551
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Brain orexin improves intestinal barrier function via the vagal cholinergic pathway. Neurosci Lett 2020; 714:134592. [DOI: 10.1016/j.neulet.2019.134592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023]
|
552
|
Xiao K, Liu C, Qin Q, Zhang Y, Wang X, Zhang J, Odle J, Lin X, Hu CAA, Liu Y. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway. FASEB J 2019; 34:2483-2496. [PMID: 31909535 DOI: 10.1096/fj.201902298r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins that contaminates food or feed and cause intestinal damage. Long-chain n-3 polyunsaturated fatty acids (PUFA) such as EPA and DHA exert beneficial effects on intestinal integrity in animal models and clinical trials. Necroptosis signaling pathway plays a critical role in intestinal cell injury. This study tested the hypothesis that EPA and DHA could alleviate DON-induced injury to intestinal porcine epithelial cells through modulation of the necroptosis signaling pathway. Intestinal porcine epithelial cell 1 (IPEC-1) cells were cultured with or without EPA or DHA (6.25-25 μg/mL) in the presence or absence of 0.5 μg/mL DON for indicated time points. Cell viability, cell number, lactate dehydrogenase (LDH) activity, cell necrosis, transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4kDa (FD4) flux, tight junction protein distribution, and protein abundance of necroptosis related signals were determined. EPA and DHA promoted cell growth indicated by higher cell viability and cell number, and inhibited cell injury indicated by lower LDH activity in the media. EPA and DHA also improved intestinal barrier function, indicated by higher TEER and lower permeability of FD4 flux as well as increased proportions of tight junction proteins located in the plasma membrane. Moreover, EPA and DHA decreased cell necrosis demonstrated by live cell imaging and transmission electron microscopy. Finally, EPA and DHA downregulated protein expressions of necroptosis related signals including tumor necrosis factor receptor (TNFR1), receptor interacting protein kinase 1 (RIP1), RIP3, phosphorylated mixed lineage kinase-like protein (MLKL), phosphoglycerate mutase family 5 (PGAM5), dynamin-related protein 1 (Drp1), and high mobility group box-1 protein (HMGB1). EPA and DHA also inhibited protein expression of caspase-3 and caspase-8. These results suggest that EPA and DHA prevent DON-induced intestinal cell injury and enhance barrier function, which is associated with inhibition of the necroptosis signaling pathway.
Collapse
Affiliation(s)
- Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Congcong Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Qin Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Yang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China.,Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, P.R. China
| |
Collapse
|
553
|
Yu TX, Chung HK, Xiao L, Piao JJ, Lan S, Jaladanki SK, Turner DJ, Raufman JP, Gorospe M, Wang JY. Long Noncoding RNA H19 Impairs the Intestinal Barrier by Suppressing Autophagy and Lowering Paneth and Goblet Cell Function. Cell Mol Gastroenterol Hepatol 2019; 9:611-625. [PMID: 31862317 PMCID: PMC7078540 DOI: 10.1016/j.jcmgh.2019.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The protective intestinal mucosal barrier consists of multiple elements including mucus and epithelial layers and immune defense; nonetheless, barrier dysfunction is common in various disorders. The imprinted and developmentally regulated long noncoding RNA H19 is involved in many cell processes and diseases. Here, we investigated the role of H19 in regulating Paneth and goblet cells and autophagy, and its impact on intestinal barrier dysfunction induced by septic stress. METHODS Studies were conducted in H19-deficient (H19-/-) mice, mucosal tissues from patients with sepsis, primary enterocytes, and Caco-2 cells. Septic stress was induced by cecal ligation and puncture (CLP), and gut permeability was detected by tracer fluorescein isothiocyanate-dextran assays. The function of Paneth and goblet cells was examined by immunostaining for lysozyme and mucin 2, respectively, and autophagy was examined by microtubule-associated proteins 1A/1B light chain 3 II immunostaining and Western blot analysis. Intestinal organoids were isolated from H19-/- and control littermate mice and treated with lipopolysaccharide (LPS). RESULTS Intestinal mucosal tissues in mice 24 hours after exposure to CLP and in patients with sepsis showed high H19 levels, associated with intestinal barrier dysfunction. Targeted deletion of the H19 gene in mice enhanced the function of Paneth and goblet cells and promoted autophagy in the small intestinal mucosa. Knockout of H19 protected Paneth and goblet cells against septic stress, preserved autophagy activation, and promoted gut barrier function after exposure to CLP. Compared with organoids from control littermate mice, intestinal organoids isolated from H19-/- mice had increased numbers of lysozyme- and mucin 2-positive cells and showed increased tolerance to LPS. Conversely, ectopic overexpression of H19 in cultured intestinal epithelial cells prevented rapamycin-induced autophagy and abolished the rapamycin-induced protection of the epithelial barrier against LPS. CONCLUSIONS In investigations of mice, human tissues, primary organoids, and intestinal epithelial cells, we found that increased H19 inhibited the function of Paneth and goblet cells and suppressed autophagy, thus potentially contributing to barrier dysfunction in intestinal pathologies.
Collapse
Affiliation(s)
- Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jun-Jie Piao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shaoyang Lan
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
554
|
Moliterni E, Paolino G, Richetta AG, Grassi S, Calvieri S. The barrier beyond the skin. Ital J Dermatol Venerol 2019; 156:2-4. [PMID: 31804051 DOI: 10.23736/s2784-8671.19.06431-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elisa Moliterni
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy -
| | | | - Antonio G Richetta
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Sara Grassi
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Stefano Calvieri
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| |
Collapse
|
555
|
Skupsky J, Sabui S, Hwang M, Nakasaki M, Cahalan MD, Said HM. Biotin Supplementation Ameliorates Murine Colitis by Preventing NF-κB Activation. Cell Mol Gastroenterol Hepatol 2019; 9:557-567. [PMID: 31786364 PMCID: PMC7078531 DOI: 10.1016/j.jcmgh.2019.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Biotin is a water-soluble vitamin that is indispensable for human health. Biotin deficiency can cause failure-to-thrive, immunodeficiency, alopecia, dermatitis, and conjunctivitis. We previously reported that biotin deficiency also can lead to severe colitis in mice, which is completely reversed with supplementation. Our aim in this study was to determine if high-dose biotin supplementation can provide a therapeutic benefit in a preclinical model for inflammatory bowel disease (IBD) and to identify the molecular mechanism by which this occurs. METHODS Mice were challenged with dextran sodium sulfate to induce colitis and were treated with 1 mmol/L biotin to induce or maintain remission. Clinical response was monitored by the Disease Activity Index and fecal calprotectin levels. The colon tissue was investigated for histology, length, as well as expression of inflammatory cytokines (interleukin 6, tumor necrosis factor-α, interleukin 1β), intestinal permeability, tight junctions (zonula occludens-1 and claudin-2), and the transcription factor nuclear factor-κB (NF-κB). RESULTS Biotin therapy led to delayed onset and severity of colitis as well as accelerated healing. There was improvement in the Disease Activity Index, fecal calprotectin levels, colon length, and histology. In addition, biotin-treated mice had reduced expression of inflammatory cytokines, reduced intestinal permeability, and reduced activation of NF-κB. CONCLUSIONS Oral supplementation with biotin provides benefit for maintenance and induction of remission in the dextran sodium sulfate preclinical model for IBD. Biotin does this by reducing the activation of NF-κB, which prevents the production of inflammatory cytokines and helps maintain the integrity of the intestinal barrier. Clinically, the NF-κB pathway is important in the development of IBD and this finding suggests that biotin may have therapeutic potential for patients with IBD.
Collapse
Affiliation(s)
- Jonathan Skupsky
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Long Beach, Long Beach, California,Department of Medicine, Gastroenterology, University of California Irvine, Irvine, California,Correspondence Address correspondence to: Jonathan Skupsky, MD, PhD, Department of Medicine, Gastroenterology, University of California Irvine, 285 Irvine Hall, Irvine, California 92697. fax: (949) 824-8540.
| | - Subrata Sabui
- Department of Medical Research, Veterans Affairs Long Beach, Long Beach, California,Department of Physiology and Biophysics, University of California Irvine, Irvine, California
| | - Michael Hwang
- Department of Medical Research, Veterans Affairs Long Beach, Long Beach, California,Department of Medicine, University of California Irvine, Irvine, California
| | - Manando Nakasaki
- Department of Pathology, University of California Irvine, Irvine, California
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California
| | - Hamid M. Said
- Department of Medical Research, Veterans Affairs Long Beach, Long Beach, California,Department of Physiology and Biophysics, University of California Irvine, Irvine, California,Department of Medicine, University of California Irvine, Irvine, California
| |
Collapse
|
556
|
Dorshow RB, Johnson JR, Debreczeny MP, Riley IR, Shieh JJ, Rogers TE, Hall-Moore C, Shaikh N, Rouggly-Nickless LC, Tarr PI. Transdermal fluorescence detection of a dual fluorophore system for noninvasive point-of-care gastrointestinal permeability measurement. BIOMEDICAL OPTICS EXPRESS 2019; 10:5103-5116. [PMID: 31646033 PMCID: PMC6788606 DOI: 10.1364/boe.10.005103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 05/10/2023]
Abstract
The intestinal mucosal barrier prevents macromolecules and pathogens from entering the circulatory stream. Tight junctions in this barrier are compromised in inflammatory bowel diseases, environmental enteropathy, and enteric dysfunction. Dual sugar absorption tests are a standard method for measuring gastrointestinal integrity, however, these are not clinically amenable. Herein, we report on a dual fluorophore system and fluorescence detection instrumentation for which gastrointestinal permeability is determined in a rat small bowel disease model from the longitudinal measured transdermal fluorescence of each fluorophore. This fluorophore technology enables a specimen-free, noninvasive, point-of-care gastrointestinal permeability measurement which should be translatable to human clinical studies.
Collapse
Affiliation(s)
| | - J. R. Johnson
- MediBeacon Inc., 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | | | - I. Rochelle Riley
- MediBeacon Inc., 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - Jeng-Jong Shieh
- MediBeacon Inc., 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - Thomas E. Rogers
- MediBeacon Inc., 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
557
|
Leech B, McIntyre E, Steel A, Sibbritt D. Risk factors associated with intestinal permeability in an adult population: A systematic review. Int J Clin Pract 2019; 73:e13385. [PMID: 31243854 DOI: 10.1111/ijcp.13385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increased intestinal permeability (IP) involves the loss of integrity between the cells of the small intestine. IP has been suggested to contribute to the pathogenesis and exacerbation of many chronic diseases. Many potential risk factors for IP are proposed in contemporary literature. The purpose of this review is to identify the most significant risk factors for IP. METHODS A systematic search of literature published up until September 2018 in the PubMed, EMBASE, CINAHL, and Scopus databases was conducted. RESULTS A total of 47 articles met the inclusion criteria. Elevated levels of proinflammatory markers, dyslipidaemia, hyperglycaemia, insulin resistance, anthropometric measurements resembling obesity, advanced disease severity, comorbidity and the consumption of a Western-style diet were identified as the strongest risk factors for altered intestinal integrity. The risk of IP increases when coupled with a multiple disease state or combined with other environmental risk factors. Furthermore, many of the identified risk factors such as anthropometric measurements and biomarkers were external from intestinal health and rather resembled a metabolic-like condition. CONCLUSIONS This review identified a number of potential risk factors for IP, ranging from biomarkers to anthropometric measurements, demographics, dietary intake and chronic diseases. These risk factors warrant the attention of clinicians and other healthcare providers to aid the identification of potential patients at risk of altered IP. Further research needs to examine whether the identified risk factors are homogeneous with the diagnosis of IP or whether the disease state influences the association.
Collapse
Affiliation(s)
- Bradley Leech
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Erica McIntyre
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Amie Steel
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - David Sibbritt
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
558
|
Sikora M, Stec A, Chrabaszcz M, Waskiel-Burnat A, Zaremba M, Olszewska M, Rudnicka L. Intestinal Fatty Acid Binding Protein, a Biomarker of Intestinal Barrier, is Associated with Severity of Psoriasis. J Clin Med 2019; 8:jcm8071021. [PMID: 31336842 PMCID: PMC6678629 DOI: 10.3390/jcm8071021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Alterations of intestinal microbiota play a significant role in the pathogenesis of psoriasis. Dysbiosis may cause disruption of the intestinal barrier, which contributes to immune activation by translocation of microbial antigens and metabolites. Intestinal fatty acid binding protein (I-FABP) serves as a biomarker of enterocyte damage. The aim of this study was to investigate clinical and metabolic factors affecting plasma concentration of I-FABP in patients with psoriasis. Eighty patients with psoriasis and 40 control subjects were enrolled in the study. Serum I-FABP (243.00 (108.88–787.10) vs. 114.38 (51.60–241.60) pg/ml, p < 0.001) and neutrophil to lymphocyte ratio (NLR; 2.59 (1.96–3.09) vs. 1.72 (1.36–47 2.11), p < 0.01) were significantly increased in patients with psoriasis compared to controls. A significant positive correlation was found between I-FABP and body mass index (BMI) (r = 0.82, p < 0.001), Psoriasis Area Severity Index (PASI) (r = 0.78, p < 0.001) and neutrophil to lymphocyte ratio (NLR) (r = 0.24, p < 0.001). Rising quartiles of I-FABP were associated with increasing values of BMI, PASI and NLR. The results of the logistic regression model confirmed an increased risk of higher disease severity with I-FABP concentration – odds ratio 3.34 per 100 pg/mL I-FABP increase. In conclusion, intestinal integrity in patients with psoriasis is affected by obesity, severity of the disease and systemic inflammation. The modulation of gut barrier may represent a new therapeutic approach for psoriasis.
Collapse
Affiliation(s)
- Mariusz Sikora
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland.
| | - Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Magdalena Chrabaszcz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Anna Waskiel-Burnat
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Michal Zaremba
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Malgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
| |
Collapse
|