher OV, Ioannou GN, Tsui JI, Edelman EJ, Weiner BJ, Bachrach RL, Chen JA, Williams EC. Perspectives of clinical stakeholders and patients from four VA liver clinics to tailor practice facilitation for implementing evidence-based alcohol-related care. Addict Sci Clin Pract 2024; 19:3. [PMID: 38200496 PMCID: PMC10782537 DOI: 10.1186/s13722-023-00429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Unhealthy alcohol use (UAU) is particularly dangerous for people with chronic liver disease. Liver clinics may be an important setting in which to provide effective alcohol-related care by integrating evidence-based strategies, such as brief intervention and medications for alcohol use disorder. We conducted qualitative interviews with clinical stakeholders and patients at liver clinics in four Veterans Health Administration (VA) medical centers to understand barriers and facilitators of integrating alcohol-related care and to support tailoring of a practice facilitation implementation intervention. METHODS Data collection and analysis were guided by the Consolidated Framework for Implementation Research (CFIR). Interviews were transcribed and qualitatively analyzed using a Rapid Assessment Process (RAP) guided by the CFIR. RESULTS We interviewed 46 clinical stakeholders and 41 patient participants and analyzed findings based on the CFIR. Clinical stakeholders described barriers and facilitators that ranged from operations/clinic resource-based (e.g., time and capacity, desire for additional provider types, referral processes) to individual perspective and preference-based (e.g., supportiveness of leadership, individual experiences/beliefs). Patient participants shared barriers and facilitators that ranged from relationship-based (e.g., trusting the provider and feeling judged) to resource and education-based (e.g., connection to a range of treatment options, education about impact of alcohol). Many barriers and facilitators to integrating alcohol-related care in liver clinics were similar to those identified in other clinical settings (e.g., time, resources, role clarity, stigmatizing beliefs). However, some barriers (e.g., fellow-led care and lack of integration of liver clinics with addictions specialists) and facilitators (e.g., presence of quality improvement staff in clinics and integrated pharmacists and behavioral health specialists) were more unique to liver clinics. CONCLUSIONS These findings support the possibility of integrating alcohol-related care into liver clinics but highlight the importance of tailoring efforts to account for variation in provider beliefs and experiences and clinic resources. The barriers and facilitators identified in these interviews were used to tailor a practice facilitation implementation intervention in each clinic setting.
Collapse
Affiliation(s)
- Elena M Soyer
- Department of Health Systems and Population Health, University of Washington School of Public Health, 3980 15th Ave NE, Seattle, WA, 98195, USA.
- Health Services Research & Development (HSR&D) Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Affairs (VA) Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA.
| | - Madeline C Frost
- Department of Health Systems and Population Health, University of Washington School of Public Health, 3980 15th Ave NE, Seattle, WA, 98195, USA
- Health Services Research & Development (HSR&D) Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Affairs (VA) Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Olivia V Fletcher
- Health Services Research & Development (HSR&D) Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Affairs (VA) Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - George N Ioannou
- Health Services Research & Development (HSR&D) Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Affairs (VA) Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington School of Medicine, 325 9th Ave, Seattle, WA, 98104, USA
| | - Judith I Tsui
- Department of Medicine, University of Washington School of Medicine, 325 9th Ave, Seattle, WA, 98104, USA
| | - E Jennifer Edelman
- Yale Schools of Medicine and Public Health, 367 Cedar Street, ES Harkness, Suite 401, New Haven, CT, 06510, USA
| | - Bryan J Weiner
- Department of Health Systems and Population Health, University of Washington School of Public Health, 3980 15th Ave NE, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington School of Public Health, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Rachel L Bachrach
- Department of Psychiatry, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA
- Center for Clinical Management Research, VA Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Jessica A Chen
- Health Services Research & Development (HSR&D) Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Affairs (VA) Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Emily C Williams
- Department of Health Systems and Population Health, University of Washington School of Public Health, 3980 15th Ave NE, Seattle, WA, 98195, USA
- Health Services Research & Development (HSR&D) Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Affairs (VA) Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA
| |
Collapse
|
552
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
553
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
554
|
Pringle TA, Ramon-Gil E, Leslie J, Oakley F, Wright MC, Knight JC, Luli S. Synthesis and preclinical evaluation of a 89Zr-labelled human single chain antibody for non-invasive detection of hepatic myofibroblasts in acute liver injury. Sci Rep 2024; 14:633. [PMID: 38182623 PMCID: PMC10770171 DOI: 10.1038/s41598-023-50779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Synaptophysin is expressed on fibrogenic hepatic myofibroblasts. C1-3 is a single chain human antibody (scAb) that binds specifically to synaptophysin on hepatic myofibroblasts, providing a targeting vector for novel in vivo imaging agents of chronic liver disease. C1-3 and a negative control scAb, CSBD9, were radiolabelled with zirconium-89 via desferrioxamine chelation to enable non-invasive molecular imaging with positron emission tomography (PET). DFO-scAb conjugates were characterised by gel electrophoresis (SDS-PAGE) and MALDI-TOF spectrometry, and 89Zr-labelled with high radiolabelling efficiency (99%). [89Zr]Zr-DFO-C1-3 exhibited high in vitro stability (> 99%) in mouse and human sera over 3 days at 25 and 37 °C. Activated hepatic myofibroblasts incubated with [89Zr]Zr-DFO-C1-3 displayed significantly higher internalised activity (59.46%, P = 0.001) compared to the [89Zr]Zr-DFO-CSBD9 control, indicating synaptophysin-mediated uptake and high binding specificity of [89Zr]Zr-DFO-C1-3. Mice with CCl4-induced acute liver damage exhibited significantly higher liver uptake of [89Zr]Zr-DFO-C1-3, compared to controls, confirmed by both Cerenkov imaging and ex vivo gamma counting (4.41 ± 0.19%ID/g, P < 0.0001). CCl4-induced liver damage and the number of hepatic myofibroblasts was confirmed by αSMA staining of liver sections. These findings indicate that [89Zr]Zr-DFO-C1-3 has promising utility as a PET imaging agent for non-invasive detection of hepatic myofibroblasts following acute liver injury.
Collapse
Affiliation(s)
- Toni A Pringle
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew C Wright
- Liver Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James C Knight
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK.
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Newcastle Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Medical School, Newcastle University, 4th Floor William Leech Building, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
555
|
Lee SS, Zhang J, Chen AY, Liu H. History of the liver-heart relationship. Clin Liver Dis (Hoboken) 2024; 23:e0151. [PMID: 38681514 PMCID: PMC11049776 DOI: 10.1097/cld.0000000000000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 05/01/2024] Open
Affiliation(s)
- Samuel S. Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Jing Zhang
- Capital Medical University Youan Hospital, Beijing, China
| | - Annie Yan Chen
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
556
|
Loomba R, Wong VWS. Implications of the new nomenclature of steatotic liver disease and definition of metabolic dysfunction-associated steatotic liver disease. Aliment Pharmacol Ther 2024; 59:150-156. [PMID: 38153279 PMCID: PMC10807722 DOI: 10.1111/apt.17846] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The American and European liver associations have endorsed new nomenclature of steatotic liver disease (SLD) and definition of metabolic dysfunction-associated steatotic liver disease (MASLD). AIMS To review the historical development leading to the changes and to discuss the implications of the changes on research and clinical practice METHODS: We performed a literature search using keywords related to MASLD and non-alcoholic fatty liver disease (NAFLD). RESULTS The SLD umbrella allows classification of patients under the key categories of MASLD, alcohol-associated liver disease and a new entity termed MetALD, which represents MASLD with increased alcohol intake. The diagnosis of MASLD requires the demonstration of hepatic steatosis and at least one metabolic risk factor, whereas MASLD can co-exist with other liver diseases such as chronic viral hepatitis. Despite the change in definition, over 95% of patients previously known as having NAFLD fulfil diagnostic criteria for MASLD. It is conceivable that future clinical trials and biomarker studies will continue to exclude concomitant liver diseases. As most patients with MASLD are seen at primary care and non-hepatology settings, communication with other stakeholders is essential to ensure disease awareness and smooth adoption of the changes. CONCLUSIONS The new nomenclature is both a challenge, given the need for dissemination and education across the spectrum of stakeholders, and an opportunity to bring everyone together and spark new research to better understand epidemiology, natural history, diagnosis, biomarkers and management strategies across the spectrum of SLD.
Collapse
Affiliation(s)
- Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
- School of Public Health, University of California at San Diego, La Jolla, California, USA
| | - Vincent Wai-Sun Wong
- Medical Data Analytic Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
557
|
Huang SC, Liu CJ, Kao JH. Impact of metabolic disorders on chronic hepatitis B. Clin Liver Dis (Hoboken) 2024; 23:e0130. [PMID: 38576469 PMCID: PMC10994487 DOI: 10.1097/cld.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Shang-Chin Huang
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
558
|
Akuta N, Kawamura Y, Fujiyama S, Nakamichi K, Saegusa E, Ogura H, Kato M, Doi E, Inoue N, Sezaki H, Hosaka T, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Suzuki Y, Kumada H, Suzuki F. Impact of genetic polymorphism on personalized diet and exercise program for steatotic liver disease. Hepatol Res 2024; 54:54-66. [PMID: 37715600 DOI: 10.1111/hepr.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
AIMS The effects of genetic polymorphism on a personalized diet and exercise program for steatotic liver disease (SLD) are still unclear. METHODS Participants of this retrospective cohort study were 203 Japanese patients with SLD diagnosed by abdominal ultrasonography. All of them were introduced the personalized diet and exercise treatment. A diet of 25-30 kcal/kg multiplied by ideal body weight (BW) daily and aerobic and resistance exercise (exercise intensity of 4-5 metabolic equivalents daily, respectively) were performed for 6 days. Treatment efficacy was evaluated in terms of the rate of decrease of liver function tests, glycolipid metabolism markers, physical findings, image findings, and cardiovascular disease (CVD) risk score at 6 months compared with baseline. Furthermore, the impact of genetic polymorphism was also investigated. RESULTS At 6 months compared with baseline, liver function tests (AST, ALT, γGTP), glycolipid metabolism markers (hemoglobin A1c, triglycerides [TG], low-density lipoprotein cholesterol), physical findings (BW, body mass index), image finding (liver stiffness measurement), and CVD risk score (Suita score) improved significantly. There was no significant difference in treatment efficacy, except for the rates of decrease of TG, according to genotype PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs6834314. The rates of decrease of TG with TM6SF2 CT were significantly higher than those with CC or TT, and the rates of TG with HSD17B13 AA were significantly higher than those with AG by multiple comparisons. CONCLUSION Personalized diet and exercise program for SLD improved liver function tests, physical findings, glycolipid metabolism markers, and CVD risk score. Genetic polymorphism might partially affect treatment efficacy. Further studies should be performed to develop an individualized program for SLD, considering genetic polymorphism.
Collapse
Affiliation(s)
- Norio Akuta
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yusuke Kawamura
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Shunichiro Fujiyama
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | | | - Eiji Saegusa
- Department of Rehabilitation, Toranomon Hospital, Tokyo, Japan
| | - Hidetoshi Ogura
- Department of Rehabilitation, Toranomon Hospital, Tokyo, Japan
| | - Masaki Kato
- Department of Rehabilitation, Toranomon Hospital, Tokyo, Japan
| | - Etsuko Doi
- Department of Nutrition, Toranomon Hospital, Tokyo, Japan
| | - Naoko Inoue
- Department of Nutrition, Toranomon Hospital, Tokyo, Japan
| | - Hitomi Sezaki
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Tetsuya Hosaka
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | | | - Satoshi Saitoh
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yasuji Arase
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Kenji Ikeda
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yoshiyuki Suzuki
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Hiromitsu Kumada
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Fumitaka Suzuki
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
559
|
Ting PS, Lin WT, Huang CK, Lin HY, Tseng TS, Chen PH. Exclusive liquor and cocktail consumption is associated with at-risk fibrosis among nonheavy alcohol users with metabolic dysfunction-associated steatotic liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:88-97. [PMID: 38206286 PMCID: PMC10786214 DOI: 10.1111/acer.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol consumption have both increased in recent years, and there is debate as to whether nonheavy alcohol use is safe in MASLD. We analyzed the association between different nonheavy alcohol use patterns and at-risk liver fibrosis among individuals with MASLD. METHODS We conducted a cross-sectional study of 1072 eligible National Health and Nutrition Examination Survey participants with MASLD who reported nonheavy alcohol consumption. We used vibration-controlled transient elastography to define the primary outcome of at-risk liver fibrosis as >8.2 kPa (stage F2-F4). Multivariable logistic regression models were used to determine the association of different alcohol consumption patterns (average drinks/day, drinking days/week, weekly alcohol intake, type of alcoholic beverage) and at-risk hepatic fibrosis, controlling for demographic/socioeconomic, lifestyle/dietary, and metabolic risk factors. RESULTS Exclusive liquor or cocktail drinkers had a 5.02-fold odds of at-risk fibrosis (95% CI: 1.15-21.95) compared with non-drinkers when controlling for potential confounders. While consuming an average of 2 drinks/day, ≥3 drinking days/week, or 1-3 drinks/week appeared to have a lower association with at-risk fibrosis when controlling for demographic/socioeconomic risk factors, the association was not present after controlling for lifestyle/dietary and metabolic risk factors. CONCLUSIONS There is an association between exclusive liquor/cocktail consumption and at-risk liver fibrosis in patients with MASLD who report nonheavy alcohol consumption.
Collapse
Affiliation(s)
- Peng-sheng Ting
- Division of Gastroenterology and Hepatology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Wei-Ting Lin
- Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Chiung-Kuei Huang
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Tung-Sung Tseng
- School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Po-Hung Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 1830 East Monument Street, 4 Floor, Baltimore, MD 21287, USA
| |
Collapse
|
560
|
Gao PY, Ou YN, Wang HF, Wang ZB, Fu Y, He XY, Ma YH, Feng JF, Cheng W, Tan L, Yu JT. Associations of liver dysfunction with incident dementia, cognition, and brain structure: A prospective cohort study of 431 699 adults. J Neurochem 2024; 168:26-38. [PMID: 37830502 DOI: 10.1111/jnc.15988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The relationship between liver dysfunction and dementia has been researched extensively but remains poorly understood. In this study, we investigate the longitudinal and cross-sectional associations between liver function and liver diseases and risk of incident dementia, impaired cognition, and brain structure abnormalities using Cox proportion hazard model and linear regression model. 431 699 participants with a mean of 8.65 (standard deviation [SD] 2.61) years of follow-up were included from the UK Biobank; 5542 all-cause dementia (ACD), 2427 Alzheimer's disease (AD), and 1282 vascular dementia (VaD) cases were documented. We observed that per SD decreases in alanine transaminase (ALT; hazard ratio [HR], 0.917; PFDR <0.001) and per SD increases in aspartate aminotransferase (AST; HR, 1.048; PFDR = 0.010), AST to ALT ratio (HR, 1.195; PFDR <0.001), gamma-glutamyl transpeptidase (GGT; HR, 1.066; PFDR <0.001), alcoholic liver disease (ALD; HR, 2.872; PFDR <0.001), and fibrosis and cirrhosis of liver (HR, 2.285; PFDR = 0.002), being significantly associated with a higher risk of incident ACD. Restricted cubic spline models identified a strong U-shaped association between Alb and AST and incident ACD (Pnonlinear <0.05). Worse cognition was positively correlated with AST, AST to ALT ratio, direct bilirubin (DBil), and GGT; negatively correlated with ALT, Alb, and total bilirubin (TBil); and ALD and fibrosis and cirrhosis of liver (PFDR <0.05). Moreover, changes in ALT, GGT, AST to ALT ratio, and ALD were significantly associated with altered cortical and subcortical regions, including hippocampus, amygdala, thalamus, pallidum, and fusiform (PFDR <0.05). In sensitivity analysis, metabolic dysfunction-associated steatotic liver disease (MASLD) was associated with the risk of ACD and brain subcortical changes. Our findings provide substantial evidence that liver dysfunction may be an important factor for incident dementia. Early intervention in the unhealthy liver may help prevent cognitive impairment and dementia incidence.
Collapse
Affiliation(s)
- Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
561
|
Kumar J, Mohsin S, Hasan M, Bilal AR, Ali KM, Umer A, Hadi DZM, Nandlal S, Kumar S. Cardiovascular outcomes post bariatric surgery in patients with metabolic dysfunction-associated steatotic liver disease - A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2024; 48:102261. [PMID: 38070828 DOI: 10.1016/j.clinre.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is linked with an increased risk of adverse cardiovascular events. Studies have suggested an association between the reduction of incident cardiovascular events in patients with MASLD after bariatric surgery. This systematic review and meta-analysis were performed to assess the influence of bariatric surgery on cardiovascular outcomes in patients with diagnosed MASLD by identifying all available cohort studies and pooling their data. METHODS PubMed and Google Scholar databases were searched till July 2023 for published studies that assessed the effect of bariatric surgery on cardiovascular outcomes in MASLD patients. Using a random effects model, hazard ratios (HRs) with 95 % confidence intervals (CIs) were pooled. RESULTS The systematic review identified three cohort studies. The analysis of 240,516 MASLD patients found a significantly reduced incidence of cardiovascular events. (HR 0.51; 95 % CI 0.48 to 0.54, P value <0.00001). CONCLUSION Bariatric surgery in MASLD patients significantly reduced the incidence of cardiovascular events, suggesting that bariatric surgery is an effective therapeutic tool among MASLD patients compared to non-surgical interventions.
Collapse
Affiliation(s)
- Jai Kumar
- School of Medicine, Wayne State University, Detroit, MI, United States
| | - Sana Mohsin
- Ziauddin Medical College, 4/B, Saharah-e-Ghalib, Block 6, Clifton, Karachi, Sindh 75600, Pakistan
| | - Misha Hasan
- Ziauddin Medical College, 4/B, Saharah-e-Ghalib, Block 6, Clifton, Karachi, Sindh 75600, Pakistan.
| | - Abdur Raheem Bilal
- Ziauddin Medical College, 4/B, Saharah-e-Ghalib, Block 6, Clifton, Karachi, Sindh 75600, Pakistan
| | | | - Ahmed Umer
- Ziauddin Medical College, 4/B, Saharah-e-Ghalib, Block 6, Clifton, Karachi, Sindh 75600, Pakistan
| | | | - Sanjna Nandlal
- Ziauddin Medical College, 4/B, Saharah-e-Ghalib, Block 6, Clifton, Karachi, Sindh 75600, Pakistan
| | - Sarwan Kumar
- School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
562
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
563
|
Leão Filho HM. The impact of steatosis assessment in imaging. Radiol Bras 2024; 57:e3. [PMID: 38993966 PMCID: PMC11235060 DOI: 10.1590/0100-3984.2024.57.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
|
564
|
Di Ciaula A, Portincasa P. A balloon is better than diet: the role of lifestyle changes in the management of obesity and steatotic liver, and need for a winning strategy. Intern Emerg Med 2024; 19:5-7. [PMID: 37848585 DOI: 10.1007/s11739-023-03448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
565
|
Clayton-Chubb D, Kemp WW, Majeed A, Lubel JS, Woods RL, Tran C, Ryan J, Hodge A, Schneider HG, McNeil JJ, Roberts SK. Metabolic dysfunction-associated steatotic liver disease in older adults is associated with frailty and social disadvantage. Liver Int 2024; 44:39-51. [PMID: 37698034 DOI: 10.1111/liv.15725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND & AIMS The burden of metabolic dysfunction-associated steatotic liver disease (MASLD) is growing rapidly, as is the number of older adults globally. However, relatively few studies have been performed evaluating the prevalence and risk factors for MASLD in older adults. As such, we aimed to identify the prevalence of MASLD in older adults, as well as sociodemographic, clinical, functional and biochemical associations. METHODS The study population included older adults without a history of cardiovascular disease, dementia or independence-limiting functional impairment who had participated in the ASPirin in Reducing Events in the Elderly (ASPREE) randomised trial. MASLD was defined using the Fatty Liver Index (FLI). Associations were identified using Poisson regression with robust variance for FLI ≥ 60 vs FLI < 30. RESULTS 9097 Australian participants aged ≥70 years had complete biochemical and anthropometric data to identify MASLD. The study population had a mean age of 75.1 ± 4.3 years and was 45.0% male. Almost one-third (33.0%) had prevalent MASLD, and the prevalence decreased with increasing age (adjusted RR [aRR] 0.96, 95% CI: 0.96-0.97). MASLD was also negatively associated with social advantage (aRR 0.94, 95% CI: 0.90-0.99) and exercise tolerance and was positively associated with diabetes mellitus (aRR: 1.22, 95% CI: 1.16-1.29), hypertension (aRR: 1.31, 95% CI: 1.22-1.41), male sex (aRR: 1.66, 95% CI: 1.57-1.74), pre-frailty (aRR: 1.99, 95% CI: 1.82-2.12) and frailty (aRR: 2.36, 95% CI: 2.16-2.56). MASLD and nonalcoholic fatty liver disease (NAFLD) results were 100% concordant. CONCLUSION This study in a large cohort of relatively healthy community-dwelling older adults shows that MASLD is common, decreases with age and is associated with poorer metabolic health, social disadvantage and frailty.
Collapse
Affiliation(s)
- Daniel Clayton-Chubb
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
- Department of Gastroenterology, Eastern Health, Melbourne, Australia
| | - William W Kemp
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Ammar Majeed
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
- Department of Gastroenterology, Northern Health, Melbourne, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cammie Tran
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Alexander Hodge
- Department of Gastroenterology, Eastern Health, Melbourne, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, Australia
- Department of Medicine, Eastern Clinical School, Monash University, Melbourne, Australia
| | - Hans G Schneider
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Pathology, Alfred Health, Melbourne, Australia
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
566
|
Wells RG. Liver fibrosis: Our evolving understanding. Clin Liver Dis (Hoboken) 2024; 23:e0243. [PMID: 38961878 PMCID: PMC11221862 DOI: 10.1097/cld.0000000000000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 07/05/2024] Open
|
567
|
Wang CC, Cheng YM, Kao JH. Letter to the Editor: Statement of steatotic liver disease-A great leap toward the global standardization. Hepatology 2024; 79:E7-E8. [PMID: 37535804 DOI: 10.1097/hep.0000000000000555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Chia-Chi Wang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Taiwan
| | - Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
568
|
Sanyal AJ, Jha P, Kleiner DE. Digital pathology for nonalcoholic steatohepatitis assessment. Nat Rev Gastroenterol Hepatol 2024; 21:57-69. [PMID: 37789057 DOI: 10.1038/s41575-023-00843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Histological assessment of nonalcoholic fatty liver disease (NAFLD) has anchored knowledge development about the phenotypes of the condition, their natural history and their clinical course. This fact has led to the use of histological assessment as a reference standard for the evaluation of efficacy of drug interventions for nonalcoholic steatohepatitis (NASH) - the more histologically active form of NAFLD. However, certain limitations of conventional histological assessment systems pose challenges in drug development. These limitations have spurred intense scientific and commercial development of machine learning and digital approaches towards the assessment of liver histology in patients with NAFLD. This research field remains an area in rapid evolution. In this Perspective article, we summarize the current conventional assessment of NASH and its limitations, the use of specific digital approaches for histological assessment, and their application to the study of NASH and its response to therapy. Although this is not a comprehensive review, the leading tools currently used to assess therapeutic efficacy in drug development are specifically discussed. The potential translation of these approaches to support routine clinical assessment of NAFLD and an agenda for future research are also discussed.
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Prakash Jha
- Food and Drug Administration, Silver Spring, MD, USA
| | - David E Kleiner
- Post-Mortem Section Laboratory of Pathology Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
569
|
Reddy KR. Liver biopsy: Archaic but resilient and many roads lead to Rome. Clin Liver Dis (Hoboken) 2024; 23:e0247. [PMID: 38952693 PMCID: PMC11216678 DOI: 10.1097/cld.0000000000000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/03/2024] Open
|
570
|
Rinella ME, Sookoian S. From NAFLD to MASLD: updated naming and diagnosis criteria for fatty liver disease. J Lipid Res 2024; 65:100485. [PMID: 38103785 PMCID: PMC10824973 DOI: 10.1016/j.jlr.2023.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Affiliation(s)
- Mary E Rinella
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA.
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Investigación Traslacional en Salud, Universidad Maimónides, Buenos Aires, Argentina; Facultad de Ciencias de la Salud, Universidad Maimónides, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
571
|
Zachou M, Flevari P, Nasiri-Ansari N, Varytimiadis C, Kalaitzakis E, Kassi E, Androutsakos T. The role of anti-diabetic drugs in NAFLD. Have we found the Holy Grail? A narrative review. Eur J Clin Pharmacol 2024; 80:127-150. [PMID: 37938366 PMCID: PMC10781828 DOI: 10.1007/s00228-023-03586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of liver disease, affecting 30% of the global population. NAFLD prevalence is particularly high in obese individuals and patients with type 2 diabetes mellitus (T2DM). NAFLD ranges from simple fat deposition in the liver to necroinflammation and fibrosis (non-alcoholic steatohepatitis (NASH)), NASH-cirrhosis, and/or hepatocellular carcinoma. Insulin resistance plays a key role in NAFLD pathogenesis, alongside dysregulation of adipocytes, mitochondrial dysfunction, genetic factors, and changes in gut microbiota. Since insulin resistance is also a major predisposing factor of T2DM, the administration of anti-diabetic drugs for the management of NAFLD seems reasonable. METHODS In this review we provide the NAFLD-associated mechanisms of action of some of the most widely used anti-diabetic drugs, namely metformin, pioglitazone, sodium-glucose transport protein-2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor analogs (GLP1 RAs), and dipeptyl-peptidase-4 inhibitors (DPP4i) and present available data regarding their use in patients with NAFLD, with and without T2DM. RESULTS Both metformin and DPP4i have shown rather contradictory results, while pioglitazone seems to benefit patients with NASH and is thus the only drug approved for NASH with concomitant significant liver fibrosis by all major liver societies. On the other hand, SGLT2i and GLP1 RAs seem to be beneficiary in patients with NAFLD, showing both remarkable results, with SGLT2i proving to be more efficient in the only head-to-head study so far. CONCLUSION In patients with NAFLD and diabetes, pioglitazone, GLP1 RAs, and SGLT2i seem to be logical treatment options. Larger studies are needed before these drugs can be recommended for non-diabetic individuals.
Collapse
Affiliation(s)
- Maria Zachou
- Gastroenterology Department, "Sismanoglio" General Hospital, 151 26, Athens, Greece
| | - Pagona Flevari
- Expertise Center in Rare Haematological Diseases-Haemoglobinopathies, "Laiko" General Hospital, 115 27, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | | | - Evangelos Kalaitzakis
- Department of Gastroenterology, University Hospital of Heraklion, University of Crete, 715 00, Heraklion, Greece
| | - Eva Kassi
- Unit of Molecular Endocrinology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, "Laiko" Hospital, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 115 27, Athens, Greece.
| |
Collapse
|
572
|
Grinshpan LS, Eilat-Adar S, Ivancovsky-Wajcman D, Kariv R, Gillon-Keren M, Zelber-Sagi S. Ultra-processed food consumption and non-alcoholic fatty liver disease, metabolic syndrome and insulin resistance: A systematic review. JHEP Rep 2024; 6:100964. [PMID: 38234408 PMCID: PMC10792654 DOI: 10.1016/j.jhepr.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 01/19/2024] Open
Abstract
Background High ultra-processed food (UPF) consumption is associated with the development of various diet-related non-communicable diseases, especially obesity and type 2 diabetes. The present study aimed to systematically review the association between UPF consumption and non-alcoholic fatty liver disease (NAFLD) and its leading risk factors; metabolic syndrome (MetS) and insulin resistance (IR). Methods A comprehensive search was conducted in PubMed, Scopus, Embase, Web of Science, CINAHL, and Cochrane (March 2023), and references of the identified articles were checked. The search keywords were defined through an exploratory investigation in addition to MeSH and similarly controlled vocabulary thesauruses. Observational and interventional studies were included. Studies that focused only on specific groups of processed foods or overlapping dietary patterns were excluded. The quality assessment was conducted using the Joanna Briggs Institute's critical appraisal tools for observational studies and Cochrane's risk of bias 2 tool for randomized-control trials. A narrative synthesis was employed to report the results. Results Fifteen studies were included, with a total of 52,885 participants, one randomized-controlled trial, and fourteen observational studies (nine cross-sectional and five prospective). The review has shown a significant association between UPF consumption and NAFLD in three studies out of six, MetS in five out of eight, and IR in one out of three. All large-scale prospective cohorts that studied NAFLD or MetS outcomes demonstrated a positive association. In contrast, studies that did not demonstrate significant associations were mostly cross-sectional and small. The evidence for an association with IR was insufficient and conflicting. Conclusion The included studies are few, observational, and based upon self-reported dietary assessment tools. However, current evidence indicates that UPF is not only associated with obesity and type 2 diabetes but may also be a risk factor for NAFLD and MetS. UPF is a worldwide concern deserving further longitudinal research. Impact and implications Overconsumption of ultra-processed food (UPF) may lead to the development of obesity and type 2 diabetes, but the association with non-alcoholic fatty liver disease (NAFLD) is not well established. The present systematic review shows that UPF may be associated with NAFLD, although more large prospective studies are needed. These findings emphasize the importance of minimizing the consumption of UPF to prevent NAFLD and other metabolic diseases among the general adult population. This systematic review and further prospective studies, epidemiological or interventional, can help physicians provide patients with evidence-based nutritional recommendations and will support policymakers in restricting the marketing of UPF as well as promoting affordable, healthy, and minimally processed foods.
Collapse
Affiliation(s)
- Laura Sol Grinshpan
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
| | | | - Dana Ivancovsky-Wajcman
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Gillon-Keren
- Institute of Endocrinology and Diabetes, Schneider Children’s Medical Center, Petah Tikva, Israel
- Faculty of Sciences, Kibbutzim College of Education Technology and the Arts, Tel-Aviv, Israel
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
573
|
Thomaides-Brears H, Banerjee R, Banerjee A. Reply to: "Reassessing the causal relationship between liver diseases and cardiovascular outcomes" and "From liver to heart: Enhancing the understanding of cardiovascular outcomes in the UK Biobank". J Hepatol 2024; 80:e24-e25. [PMID: 37821017 DOI: 10.1016/j.jhep.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Affiliation(s)
| | | | - Amitava Banerjee
- University College London Hospitals National Health Service Trust, London, United Kingdom; Institute of Health Informatics, University College London, London, United Kingdom; Barts Health National Health Service Trust, The Royal London Hospital, London, United Kingdom.
| |
Collapse
|
574
|
Marti-Aguado D, Arnouk J, Liang JX, Lara-Romero C, Behari J, Furlan A, Jimenez-Pastor A, Ten-Esteve A, Alfaro-Cervello C, Bauza M, Gallen-Peris A, Gimeno-Torres M, Merino-Murgui V, Perez-Girbes A, Benlloch S, Pérez-Rojas J, Puglia V, Ferrández-Izquierdo A, Aguilera V, Giesteira B, França M, Monton C, Escudero-García D, Alberich-Bayarri Á, Serra MA, Bataller R, Romero-Gomez M, Marti-Bonmati L. Development and validation of an image biomarker to identify metabolic dysfunction associated steatohepatitis: MR-MASH score. Liver Int 2024; 44:202-213. [PMID: 37904633 DOI: 10.1111/liv.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS Diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) requires histology. In this study, a magnetic resonance imaging (MRI) score was developed and validated to identify MASH in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Secondarily, a screening strategy for MASH diagnosis was investigated. METHODS This prospective multicentre study included 317 patients with biopsy-proven MASLD and contemporaneous MRI. The discovery cohort (Spain, Portugal) included 194 patients. NAFLD activity score (NAS) and fibrosis were assessed with the NASH-CRN histologic system. MASH was defined by the presence of steatosis, lobular inflammation, and ballooning, with NAS ≥4 with or without fibrosis. An MRI-based composite biomarker of Proton Density Fat Fraction and waist circumference (MR-MASH score) was developed. Findings were afterwards validated in an independent cohort (United States, Spain) with different MRI protocols. RESULTS In the derivation cohort, 51% (n = 99) had MASH. The MR-MASH score identified MASH with an AUC = .88 (95% CI .83-.93) and strongly correlated with NAS (r = .69). The MRI score lower cut-off corresponded to 88% sensitivity with 86% NPV, while the upper cut-off corresponded to 92% specificity with 87% PPV. MR-MASH was validated with an AUC = .86 (95% CI .77-.92), 91% sensitivity (lower cut-off) and 87% specificity (upper cut-off). A two-step screening strategy with sequential MR-MASH examination performed in patients with indeterminate-high FIB-4 or transient elastography showed an 83-84% PPV to identify MASH. The AUC of MR-MASH was significantly higher than that of the FAST score (p < .001). CONCLUSIONS The MR-MASH score has clinical utility in the identification and management of patients with MASH at risk of progression.
Collapse
Affiliation(s)
- David Marti-Aguado
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Joud Arnouk
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jia-Xu Liang
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
| | - Carmen Lara-Romero
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alessandro Furlan
- Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ana Jimenez-Pastor
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Clara Alfaro-Cervello
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Mónica Bauza
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana Gallen-Peris
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Marta Gimeno-Torres
- Digestive Disease Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Merino-Murgui
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Alexandre Perez-Girbes
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Salvador Benlloch
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Judith Pérez-Rojas
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Puglia
- Pathology Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Antonio Ferrández-Izquierdo
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Victoria Aguilera
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology and Liver Transplantation Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bruno Giesteira
- Radiology Department, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Manuela França
- Radiology Department, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Cristina Monton
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Desamparados Escudero-García
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Miguel A Serra
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Manuel Romero-Gomez
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- University of Seville, Seville, Spain
| | - Luis Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
575
|
Kim K, Kim MH, Kang JI, Baek JI, Jeon BM, Kim HM, Kim SC, Jeong WI. Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators. J Ginseng Res 2024; 48:89-97. [PMID: 38223828 PMCID: PMC10785242 DOI: 10.1016/j.jgr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.
Collapse
Affiliation(s)
- Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Ji In Kang
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jong-In Baek
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
- KAIST Institutes, KAIST, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Center for the Hepatic Glutamate and Its Function, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
576
|
Dai H, Klause H, Conran RM. Educational Case: Hepatocellular carcinoma. Acad Pathol 2024; 11:100108. [PMID: 38433777 PMCID: PMC10904914 DOI: 10.1016/j.acpath.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Harrison Dai
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Harrison Klause
- Department of Radiology, Eastern Virginia Medical School, Medical Center Radiologists, Norfolk, VA, USA
| | - Richard M. Conran
- Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
577
|
Kobayashi T, Iwaki M, Nogami A, Kawamura N, Honda Y, Ogawa Y, Imajo K, Yoneda M, Saito S, Nakajima A. Prediction of outcomes in patients with metabolic dysfunction-associated steatotic liver disease based on initial measurements and subsequent changes in magnetic resonance elastography. J Gastroenterol 2024; 59:56-65. [PMID: 37845417 PMCID: PMC10764489 DOI: 10.1007/s00535-023-02049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND The prognosis of metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with liver fibrosis. We aimed to investigate whether liver stiffness measurement (LSM) and changes in LSM (ΔLSM) on magnetic resonance elastography (MRE) can predict clinical events in patients with MASLD. METHODS We included 405 patients with MASLD who underwent at least two MREs. The patients were divided into five groups corresponding to fibrosis stages (0-4) based on initial LSM and classified as progressors (ΔLSM ≥ 19%) or non-progressors (ΔLSM < 19%) based on the difference between the first and last LSM. RESULTS The mean follow-up period was 72.6 months, and the mean interval between MREs was 23.5 months. There were 52 (12.8%) progressors and 353 (87.2%) non-progressors. The initial LSM was significantly associated with the cumulative probabilities of decompensated cirrhosis, hepatocellular carcinoma (HCC), liver-related events, extrahepatic malignancies, and overall mortality but not with cardiovascular disease. Progressors had significantly higher hazard ratios (HRs) for decompensated cirrhosis, HCC, and liver-related events but not for extrahepatic malignancies, cardiovascular disease, or overall mortality. Among patients without cirrhosis, the HR for developing cirrhosis among progressors was 60.15. Progressors had a significantly higher risk of liver-related events, even in the low initial LSM (fibrosis stage 0-2) subgroups. CONCLUSIONS Both initial LSM and ΔLSM can predict liver-related events in patients with MASLD, even for low initial LSM. This integrated assessment can allow more detailed risk stratification compared with single LSM assessments and identify high-risk patients with MASLD among those previously considered as low risk.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Nobuyoshi Kawamura
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Gastroenterology Division, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| |
Collapse
|
578
|
Desalegn H, Diaz LA, Rehm J, Arab JP. Impact of alcohol use on liver disease outcomes. Clin Liver Dis (Hoboken) 2024; 23:e0192. [PMID: 38860129 PMCID: PMC11164003 DOI: 10.1097/cld.0000000000000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024] Open
Affiliation(s)
- Hailemichael Desalegn
- Division of Gastroenterology, Department of Medicine, Western University, London Health Sciences Center, London, Ontario, Canada
- Alimentiv, London, Ontario, Canada
| | - Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jürgen Rehm
- Centre for Addiction and Mental Health, Institute for Mental Health Policy Research, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, World Health Organization/Pan American Health Organization Collaborating Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Interdisciplinary Addiction Research, University of Hamburg, Hamburg, Germany
- Program on Substance Abuse & WHO Collaborating Center on Substance Use, Noncommunicable Diseases, and Policy Impact Public Health Agency of Catalonia, Barcelona Spain
| | - Juan Pablo Arab
- Division of Gastroenterology, Department of Medicine, Western University, London Health Sciences Center, London, Ontario, Canada
- Alimentiv, London, Ontario, Canada
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
579
|
Emanuele E, Minoretti P. Letter to the Editor: NAFLD, MAFLD or MASLD? Cut the Gordian knot with "Ludwig disease". Hepatology 2024; 79:E4. [PMID: 37651223 DOI: 10.1097/hep.0000000000000586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023]
|
580
|
Johanns M, Haas JT, Raverdy V, Vandel J, Chevalier-Dubois J, Guille L, Derudas B, Legendre B, Caiazzo R, Verkindt H, Gnemmi V, Leteurtre E, Derhourhi M, Bonnefond A, Froguel P, Eeckhoute J, Lassailly G, Mathurin P, Pattou F, Staels B, Lefebvre P. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD. JHEP Rep 2024; 6:100948. [PMID: 38125300 PMCID: PMC10730870 DOI: 10.1016/j.jhepr.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background & Aims Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.
Collapse
Affiliation(s)
- Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Violetta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Jimmy Vandel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Chevalier-Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loic Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Helene Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | | | | | - Mehdi Derhourhi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Philippe Froguel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | | | | | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
581
|
Anstee QM, Berentzen TL, Nitze LM, Jara M, Jensen AB, Kjær MS, Mangla KK, Tarp JM, Khunti K. Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes: a longitudinal cohort study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 36:100780. [PMID: 38188279 PMCID: PMC10769893 DOI: 10.1016/j.lanepe.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/09/2024]
Abstract
Background The Fibrosis-4 Index (FIB-4) is used as a non-invasive tool for the presence of advanced liver fibrosis in metabolic dysfunction-associated steatotic liver disease and type 2 diabetes. However, evidence for an association between FIB-4 and risk of mortality and/or liver-related clinical outcomes is limited. The aim of this study was to investigate the association between FIB-4 and subsequent liver events, cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes examined in routine general practice. Methods This was a longitudinal cohort study in which eligible adults had obesity and/or type 2 diabetes and ≥1 FIB-4 score calculable from UK Clinical Practice Research Datalink GOLD after 1 January 2001. No alcohol-related disorders and/or chronic liver diseases (except non-alcoholic fatty liver disease) and/or no prescriptions of drugs inducing liver disease were permitted. Individuals were followed until time of first event, 10 years, or 1 January 2020. Analyses were conducted using Aalen-Johansen cumulative incidence functions and Cox proportional hazards models. Findings Among 44,481 included individuals (mean age 58·8 years; 54% female), there were 979 liver, 6002 cardiovascular, and 8971 mortality events during the 10 years of follow-up. At 10 years, the cumulative incidence of liver events in the high (>2·67), indeterminate (1·30-2·67), and low (<1·30) baseline FIB-4 risk groups were 15%, 3%, and 1%, respectively. Age- and sex-adjusted hazard ratios (HRs) for liver events were elevated in high (16·46; 95% confidence interval [CI] 13·65-19·85) and indeterminate (2·45; 95% CI 2·07-2·90) versus low FIB-4 risk groups. Similar results were found for cardiovascular events and all-cause mortality. Among 20,433 individuals with ≥2 FIB-4 measurements, increase/decrease in FIB-4 12 months after baseline was directly associated with risk of liver events: compared with individuals with low baseline FIB-4 and no change in FIB-4 (reference), the adjusted HR (95% CI) for those with high baseline FIB-4 was 24·27 (16·98-34·68) with a one-unit FIB-4 increase, and 10·90 (7·90-15·05) with a one-unit decrease. Interpretation In addition to its value as a diagnostic tool, FIB-4 has clinical utility as a prognostic biomarker. Sequential measurement provides a pragmatic, tractable monitoring biomarker that refines risk assessment for liver events, cardiovascular events, and mortality. Funding Novo Nordisk A/S.
Collapse
Affiliation(s)
- Quentin M. Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
| |
Collapse
|
582
|
Noureddin M, Truong E, Mayo R, Martínez-Arranz I, Mincholé I, Banales JM, Arrese M, Cusi K, Arias-Loste MT, Bruha R, Romero-Gómez M, Iruzubieta P, Aller R, Ampuero J, Calleja JL, Ibañez-Samaniego L, Aspichueta P, Martín-Duce A, Kushner T, Ortiz P, Harrison SA, Anstee QM, Crespo J, Mato JM, Sanyal AJ. Serum identification of at-risk MASH: The metabolomics-advanced steatohepatitis fibrosis score (MASEF). Hepatology 2024; 79:135-148. [PMID: 37505221 PMCID: PMC10718221 DOI: 10.1097/hep.0000000000000542] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Early identification of those with NAFLD activity score ≥ 4 and significant fibrosis (≥F2) or at-risk metabolic dysfunction-associated steatohepatitis (MASH) is a priority as these patients are at increased risk for disease progression and may benefit from therapies. We developed and validated a highly specific metabolomics-driven score to identify at-risk MASH. METHODS We included derivation (n = 790) and validation (n = 565) cohorts from international tertiary centers. Patients underwent laboratory assessment and liver biopsy for metabolic dysfunction-associated steatotic liver disease. Based on 12 lipids, body mass index, aspartate aminotransferase, and alanine aminotransferase, the MASEF score was developed to identify at-risk MASH and compared to the FibroScan-AST (FAST) score. We further compared the performance of a FIB-4 + MASEF algorithm to that of FIB-4 + liver stiffness measurements (LSM) by vibration-controlled transient elastography (VCTE). RESULTS The diagnostic performance of the MASEF score showed an area under the receiver-operating characteristic curve, sensitivity, specificity, and positive and negative predictive values of 0.76 (95% CI 0.72-0.79), 0.69, 0.74, 0.53, and 0.85 in the derivation cohort, and 0.79 (95% CI 0.75-0.83), 0.78, 0.65, 0.48, and 0.88 in the validation cohort, while FibroScan-AST performance in the validation cohort was 0.74 (95% CI 0.68-0.79; p = 0.064), 0.58, 0.79, 0.67, and 0.73, respectively. FIB-4+MASEF showed similar overall performance compared with FIB-4 + LSM by VCTE ( p = 0.69) to identify at-risk MASH. CONCLUSION MASEF is a promising diagnostic tool for the assessment of at-risk MASH. It could be used alternatively to LSM by VCTE in the algorithm that is currently recommended by several guidance publications.
Collapse
Affiliation(s)
- Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute Houston, Texas, USA
- Houston Research Institute, Houston, Texas, USA
| | - Emily Truong
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | | | - Jesus M. Banales
- Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), CIBERehd, IKERBASQUE, Donostia, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenneth Cusi
- University of Florida, Gainesville, Florida, USA
| | | | - Radan Bruha
- General University Hospital and the First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Paula Iruzubieta
- Marqués de Valdecilla University Hospital, Cantabria University, IDIVAL, Santander, Spain
| | - Rocio Aller
- Clinic University Hospital, University of Valladolid, Valladolid, Spain
| | | | | | | | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | | | - Tatyana Kushner
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | | | | | - Quentin M. Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Javier Crespo
- Marqués de Valdecilla University Hospital, Cantabria University, IDIVAL, Santander, Spain
| | - José M. Mato
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Arun J. Sanyal
- Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
583
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
584
|
Chen L. From metabolic dysfunction-associated fatty liver disease to metabolic dysfunction-associated steatotic liver disease: Controversy and consensus. World J Hepatol 2023; 15:1253-1257. [PMID: 38223415 PMCID: PMC10784812 DOI: 10.4254/wjh.v15.i12.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023] Open
Abstract
The newly released nomenclature of metabolic dysfunction-associated steatotic liver disease (MASLD) in the 2023 European Association for the Study of the Liver Congress has raised great clinical concerns. This marks the second instance of significant renaming of non-alcoholic fatty liver disease since the introduction of metabolic dysfunction-associated fatty liver disease (MAFLD) in 2020. The nomenclature and definitions of MASLD and MAFLD exhibit significant disparities as well as substantial consensus. The disparities regarding the framework of nomenclature, the definitions, the clinical management, and the impact on the clinical outcomes between MASLD and MAFLD were comprehensively compared in this editorial. Additionally, the consensus reached by the MASLD and MAFLD definitions also emphasizes positive diagnosis rather than negative diagnosis within the framework of establishing a diagnostic approach. Furthermore, they acknowledged the pivotal role of metabolic dysfunction in the pathogenesis of MAFLD or MASLD and the positive role of increasing the awareness of the disease in public. Fortunately, the non-invasive tests remains effective in the MASLD and MAFLD era. Elucidating these disparities would contribute to a more comprehensive comprehension of the nature of steatotic liver disease and enhance clinical practice. Thus, more efforts are required to reach more consensus about these important topics.
Collapse
Affiliation(s)
- Li Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai 201801, China.
| |
Collapse
|
585
|
Chimoriya R, Ho V, Wang ZV, Chang R, Boumelhem BB, Simmons D, Kormas N, Gorrell MD, Piya MK. Application and Diagnostic Performance of Two-Dimensional Shear Wave Elastography and Liver Fibrosis Scores in Adults with Class 3 Obesity. Nutrients 2023; 16:74. [PMID: 38201904 PMCID: PMC10780854 DOI: 10.3390/nu16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
There are no ideal non-invasive tests for assessing the severity of liver fibrosis in people with metabolic dysfunction-associated steatotic liver disease (MASLD) and class 3 obesity, where body habitus often makes imaging technically challenging. This study aimed to assess the applicability and diagnostic performance of two-dimensional shear wave elastography (2D-SWE), alongside several serum-based liver fibrosis scoring methods, in individuals with class 3 obesity. A cross-sectional study was conducted in patients aged ≥18 years and with a body mass index (BMI) ≥ 40 kg/m2 who were participants in a publicly funded multidisciplinary weight management program in South Western Sydney. The 2D-SWE was performed using the ElastQ Imaging (EQI) procedure with the Phillips EPIQ Elite series ultrasound. An EQI Median value of ≥6.43 kPa was taken as a cutoff score for significant fibrosis, and the scan was considered valid when the liver EQI IQR/Med value was <30%. The Fibrosis-4 (FIB-4) index, AST-to-platelet ratio index (APRI), NAFLD fibrosis score (NFS), and circulating fibroblast activation protein index (FAP index) were calculated from fasting blood samples. The participants (n = 116; 67.2% female) were aged 47.2 ± 12.9 years, with BMI 54.5 ± 11.0 kg/m2. EQI Median values were obtained for 97.4% (113/116) of the 2D-SWE scans, and 91.4% (106/116) of the scans were considered valid. The EQI Median values exhibited a moderately positive correlation with the FIB-4 index (r = 0.438; p < 0.001) and a weakly positive correlation with the APRI (r = 0.388; p < 0.001), NFS (r = 0.210; p = 0.036) and FAP index (r = 0.226; p = 0.020). All liver fibrosis scores were positively correlated with one another. Among those referred for a liver biopsy based on the 2D-SWE and serum scores, half (11/22) underwent liver biopsy, and their 2D-SWE scores exhibited 72.7% accuracy (sensitivity: 71.4%; specificity: 75%) in detecting significant fibrosis. Our results show that 2D-SWE is a feasible, non-invasive test to assess liver fibrosis among people with class 3 obesity. Further research is needed to assess how 2D-SWE can be used alongside existing serum-based risk scores to reliably detect significant fibrosis, which would potentially reduce the need for invasive liver biopsy.
Collapse
Affiliation(s)
- Ritesh Chimoriya
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Ziqi Vincent Wang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (Z.V.W.); (B.B.B.); (M.D.G.)
| | - Ruby Chang
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Badwi B. Boumelhem
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (Z.V.W.); (B.B.B.); (M.D.G.)
| | - David Simmons
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Nic Kormas
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (Z.V.W.); (B.B.B.); (M.D.G.)
| | - Milan K. Piya
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| |
Collapse
|
586
|
Driessen S, Francque SM, Anker SD, Castro Cabezas M, Grobbee DE, Tushuizen ME, Holleboom AG. Metabolic dysfunction-associated steatotic liver disease and the heart. Hepatology 2023:01515467-990000000-00699. [PMID: 38147315 DOI: 10.1097/hep.0000000000000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
The prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) are increasing. Physicians who treat patients with MASLD may acknowledge the strong coincidence with cardiometabolic disease, including atherosclerotic cardiovascular disease (asCVD). This raises questions on co-occurrence, causality, and the need for screening and multidisciplinary care for MASLD in patients with asCVD, and vice versa. Here, we review the interrelations of MASLD and heart disease and formulate answers to these matters. Epidemiological studies scoring proxies for atherosclerosis and actual cardiovascular events indicate increased atherosclerosis in patients with MASLD, yet no increased risk of asCVD mortality. MASLD and asCVD share common drivers: obesity, insulin resistance and type 2 diabetes mellitus (T2DM), smoking, hypertension, and sleep apnea syndrome. In addition, Mendelian randomization studies support that MASLD may cause atherosclerosis through mixed hyperlipidemia, while such evidence is lacking for liver-derived procoagulant factors. In the more advanced fibrotic stages, MASLD may contribute to heart failure with preserved ejection fraction by reduced filling of the right ventricle, which may induce fatigue upon exertion, often mentioned by patients with MASLD. Some evidence points to an association between MASLD and cardiac arrhythmias. Regarding treatment and given the strong co-occurrence of MASLD and asCVD, pharmacotherapy in development for advanced stages of MASLD would ideally also reduce cardiovascular events, as has been demonstrated for T2DM treatments. Given the common drivers, potential causal factors and especially given the increased rate of cardiovascular events, comprehensive cardiometabolic risk management is warranted in patients with MASLD, preferably in a multidisciplinary approach.
Collapse
Affiliation(s)
- Stan Driessen
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Manuel Castro Cabezas
- Julius Clinical, Zeist, The Netherlands
- Department of Internal Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick E Grobbee
- Julius Clinical, Zeist, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
587
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
588
|
Patitucci C, Hernández-Camacho JD, Vimont E, Yde S, Cokelaer T, Chaze T, Giai Gianetto Q, Matondo M, Gazi A, Nemazanyy I, Stroud DA, Hock DH, Donnarumma E, Wai T. Mtfp1 ablation enhances mitochondrial respiration and protects against hepatic steatosis. Nat Commun 2023; 14:8474. [PMID: 38123539 PMCID: PMC10733382 DOI: 10.1038/s41467-023-44143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatic steatosis is the result of imbalanced nutrient delivery and metabolism in the liver and is the first hallmark of Metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is the most common chronic liver disease and involves the accumulation of excess lipids in hepatocytes, inflammation, and cancer. Mitochondria play central roles in liver metabolism yet the specific mitochondrial functions causally linked to MASLD remain unclear. Here, we identify Mitochondrial Fission Process 1 protein (MTFP1) as a key regulator of mitochondrial and metabolic activity in the liver. Deletion of Mtfp1 in hepatocytes is physiologically benign in mice yet leads to the upregulation of oxidative phosphorylation (OXPHOS) activity and mitochondrial respiration, independently of mitochondrial biogenesis. Consequently, liver-specific knockout mice are protected against high fat diet-induced steatosis and metabolic dysregulation. Additionally, Mtfp1 deletion inhibits mitochondrial permeability transition pore opening in hepatocytes, conferring protection against apoptotic liver damage in vivo and ex vivo. Our work uncovers additional functions of MTFP1 in the liver, positioning this gene as an unexpected regulator of OXPHOS and a therapeutic candidate for MASLD.
Collapse
Affiliation(s)
- Cecilia Patitucci
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | | | - Elodie Vimont
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Sonny Yde
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Anastasia Gazi
- Institut Pasteur Ultrastructural Bio Imaging, UTechS, Université Paris Cité, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, SFR Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Erminia Donnarumma
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Timothy Wai
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
589
|
Biały M, Czarnecki M, Inglot M. Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons. Viruses 2023; 15:2432. [PMID: 38140673 PMCID: PMC10747352 DOI: 10.3390/v15122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
In the last three decades, there has been a considerable improvement in human immunodeficiency virus (HIV) therapy. Acquired immunodeficiency syndrome (AIDS) is no longer a common cause of death for people living with HIV (PLWH) in developed countries, and co-infections with hepatitis viruses can be effectively managed. However, metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD) are emerging threats these days, especially as the HIV-positive population gets older. The factors for MASLD development in PLWH are numerous, including non-specific (common for both HIV-positive and negative) and virus-specific. We focus on what is known for both, and in particular, on the burden of antiretroviral therapy (ART) for metabolic health and liver damage. We review data on contemporary drugs, including different groups and some particular agents in those groups. Among current ART regimens, the switch from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide fumarate (TAF) and particularly its combination with integrase inhibitors (INSTIs) appear to have the most significant impact on metabolic disturbances by increasing insulin resistance, which over the years promotes the evolution of the cascade leading to metabolic syndrome (MetS), MASLD, and eventually metabolic dysfunction-associated steatohepatitis (MASH).
Collapse
Affiliation(s)
- Michał Biały
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, 51-149 Wrocław, Poland; (M.C.); (M.I.)
| | | | | |
Collapse
|
590
|
Sergi CM. MASLD and aspartame: are new studies in the horizon? Front Med (Lausanne) 2023; 10:1266918. [PMID: 38143439 PMCID: PMC10739386 DOI: 10.3389/fmed.2023.1266918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Fatty liver disease has been on the rise in the past few decades, and there is no hope that it will stop. The terminology change that has been recently proposed may not be sufficient to advocate for a reduction of steatogenic foods and a change in lifestyle. A course change may be supported by the recent labeling of aspartame sweetener as a possible carcinogenic compound by the International Association for Research on Cancer (IARC), an agency of the World Health Organization (WHO). Aspartame sweeteners and other edulcorating molecular compounds besides colorings may trigger liver cancer other than fatty liver disease, despite limited data supporting it. An essential bias in human cohort studies is indeed the exclusion of all confounding factors, which may be barely impossible for human studies. In this perspective, we suggest that the activation of the NOD-like receptor-enclosing protein 3 (NLRP3) inflammasome and the stimulation of the tumor suppression gene TP53 may be critical in the progression from fatty liver to liver inflammation and liver cancer. Aspartame reduces a transcriptional coactivator, precisely the peroxisomal proliferator-initiated receptor-γ (gamma) coactivator 1-α (alpha) (or PGC1α). This coactivator upregulates mitochondrial bioformation, oxidative phosphorylation, respiratory capacity, and fatty acid β-oxidation. Aspartame acts in this way, probably through the activation of TP53. These events have been accountable for the variations in the lipid outline in serum and total lipid storage as well as for the impairment of gluconeogenesis in the liver, as supported by the downregulation of the gluconeogenic enzymes in experimental animals, and may be relevant in humans as well.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Department of Laboratory Medicine, University of Alberta, Edmonton, AB, Canada
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
591
|
Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14:1277808. [PMID: 38116017 PMCID: PMC10728659 DOI: 10.3389/fimmu.2023.1277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
592
|
Harrison SA, Dubourg J, Knott M, Colca J. Hyperinsulinemia, an overlooked clue and potential way forward in metabolic dysfunction-associated steatotic liver disease. Hepatology 2023:01515467-990000000-00671. [PMID: 38051957 DOI: 10.1097/hep.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease is closely associated with other features of the metabolic syndrome such as type 2 diabetes. The progression of the disease may lead to liver fibrosis, which is the main predictor of major adverse liver outcomes. Insulin resistance plays a major role in the pathogenesis of the disease. A component of fasting hyperinsulinemia is a failure of the liver to adjust the peripheral level of insulin due to reduced clearance. The associated fasting hyperinsulinemia has been independently associated as a predictor of major adverse liver outcomes and major adverse cardiovascular events. In this review, we discuss the potential mechanism and entanglement between liver fibrosis and hyperinsulinemia, and we hypothesize that the measure of fasting insulin could become a hepatic functional test within the armamentarium of noninvasive tests for the assessment of Metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
| | - Julie Dubourg
- Medical Science, Summit Clinical Research, San Antonio, Texas, USA
| | - Maddie Knott
- Clinical Research, Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Jerry Colca
- Research and Development, Cirius Therapeutics, Kalamazoo, Michigan, USA
| |
Collapse
|
593
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
594
|
Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:764-783. [PMID: 37582985 DOI: 10.1038/s41575-023-00822-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease worldwide. NAFLD and ALD share pathophysiological, histological and genetic features and both alcohol and metabolic dysfunction coexist as aetiological factors in many patients with hepatic steatosis. A diagnosis of NAFLD requires the exclusion of significant alcohol consumption and other causes of liver disease. However, data suggest that significant alcohol consumption is often under-reported in patients classified as having NAFLD and that alcohol and metabolic factors interact to exacerbate the progression of liver disease. In this Review, we analyse existing data on the interaction between alcohol consumption and metabolic syndrome as well as the overlapping features and differences in the pathogenesis of ALD and NAFLD. We also discuss the clinical implications of the coexistence of alcohol consumption, of any degree, in patients with evidence of metabolic derangement as well as the use of alcohol biomarkers to detect alcohol intake. Finally, we summarize the evolving nomenclature of fatty liver disease and describe a recent proposal to classify patients at the intersection of NAFLD and ALD. We propose that, regardless of the presumed aetiology, patients with fatty liver disease should be evaluated for both metabolic syndrome and alcohol consumption to enable better prognostication and a personalized medicine approach.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Alexandre Louvet
- Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM INFINITE 1286, Lille, France
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
595
|
Malhi H, Brown RS, Lim JK, Reau N, Tapper EB, Wong CCL, Gores GJ. Precipitous changes in nomenclature and definitions-NAFLD becomes SLD: Implications for and expectations of AASLD journals. Liver Transpl 2023; 29:1262-1263. [PMID: 37941408 DOI: 10.1097/lvt.0000000000000279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Joseph K Lim
- Yale Viral Hepatitis Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nancy Reau
- Section of Hepatology, Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Elliot B Tapper
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Minnesota, USA
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
596
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
597
|
Abu-Rumaileh M, Haddad RA, Yosef M, Esfandiari NH, Kraftson A, Khairi S, Lager C, Bushman J, Khalatbari S, Tincopa M, Varban O, Bozadjieva-Kramer N, Oral EA. Impact of Nonalcoholic Fatty Liver Disease (NAFLD) on Weight Loss After Bariatric Surgery. Obes Surg 2023; 33:3814-3828. [PMID: 37940737 DOI: 10.1007/s11695-023-06865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Obesity and associated comorbidities, such as NAFLD, impose a major healthcare burden worldwide. Bariatric surgery remains the most successful approach for sustained weight loss and the resolution of obesity-related complications. However, the impact of preexisting NAFLD on weight loss after bariatric surgery has not been previously studied. The goal of this study is to assess the impact of preexisting NAFLD on weight loss outcomes up to 5 years after weight loss surgery. RESEARCH DESIGN AND METHODS Data from the Michigan Bariatric Surgery Cohort (MI-BASiC) was extracted to examine the effect of baseline NAFLD on weight loss outcomes. The cohort included a total of 714 patients older than 18 years of age undergoing gastric bypass (GB; 380 patients) or sleeve gastrectomy (SG; 334 patients) at the University of Michigan between January 2008 and November 2013. Repeated measure analysis was used to determine if preexisting NAFLD was a predictor of weight loss outcomes up to 5 years post-surgery. RESULTS We identified 221 patients with an established clinical diagnosis of NAFLD at baseline. Multivariable repeated measure analysis with adjustment for covariates shows that patients with preexisting NAFLD had a significantly lower percentage of total and excess weight loss compared to patients without preexisting NAFLD. Furthermore, our data show that baseline dyslipidemia is an indicator of the persistence of NAFLD after bariatric surgery. CONCLUSIONS Our data show that patients' body weight loss in response to bariatric surgery is impacted by factors such as preexisting NAFLD. Additionally, we show that NAFLD may persist or recur in a subset of patients after surgery, and thus careful continued follow-up is recommended.
Collapse
Affiliation(s)
| | - Raad A Haddad
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Medicine, University of Michigan Medical School, 2800 Plymouth Road, NCRC 25-3696, Ann Arbor, MI, 48109, USA
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Matheos Yosef
- Biostatistics Core, Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Nazanene H Esfandiari
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Medicine, University of Michigan Medical School, 2800 Plymouth Road, NCRC 25-3696, Ann Arbor, MI, 48109, USA
| | - Andrew Kraftson
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Medicine, University of Michigan Medical School, 2800 Plymouth Road, NCRC 25-3696, Ann Arbor, MI, 48109, USA
| | - Shafaq Khairi
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Medicine, University of Michigan Medical School, 2800 Plymouth Road, NCRC 25-3696, Ann Arbor, MI, 48109, USA
| | - Corey Lager
- Bronson Diabetes and Endocrinology, Homer Stryker, MD School of Medicine, Western Michigan University, Kalamazoo, MI, USA
| | - Jordan Bushman
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Medicine, University of Michigan Medical School, 2800 Plymouth Road, NCRC 25-3696, Ann Arbor, MI, 48109, USA
- Beaumont Hospital, Corewell Health, Farmington Hills, MI, USA
- Beaumont Hospital, Corewell Health, Rochester Hills, MI, USA
| | - Shoukoufeh Khalatbari
- Biostatistics Core, Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Monica Tincopa
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Oliver Varban
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Henry Ford Health, Department of Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, Veterans Affairs, Ann Arbor, MI, USA
| | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Medicine, University of Michigan Medical School, 2800 Plymouth Road, NCRC 25-3696, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
598
|
Ichikawa T, Oba H, Owada M, Watanabe K, Yoshimura T, Fuchigami A, Nakamura A. Evaluation of the effects of pemafibrate on metabolic dysfunction-associated steatotic liver disease with hypertriglyceridemia using magnetic resonance elastography combined with fibrosis-4 index and the magnetic resonance imaging-aspartate aminotransferase score. JGH Open 2023; 7:959-965. [PMID: 38162848 PMCID: PMC10757500 DOI: 10.1002/jgh3.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
Background and Aim In this retrospective study, we evaluated the effects of pemafibrate treatment in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertriglyceridemia using non-invasive stiffness-based models, including magnetic resonance elastography (MRE) combined with the fibrosis-4 (FIB-4) (MEFIB) index and the magnetic resonance imaging (MRI)-aspartate aminotransferase (AST) (MAST) score. Methods In total, 179 patients with MASLD treated with pemafibrate were enrolled. We evaluated the effects of 48-week pemafibrate treatment using the MEFIB index, which classifies patients based on the combination of liver stiffness measurement (LSM) on MRE and FIB-4 and the MAST score, which is calculated based on LSM on MRE, MRI-proton density fat fraction (MRI-PDFF), and AST levels. Results Pemafibrate treatment led to significant reduction in AST, alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT) (P = 0.011, <0.001, and <0.001, respectively) and significant improvements in triglyceride and high-density lipoprotein cholesterol levels (P < 0.001 and <0.001, respectively). The MRI-PDFF values were not significantly altered. However, a significant decrease in LSM on MRE was detected (P = 0.003). Evaluation of fibrosis using the MEFIB index and MAST score demonstrated significant improvement (P = 0.004 and <0.001, respectively). Changes in the MAST score showed positive correlation with changes in ALT and GGT levels (r = 0.821, P < 0.001, and r = 0.808, P < 0.001, respectively). Additionally, ALT and GGT levels at baseline were significantly associated with improvements in the MAST score (P < 0.001 and <0.001, respectively). Conclusion Pemafibrate led to improvements in the MEFIB index and MAST score, as well as liver function. It is a promising therapeutic agent for patients with MASLD and hypertriglyceridemia with the potential to reduce liver-related events.
Collapse
Affiliation(s)
- Takeshi Ichikawa
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| | - Haruki Oba
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| | - Mai Owada
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| | - Kazuki Watanabe
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| | - Tsubasa Yoshimura
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| | - Ayako Fuchigami
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| | - Atsushi Nakamura
- Department of Gastroenterology and HepatologyNippon Koukan HospitalKawasakiJapan
| |
Collapse
|
599
|
Malhi H, Brown RS, Lim JK, Reau N, Tapper EB, Wong CCL, Gores GJ. Precipitous changes in nomenclature and definitions-NAFLD becomes SLD: Implications for and expectations of AASLD journals. Clin Liver Dis (Hoboken) 2023; 22:193-194. [PMID: 38143807 PMCID: PMC10745227 DOI: 10.1097/cld.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023] Open
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Joseph K Lim
- Yale Viral Hepatitis Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nancy Reau
- Section of Hepatology, Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Elliot B Tapper
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Minnesota, USA
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
600
|
Malhi H, Brown RS, Lim JK, Reau N, Tapper EB, Wong CCL, Gores GJ. Precipitous changes in nomenclature and definitions-NAFLD becomes SLD: Implications for and expectations of AASLD journals. Hepatology 2023; 78:1680-1681. [PMID: 37941421 DOI: 10.1097/hep.0000000000000619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Joseph K Lim
- Yale Viral Hepatitis Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nancy Reau
- Section of Hepatology, Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Elliot B Tapper
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Minnesota, USA
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|