601
|
Thayer JF, Sternberg EM. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav Immun 2010; 24:1223-8. [PMID: 20674737 PMCID: PMC2949498 DOI: 10.1016/j.bbi.2010.07.247] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/24/2010] [Accepted: 07/25/2010] [Indexed: 12/30/2022] Open
Abstract
Inflammation and immunity have been implicated in a wide variety of diseases and disorders ranging from Alzheimer's disease to cardiovascular disease to hemorrhagic shock. In this review, we will briefly consider the evidence for the neural concomitants of immunomodulation. First, we will briefly review the anatomy and physiology of neural-immune communication. Evidence for the somatotopic organization of the vagus nerve and for pain processes suggests that such an organization may be relevant for the investigation of the neural concomitants of immunity. Then we will provide an overview of what is known from both animal and human studies including neuroimaging and clinical studies. Finally, we will discuss some of the challenges and opportunities in this exciting area of investigation.
Collapse
|
602
|
Kawli T, He F, Tan MW. It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans. Dis Model Mech 2010; 3:721-31. [PMID: 20829562 PMCID: PMC2965399 DOI: 10.1242/dmm.003871] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response is evoked as a consequence of interactions between invading foreign infectious agents and host immune cells. A successful innate immune response is pivotal in maintaining the delicate balance between health and disease; an insufficient response results in infection, whereas an excessive response results in prolonged inflammation and tissue damage. Alterations in the state and function of the nervous system influence the immune response. The nervous system regulates innate immune responses through the release of neurotransmitters, neuropeptides and neurohormones. However, many questions related to the molecular and cellular mechanisms involved, the physiological role of the link between the immune and the nervous system, and the biological significance of neuro-immune interactions remain unresolved. The interactions between the nematode Caenorhabditis elegans and its pathogens provide insights into mechanisms of neuroendocrine regulation of immunity and address many outstanding issues related to neuro-immune interactions.
Collapse
Affiliation(s)
- Trupti Kawli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA394305, USA
| | - Fanglian He
- Department of Genetics, Stanford University School of Medicine, Stanford, CA394305, USA
| | - Man-Wah Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA394305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA394305, USA
| |
Collapse
|
603
|
Abstract
Hypopituitarism is not currently considered as a potential cause of immune disruption in humans. Accumulating data from in vitro and animal models support a role for the pituitary gland in immune regulation. Furthermore, the increased mortality risk noted in patients with adult hypopituitarism remains poorly explained and immune dysfunction could conceivably contribute to this observation. In a recent issue of Clinical & Experimental Immunology, we presented new data relating to immune status in adults with treated, severe hypopituitarism. We observed humoral immune deficiency in a significant proportion, despite stable pituitary replacement, including growth hormone (GH). This was especially evident in those with low pretreatment IGF-I levels and appeared independent of anticonvulsant use or corticosteroid replacement. These observations require substantiation with future studies. In this short review, we summarize existing data relating to the effects of pituitary hormones on immune function and discuss potential clinical implications surrounding the hypothesis of immune dysregulation in severe hypopituitarism.
Collapse
|
604
|
Ley S, Weigert A, Brüne B. Neuromediators in inflammation—a macrophage/nerve connection. Immunobiology 2010; 215:674-84. [DOI: 10.1016/j.imbio.2010.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/20/2010] [Indexed: 02/06/2023]
|
605
|
Cercy SP, Bronson B. Putative mechanisms of cognitive dysfunction in chemotherapy-naïve diffuse large B-cell lymphoma: a case report and review of the literature. ACTA ACUST UNITED AC 2010; 17:223-33. [PMID: 20799114 DOI: 10.1080/09084282.2010.499809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is now recognized as a frequent consequence of treatments for cancers localized outside the central nervous system (CNS). In contrast, little attention has been given to the potentially deleterious cognitive effects from non-CNS cancers themselves. The present case study proposes that cognitive deficits occur in a subset of treatment-naive patients with diffuse large B-cell lymphoma in whom no gross evidence of lymphoma-related CNS involvement is apparent. Evidence is presented from a case study and elaborate putative mechanisms centering on deleterious effects of B-cell-mediated inflammatory cytokine secretion on neurons. Moreover, this case study speculates that genetic variability involving apolipoprotein E or other factors may mediate cognitive variability among these patients.
Collapse
Affiliation(s)
- Steven P Cercy
- Mental Health Service, Veterans Affairs New York Harbor Healthcare System, 423 East 23rd Street, New York, NY 10010, USA.
| | | |
Collapse
|
606
|
Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proc Natl Acad Sci U S A 2010; 107:14817-22. [PMID: 20679216 DOI: 10.1073/pnas.1009164107] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although stress-induced increases in inflammation have been implicated in several major disorders, including cardiovascular disease and depression, the neurocognitive pathways that underlie inflammatory responses to stress remain largely unknown. To examine these processes, we recruited 124 healthy young adult participants to complete a laboratory-based social stressor while markers of inflammatory activity were obtained from oral fluids. A subset of participants (n = 31) later completed an fMRI session in which their neural responses to social rejection were assessed. As predicted, exposure to the laboratory-based social stressor was associated with significant increases in two markers of inflammatory activity, namely a soluble receptor for tumor necrosis factor-alpha (sTNFalphaRII) and interleukin-6 (IL-6). In the neuroimaging subsample, greater increases in sTNFalphaRII (but not IL-6) were associated with greater activity in the dorsal anterior cingulate cortex and anterior insula, brain regions that have previously been associated with processing rejection-related distress and negative affect. These data thus elucidate a neurocognitive pathway that may be involved in potentiated inflammatory responses to acute social stress. As such, they have implications for understanding how social stressors may promote susceptibility to diseases with an inflammatory component.
Collapse
|
607
|
Gonzalez-Rey E, Ganea D, Delgado M. Neuropeptides: keeping the balance between pathogen immunity and immune tolerance. Curr Opin Pharmacol 2010; 10:473-81. [PMID: 20399708 PMCID: PMC3417345 DOI: 10.1016/j.coph.2010.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/23/2010] [Indexed: 02/06/2023]
Abstract
Various neuropeptides have emerged recently as potent immunomodulatory factors with potential for their therapeutic use in immune disorders. Here we highlight the most recent data relevant in the field and we offer our opinion on how neuropeptide therapy might impact clinical immune diseases, and the challenges in this field that must be overcome before achieving medical progress. We also review recent reports describing the antimicrobial effects showed by some neuropeptides and the therapeutic, physiological, and evolutionary consequences of this new finding. Finally, we discuss how a physiologically functional neuropeptide system contributes to general health and how neuropeptides educate our immune system to be tolerant.
Collapse
Affiliation(s)
- Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine, CSIC, Avd. Conocimiento, Granada, Spain
| | - Doina Ganea
- Temple University School of Medicine, Philadelphia, PA, USA
| | - Mario Delgado
- Institute of Parasitology and Biomedicine, CSIC, Avd. Conocimiento, Granada, Spain
| |
Collapse
|
608
|
Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV. The role of octopamine in locusts and other arthropods. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:854-867. [PMID: 20621695 DOI: 10.1016/j.jinsphys.2010.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
The biogenic amine octopamine and its biological precursor tyramine are thought to be the invertebrate functional homologues of the vertebrate adrenergic transmitters. Octopamine functions as a neuromodulator, neurotransmitter and neurohormone in insect nervous systems and prompts the whole organism to "dynamic action". A growing number of studies suggest a prominent role for octopamine in modulating multiple physiological and behavioural processes in invertebrates, as for example the phase transition in Schistocerca gregaria. Both octopamine and tyramine exert their effects by binding to specific receptor proteins that belong to the superfamily of G protein-coupled receptors. Since these receptors do not appear to be present in vertebrates, they may present very suitable and specific insecticide and acaricide targets.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
609
|
Morisaki S, Nishi M, Fujiwara H, Oda R, Kawata M, Kubo T. Endogenous glucocorticoids improve myelination via Schwann cells after peripheral nerve injury: An in vivo study using a crush injury model. Glia 2010; 58:954-63. [PMID: 20169622 DOI: 10.1002/glia.20977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids improve the symptoms of peripheral nerve disorders, such as carpal tunnel syndrome and peripheral neuropathy. The effects of glucocorticoids are mainly anti-inflammatory, but the mechanisms of their effects in peripheral nerve disorders remain unclear. Schwann cells of the peripheral nerves express glucocorticoid receptors (GR), and glucocorticoids enhance the rate of myelin formation in vitro. Therefore, it is possible that the clinical improvement of peripheral nerve disorders by glucocorticoids is due, at least in part, to the modulation of myelination. In this study, an adrenalectomy (ADX) was performed, and followed by a daily injection of either low dose (1 mg/kg) or high dose (10 mg/kg) corticosterone (CORT). We then simulated a crush injury of the sciatic nerves. A sham ADX operation, followed by a simulated crush injury, was conducted as a control. Immunohistochemistry showed that the nuclei of in vivo Schwann cells expressed GR and that glucocorticoids impacted the GR immunoreactivity of the Schwann cells. The mRNA and protein expression of myelin basic protein was significantly lower in the animals given ADX with vehicle than in the sham operation group. However, the expression was restored in the low-dose CORT replacement group. Morphological analyses showed that the ADX with vehicle group had a significantly lower myelin thickness than did the low-dose CORT replacement group and the sham operation group. These results suggest that endogenous glucocorticoids have an important role in myelination through the GR in Schwann cells after an in vivo peripheral nerve injury.
Collapse
Affiliation(s)
- Shinsuke Morisaki
- Department of Orthopedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | | | | | | | | | | |
Collapse
|
610
|
Ayala C, Celis ME. Experimental autoimmune oophoritis and α-melanocyte-stimulating hormone. Expert Rev Endocrinol Metab 2010; 5:539-547. [PMID: 30780797 DOI: 10.1586/eem.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article focuses on primary ovarian insufficiency and the experimental models used in recent years to explain the probable mechanisms of autoimmune oophoritis and idiopathic primary ovarian insufficiency. The relationship between the immune system and the neuroendocrine system is also an important focus of this article. Activation of the immune system is necessary for maintaining homeostasis and this requires multiple interactions and regulation between the immune system and the neuroendocrine system. Neuropeptides, neuroendocrine mediators, are expressed and released primarily, but not exclusively, by the nervous system and have profound effects on the immune system. As an example of one of these peptides we describe the α-melanocyte-stimulating hormone and its anti-inflammatory properties.
Collapse
Affiliation(s)
- Carolina Ayala
- a Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, Ciudad de Córdoba, CP: 5000, Córdoba, Argentina
| | - María Ester Celis
- a Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, Ciudad de Córdoba, CP: 5000, Córdoba, Argentina
- b
| |
Collapse
|
611
|
Flierl MA, Rittirsch D, Huber-Lang MS, Stahel PF. Pathophysiology of septic encephalopathy--an unsolved puzzle. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:165. [PMID: 20565858 PMCID: PMC2911737 DOI: 10.1186/cc9035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The exact cellular and molecular mechanisms of sepsis-induced encephalopathy remain elusive. The breakdown of the blood-brain barrier (BBB) is considered a focal point in the development of sepsis-induced brain damage. Contributing factors for the compromise of the BBB include cytokines and chemokines, activation of the complement cascade, phagocyte-derived toxic mediators, and bacterial products. To date, we are far from fully understanding the neuropathology that develops as a secondary remote organ injury as a consequence of sepsis. However, recent studies suggest that bacterial proteins may readily cross the functional BBB and trigger an inflammatory response in the subarachnoid space, in absence of a bacterial invasion. A better understanding of the pathophysiological events leading to septic encephalopathy appears crucial to advance the clinical care for this vulnerable patient population.
Collapse
Affiliation(s)
- Michael A Flierl
- Department of Orthopaedic Surgery, University of Colorado School of Medicine, Denver Health Medical Center, 777 Bannock Street, Denver, CO 80204, USA.
| | | | | | | |
Collapse
|
612
|
|
613
|
Martin LB, Hopkins WA, Mydlarz LD, Rohr JR. The effects of anthropogenic global changes on immune functions and disease resistance. Ann N Y Acad Sci 2010; 1195:129-48. [DOI: 10.1111/j.1749-6632.2010.05454.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
614
|
Silverman MN, Heim CM, Nater UM, Marques AH, Sternberg EM. Neuroendocrine and immune contributors to fatigue. PM R 2010; 2:338-46. [PMID: 20656615 PMCID: PMC2933136 DOI: 10.1016/j.pmrj.2010.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/09/2010] [Indexed: 01/24/2023]
Abstract
Central fatigue, a persistent and subjective sense of tiredness, generally correlates poorly with traditional markers of disease. It is frequently associated with psychosocial factors, such as depression, sleep disorder, anxiety, and coping style, which suggest that dysregulation of the body's stress systems may serve as an underlying mechanism in the maintenance of chronic fatigue (CF). This article addresses the endocrine, neural, and immune factors that contribute to fatigue and describes research regarding the role of these factors in chronic fatigue syndrome as a model for addressing the biology of CF. In general, hypoactivity of the hypothalamic-pituitary-adrenal axis, autonomic nervous system alterations characterized by sympathetic overactivity and low vagal tone, as well as immune abnormalities, may contribute to the expression of CF. Noninvasive methods for evaluating endocrine, neural, and immune function are also discussed. Simultaneous evaluation of neuroendocrine and immune systems with noninvasive techniques will help elucidate the underlying interactions of these systems, their role in disease susceptibility, and progression of stress-related disorders.
Collapse
Affiliation(s)
- Marni N Silverman
- Section on Neuroendocrine Immunology and Behavior, National Institute of Mental Health, National Institutes of Health, Rockville, MD(dagger)
| | | | | | | | | |
Collapse
|
615
|
Zhang SJ, Deng YM, Zhu YL, Dong XW, Jiang JX, Xie QM. Intracerebroventricular injection of leukotriene B4 attenuates antigen-induced asthmatic response via BLT1 receptor stimulating HPA-axis in sensitized rats. Respir Res 2010; 11:39. [PMID: 20403205 PMCID: PMC2865448 DOI: 10.1186/1465-9921-11-39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 04/20/2010] [Indexed: 12/31/2022] Open
Abstract
Background Basic and clinical studies suggest that hypothalamic-pituitary-adrenal (HPA) axis is the neuroendocrine-immnue pathway that functionally regulates the chronic inflammatory disease including asthma. Our previous studies showed corresponding changes of cytokines and leukotriene B4 (LTB4) between brain and lung tissues in antigen-challenged asthmatic rats. Here, we investigated how the increased LTB4 level in brain interacts with HPA axis in regulating antigen-induced asthmatic response in sensitized rats. Methods Ovalbumin-sensitized rats were challenged by inhalation of antigen. Rats received vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor) was given via intracerebroventricular injection (i.c.v) 30 min before challenge. Lung resistance (RL) and dynamic lung compliance (Cdyn) were measured before and after antigen challenge. Inflammatory response in lung tissue was assessed 24 h after challenge. Expression of CRH mRNA and protein in hypothalamus were evaluated by RT-PCR and Western Blot, and plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using the ELISA kits. Results Antigen challenge decreased pulmonary function and induced airway inflammation, evoked HPA axis response in sensitized rats. Administration of LTB4 via i.c.v markedly attenuated airway contraction and inflammation. Meanwhile, LTB4 via i.c.v markedly increased CORT and ACTH level in plasma before antigen challenge, and followed by further increases in CORT and ACTH levels in plasma after antigen challenge in sensitized rats. Expression of CRH mRNA and protein in hypothalamus were also significantly increased by LTB4 via i.c.v in sensitized rats after antigen challenge. These effect were completely blocked by pre-treatment with BLT1 receptor antagonist U75302 (10 ng), but not by BLT2 antagonist LY255283. Conclusions LTB4 administered via i.c.v down-regulates the airway contraction response and inflammation through activation of the HPA axis via its BLT1 receptor. This study expands our concept of the regulatory role of intracranial inflammatory mediators in inflammatory diseases including asthma. The favourable effects of LTB4 on the HPA axis may help to explain the phenomenon of self-relief after an asthmatic attack.
Collapse
Affiliation(s)
- Shui-Juan Zhang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical Science College of Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
616
|
Schaller M, Miller GE, Gervais WM, Yager S, Chen E. Mere Visual Perception of Other People’s Disease Symptoms Facilitates a More Aggressive Immune Response. Psychol Sci 2010; 21:649-52. [PMID: 20483842 DOI: 10.1177/0956797610368064] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An experiment ( N = 28) tested the hypothesis that the mere visual perception of disease-connoting cues promotes a more aggressive immune response. Participants were exposed either to photographs depicting symptoms of infectious disease or to photographs depicting guns. After incubation with a model bacterial stimulus, participants’ white blood cells produced higher levels of the proinflammatory cytokine interleukin-6 (IL-6) in the infectious-disease condition, compared with the control (guns) condition. These results provide the first empirical evidence that visual perception of other people’s symptoms may cause the immune system to respond more aggressively to infection. Adaptive origins and functional implications are discussed.
Collapse
|
617
|
Wright RJ. Perinatal stress and early life programming of lung structure and function. Biol Psychol 2010; 84:46-56. [PMID: 20080145 PMCID: PMC2888999 DOI: 10.1016/j.biopsycho.2010.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 12/31/2022]
Abstract
Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding.
Collapse
Affiliation(s)
- Rosalind J Wright
- Channing Laboratory, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02116, USA.
| |
Collapse
|
618
|
Sipka A, Langner K, Seyfert HM, Schuberth HJ. Substance P alters the in vitro LPS responsiveness of bovine monocytes and blood-derived macrophages. Vet Immunol Immunopathol 2010; 136:219-26. [PMID: 20378186 DOI: 10.1016/j.vetimm.2010.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/27/2010] [Accepted: 03/12/2010] [Indexed: 11/24/2022]
Abstract
Neuromediators like substance P have a decisive influence on inflammatory processes via the neuroendocrine regulation circuit. The aim of the present study was therefore to evaluate the expression of the main substance P receptor NK-1R in cattle as well as the modulatory properties of substance P for bovine macrophages. The expression of NK-1R was detected in subsets of lymphocytes, granulocytes, monocytes and in vitro-generated macrophages (MdM). Stimulation of monocytes and MdM with lipopolysaccharide (LPS) for 3h did not alter the expression level of NK-1R. In vitro, the modulatory potential of substance P for monocytes and in vitro-generated blood-derived macrophages (MdM) was analysed. In MdM, generated in the presence of substance P, mRNA expression of chemokines, which are crucial for the attraction and activation of granulocytes and monocytes (CXCL8, CCL5) as well as the expression of IL-1beta, a classically pro-inflammatory cytokine were significantly elevated. After stimulation with LPS, MdM generated in the presence of substance P showed an elevated expression of CXCL8 and IL-1beta, while in SP-influenced monocytes only the expression of CCL5 was significantly upregulated after LPS stimulation. In addition, supernatants of MdM cultured in the presence of substance P induced neutrophil migration and inhibited both necrosis and apoptosis of neutrophil granulocytes. Thus, it has been shown that the modulation of the expression pattern of chemokines and cytokines in MdM by substance P has also functional relevance for the attraction and activation of other immune cells. In general, the modulation of sensor and effector functions by substance P suggests, that this neuromediator can alter the course of an inflammatory disease in cattle.
Collapse
Affiliation(s)
- Anja Sipka
- Immunology Unit, University of Veterinary Medicine, Bischofsholer Damm 15, D-30172 Hannover, Germany
| | | | | | | |
Collapse
|
619
|
Weichhart T, Brandt O, Lassnig C, Müller M, Hörl WH, Stingl G, Säemann MD. The anti-inflammatory potency of dexamethasone is determined by the route of application in vivo. Immunol Lett 2010; 129:50-2. [DOI: 10.1016/j.imlet.2009.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 12/31/2009] [Indexed: 12/01/2022]
|
620
|
Guo S, DiPietro L. Factors affecting wound healing. J Dent Res 2010; 89:219-29. [PMID: 20139336 PMCID: PMC2903966 DOI: 10.1177/0022034509359125] [Citation(s) in RCA: 3134] [Impact Index Per Article: 208.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 09/29/2009] [Accepted: 10/30/2009] [Indexed: 12/13/2022] Open
Abstract
Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds.
Collapse
Affiliation(s)
- S. Guo
- Center for Wound Healing and Tissue Regeneration, Department of Periodontics, College of Dentistry (MC 859), University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, IL 60612, USA
| | - L.A. DiPietro
- Center for Wound Healing and Tissue Regeneration, Department of Periodontics, College of Dentistry (MC 859), University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, IL 60612, USA
| |
Collapse
|
621
|
Zhou JY, Zhong HJ, Yang C, Yan J, Wang HY, Jiang JX. Corticosterone exerts immunostimulatory effects on macrophages via endoplasmic reticulum stress. Br J Surg 2010; 97:281-93. [PMID: 20069608 DOI: 10.1002/bjs.6820] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND : Glucocorticoids are the central effector hormones for the hypothalamic-pituitary-adrenal axis. However, the effects of endogenous glucocorticoids on the immune system are not understood completely. METHODS : Macrophage function (adherence, chemotaxis and cytokine production) was assessed in the presence of increasing concentrations of corticosterone. The role of endoplasmic reticulum (ER) stress in corticosterone immunoregulation was determined with thapsigargin and plasmid pGCL-GFP-siXBP1. Mifepristone was used to determine the role of glucocorticoid receptor in the corticosterone-induced ER stress response. RESULTS : Corticosterone exerted immunostimulatory effects on macrophage function at low concentrations. No effects were observed at high concentrations in the absence of immunological stimulation. Low-dose corticosterone induced ER stress, which was correlated to the corticosterone immunostimulatory activities. Expression of X box-binding protein (XBP) 1, but not activating transcription factor 6, was significantly increased at both mRNA and protein levels only in the presence of low-dose corticosterone. Inhibition of XBP1 expression with small interfering RNA significantly inhibited the corticosterone immunostimulatory effects. In addition, pretreatment of macrophages with mifepristone significantly inhibited the expression of glucose response protein 78 and XBP1 in macrophages by low-dose corticosterone. CONCLUSION : At low concentrations, endogenous glucocorticoids exert immunostimulatory actions on macrophages. The underlying mechanisms may be correlated to ER stress via the glucocorticoid receptor, in which XBP1 plays an important role.
Collapse
Affiliation(s)
- J-Y Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
622
|
Jamieson AM, Yu S, Annicelli CH, Medzhitov R. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe 2010; 7:103-14. [PMID: 20159617 PMCID: PMC2836270 DOI: 10.1016/j.chom.2010.01.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/02/2010] [Accepted: 01/27/2010] [Indexed: 01/09/2023]
Abstract
Multicellular organisms are continuously exposed to many different pathogens. Because different classes of pathogens require different types of immune responses, understanding how an ongoing immune response to one type of infection affects the host's ability to respond to another pathogen is essential for a complete understanding of host-pathogen interactions. Here, we used a mouse model of coinfection to gain insight into the effect of respiratory influenza virus infection on a subsequent systemic bacterial infection. We found that influenza infection triggered a generalized stress response leading to a sustained increase in serum glucocorticoid levels, resulting in a systemic suppression of immune responses. However, virus-induced glucocorticoid production was necessary to control the inflammatory response and prevent lethal immunopathology during coinfection. This study demonstrates that activation of the hypothalamic-pituitary-adrenal axis controls the balance between immune defense and immunopathology and is an important component of the host response to coinfection.
Collapse
Affiliation(s)
- Amanda M Jamieson
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
623
|
Pelletier M, Siegel RM. Wishing away inflammation? New links between serotonin and TNF signaling. Mol Interv 2010; 9:299-301. [PMID: 20048135 DOI: 10.1124/mi.9.6.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Martin Pelletier
- Immunoregulation Section, Autoimmunity Branch, NIAMS, NIH, Bethesda, MD 20814, USA
| | | |
Collapse
|
624
|
Jazani NH, Karimzad M, Mazloomi E, Sohrabpour M, Hassan ZM, Ghasemnejad H, Roshan-Milani S, Shahabi S. Evaluation of the adjuvant activity of naloxone, an opioid receptor antagonist, in combination with heat-killed Listeria monocytogenes vaccine. Microbes Infect 2010; 12:382-8. [PMID: 20152926 DOI: 10.1016/j.micinf.2010.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/30/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
We have previously demonstrated the adjuvant activity of naloxone (NLX), a general opioid antagonist, using a DNA vaccine for herpes simplex virus type 1. Here, the adjuvant activity of NLX has been evaluated using a heat-killed Listeria monocytogenes (HKLM) vaccine as a model for general immunization against intracellular bacteria. BALB/c mice were divided into three groups: the Vac group received the HKLM vaccine alone; the NLX-Vac group received the HKLM vaccine in combination with the adjuvant NLX; and the control group received phosphate buffered saline (PBS). Our results indicate that the administration of NLX as an adjuvant enhances the ability of the HKLM vaccine to increase lymphocyte proliferation, delayed type hypersensitivity, and skewing of the immune response toward a T-helper 1 (Th1) pattern. Additionally, combination of NLX with the HKLM vaccine improves protective immunity against L. monocytogenes. In conclusion, administration of NLX as an adjuvant for the HKLM vaccine can enhance cell-mediated immunity and shift the immune response to Th1.
Collapse
Affiliation(s)
- Nima Hosseini Jazani
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | | | | | | | | | | |
Collapse
|
625
|
Abstract
The brain-immune axis continues to fascinate. In this issue of Immunity, Shaked et al. (2009) describe how miR-132 mediates an anti-inflammatory effect via the targeting of acetylcholinesterase, leading to an increase in the neurotransmitter acetylcholine.
Collapse
Affiliation(s)
- Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
626
|
Karimi K, Bienenstock J, Wang L, Forsythe P. The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 2010; 24:316-23. [PMID: 19887104 DOI: 10.1016/j.bbi.2009.10.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/19/2009] [Accepted: 10/27/2009] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve has a counter-inflammatory role in a number of model systems. While the majority of these anti-inflammatory effects have been ascribed to the activation of nicotinic receptors on macrophages, little is known about the role of the vagus in modulating the activity of other cells involved in inflammatory responses. Here, we demonstrate that following subdiaphragmatic vagotomy of mice CD4(+) T cells from the spleen proliferated at a higher rate and produced more pro-inflammatory cytokines, including TNF and IFN-gamma, upon in vitro stimulation. Cell responses were restored to control levels following the administration of nicotine and the treatment of non-vagotomized animals with a nicotinic receptor antagonist could mimic the effect of vagotomy. Our results suggest that vagal input constitutively down-regulates T cell function through action at nicotinic receptors and the role of the vagus in regulating immune responses is more extensive than previously demonstrated.
Collapse
Affiliation(s)
- Khalil Karimi
- The Brain-Body Institute and Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Ont., Canada
| | | | | | | |
Collapse
|
627
|
Adamo SA. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis). Brain Behav Immun 2010; 24:194-200. [PMID: 19679179 DOI: 10.1016/j.bbi.2009.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/24/2009] [Accepted: 08/06/2009] [Indexed: 12/01/2022] Open
Abstract
Mediators of the stress response (e.g. glucocorticoids and norepinephrine) can be immunosuppressive. Nevertheless, immune challenge leads to the release of these compounds in vertebrates. To resolve this paradox, it has been suggested that stress hormones help restore immune homeostasis, preventing self-damage. A comparative approach may provide additional hypotheses as to why an immune challenge induces the release of stress hormones/neurohormones. Octopamine, a neurohormonal mediator of the stress response in the cricket Gryllus texensis, increased in concentration in the hemolymph during an immune challenge. Therefore, the release of stress hormones during an immune response occurs in animals across phyla. Octopamine induced an increase in lipid concentration in the hemolymph. After an acute stress (flying or running) the total number of hemocytes in the hemolymph increased. Injections of octopamine had the same effect, suggesting that it may enhance hemocyte-dependent immune functions. On the other hand, octopamine decreased lysozyme-like activity in vitro, suggesting that it inhibits some immune functions. However, lysozyme-like activity was increased by the presence of heat-killed bacteria in vitro and this increase was significantly augmented by the presence of octopamine. Therefore, the effect of octopamine on immune function differed depending on the presence of pathogens. Stress hormones may help shift immune function into the most optimal configuration depending on the physiological context.
Collapse
Affiliation(s)
- S A Adamo
- Dept. Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS, Canada B3H 4J1.
| |
Collapse
|
628
|
Vision and the hypothalamus. ACTA ACUST UNITED AC 2010; 81:100-15. [DOI: 10.1016/j.optm.2009.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 06/04/2009] [Accepted: 07/13/2009] [Indexed: 01/01/2023]
|
629
|
Elftman MD, Hunzeker JT, Mellinger JC, Bonneau RH, Norbury CC, Truckenmiller ME. Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 184:1867-75. [PMID: 20089700 DOI: 10.4049/jimmunol.0902469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The systemic elevation of psychological stress-induced glucocorticoids strongly suppresses CD8(+) T cell immune responses resulting in diminished antiviral immunity. However, the specific cellular targets of stress/glucocorticoids, the timing of exposure, the chronology of immunological events, and the underlying mechanisms of this impairment are incompletely understood. In this study, we address each of these questions in the context of a murine cutaneous HSV infection. We show that exposure to stress or corticosterone in only the earliest stages of an HSV-1 infection is sufficient to suppress, in a glucocorticoid receptor-dependent manner, the subsequent antiviral immune response after stress/corticosterone has been terminated. This suppression resulted in early onset and delayed resolution of herpetic lesions, reduced viral clearance at the site of infection and draining popliteal lymph nodes (PLNs), and impaired functions of HSV-specific CD8(+) T cells in PLNs, including granzyme B and IFN-gamma production and the ability to degranulate. In knockout mice lacking glucocorticoid receptors only in T cells, we show that these impaired CD8(+) T cell functions are not due to direct effects of stress/corticosterone on the T cells, but the ability of PLN-derived dendritic cells to prime HSV-1-specific CD8(+) T cells is functionally impaired. These findings highlight the susceptibility of critical early events in the generation of an antiviral immune response to neuroendocrine modulation and implicate dendritic cells as targets of stress/glucocorticoids in vivo. These findings also provide insight into the mechanisms by which the clinical use of glucocorticoids contributes to altered immune responses in patients with viral infections or tumors.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
630
|
Schlachetzki JCM, Fiebich BL, Haake E, de Oliveira ACP, Candelario-Jalil E, Heneka MT, Hüll M. Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia. J Neuroinflammation 2010; 7:2. [PMID: 20064241 PMCID: PMC2819253 DOI: 10.1186/1742-2094-7-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 01/11/2010] [Indexed: 12/26/2022] Open
Abstract
Background Recent studies suggest an important role for neurotransmitters as modulators of inflammation. Neuroinflammatory mediators such as cytokines and molecules of the arachidonic acid pathway are generated and released by microglia. The monoamine norepinephrine reduces the production of cytokines by activated microglia in vitro. However, little is known about the effects of norepinephrine on prostanoid synthesis. In the present study, we investigate the role of norepinephrine on cyclooxygenase- (COX-)2 expression/synthesis and prostaglandin (PG)E2 production in rat primary microglia. Results Interestingly, norepinephrine increased COX-2 mRNA, but not protein expression. Norepinephrine strongly enhanced COX-2 expression and PGE2 production induced by lipopolysaccharide (LPS). This effect is likely to be mediated by β-adrenoreceptors, since β-, but not α-adrenoreceptor agonists produced similar results. Furthermore, β-adrenoreceptor antagonists blocked the enhancement of COX-2 levels induced by norepinephrine and β-adrenoreceptor agonists. Conclusions Considering that PGE2 displays different roles in neuroinflammatory and neurodegenerative disorders, norepinephrine may play an important function in the modulation of these processes in pathophysiological conditions.
Collapse
|
631
|
Marques AH, Silverman MN, Sternberg EM. Evaluation of stress systems by applying noninvasive methodologies: measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation 2010; 17:205-8. [PMID: 20134204 PMCID: PMC2917732 DOI: 10.1159/000258725] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The two main arms of the stress system include the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis. These two neural stress systems coordinate the response of many other physiological systems to a stressor, including the immune and cardiovascular systems, bringing the body back to homeostasis. The nervous and immune systems communicate with each other in a bidirectional manner. In this review, we will discuss the use of noninvasive methods to evaluate the immune system, ANS and HPA axis. Collection of sweat and saliva, and measurement of heart rate variability are noninvasive methods that can be applied to evaluate neuroimmune interactions. Recently, we validated a new methodology to simultaneously evaluate a large array of neural and immune biomarkers in sweat, collected through cutaneous sweat patches and measured by recycling immunoaffinity chromatography. Noninvasive and ambulatory methodologies of biomarker collection can overcome several limitations intrinsic to invasive methods, such as reducing the stress triggered by collection itself and allowing a wider application to field and community-based settings. Ultimately, simultaneous evaluation of neural and immune systems with noninvasive techniques will help elucidate the underlying interactions of these systems and their role in disease susceptibility and progression of stress-related disorders.
Collapse
Affiliation(s)
| | | | - Esther M. Sternberg
- *Esther M. Sternberg, MD, Integrative Neural Immune Program and ChiefSection on Neuroendocrine Immunology and Behavior National Institute of Mental Health/NIH, 5625 Fishers Lane MSC 9401, Rm. 4N-13B, Rockville, MD 20892-9401 (USA), Tel. +1 301 402 2773, Fax +1 301 496 6095, E-Mail
| |
Collapse
|
632
|
Mukhopadhyay R, Mishra MK, Basu A, Bishayi B. Effect of particulate antigenic stimulation or in vivo administration of interleukin-6 on the level of steroidogenic enzymes in adrenal glands and lymphoid tissues of mice with parallel alteration in endogenous inflammatory cytokine level. Cell Immunol 2010; 261:23-8. [DOI: 10.1016/j.cellimm.2009.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/21/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
|
633
|
Kumar V, Sharma A. Is neuroimmunomodulation a future therapeutic approach for sepsis? Int Immunopharmacol 2010; 10:9-17. [DOI: 10.1016/j.intimp.2009.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 01/02/2023]
|
634
|
|
635
|
Altmayr F, Jusek G, Holzmann B. The neuropeptide calcitonin gene-related peptide causes repression of tumor necrosis factor-alpha transcription and suppression of ATF-2 promoter recruitment in Toll-like receptor-stimulated dendritic cells. J Biol Chem 2009; 285:3525-3531. [PMID: 20018859 DOI: 10.1074/jbc.m109.066787] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sensory nerves may dampen inflammatory processes through the release of the neuropeptide calcitonin gene-related peptide (CGRP). CGRP mediates immunosuppressive activities through up-regulation of interleukin-10 or, alternatively, through an interleukin-10-independent pathway that is associated with rapid induction of the transcriptional inducible cAMP early repressor (ICER). In this work, we further investigated the molecular mechanisms of immune modulation by CGRP. Using TLR2-stimulated dendritic cells, we show that inhibition of tumor necrosis factor-alpha production by CGRP is dependent on up-regulation of endogenous ICER. Dendritic cell expression of ICER was selectively induced by CGRP and elevation of cellular cAMP levels but not by numerous pro- and anti-inflammatory cytokines. Treatment of dendritic cells with CGRP did not interfere with the induction of Tnfa gene expression but caused premature repression of TLR2-induced transcriptional activity. ATF-2 was rapidly phosphorylated and recruited to the Tnfa promoter following ligation of TLR2. Concomitant administration of CGRP completely prevented binding of ATF-2 to the Tnfa promoter, whereas recruitment of ICER was markedly elevated. In contrast, CGRP did not influence TLR2-stimulated binding of NF-kappaB p65. Together, these results are consistent with a model suggesting that CGRP causes rapid up-regulation of ICER, which in turn competes with ATF-2 for binding to the Tnfa promoter, leading to repression of gene expression.
Collapse
Affiliation(s)
- Felicitas Altmayr
- From the Department of Surgery, Technical University Munich, 81675 Munich, Germany
| | - Gabriela Jusek
- From the Department of Surgery, Technical University Munich, 81675 Munich, Germany
| | - Bernhard Holzmann
- From the Department of Surgery, Technical University Munich, 81675 Munich, Germany.
| |
Collapse
|
636
|
MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009; 31:965-73. [PMID: 20005135 DOI: 10.1016/j.immuni.2009.09.019] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/18/2009] [Accepted: 09/24/2009] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) contribute to both neuronal and immune cell fate, but their involvement in intertissue communication remained unexplored. The brain, via vagal secretion of acetylcholine (ACh), suppresses peripheral inflammation by intercepting cytokine production; therefore, we predicted that microRNAs targeting acetylcholinesterase (AChE) can attenuate inflammation. Here, we report that inflammatory stimuli induced leukocyte overexpression of the AChE-targeting miR-132. Injected locked nucleic acid (LNA)-modified anti-miR-132 oligonucleotide depleted miR-132 amounts while elevating AChE in mouse circulation and tissues. In transfected cells, a mutated 3'UTR miR-132 binding site increased AChE mRNA expression, whereas cells infected with a lentivirus expressing pre-miR-132 showed suppressed AChE. Transgenic mice overexpressing 3'UTR null AChE showed excessive inflammatory mediators and impaired cholinergic anti-inflammatory regulation, in spite of substantial miR-132 upregulation in brain and bone marrow. Our findings identify the AChE mRNA-targeting miR-132 as a functional regulator of the brain-to-body resolution of inflammation, opening avenues for study and therapeutic manipulations of the neuro-immune dialog.
Collapse
|
637
|
The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. ACTA ACUST UNITED AC 2009; 165:102-10. [PMID: 19932135 DOI: 10.1016/j.regpep.2009.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/20/2022]
Abstract
Chromogranins/secretogranins are members of the granin family present in secretory vesicles of nervous, endocrine and immune cells. In chromaffin cells, activation of nicotinic cholinergic receptors induces the release, with catecholamines, of bioactive peptides resulting from a natural processing. During the past decade, our laboratory has characterized new antimicrobial chromogranin-derived peptides in the secretions of stimulated bovine chromaffin cells. They act at the micromolar range against bacteria, fungi, yeasts, and are non-toxic for the mammalian cells. They are recovered in several biological fluids involved in defence mechanisms (human serum, neutrophil secretions and saliva). These new antimicrobial peptides demonstrate the major role of the adrenal medulla in innate immunity. In this review we focus on the antimicrobial peptides derived from human and bovine chromogranin A (CGA), chromogranin B (CGB) and secretogranin II (SGII) emphasizing their direct action against pathogens and their effects on immune cells.
Collapse
|
638
|
Abstract
Inflammation can cause damage and even death. What controls this primitive and potentially lethal innate immune response to injury and infection? Molecular and neurophysiological studies during the past decade have revealed a pivotal answer: immunity is coordinated by neural circuits that operate reflexively. The afferent arc of the reflex consists of nerves that sense injury and infection. This activates efferent neural circuits, including the cholinergic anti-inflammatory pathway, that modulate immune responses and the progression of inflammatory diseases. It might be possible to develop therapeutics that target neural networks for the treatment of inflammatory disorders.
Collapse
|
639
|
Bedoret D, Wallemacq H, Marichal T, Desmet C, Quesada Calvo F, Henry E, Closset R, Dewals B, Thielen C, Gustin P, de Leval L, Van Rooijen N, Le Moine A, Vanderplasschen A, Cataldo D, Drion PV, Moser M, Lekeux P, Bureau F. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest 2009; 119:3723-38. [PMID: 19907079 DOI: 10.1172/jci39717] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/09/2009] [Indexed: 01/09/2023] Open
Abstract
The respiratory tract is continuously exposed to both innocuous airborne antigens and immunostimulatory molecules of microbial origin, such as LPS. At low concentrations, airborne LPS can induce a lung DC-driven Th2 cell response to harmless inhaled antigens, thereby promoting allergic asthma. However, only a small fraction of people exposed to environmental LPS develop allergic asthma. What prevents most people from mounting a lung DC-driven Th2 response upon exposure to LPS is not understood. Here we have shown that lung interstitial macrophages (IMs), a cell population with no previously described in vivo function, prevent induction of a Th2 response in mice challenged with LPS and an experimental harmless airborne antigen. IMs, but not alveolar macrophages, were found to produce high levels of IL-10 and to inhibit LPS-induced maturation and migration of DCs loaded with the experimental harmless airborne antigen in an IL-10-dependent manner. We further demonstrated that specific in vivo elimination of IMs led to overt asthmatic reactions to innocuous airborne antigens inhaled with low doses of LPS. This study has revealed a crucial role for IMs in maintaining immune homeostasis in the respiratory tract and provides an explanation for the paradox that although airborne LPS has the ability to promote the induction of Th2 responses by lung DCs, it does not provoke airway allergy under normal conditions.
Collapse
Affiliation(s)
- Denis Bedoret
- Laboratory of Cellular and Molecular Physiology, GIGA-Research, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
640
|
Elise Kleyn C, McKie S, Ross AR, Montaldi D, Gregory LJ, Elliott R, Isaacs CL, Anderson IM, Richards HL, William Deakin J, Fortune DG, Griffiths CE. Diminished Neural and Cognitive Responses to Facial Expressions of Disgust in Patients with Psoriasis: A Functional Magnetic Resonance Imaging Study. J Invest Dermatol 2009; 129:2613-9. [DOI: 10.1038/jid.2009.152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
641
|
Guo G, Jia KR, Shi Y, Liu XF, Liu KY, Qi W, Guo Y, Zhang WJ, Wang T, Xiao B, Zou QM. Psychological stress enhances the colonization of the stomach by Helicobacter pylori in the BALB/c mouse. Stress 2009; 12:478-85. [PMID: 20102319 DOI: 10.3109/10253890802642188] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Helicobacter pylori infection is a risk factor for development of peptic ulcers, and psychological stress (PS) may have a role in the pathogenesis of this condition. However, no interaction between PS and H. pylori infection (HI) has been established in the development of peptic ulcer, because colonization by H. pylori is the first step in the infection of the gastric mucosa, we examined H. pylori colonization of the stomach in BALB/c mice after PS. The mice were subjected to PS in a communication box test, in which they observed other mice experiencing a physical stressor (electrical) before they were inoculated with H. pylori. We found that the H. pylori colonization in the stomach of psychologically stressed mice was significantly greater than in the control mice (P < 0.05), and histological examination showed that the gastric mucosal injury in the stressed mice was more extensive than in the control mice (P < 0.05). To explore the underlying mechanisms, we administered RU486 (a type II glucocorticoid (GC) receptor antagonist) to antagonize the effect of endogenous corticosterone: this treatment decreased colonization by H. pylori in the psychologically stressed mice. We conclude that HI of the stomach of BALB/c mice is enhanced by PS, and the effect may be mediated by GCs.
Collapse
Affiliation(s)
- Gang Guo
- Department of Clinical Microbiology and Clinical Immunology, Third Military Medical University, ChongQing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
642
|
Ashitani JI, Matsumoto N, Nakazato M. Ghrelin and its therapeutic potential for cachectic patients. Peptides 2009; 30:1951-6. [PMID: 19595727 DOI: 10.1016/j.peptides.2009.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 12/14/2022]
Abstract
The discovery of ghrelin has resulted in the development of approaches to appetite, enabling a better understanding of the mechanisms regulating appetite through molecular analyses. Ghrelin is a 28-amino acid peptide that was isolated from the stomach only a decade ago, and has recently been investigated as a potential therapeutic endogenous agent. This peptide increases appetite, adjusts energy balance, suppresses inflammation, and enhances the release of growth hormone from the pituitary gland. Although many bioactive substances such as peptide YY, leptin, adiponectin and obestatin are involved in appetite control, ghrelin is the only known peptide to signal starvation information from a peripheral organ to the central nervous system, contributing to an increase in appetite. Clinical trials have revealed the effectiveness of ghrelin in increasing lean body mass and activity in cachectic patients. As shown in clinical research on humans and basic research using animal models, cachexia often occurs in response to excess release of proinflammatory cytokines and induces further appetite loss, which aggravates the physiological status of underlying diseases. Ghrelin functions as a protector against the vicious cycle of the cachectic paradigm through orexigenic, anabolic and anti-inflammatory effects, so administration of ghrelin may be able to improve quality of life in cachectic patients. We show here a significant role of ghrelin in the pathophysiology of cachectic diseases and the possibility of clinical applications.
Collapse
Affiliation(s)
- Jun-ichi Ashitani
- Division of Neurology, Respirology, Endocrinology and Metabolism, The Third Department of Internal Medicine, Miyazaki University School of Medicine, Kihara 5200, Miyazaki 889-1692, Japan.
| | | | | |
Collapse
|
643
|
Marques AH, Silverman MN, Sternberg EM. Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics. Ann N Y Acad Sci 2009; 1179:1-18. [PMID: 19906229 PMCID: PMC2933142 DOI: 10.1111/j.1749-6632.2009.04987.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clinicians have long known that a substantial proportion of patients treated with high-dose glucocorticoids experience a variety of serious side effects, including metabolic syndrome, bone loss, and mood shifts, such as depressive symptomatology, manic or hypomanic symptoms, and even suicide. The reason for individual variability in expression or severity of these side effects is not clear. However, recent emerging literature is beginning to shed light on possible mechanisms of these effects. As an introduction to this volume, this chapter will review the basic biology of glucocorticoid release and molecular mechanisms of glucocorticoid receptor function, and will discuss how dysregulation of glucocorticoid action at all levels could contribute to such side effects. At the molecular level, glucocorticoid receptor polymorphisms may be associated either with receptor hypofunction or hyperfunction and could thus contribute to differential individual sensitivity to the effects of glucocorticoid treatment. Numerous factors regulate hypothalamic-pituitary-adrenal (HPA) axis responsiveness, which could also contribute to individual differences in glucocorticoid side effects. One of these is sex hormone status and the influence of estrogen and progesterone on HPA axis function and mood. Another is immune system activity, in which immune molecules, such as interleukins and cytokines, activate the HPA axis and alter brain function, including memory, cognition, and mood. The effects of cytokines in inducing sickness behaviors, which overlap with depressive symptomatology, could also contribute to individual differences in such symptomatology. Taken together, this knowledge will have important relevance for identifying at-risk patients to avoid or minimize such side effects when they are treated with glucocorticoids. A framework for assessment of patients is proposed that incorporates functional, physiological, and molecular biomarkers to identify subgroups of patients at risk for depressive symptomatology associated with glucocorticoid treatment, and for prevention of side effects, which in many cases can be life-threatening.
Collapse
Affiliation(s)
- Andrea H Marques
- Section on Neuroendocrine Immunology and Behavior, Integrative Neural Immune Program, National Institute of Mental Health, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
644
|
Gill JM, Saligan L, Woods S, Page G. PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care 2009; 45:262-77. [PMID: 19780999 DOI: 10.1111/j.1744-6163.2009.00229.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE. Post-traumatic stress disorder (PTSD) is associated with inflammatory-related medical conditions. This review examines studies of immune function in individuals with PTSD to determine if excessive inflammation is associated with PTSD. CONCLUSIONS. Current studies suggest an excess of inflammatory actions of the immune system in individuals with chronic PTSD. High levels of inflammatory cytokines have also been linked to PTSD vulnerability in traumatized individuals. There is also evidence that excessive inflammation is in part due to insufficient regulation by cortisol. PRACTICE IMPLICATIONS. An excess of inflammatory immune activity may contribute to health declines in individuals with PTSD, and treating PTSD symptoms may reduce these risks.
Collapse
Affiliation(s)
- Jessica M Gill
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
645
|
Summy-Long JY, Hu S. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1532-45. [PMID: 19759333 DOI: 10.1152/ajpregu.00340.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During the brain's innate immune response microglia, astroglia and ependymal cells resolve/repair damaged tissue and control infection. Released interleukin-1beta (IL-1beta) reaching cerebroventricles stimulates circumventricular organs (CVOs; subfornical organ, SFO; organum vasculosum lamina terminalis, OVLT), the median preoptic nucleus (MePO), and magnocellular and parvocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. Hypertonic saline (HS) also activates these osmosensory CVOs and neuroendocrine systems, but, in contrast to IL-1beta, inhibits the peripheral immune response. To examine whether the brain's innate immune response is attenuated by osmotic stimulation, sterile acidic perfusion fluid was microdialyzed (2 microl/min) in the SON area of conscious rats for 6 h with sterile HS (1.5 M NaCl) injected subcutaneously (15 ml/kg) at 5 h. Immunohistochemistry identified cytokine sources (IL-1beta(+); OX-42(+) microglia) and targets (IL-1R(+); inducible cyclooxygenase, COX-2(+); c-Fos(+)) near the probe, in CVOs, MePO, ependymal cells, periventricular hypothalamus, SON, and PVN. Inserting the probe stimulated magnocellular neurons (c-Fos(+); SON; PVN) via the MePO (c-Fos(+)), a response enhanced by HS. Microdialysis activated microglia (OX-42(+); amoeboid/hypertrophied; IL-1beta(+)) in the adjacent SON and bilaterally in perivascular areas of the PVN, periventricular hypothalamus and ependyma, coincident with c-Fos expression in ependymal cells and COX-2 in the vasculature. These microglial responses were attenuated by HS, coincident with activating parvocellular and magnocellular neuroendocrine systems and elevating circulating IL-1beta, oxytocin, and vasopressin. Acidosis-induced cellular injury from microdialysis activated the brain's innate immune response by a mechanism inhibited by peripheral osmotic stimulation.
Collapse
Affiliation(s)
- Joan Y Summy-Long
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
646
|
Bailey MT, Kinsey SG, Padgett DA, Sheridan JF, Leblebicioglu B. Social stress enhances IL-1beta and TNF-alpha production by Porphyromonas gingivalis lipopolysaccharide-stimulated CD11b+ cells. Physiol Behav 2009; 98:351-8. [PMID: 19560480 PMCID: PMC2748391 DOI: 10.1016/j.physbeh.2009.06.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 01/07/2023]
Abstract
Psychological stress is associated with an increased expression of markers of peripheral inflammation, and there is a growing literature describing a link between periodontal pathogens and systemic inflammation. The hypothesis of the present work is that exposing mice to the social stressor, called social disruption (SDR), would enhance the inflammatory response to lipopolysaccharide (LPS) derived from the oral pathogen, Porphyromonas gingivalis. Mice were exposed to SDR for 2h per day on 6 consecutive days. On the morning following the last cycle of SDR, mice were tested for anxiety-like behavior in the open field test and novel object test. The mice were sacrificed the following day and their spleens harvested. Spleen cells were stimulated with LPS derived from P. gingivalis in the absence or presence of increasing doses of corticosterone. Social disruption resulted in anxiety-like behavior, and the production of IL-1beta and TNF-alpha was significantly higher in spleen cells from mice exposed to SDR in comparison to levels from non-stressed control mice. In addition, the viability of spleen cells from mice exposed to SDR was significantly greater than the viability of cells from non-stressed control mice, even in the presence of high doses of corticosterone. The use of cultures enriched for CD11b+ cells indicated that the stressor was affecting the activity of splenic myeloid cells. This study demonstrates that social stress enhances the inflammatory response to an oral pathogen and could provide a critical clue in the reported associations between stress, inflammation, and oral pathogens.
Collapse
Affiliation(s)
- Michael T Bailey
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210, United States.
| | | | | | | | | |
Collapse
|
647
|
Martin LB. Stress and immunity in wild vertebrates: timing is everything. Gen Comp Endocrinol 2009; 163:70-6. [PMID: 19318107 DOI: 10.1016/j.ygcen.2009.03.008] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/05/2009] [Accepted: 03/17/2009] [Indexed: 01/27/2023]
Abstract
Stress has profound effects on vertebrate immunity, but most studies have considered stress-immune interactions in terms of wild animals enduring demanding, but predictable activities (e.g., immune alterations during breeding). A growing biomedical literature, however, indicates that stress may not be obligatorily immunosuppressive; in response to transient, unpredictable stressors, immune activity can be enhanced, especially in body areas requiring immune protection. Also, immune sensitivity to stressors is not fixed throughout life; oftentimes, glucocorticoid (GC) insensitivity can be induced. Further GC sensitivity can be programmed early in life; greater exposure to stressors prior to maturity heightens GC effects on immunity in adulthood. In the present paper, I review the cellular and molecular mechanisms that link stress responses to immune adjustments over short time scales in domesticated species then I attempt to place stress-immune interactions in a naturalistic, organismal context. When, how and why stressors affect immunity in wild animals remains practically unstudied.
Collapse
Affiliation(s)
- Lynn B Martin
- University of South Florida, Department of Integrative Biology, Tampa, FL 33620, USA.
| |
Collapse
|
648
|
Thayer JF, Sternberg EM. Neural concomitants of immunity--focus on the vagus nerve. Neuroimage 2009; 47:908-10. [PMID: 19481613 PMCID: PMC2860274 DOI: 10.1016/j.neuroimage.2009.05.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/15/2009] [Accepted: 05/22/2009] [Indexed: 12/30/2022] Open
Affiliation(s)
- Julian F. Thayer
- The Ohio State University, Columbus, Ohio, USA, The Mannheim Institute of Public Health, Mannheim, Germany,
| | - Esther M. Sternberg
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
649
|
Borghetti P, Saleri R, Mocchegiani E, Corradi A, Martelli P. Infection, immunity and the neuroendocrine response. Vet Immunol Immunopathol 2009; 130:141-62. [PMID: 19261335 PMCID: PMC7112574 DOI: 10.1016/j.vetimm.2009.01.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 01/17/2009] [Accepted: 01/27/2009] [Indexed: 12/11/2022]
Abstract
The Central Nervous (CNS) and Immune Systems (IS) are the two major adaptive systems which respond rapidly to numerous challenges that are able to compromise health. The defensive response strictly linking innate to acquired immunity, works continuously to limit pathogen invasion and damage. The efficiency of the innate response is crucial for survival and for an optimum priming of acquired immunity. During infection, the immune response is modulated by an integrated neuro-immune network which potentiates innate immunity, controls potential harmful effects and also addresses metabolic and nutritional modifications supporting immune function. In the last decade much knowledge has been gained on the molecular signals that orchestrate this integrated adaptive response, with focus on the systemic mediators which have a crucial role in driving and controlling an efficient protective response. These mediators are also able to signal alterations and control pathway dysfunctions which may be involved in the persistence and/or overexpression of inflammation that may lead to tissue damage and to a negative metabolic impact, causing retarded growth. This review aims to describe some important signalling pathways which drive bidirectional communication between the Immune and Nervous Systems during infection. Particular emphasis is placed on pro-inflammatory cytokines, immunomodulator hormones such as Glucocorticoids (GCs), Growth hormone (GH), Insulin-like Growth Factor-1 (IGF-1), and Leptin, as well as nutritional factors such as Zinc (Zn). Finally, the review includes up-to-date information on this neuroimmune cross-talk in domestic animals. Data in domestic animal species are still limited, but there are several exciting areas of research, like the potential interaction pathways between mediators (i.e. cytokine-HPA regulation, IL-6-GCS-Zn, cytokines-GH/IGF-1, IL-6-GH-Leptin and thymus activity) that are or could be promising topics of future research in veterinary medicine.
Collapse
|
650
|
Chronic social isolation is related to both upregulation of plasticity genes and initiation of proapoptotic signaling in Wistar rat hippocampus. J Neural Transm (Vienna) 2009; 116:1579-89. [DOI: 10.1007/s00702-009-0286-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/27/2009] [Indexed: 12/15/2022]
|