601
|
Cappelli E, Degan P, Frosina G. Comparative repair of the endogenous lesions 8-oxo-7,8-dihydroguanine (8-oxoG), uracil and abasic site by mammalian cell extracts: 8-oxoG is poorly repaired by human cell extracts. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.6.1135] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
602
|
Reiter RJ, Tan DX, Cabrera J, D'Arpa D. Melatonin and tryptophan derivatives as free radical scavengers and antioxidants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:379-87. [PMID: 10721079 DOI: 10.1007/978-1-4615-4709-9_48] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several tryptophan derivatives function as free radical scavengers and antioxidants. The molecule that has been most widely investigated in this regard is N-acetyl-5-methoxytryptamine (melatonin); however, pinoline (6-methoxy-1,2,3,4-tetrahydro-beta-carboline) and N-acetylserotonin also possess free radical scavenging activity. Experimental studies have shown that melatonin directly scavenges the hydroxy radical, peroxyl radical, peroxynitrite anion, and singlet oxygen. Furthermore, this tryptophan derivative stimulates a number of antioxidative enzymes and stabilizes cell membranes; this latter action helps membranes to resist free radical damage. While the antioxidative actions of most molecules are limited by their specific intracellular distribution, e.g., vitamin E in lipid-rich membranes, melatonin's antioxidative actions include the protection of lipids in the cell membrane, proteins in the cytosol, and DNA in the nucleus. Furthermore, melatonin crosses all morphophysiological barriers and enters equally well all cells in the organism.
Collapse
Affiliation(s)
- R J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284, USA.
| | | | | | | |
Collapse
|
603
|
CUI JIANKUN, HOLMES ERICH, GREENE THOMASG, LIU PHILIPK. Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J 2000; 14:955-67. [PMID: 10783150 PMCID: PMC2709847 DOI: 10.1096/fasebj.14.7.955] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Experimental stroke using a focal cerebral ischemia and reperfusion (FCIR) model was induced in male Long-Evans rats by a bilateral occlusion of both common carotid arteries and the right middle cerebral artery for 30-90 min, followed by various periods of reperfusion. Oxidative DNA lesions in the ipsilateral cortex were demonstrated using Escherichia coli formamidopyrimidine DNA N-glycosylase (Fpg protein)-sensitive sites (FPGSS), as labeled in situ using digoxigenin-dUTP and detected using antibodies against digoxigenin. Because Fpg protein removes 8-hydroxy-2'-deoxyguanine (oh8dG) and other lesions in DNA, FPGSS measure oxidative DNA damage. The number of FPGSS-positive cells in the cortex from the sham-operated control group was 3 +/- 3 (mean +/- SD per mm(2)). In animals that received 90 min occlusion and 15 min of reperfusion (FCIR 90/15), FPGSS-positive cells were significantly increased by 200-fold. Oxidative DNA damage was confirmed by using monoclonal antibodies against 8-hydroxy-guanosine (oh8G) and oh8dG. A pretreatment of RNase A (100 microg/ml) to the tissue reduced, but did not abolish, the oh8dG signal. The number of animals with positive FPGSS or oh8dG was significantly (P<0.01) higher in the FCIR group than in the sham-operated control group. We detected few FPGSS of oh8dG-positive cells in the animals treated with FCIR of 90/60. No terminal UTP nicked-end labeling (TUNEL)-positive cells, as a detection of cell death, were detected at this early reperfusion time. Our data suggest that early oxidative DNA lesions elicited by experimental stroke could be repaired. Therefore, the oxidative DNA lesions observed in the nuclear and mitochondrial DNA of the brain are different from the DNA fragmentation detected using TUNEL.
Collapse
Affiliation(s)
- JIANKUN CUI
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - ERIC H. HOLMES
- Northwest Hospital, Pacific Northwest Cancer Foundation, Seattle, Washington 98125, USA
| | - THOMAS G. GREENE
- Northwest Hospital, Pacific Northwest Cancer Foundation, Seattle, Washington 98125, USA
| | - PHILIP K. LIU
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine Cardiovascular Program, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Correspondence: Department of Neurosurgery, Baylor College of Medicine, Suite 944, 6560 Fannin, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
604
|
Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 2000; 377:1-8. [PMID: 10775435 DOI: 10.1006/abbi.2000.1773] [Citation(s) in RCA: 363] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A particularly important stress for all cells is the one produced by reactive oxygen species (ROS) that are formed as byproducts of cell metabolism. Among DNA damages induced by ROS, 8-hydroxyguanine (8-OH-G) is certainly the product that has retained most of the attention in the past few years. The biological relevance of 8-OH-G in DNA has been unveiled by the study of Escherichia coli and Saccharomyces cerevisiae genes involved in the neutralization of the mutagenic effects of 8-OH-G. These genes, fpg and mutY for E. coli and OGG1 for yeast, code for DNA glycosylases. Inactivation of any of those genes leads to a spontaneous mutator phenotype, characterized by the increase in GC to TA transversions. In yeast, the OGG1 gene encodes a DNA glycosylase/AP lyase that excises 8-OH-G from DNA. In human cells, the OGG1 gene is localized on chromosome 3p25 and encodes two forms of hOgg1 protein which result from an alternative splicing of a single messenger RNA. The alpha-hOgg1 protein has a nuclear localization whereas the beta-hOgg1 is targeted to the mitochondrion. Biochemical studies on the alpha-hOgg1 protein show that it is a DNA glycosylase/AP lyase that excises 8-OH-G and Fapy-G from gamma-irradiated DNA. Several approaches have been used to study the biological role of OGG1 in mammalian cells, ranging from its overexpression in cell lines to the generation of homozygous ogg1-/- null mice. Furthermore, to explore a possible role in the prevention of cancer, the cDNA coding for alpha-hOgg1 has been sequenced in human tumors. All these results point to 8-OH-G as an endogenous source of mutations in eukaryotes and to its likely involvement in the process of carcinogenesis. A review of the recent literature on the mammalian Ogg1 proteins, the main repair system involved in the elimination of this mutagenic lesion, is presented.
Collapse
Affiliation(s)
- S Boiteux
- CEA, DSV, Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA Radiobiologie Moléculaire et Cellulaire, Fontenay aux Roses, 92265, France.
| | | |
Collapse
|
605
|
Sistare MF, Codden SJ, Heimlich G, Thorp HH. Effects of Base Stacking on Guanine Electron Transfer: Rate Constants for G and GG Sequences of Oligonucleotides from Catalytic Electrochemistry. J Am Chem Soc 2000. [DOI: 10.1021/ja993240r] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
606
|
Hsu TC, Young MR, Cmarik J, Colburn NH. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 2000; 28:1338-48. [PMID: 10924853 DOI: 10.1016/s0891-5849(00)00220-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Generation of reactive oxygen species (ROS) during metabolic conversion of molecular oxygen imposes a constant threat to aerobic organisms. Other than the cytotoxic effects, many ROS and oxidants are also potent tumor promoters linking oxidative stress to carcinogenesis. Clonal variants of mouse epidermal JB6 cells originally identified for their differential susceptibility to tumor promoters also show differential reduction-oxidation (redox) responses providing a unique model to study oxidative events in tumor promotion. AP-1 and NF-kappaB, inducible by tumor promoters or oxidative stimuli, show differential protein levels or activation in response to tumor promoters in JB6 cells. We further demonstrated that AP-1 and NF-kappaB are both required for maintaining the transformed phenotypes where inhibition of either activity suppresses transformation response in JB6 cells as well as human keratinocytes and transgenic mouse. NF-kappaB proteins or extracellular signal-regulated kinase (ERK) but not AP-1 proteins are shown to be sufficient for conversion from transformation-resistant to transformation-susceptible phenotype. Insofar as oxidative events regulate AP-1 and NF-kappaB transactivation, these oxidative events can be important molecular targets for cancer prevention.
Collapse
Affiliation(s)
- T C Hsu
- IRSP, SAIC-Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
607
|
Sabourin M, Osheroff N. Sensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesions. Nucleic Acids Res 2000; 28:1947-54. [PMID: 10756196 PMCID: PMC103304 DOI: 10.1093/nar/28.9.1947] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1999] [Revised: 03/16/2000] [Accepted: 03/16/2000] [Indexed: 11/13/2022] Open
Abstract
Type II topoisomerases are essential enzymes that are also the primary cellular targets for a number of important anticancer drugs. These drugs act by increasing levels of topoisomerase II-mediated DNA cleavage. Recent studies indicate that endogenous forms of DNA damage, such as abasic sites and base mismatches, also stimulate the DNA scission activity of the enzyme. To extend our understanding of how type II topoisomerases react to DNA damage, the effects of abasic sites, and oxidized and alkylated bases on DNA cleavage mediated by human topo-isomerase IIalpha and beta were determined. Based on experiments that incorporated random abasic sites into plasmid DNA, human type II enzymes can locate lesions even within a background of several thousand undamaged base pairs. As determined by experiments that utilized site-specific forms of DNA lesions, oxidized or monoalkylated purines that allow base pairing and induce little distortion in the double helix have modest effects on topoisomerase II-mediated DNA cleavage. In contrast, 1,N(6)-ethenoadenine, a bulky lesion that disrupts base pairing, enhanced DNA cleavage approximately 10-fold. 1,N(6)-Ethenoadenine is the first lesion found to rival the stimulatory effects of apurinic sites on the DNA scission activity of eukaryotic type II topoisomerases.
Collapse
Affiliation(s)
- M Sabourin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
608
|
Konevega LV, Kalinin VL. Mutagenic effects of gamma-rays and incorporated 8-3H-purines on extracellular lambda phage: influence of mutY and mutM host mutations. Mutat Res 2000; 459:229-35. [PMID: 10812335 DOI: 10.1016/s0921-8777(00)00003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lethal and mutagenic effects on phage lambdacI857 of 60Co gamma-rays and of decay of 3H incorporated into phage DNA both as 8-3H-deoxyadenosine and 8-3H-deoxyguanosine (using 8-3H-adenine as a labelled DNA precursor) were studied on four isogenic Escherichia coli strains: AB1157 M(+)Y(+) (wild type, mutM(+) mutY(+)), AB1157 M(-)Y(+) (mutM::kan mutY(+) mutant deficient in the formamidopyrimidine-DNA glycosylase MutM), AB1157 M(+)Y(-) (mutM(+) mutY mutant deficient in the A:G mismatch DNA glycosylase MutY), and AB1157 M(-)Y(-) (mutM::kan mutY double mutant deficient in both DNA glycosylases). The main products of transmutation component of 3H decay in position 8 of purine residues are 8-oxo-7, 8-dihydroadenine (8-oxoA) and 8-oxo-7,8-dihydroguanine (8-oxoG), the latter being responsible for the most part of the mutagenic effect. The lethal effects of both gamma-rays and tritium decay virtually did not depend on the repair phenotypes of the host strains used. Therefore, the MutM and MutY glycosylases are not involved in the repair of lethal DNA damages induced by ionizing radiation or by the transmutation component of 3H decay in purine residues of phage DNA. The efficiencies of mutagenic action of 3H-purines E(m) (frequencies of c-mutations per one 3H decay in phage genome) were 2.4-, 3.8- and 55-fold higher in the M(-)Y(+), M(+)Y(-) and M(-)Y(-) mutants, respectively, in comparison to the wild-type host. The mutagenic efficiencies E(m) for gamma-rays were nearly identical in the M(+)Y(+) and M(-)Y(+) hosts, but were increased 1.8- and 8.3-fold, respectively, in the M(+)Y(-) and M(-)Y(-) mutants. These data suggest that: (1) the MutY and MutM DNA glycosylases are important for prevention of mutations caused not only by spontaneous oxidation of guanine residues, but also by ionizing radiation or by decay of 3H incorporated into purine bases of DNA; (2) the MutY and MutM enzymes functionally cooperate in elimination of mutagenic damages induced by these agents.
Collapse
Affiliation(s)
- L V Konevega
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188350, Gatchina, Russian Federation
| | | |
Collapse
|
609
|
Topp H, Lengger C, Schöch G, Werner J, Mietzsch E. Renal excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine in Wistar rats with increased O(2) consumption due to cold stress. Arch Biochem Biophys 2000; 376:328-32. [PMID: 10775419 DOI: 10.1006/abbi.2000.1720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA damage by reactive oxygen species is of special interest in the development of cancer and in aging. The renally excreted amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) is a potential noninvasive marker of oxidative DNA damage. The respiratory chain of mitochondria is one source for the formation of reactive oxygen species. In the present study we investigated in Wistar rats (n = 7; mean body weight at start, 307.4 +/- 11 g) the effect of an increased O(2) consumption, i.e., energy expenditure, due to cold stress on the renally excreted amount of oxo(8)dG. First, the rats were housed for 4 days at 23.5 degrees C (basic period, BP), and then for 6 days at 10 degrees C (cold stress period, CSP), and finally for 3 days at 23.5 degrees C (recovery period, RP). The O(2) consumption (L O(2)/day/kg weight) was significantly (P < 0.0001) on average 50% higher in CSP (69.0 +/- 3.9) than in BP (45.8 +/- 4.8), and similar in BP and RP (44.3 +/- 5.4). The average renal excretion of oxo(8)dG (pmol/day/kg weight) was significantly (P < 0.025) on average 13% higher in CSP (375.5 +/- 27.7) than in BP (333.2 +/- 47. 4) and similar in BP and RP (331.8 +/- 34.3). Maximum increase in oxo(8)dG excretion of on average 17% was on the third to fifth day of the CSP. This study reveals that an increase in O(2) consumption of 50% resulted in a much lower increase in the renal excretion of oxo(8)dG.
Collapse
Affiliation(s)
- H Topp
- Forschungsinstitut für Kinderernährung Dortmund an der Universität Witten/Herdecke, Dortmund, 44225, Germany
| | | | | | | | | |
Collapse
|
610
|
Abstract
Nucleic acid-derived drugs exhibit both chemical and physical instability. This mini-review focuses on the prevalent hydrolytic and oxidative pathways of chemical degradation as they are affected by various endogenous (primary structure, chemical modifications in bases, sugars and phosphate residues) and exogenous (pH, buffer concentration, metal cation presence, oxygen presence) factors.
Collapse
Affiliation(s)
- D Pogocki
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
611
|
Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2135-49. [PMID: 10759836 DOI: 10.1046/j.1432-1327.2000.01266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed.
Collapse
Affiliation(s)
- G Frosina
- DNA Repair Unit, Mutagenesis laboratory, Istituto Nazionale Ricerca Cancro, Genova, Italy.
| |
Collapse
|
612
|
Soultanakis RP, Melamede RJ, Bespalov IA, Wallace SS, Beckman KB, Ames BN, Taatjes DJ, Janssen-Heininger YM. Fluorescence detection of 8-oxoguanine in nuclear and mitochondrial DNA of cultured cells using a recombinant Fab and confocal scanning laser microscopy. Free Radic Biol Med 2000; 28:987-98. [PMID: 10802231 DOI: 10.1016/s0891-5849(00)00185-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of 8-oxoguanine (8-oxoG) in DNA is considered a marker of oxidative stress and DNA damage. We describe a multifluorescence technique to detect the localization of 8-oxoG in both nuclear and mitochondrial DNA using a mouse recombinant Fab 166. The Fab was generated by repertoire cloning and combinatorial phage display, and specifically recognized 8-oxoG in DNA, as determined by competitive enzyme-linked immunosorbent assays (ELISAs). In situ detection of 8-oxoG was accomplished using rat lung epithelial (RLE) cells and human B lymphoblastoid (TK6) cells treated with hydrogen peroxide (H(2)O(2)) or ionizing radiation, respectively. Using confocal scanning laser microscopy, we observed nuclear and perinuclear immunoreactivity of 8-oxoG in control cultures. The simultaneous use of a nuclear DNA stain, propidium iodide, or the mitochondrial dye, MitoTracker (Molecular Probes, Eugene, OR, USA), confirmed that 8-oxoG immunofluorescence occurred in nuclear and mitochondrial DNA. Marked increases in the presence of 8-oxoG in nuclear DNA were apparent after treatment with H(2)O(2) or ionizing radiation. In control experiments, Fab 166 was incubated with 200 microM purified 8-oxodG or with formamidopyrimidine DNA-glycosylase (Fpg) to remove 8-oxoG lesions in DNA. These protocols attenuated both nuclear and mitochondrial staining. We conclude that both nuclear and mitochondrial oxidative DNA damages can be simultaneously detected in situ using immunofluorescence labeling with Fab 166 and confocal microscopy.
Collapse
Affiliation(s)
- R P Soultanakis
- Departments Department of Pathology University of Vermont, Burlington VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
613
|
Abstract
Deficiencies of the vitamins B12, B6, C, E, folate, or niacin, or of iron or zinc mimic radiation in damaging DNA by causing single- and double-strand breaks, oxidative lesions, or both. The percentage of the population of the United States that has a low intake (< 50% of the RDA) for each of these eight micronutrients ranges from 2% to 20+ percent. A level of folate deficiency causing chromosome breaks occurred in approximately 10% of the population of the United States, and in a much higher percentage of the poor. Folate deficiency causes extensive incorporation of uracil into human DNA (4 million/cell), leading to chromosomal breaks. This mechanism is the likely cause of the increased colon cancer risk associated with low folate intake. Some evidence, and mechanistic considerations, suggest that vitamin B12 and B6 deficiencies also cause high uracil and chromosome breaks. Micronutrient deficiency may explain, in good part, why the quarter of the population that eats the fewest fruits and vegetables (five portions a day is advised) has about double the cancer rate for most types of cancer when compared to the quarter with the highest intake. Eighty percent of American children and adolescents and 68% of adults do not eat five portions a day. Common micronutrient deficiencies are likely to damage DNA by the same mechanism as radiation and many chemicals, appear to be orders of magnitude more important, and should be compared for perspective. Remedying micronutrient deficiencies is likely to lead to a major improvement in health and an increase in longevity at low cost.
Collapse
Affiliation(s)
- B N Ames
- University of California, Berkeley 94720-3202, USA.
| |
Collapse
|
614
|
El Mouatassim S, Guérin P, Ménézo Y. Mammalian oviduct and protection against free oxygen radicals: expression of genes encoding antioxidant enzymes in human and mouse. Eur J Obstet Gynecol Reprod Biol 2000; 89:1-6. [PMID: 10733016 DOI: 10.1016/s0301-2115(99)00169-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic expression of five antioxidant enzymes involved in mechanisms protecting embryos against reactive oxygen species (ROS) was studied in human and mouse oviducts. The presence of transcripts encoding for gamma-glutamylcysteine synthetase (GCS), glutathione peroxidase (GPX), Cu-Zn-superoxide dismutase (Cu-Zn-SOD), Mn-superoxide dismutase (Mn-SOD) and catalase was analysed by use of the reverse transcription-polymerase chain reaction (RT-PCR). Different expression profiles of transcripts encoding for these enzymes were observed between human and mouse oviducts. In the mouse, all transcripts encoding for the enzymes tested were present in oviduct. In human, only transcripts encoding for GPX, Cu-Zn-SOD and catalase were also detected in oviduct. However, GCS and Mn-SOD transcripts were never observed in human oviduct. Cu-Zn-SOD transcripts are relatively highly expressed whatever species. These results suggest that different gene expression patterns of these antioxidant enzymes between human and mouse may reflect the variations in the ability of embryos to develop in vivo and in vitro. However, hormone related-expression of the missing transcripts in human cannot be ruled out.
Collapse
|
615
|
Chen G, Wang SH, Warner TD. Regulation of iNOS mRNA levels in endothelial cells by glutathione, a double-edged sword. Free Radic Res 2000; 32:223-34. [PMID: 10730821 DOI: 10.1080/10715760000300231] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Both inducible nitric oxide synthase (iNOS) and glutathione are important mediators in various physiological and pathological conditions in humans. In human endothelial cells the intracellular glutathione levels were modulated by N-acetyl-L-cysteine (NAC), a precursor of glutathione and 1,3-bis(chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. BCNU significantly decreased reduced glutathione (GSH) but increased oxidized glutathione (GSSG) whereas NAC markedly elevated GSH with a relatively small increase in GSSG. Appropriate concentrations of GSH and GSSG increase the expression of iNOS gene. However, either GSH or GSSG at a too high concentration inhibits its expression, indicating that iNOS gene is fine tuned by the metabolites of glutathione cycle. The changes of iNOS mRNA steady state levels by the glutathione metabolites were associated with a similar alteration in its gene transcription and NF-kappaB activity. BCNU at high concentrations also shortens the half-life of iNOS mRNA, suggesting a role of GSSG in the stability of the iNOS gene. Thus, the change of glutathione levels in vitro can regulate iNOS mRNA steady state levels in a bi-phasic manner in human endothelial cells.
Collapse
Affiliation(s)
- G Chen
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London, UK
| | | | | |
Collapse
|
616
|
Nakamura J, La DK, Swenberg JA. 5'-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J Biol Chem 2000; 275:5323-8. [PMID: 10681505 DOI: 10.1074/jbc.275.8.5323] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic DNA is continuously exposed to oxidative stress. Whereas reactive oxygen species (ROS) preferentially react with bases in DNA, free radicals also abstract hydrogen atoms from deoxyribose, resulting in the formation of apurinic/apyrimidinic (AP) sites and strand breaks. We recently reported high steady-state levels of AP sites in rat tissues and human liver DNA (Nakamura, J., and Swenberg, J. A. (1999) Cancer Res. 59, 2522-2526). These AP sites were predominantly cleaved 5' to the lesion. We hypothesized that these endogenous AP sites were derived from oxidative stress. In this investigation, AP sites induced by ROS were quantitated and characterized. A combination of H(2)O(2) and FeSO(4) induced significant numbers of AP sites in calf thymus DNA, which were predominantly cleaved 5' to the AP sites (75% of total aldehydic AP sites). An increase in the number of 5'-AP sites was also detected in human cultured cells exposed to H(2)O(2), and these 5'-AP sites were persistent during the post-exposure period. beta-Elimination by DNA beta-polymerase efficiently excised 5'-regular AP sites, but not 5'-AP sites, in DNA from cells exposed to H(2)O(2). These results suggest that 5'-oxidized AP sites induced by ROS are not efficiently repaired by the mammalian short patch base excision repair pathway.
Collapse
Affiliation(s)
- J Nakamura
- Department of Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
617
|
Guibourt N, Castaing B, Van Der Kemp PA, Boiteux S. Catalytic and DNA binding properties of the ogg1 protein of Saccharomyces cerevisiae: comparison between the wild type and the K241R and K241Q active-site mutant proteins. Biochemistry 2000; 39:1716-24. [PMID: 10677220 DOI: 10.1021/bi992262n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ogg1 protein of Saccharomyces cerevisiae belongs to a family of DNA glycosylases and apurinic/apyrimidinic site (AP) lyases, the signature of which is the alpha-helix-hairpin-alpha-helix-Gly/Pro-Asp (HhH-GPD) active site motif together with a conserved catalytic lysine residue, to which we refer as the HhH-GPD/K family. In the yeast Ogg1 protein, yOgg1, the HhH-GPD/K motif spans residues 225-260 and the conserved lysine is K241. In this study, we have purified the K241R and K241Q mutant proteins and compared their catalytic and DNA binding properties to that of the wild-type yOgg1. The results show that the K241R mutation greatly impairs both the DNA glycosylase and the AP lyase activities of yOgg1. Specificity constants for cleavage of a 34mer oligodeoxyribonucleotide containing a 7,8-dihydro-8-oxoguanine (8-OxoG) paired with a cytosine, [8-OxoG.C], are 56 x 10(-)(3) and 5 x 10(-)(3) min(-)(1) nM(-)(1) for the wild-type and the K241R protein, respectively. On the other hand, the K241Q mutation abolishes the DNA glycosylase and AP lyase activities of yOgg1. In contrast, the K241R and K241Q proteins have conserved wild-type DNA binding properties. K(dapp) values for binding of [8-OxoG.C] are 6.9, 7.4, and 4.8 nM for the wild-type, K241R, and K241Q proteins, respectively. The results also show that AP site analogues such as 1, 3-propanediol (Pr), tetrahydrofuran (F), or cyclopentanol (Cy) are not substrates but constitute good inhibitors of the wild-type yOgg1. Therefore, we have used a 59mer [Pr.C] duplex to further analyze the DNA binding properties of the wild-type, K241R, and K241Q proteins. Hydroxyl radical footprints of the wild-type yOgg1 show strong protection of six nucleotides centered around the Pr lesion in the damaged strand. On the complementary strand, only the cytosine placed opposite Pr was strongly protected. The same footprints were observed with the K241R and K241Q proteins, confirming their wild-type DNA binding properties. These results indicate that the K241Q mutant protein can be used to study interactions between yOgg1 and DNA containing metabolizable substrates such as 8-OxoG or an AP site.
Collapse
Affiliation(s)
- N Guibourt
- Département de Radiobiologie et Radiopathologie, UMR 217 CNRS-CEA "Radiobiologie Moléculaire et Cellulaire", Commissariat à l'Energie Atomique, DSV, BP6, 92265-Fontenay aux Roses, France
| | | | | | | |
Collapse
|
618
|
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, L-452, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | |
Collapse
|
619
|
Shen H, Ong C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med 2000; 28:529-36. [PMID: 10719234 DOI: 10.1016/s0891-5849(99)00234-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The expanding research interest in the last two decades on reactive oxygen species (ROS), oxidative stress, and male infertility has led to the development of various techniques for evaluating oxidative DNA damage in human spermatozoa. Measurement of 8-hydroxydeoxyguanosine (8-OHdG) offers a specific and quantitative biomarker on the extent of oxidative DNA damage caused by ROS in human sperm. The close correlations of 8-OHdG level with male fertility, sperm function and routine seminal parameters indicate the potential diagnostic value of this technique in clinical applications. On the other hand, single cell gel electrophoresis (SCGE or comet assay) and terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick end labeling (TUNEL) assay have also been demonstrated to be sensitive, and reliable methods for measuring DNA strand breaks in human spermatozoa. As certain technical limitations were inherent in each of these tests, it is believed that a combination of these assays will offer more comprehensive information for a better understanding of oxidative DNA damage and its biological significance in sperm function and male infertility.
Collapse
Affiliation(s)
- H Shen
- Department of Community, National University of Singapore, 16 Medical Drive, Singapore, Singapore
| | | |
Collapse
|
620
|
Thorp HH. The importance of being r: greater oxidative stability of RNA compared with DNA. CHEMISTRY & BIOLOGY 2000; 7:R33-6. [PMID: 10662699 DOI: 10.1016/s1074-5521(00)00080-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 2'-hydroxyl group of ribose imparts hydrolytic lability on RNA, which provides a mechanism for numerous biological functions. Recent evidence from chemical cleavage studies shows that this hydroxyl group also stabilizes the sugar moiety in RNA towards oxidation relative to DNA. Is this just because RNA needs to be distinguishable from DNA or does it have other evolutionary significance?
Collapse
Affiliation(s)
- H H Thorp
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
621
|
Battino M, Bullon P, Wilson M, Newman H. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:458-76. [PMID: 10634583 DOI: 10.1177/10454411990100040301] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, there has been a tremendous expansion in medical and dental research concerned with free radicals, reactive oxygen species, and anti-oxidant defense mechanisms. This review is intended to provide a critical, up-to-date summary of the field, with particular emphasis on its implications for the application of "anti-oxidant therapy" in periodontal disease. We have reviewed the nomenclature, mechanisms of actions, features, and sources of most common free radicals and reactive oxygen species, as well as analyzed the typical biological targets for oxidative damage. Based on a review of direct and indirect anti-oxidant host defenses, particularly in relation to the key role of polymorphonuclear neutrophils in periodontitis, we review current evidence for oxidative damage in chronic inflammatory periodontal disease, and the possible therapeutic effects of anti-oxidants in treating and/or preventing such pathology, with special attention to vitamin E and Co-enzyme Q.
Collapse
Affiliation(s)
- M Battino
- Institute of Biochemistry, Faculty of Medicine, University of Ancona, Italy
| | | | | | | |
Collapse
|
622
|
Farrer BT, Thorp HH. Redox pathways in DNA oxidation: kinetic studies of guanine and sugar oxidation by para-substituted derivatives of oxoruthenium(IV). Inorg Chem 2000; 39:44-9. [PMID: 11229031 DOI: 10.1021/ic990833u] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidation of nucleotides and DNA by a series of complexes based on Ru(tpy)(bpy)O2+ (1) was investigated (tpy = 2,2':6',2"-terpyridine; bpy = 2,2'-bipyridine). These complexes were substituted with electron-donating or-withdrawing substituents in the para positions of the polypyridyl ligands so that the oxidation potentials of the complexes were affected but the reaction trajectory of the oxo ligand with DNA was the same throughout the series. The prepared complexes were (with E1/2(III/II) and E1/2(IV/III) values in volts versus Ag/AgCl) Ru(4'-EtO-tpy)(bpy)O2+ (2; 0.47, 0.60), Ru(4'-Cl-tpy)(bpy)O2+ (3; 0.55, 0.63), Ru(tpy)(4,4'-Me2-bpy)O2+ (4; 0.48, 0.62), and Ru(tpy)(4,4'-Cl2-bpy)O2+ (5; 0.58, 0.63). The complexes oxidized deoxycytosine 5'-monophosphate at the sugar moiety (k = 0.24-0.47 M-1 s-1) and guanosine 5'-monophosphate at the base moiety (k = 6.1-15 M-1 s-1). The rate constants increase across these ranges in the order 3 > 1 > 4 > 2, which is the same order as the redox potentials of the complexes. The effect of the base on these reactions was also studied, and xanthine was found to react with 1 much faster than guanine while hypoxanthine was less reactive than the sugar moiety. The complexes all oxidized oligonucleotides to generate base-labile lesions at guanine and a combination of spontaneous and base-labile scission at the sugar functionalities. The selectivity of cleavage in duplex and single-stranded DNA was not a strong function of the substituents on the metal complex.
Collapse
Affiliation(s)
- B T Farrer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
623
|
Guibourt N, Boiteux S. Expression of the Fpg protein of Escherichia coli in Saccharomyces cerevisiae: effects on spontaneous mutagenesis and sensitivity to oxidative DNA damage. Biochimie 2000; 82:59-64. [PMID: 10717388 DOI: 10.1016/s0300-9084(00)00357-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biological relevance of oxidative DNA damage has been unveiled by the identification of genes such as fpg of E. coli or OGG1 of Saccharomyces cerevisiae. Both Fpg and Ogg1 proteins are DNA glycosylases/AP lyases that excise 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) from damaged DNA. Although similar, the enzymatic and biological properties of Fpg and Ogg1 proteins are not identical. Furthermore, the Fpg and Ogg1 proteins do not show significant sequence homologies. In this study, we investigated the ability of the Fpg protein of E. coli to complement phenotypes thought to be due to oxidative DNA damage in Saccharomyces cerevisiae. To express Fpg in yeast, the coding sequence of the fpg gene was placed under the control of a strong yeast promoter in the expression vector pCM190 to generate the pFPG240 plasmid. The Ogg1-deficient yeast strain CD138, ogg1::TRP1, was transformed with pFPG240 and the expression of Fpg was measured. Expression of Fpg in yeast harboring pFPG240 was revealed by efficient release of Me-FapyG and cleavage of 8-OxoG-containing duplexes by cell free protein extracts. The production of the Fpg protein in yeast cells was further demonstrated by immunoblotting analysis using anti-Fpg antibodies. Fpg expression suppresses the spontaneous mutator phenotype of ogg1- yeast for the production of canavanin resistant mutants (CanR) and Lys+ revertants. Fpg expression also restores the capacity of plasmid DNA treated with methylene blue plus visible light (MB-light) to transform the yeast ogg1- rad1- double mutant.
Collapse
Affiliation(s)
- N Guibourt
- CEA, DSV, Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA, Radiobiologie Moléculaire et Cellulaire, Fontenay-Aux-Roses, France
| | | |
Collapse
|
624
|
Breinholt V, Lauridsen ST, Dragsted LO. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica 1999; 29:1227-40. [PMID: 10647909 DOI: 10.1080/004982599237903] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red blood cells (RBC). 2. Glutathione transferase (GST) activity assayed by use of the substrate 1-chloro-2,4-dinitrobenzene was significantly induced by apigenin, genistein and tangeretin in the heart but not in colon or liver. 3. In RBC chrysin, quercetin and genistein significantly decreased the activity of glutathione reductase (GR), catalase (CAT) and glutathione peroxidase (GPx), whereas superoxide dismutase (SOD) was only significantly decreased by genistein. 4. The oxidative status of the animal, measured as plasma malondialdehyde, revealed that chrysin, quercetin, genistein, and beta-naphthoflavone (BNF) significantly protected against, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP)-induced oxidative stress. Hepatic PhIP-DNA adduct formation was not affected by any of the administered flavonoids, whereas PhIP-DNA adduct formation in colon was slightly, but significantly, inhibited by quercetin, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid doses, which by far exceed the human exposure levels, the effect on drug metabolizing and antioxidant enzymes was still very minor. The role of singly administered flavonoids in the protection against cancer and heart disease is thus expected to be limited.
Collapse
Affiliation(s)
- V Breinholt
- Institute of Food Safety and Toxicology, Division of Biochemical and Molecular Toxicology, Danish Veterinary and Food Administration, Søborg.
| | | | | |
Collapse
|
625
|
Bespalov IA, Bond JP, Purmal AA, Wallace SS, Melamede RJ. Fabs specific for 8-oxoguanine: control of DNA binding. J Mol Biol 1999; 293:1085-95. [PMID: 10547287 DOI: 10.1006/jmbi.1999.3214] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Free radicals produce a broad spectrum of DNA base modifications including 7,8-dihydro-8-oxoguanine (8-oxoG). Since free radicals have been implicated in many pathologies and in aging, 8-oxoG has become a benchmark for factors that influence free radical production. Fab g37 is a monoclonal antibody that was isolated by phage display in an effort to create a reagent for detecting 8-oxoG in DNA. Although this antibody exhibited a high degree of specificity for the 8-oxoG base, it did not appear to recognize 8-oxoG when present in DNA. Fab g37 was modified using HCDR1 and HCDR2 segment shuffling and light chain shuffling. Fab 166 and Fab 366 which bound to 8-oxoG in single-stranded DNA were isolated. Fab 166 binds more selectively to single-stranded oligonucleotides containing 8-oxoG versus control oligonucleotides than does Fab 366 which binds DNA with reduced dependency on 8-oxoG. Numerous other clones were also isolated and characterized that contained a spectrum of specificities for 8-oxoG and for DNA. Analysis of the primary sequences of these clones and comparison with their binding properties suggested the importance of different complementarity determining regions and residues in determining the observed binding phenotypes. Subsequent chain shuffling experiments demonstrated that mutation of SerH53 to ArgH53 in the Fab g37 heavy chain slightly decreased the Fab's affinity for 8-oxoG but significantly improved its binding to DNA in an 8-oxoG-dependent manner. The light chain shuffling experiments also demonstrated that numerous promiscuous light chains could enhance DNA binding when paired with either the Fab g37 or Fab 166 heavy chains; however, only the Fab 166 light chain did so in an additive manner when combined with the Fab 166 heavy chain that contains ArgH53. A three-point model for Fab 166 binding to oligonucleotides containing 8-oxoG is proposed. We describe a successful attempt to generate a desired antibody specificity, which was not present in the animal's original immune response.
Collapse
Affiliation(s)
- I A Bespalov
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
626
|
Sistare MF, Holmberg RC, Thorp HH. Electrochemical Studies of Polynucleotide Binding and Oxidation by Metal Complexes: Effects of Scan Rate, Concentration, and Sequence. J Phys Chem B 1999. [DOI: 10.1021/jp992940f] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark F. Sistare
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Rebecca C. Holmberg
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - H. Holden Thorp
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
627
|
Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A 1999; 96:13300-5. [PMID: 10557315 PMCID: PMC23942 DOI: 10.1073/pnas.96.23.13300] [Citation(s) in RCA: 614] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G.C-->T.A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1(-/-) null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.
Collapse
Affiliation(s)
- A Klungland
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
628
|
Qu B, Li QT, Wong KP, Ong CN, Halliwell B. Mitochondrial damage by the "pro-oxidant" peroxisomal proliferator clofibrate. Free Radic Biol Med 1999; 27:1095-102. [PMID: 10569642 DOI: 10.1016/s0891-5849(99)00143-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clofibrate is a peroxisome proliferator that can cause hepatic cancer in rodents. It has been suggested that oxidative damage is involved in this hepatocarcinogenesis, although the data are conflicting. We confirmed that clofibrate causes oxidative damage in nuclei from the livers of mice treated with this substance, measured both as protein carbonyls and levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA. In addition, clofibrate also affects mitochondria, causing elevated levels of carbonyls and 8-OHdG, increased state 4 respiration and decreased adenosine triphosphatase (ATPase) activity. No evidence for clofibrate-induced lipid peroxidation in mitochondria was obtained. We propose that mitochondria may be a major target of injury and a source of oxidative stress in clofibrate-treated animals.
Collapse
Affiliation(s)
- B Qu
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
629
|
Smith MJ, Inserra PF, Watson RR, Wise JA, O'Neill KL. Supplementation with fruit and vegetable extracts may decrease DNA damage in the peripheral lymphocytes of an elderly population. Nutr Res 1999. [DOI: 10.1016/s0271-5317(99)00107-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
630
|
Huang HS, Chen CJ, Suzuki H, Yamamoto S, Chang WC. Inhibitory effect of phospholipid hydroperoxide glutathione peroxidase on the activity of lipoxygenases and cyclooxygenases. Prostaglandins Other Lipid Mediat 1999; 58:65-75. [PMID: 10560610 DOI: 10.1016/s0090-6980(99)00017-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The partially purified phospholipid hydroperoxide glutathione peroxidase (PHGPx) from A431 cells was used to systematically compare the inhibitory effect on the enzyme activity of various lipoxygenases and cyclooxygenases. Under the standard assay system, platelet 12-lipoxygenase, 15-lipoxygenase, and cyclooxygenase-2 were the most sensitive to the inhibition by PHGPx. 5-Lipoxygenase and cyclooxygenase-1 were less sensitive to the inhibition by PHGPx than platelet 12-lipoxygenase and cyclooxygenase-2, respectively, and the difference was approximately 10-fold. Reduction of 12(S)-hydroperoxyeicosatetraenoic acid to 12(S)-hydroxyeicosatetraenoic acid by PHGPx was observed in the presence of glutathione (GSH), and the inhibitory effect of PHGPx on 12-lipoxygenase-catalyzed arachidonate metabolism was reversed by the addition of exogenous lipid hydroperoxide. The results indicate that PHGPx directly reduced lipid hydroperoxides and then down-regulated the activity of arachidonate oxygenases. Moreover, a high-level expression of PHGPx mRNA and its 12-lipoxygenase-inhibitory activity was observed in cancer cells and endothelial cells, and these results suggest that PHGPx may play a significant role in the regulation of reactive oxygen species formation in these cells.
Collapse
Affiliation(s)
- H S Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
631
|
Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, Iwata S, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 1999; 341:1037-44. [PMID: 10502593 DOI: 10.1056/nejm199909303411404] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mitochondrial myopathies typically affect many organ systems and are associated with mutations in mitochondrial DNA (mtDNA) that are maternally inherited. However, there is also a sporadic form of mitochondrial myopathy in which exercise intolerance is the predominant symptom. We studied the biochemical and molecular characteristics of this sporadic myopathy. METHODS We sequenced the mtDNA cytochrome b gene in blood and muscle specimens from five patients with severe exercise intolerance, lactic acidosis in the resting state (in four patients), and biochemical evidence of complex III deficiency. We compared the clinical and molecular features of these patients with those previously described in four other patients with mutations in the cytochrome b gene. RESULTS We found a total of three different nonsense mutations (G15084A, G15168A, and G15723A), one missense mutation (G14846A), and a 24-bp deletion (from nucleotide 15498 to 15521) in the cytochrome b gene in the five patients. Each of these mutations impairs the enzymatic function of the cytochrome b protein. In these patients and those previously described, the clinical manifestations included progressive exercise intolerance, proximal limb weakness, and in some cases, attacks of myoglobinuria. There was no maternal inheritance and there were no mutations in tissues other than muscle. The absence of these findings suggests that the disorder is due to somatic mutations in myogenic stem cells after germ-layer differentiation. All the point mutations involved the substitution of adenine for guanine, but all were in different locations. CONCLUSIONS The sporadic form of mitochondrial myopathy is associated with somatic mutations in the cytochrome b gene of mtDNA. This myopathy is one cause of the common and often elusive syndrome of exercise intolerance.
Collapse
Affiliation(s)
- A L Andreu
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Department of Neurology, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
632
|
Ni TT, Marsischky GT, Kolodner RD. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol Cell 1999; 4:439-44. [PMID: 10518225 DOI: 10.1016/s1097-2765(00)80346-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxidation of G in DNA yields 8-oxo-G (GO), a mutagenic lesion that leads to misincorporation of A opposite GO. In E. coli, GO in GO:C base pairs is removed by MutM, and A in GO:A mispairs is removed by MutY. In S. cerevisiae, mutations in MSH2 or MSH6 caused a synergistic increase in mutation rate in combination with mutations in OGG1, which encodes a MutM homolog, resulting in a 140- to 218-fold increase in the G:C-to-T:A transversion rate. Consistent with this, MSH2-MSH6 complex bound to GO:A mispairs and GO:C base pairs with high affinity and specificity. These data indicate that in S. cerevisiae, MSH2-MSH6-dependent mismatch repair is the major mechanism by which misincorporation of A opposite GO is corrected.
Collapse
Affiliation(s)
- T T Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
633
|
Abstract
We have investigated the effects of reactive oxygen species (ROS) in a wide variety of systems, both in vitro and in vivo, with particular attention to their genetic effects. Some of the results of these studies, as they relate to the protective effects of antioxidants, are discussed.
Collapse
Affiliation(s)
- D Anderson
- BIBRA International, Carshalton, Surrey, UK
| | | |
Collapse
|
634
|
Ropp PA, Thorp HH. Site-selective electron transfer from purines to electrocatalysts: voltammetric detection of a biologically relevant deletion in hybridized DNA duplexes. CHEMISTRY & BIOLOGY 1999; 6:599-605. [PMID: 10467130 DOI: 10.1016/s1074-5521(99)80111-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The one-electron oxidation of guanine nucleobases is of interest for understanding the mechanisms of mutagenesis, probing electron-transfer reactions in DNA, and developing sensing schemes for nucleic acids. The electron-transfer rates for oxidation of guanine by exogenous redox catalysts depend on the base paired to the guanine. An important goal in developing the mismatch sensitivity is to identify a means for monitoring the current resulting from electron transfer at a single base in the presence of native oligonucleotides that contain all four bases. RESULTS The nucleobase 8-oxo-guanine (8G) is selectively oxidized by the redox catalyst Os(bpy)(3)(3+/2+) (bpy = 2,2'-bipyridine) in the presence of native guanine. Cyclic voltammograms of Os(bpy)(3)(2+) show current enhancements indicative of nucleobase oxidation upon addition of oligonucleotides that contain 8G, but not in the presence of native guanine. As expected, similar experiments with Ru(bpy)(3)(2+) show enhancement with both guanine and 8G. The current enhancements for the 8G/Os(III) reaction increase in the order 8G-C approximately 8G.T < 8G.G < 8G.A < 8G, the same order as that observed for guanine/Ru(III). This site-selective mismatch sensitivity can be applied to detection of a TTT deletion, which is important in cystic fibrosis. CONCLUSIONS The base 8G can be effectively used in conjunction with a low-potential redox catalyst as a probe for selective electron transfer at a single site. Because of the high selectivity for 8G, rate constants can be obtained that reflect the oxidation of only one base. The mismatch sensitivity can be used to detect biologically relevant abnormalities in DNA.
Collapse
Affiliation(s)
- P A Ropp
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
635
|
Sentürker S, Dizdaroglu M. The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry: how many modified bases are involved? Prepurification or not? Free Radic Biol Med 1999; 27:370-80. [PMID: 10468211 DOI: 10.1016/s0891-5849(99)00069-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, an artifactual formation of a number of modified DNA bases has been alleged during derivatization of DNA hydrolysates to be analyzed by gas chromatography-mass spectrometry (GC-MS). These modified bases were 8-hydroxyguanine (8-OH-Gua), 5-hydroxycytosine (5-OH-Cyt), 8-hydroxyadenine (8-OH-Ade), 5-hydroxymethyluracil (5-OHMeUra), and 5-formyluracil, which represent only a small percentage of more than 20 modified DNA bases that can be analyzed by GC-MS. However, relevant papers reporting the levels of these modified bases in DNA of various sources have not been cited, and differences in experimental procedures have not been discussed. We investigated the levels of modified bases in calf thymus DNA by GC-MS using derivatization at three different temperatures. The results obtained with GC/isotope-dilution MS showed that the levels of 5-OH-Cyt, 8-OH-Ade, 5-OH-Ura, and 5-OHMeUra were not affected by increasing the derivatization temperature from 23 degrees C to 120 degrees C. The level of 8-OH-Gua was found to be higher at 120 degrees C. However, this level was much lower than those reported previously. Formamidopyrimidines were readily analyzed in contrast to some recent claims. The addition of trifluoroacetic acid (TFA) adversely affected the levels of pyrimidine-derived lesions, suggesting that TFA is not suitable for simultaneous measurement of both pyrimidine- and purine-derived lesions. The data obtained were also compared with those previously published. Our data and this comparison indicate that no artifactual formation of 5-OH-Cyt, 8-OH-Ade, and 5-OHMeUra occurred under our experimental conditions in contrast to recent claims, and no prepurification of DNA hydrolysates by a tedious procedure is necessary for accurate quantification of these compounds. The artifactual formation of 8-OH-Gua can be eliminated by derivatization at room temperature for at least 2 h, without the use of TFA. The results in this article and their comparison with published data indicate that different results may be obtained in different laboratories using different experimental conditions. The data obtained in various laboratories should be compared by discussing all relevant published data and scientific facts, including differences between experimental conditions used in different laboratories.
Collapse
Affiliation(s)
- S Sentürker
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
636
|
Anson RM, Sentürker S, Dizdaroglu M, Bohr VA. Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radic Biol Med 1999; 27:456-62. [PMID: 10468222 DOI: 10.1016/s0891-5849(99)00091-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mitochondrial and nuclear DNA were isolated from the livers of young (6-7 month) and old (23-24 month) Wistar rats and the levels of 10 different oxidatively induced lesions were analyzed by gas chromatography/mass spectrometry. This is the first study to measure several different oxidatively induced base lesions in both mitochondrial and nuclear DNA as a function of age. No significant age effects were observed for any lesion. Furthermore, contrary to expectations, we did not observe elevated levels of oxidatively induced base lesions in mitochondrial DNA. This contrasts with 50-fold differences reported for several lesions between mitochondrial and nuclear DNA from porcine liver (Zastawny et al., Free Radic. Biol. Med. 24:722-725, 1998). The fact that different lesion levels are observed even when similar techniques are employed emphasizes that the role of oxidative mitochondrial DNA damage and its repair in aging must continue to be the subject of intense investigation. Questions concerning endogenous levels of damage should be revisited as existing methods are improved and new methods become available.
Collapse
Affiliation(s)
- R M Anson
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224-6825, USA
| | | | | | | |
Collapse
|
637
|
Roll C, Ketterl C, Fazakerley GV, Boulard Y. Solution structures of a duplex containing an adenine opposite a gap (absence of one nucleotide). An NMR study and molecular dynamic simulations with explicit water molecules. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:120-31. [PMID: 10447680 DOI: 10.1046/j.1432-1327.1999.00585.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the behaviour of a 15mer DNA duplex, [5'd(CAGAGTCACTGGCTC)3']. [5'd(GAGCCAG)3' + 5'd(GACTCTG)3'] which contained an adenine opposite the gap. Analysis of the NMR data showed the existence of one major species, which was in equilibrium with two minor species. Their relative concentrations varied as a function of pH with a pKa of approximately 4.5. For the major species, the duplex was globally in B conformation with the central adenine stacked in the helix. The two G.C base pairs adjacent to the central adenine were well formed and a gap was present in front of this adenine. For the minor species, major structural perturbations occurred in the centre of the duplex. At neutral pH, the central adenine was involved in a G.A mismatch with G23 adjacent to the gap. Cytosine C7 was then extrahelical and no gap was observed. Under these conditions, the major neutral species corresponded to 70% of the total and the minor species to 30%. At acidic pH, the central adenine of the minor species was protonated and was involved in a G(syn).A+(anti) mismatch. The difference is that C9 is now extrahelical and G22 is implicated in the mispair. Three-dimensional models were built to initiate molecular dynamic simulations, which were in good agreement with the NMR data. Their structural stability in terms of hydrogen bonding and their flexibility are discussed and the biological significance for the interaction with DNA polymerase is evoked.
Collapse
Affiliation(s)
- C Roll
- CEA Saclay, Département de Biologie Cellulaire et Moléculaire, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
638
|
Organisciak DT, Darrow RA, Barsalou L, Darrow RM, Lininger LA. Light-induced Damage in the Retina: Differential Effects of Dimethylthiourea on Photoreceptor Survival, Apoptosis and DNA Oxidation. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb07998.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
639
|
Honda Y, Honda S. The
daf‐2
gene network for longevity regulates oxidative stress resistance and Mn‐superoxide dismutase gene expression in
Caenorhabditis elegans. FASEB J 1999. [DOI: 10.1096/fasebj.13.11.1385] [Citation(s) in RCA: 564] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoko Honda
- Tokyo Metropolitan Institute of Gerontology Tokyo 173‐0015 Japan
| | - Shuji Honda
- Tokyo Metropolitan Institute of Gerontology Tokyo 173‐0015 Japan
| |
Collapse
|
640
|
Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis JM. Human cytoplasmic aconitase (Iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding. J Biol Chem 1999; 274:21625-30. [PMID: 10419470 DOI: 10.1074/jbc.274.31.21625] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory protein 1 (IRP1) regulates the synthesis of proteins involved in iron homeostasis by binding to iron-responsive elements (IREs) of messenger RNA. IRP1 is a cytoplasmic aconitase when it contains a [4Fe-4S] cluster and an RNA-binding protein after complete removal of the metal center by an unknown mechanism. Human IRP1, obtained as the pure recombinant [4Fe-4S] form, is an enzyme as efficient toward cis-aconitate as the homologous mitochondrial aconitase. The aconitase activity of IRP1 is rapidly lost by reaction with hydrogen peroxide as the [4Fe-4S] cluster is quantitatively converted into the [3Fe-4S] form with release of a single ferrous ion per molecule. The IRE binding capacity of IRP1 is not elicited with H(2)O(2). Ferrous sulfate (but not other more tightly coordinated ferrous ions, such as the complex with ethylenediamine tetraacetic acid) counteracts the inhibitory action of hydrogen peroxide on cytoplasmic aconitase, probably by replenishing iron at the active site. These results cast doubt on the ability of reactive oxygen species to directly increase IRP1 binding to IRE and support a signaling role for hydrogen peroxide in the posttranscriptional control of proteins involved in iron homeostasis in vivo.
Collapse
Affiliation(s)
- X Brazzolotto
- Département de Biologie Moléculaire et Structurale, Laboratoire Métalloprotéines, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
641
|
Affiliation(s)
- L A Marcelino
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
642
|
Mol CD, Parikh SS, Putnam CD, Lo TP, Tainer JA. DNA repair mechanisms for the recognition and removal of damaged DNA bases. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:101-28. [PMID: 10410797 DOI: 10.1146/annurev.biophys.28.1.101] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent structural and biochemical studies have begun to illuminate how cells solve the problems of recognizing and removing damaged DNA bases. Bases damaged by environmental, chemical, or enzymatic mechanisms must be efficiently found within a large excess of undamaged DNA. Structural studies suggest that a rapid damage-scanning mechanism probes for both conformational deviations and local deformability of the DNA base stack. At susceptible lesions, enzyme-induced conformational changes lead to direct interactions with specific damaged bases. The diverse array of damaged DNA bases are processed through a two-stage pathway in which damage-specific enzymes recognize and remove the base lesion, creating a common abasic site intermediate that is processed by damage-general repair enzymes to restore the correct DNA sequence.
Collapse
Affiliation(s)
- C D Mol
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
643
|
Huang HS, Chen CJ, Chang WC. The CCAAT-box binding factor NF-Y is required for the expression of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. FEBS Lett 1999; 455:111-6. [PMID: 10428483 DOI: 10.1016/s0014-5793(99)00866-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Promoter activation in the expression of phospholipid hydroperoxide glutathione peroxidase (PHGPx) gene in human epidermoid carcinoma A431 cells was studied in the present investigation. Luciferase reporter assays with plasmids carrying a 400 bp of the promoter DNA were performed to analyze the regulatory element in the proximal promoter of human PHGPx gene. Transient transfection with a series of 5'-deletion and internal truncation mutants showed that the 5'-flanking region spanning from -212 to -121 bp was important for the basal expression of PHGPx gene in A431 cells. A region from -170 to -140 bp was protected in DNase I footprinting assays and bound the nuclear proteins in electrophoretic mobility shift assays. This region, denoted FP3, contains the consensus recognition sites for AP-2, CCAAT-box and CRE. The oligonucleotide competitor with the mutation at CCAAT-box could not eliminate the nuclear protein binding in gel-shift assay and the site-directed mutagenesis at the CCAAT-box decreased the luciferase activity of PHGPx promoter for approximate 50% in reporter gene assays. Competition experiments indicate that the binding of nuclear factor to the FP3 region was abolished by oligodeoxyribonucleotide corresponding to NF-Y/CP1 binding site to a greater extent than by those corresponding to sites for CTF/NFI and C/EBP. Taken together, the CCAAT-box in the promoter ranging from -156 to -151 bp, bound to NF-Y/CP1, was essential for the basal expression of human PHGPx gene in A431 cells.
Collapse
Affiliation(s)
- H S Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
644
|
Abstract
Reactive oxygen species (ROS) are generated by a variety of sources from the environment (e.g., photo-oxidations and emissions) and normal cellular functions (e.g., mitochondrial metabolism and neutrophil activation). ROS include free radicals (e.g., superoxide and hydroxyl radicals), nonradical oxygen species (e.g., hydrogen peroxide and peroxynitrite) and reactive lipids and carbohydrates (e. g., ketoaldehydes, hydroxynonenal). Oxidative damage to DNA can occur by many routes including the oxidative modification of the nucleotide bases, sugars, or by forming crosslinks. Such modifications can lead to mutations, pathologies, cellular aging and death. Oxidation of proteins appears to play a causative role in many chronic diseases of aging including cataractogenesis, rheumatoid arthritis, and various neurodegenerative diseases including Alzheimer's Disease (AD). Our goal is to elucidate the mechanism(s) by which oxidative modification results in the disease. These studies have shown that (a) cells from old individuals are more susceptible to oxidative damage than cells from young donors; (b) oxidative protein modification is not random; (c) some of the damage can be prevented by antioxidants, but there is an age-dependent difference; and (d) an age-related impairment of recognition and destruction of modified proteins exists. It is believed that mechanistic insight into oxidative damage will allow prevention or intervention such that these insults are not inevitable. Our studies are also designed to identify the proteins which are most susceptible to ROS damage and to use these as potential biomarkers for the early diagnosis of diseases such as AD. For example, separation of proteins from cells or tissues on one- and two-dimensional gels followed by staining for both total protein and specifically oxidized residues (e.g., nitrotyrosine) may allow identification of biomarkers for AD.
Collapse
Affiliation(s)
- R W Gracy
- Molecular Aging Unit, Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | | | | | |
Collapse
|
645
|
Lee TH, Yu SL, Kim SU, Kim YM, Choi I, Kang SW, Rhee SG, Yu DY. Characterization of the murine gene encoding 1-Cys peroxiredoxin and identification of highly homologous genes. Gene 1999; 234:337-44. [PMID: 10395907 DOI: 10.1016/s0378-1119(99)00190-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new type of peroxiredoxin, named 1-Cys peroxiredoxin (1-Cys Prx), reduces hydrogen peroxide with the use of electrons from unidentified electron donor(s). We have isolated the mouse gene encoding 1-Cys Prx (CP-3) and shown that it is comprised of five exons and four introns. Analysis of 5' flanking regions revealed binding sequences of several putative transcription factors such as Sp1, Pit-1a, c-Jun, c-Myc and YY1. It is noticeable that several potential Sp1 binding sites assigned the -60 through -96bp from putative transcription initiation site. The gel shift assays showed that Sp1 and Pit-1a bind specifically to each binding site in 1-Cys Prx promoter. We also isolated two highly related genes such as CP-2 and CP-5. These genes are encoded by single exons, and show 85% of nucleotide sequence homology with the CP-3. The structural features of these genes suggest that they might be intronless genes derived from the CP-3 by the mechanism involving retrotransposition. In addition, our data suggest that they are inserted to a specific site of the mouse L1 repetitive element. The 1-Cys Prx was actively transcribed in a variety of adult tissues as well as in the developing embryos. These results suggest that only the 1-Cys Prx gene might be relevant for studying the function of the 1-Cys Prx in the murine system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Line
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Exons
- Gene Expression Regulation, Developmental
- Genes/genetics
- Humans
- Introns
- Male
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Peroxidases/genetics
- Peroxiredoxins
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- T H Lee
- Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yusong, Taejon 305-600, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
646
|
Lezza AM, Mecocci P, Cormio A, Beal MF, Cherubini A, Cantatore P, Senin U, Gadaleta MN. Mitochondrial DNA 4977 bp deletion and OH8dG levels correlate in the brain of aged subjects but not Alzheimer's disease patients. FASEB J 1999; 13:1083-8. [PMID: 10336891 DOI: 10.1096/fasebj.13.9.1083] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The levels of mitochondrial DNA 4977 bp deletion (mtDNA4977) and mitochondrial DNA 8'-hydroxy-2'-deoxyguanosine (OH8dG) were determined in the same samples from two brain areas of healthy subjects and Alzheimer's disease (AD) patients. A positive correlation between the age-related increases of mtDNA4977 and of OH8dG levels was found in the brain of healthy individuals. On the contrary, in both brain areas of AD patients, mtDNA4977 levels were very low in the presence of high OH8dG amounts. These results might be explained assuming that the increase of OH8dG above a threshold level, as in AD patients, implies consequences for mtDNA replication and neuronal cell survival.
Collapse
Affiliation(s)
- A M Lezza
- Department of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
647
|
Ballinger SW, Van Houten B, Jin GF, Conklin CA, Godley BF. Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 1999; 68:765-72. [PMID: 10375440 DOI: 10.1006/exer.1998.0661] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinal pigment epithelial cell dysfunction mediated by reactive oxygen intermediates has been suggested as a possible cause of age-related macular degeneration. To test the hypothesis that retinal pigment cells are susceptible to genetic damage mediated by reactive oxygen intermediates, retinal pigment epithelial cells were treated with 50 micrometers-200 micrometers of hydrogen peroxide in vitro. Damage to mitochondrial DNA and three nuclear loci were assessed using quantitative polymerase chain reaction. Hydrogen peroxide treatment of retinal pigment epithelial cells resulted in significantly increased mitochondrial DNA damage. Significant mitochondrial DNA damage occurred rapidly and was not completely repaired within 3 hr post-treatment. By contrast, no DNA damage was observed in three different nuclear loci (beta-globin gene cluster, hprt, and beta- polymerase genes). Hydrogen peroxide treatment of retinal pigment epithelial cells also resulted in decreased mitochondrial redox function compared to controls, consistent with increased mitochondrial DNA damage. Consequently, retinal pigment epithelial cell mitochondrial DNA appears susceptible to hydrogen peroxide mediated damage in vitro, and thus, may serve as a catalyst in the initial events leading to retinal pigment epithelial cell dysfunction in vivo.
Collapse
Affiliation(s)
- S W Ballinger
- Sealy Center for Molecular Cardiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | | | | | | |
Collapse
|
648
|
Abstract
Reactive oxygen intermediates are produced in all aerobic organisms during respiration and exist in the cell in a balance with biochemical antioxidants. Excess reactive oxygen resulting from exposure to environmental oxidants, toxicants, and heavy metals perturbs cellular redox balance and disrupts normal biological functions. The resulting imbalance may be detrimental to the organism and contribute to the pathogenesis of disease and aging. To counteract the oxidant effects and to restore a state of redox balance, cells must reset critical homeostatic parameters. Changes associated with oxidative damage and with restoration of cellular homeostasis often lead to activation or silencing of genes encoding regulatory transcription factors, antioxidant defense enzymes, and structural proteins. In this review, we examine the sources and generation of free radicals and oxidative stress in biological systems and the mechanisms used by reactive oxygen to modulate signal transduction cascades and redirect gene expression.
Collapse
Affiliation(s)
- T P Dalton
- Center for Environmental Genetics, University of Cincinnati Medical Center, Ohio 45267-0056, USA.
| | | | | |
Collapse
|
649
|
Kohen R. Skin antioxidants: their role in aging and in oxidative stress--new approaches for their evaluation. Biomed Pharmacother 1999; 53:181-92. [PMID: 10392290 DOI: 10.1016/s0753-3322(99)80087-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Skin is a highly metabolic tissue which possesses the largest surface area in the body and serves as the protective layer for internal organs [1]. Skin is also a major candidate and target of oxidative stress. It is designed to give both physical and biochemical protection, and is equipped with a large number of defense mechanisms. The skin tissue is exposed to a variety of damaging species which originate in the outer environment, in the skin itself, and in various endogenous sources [2, 3]. The structure of skin is quite complex being composed of several layers, each of which plays a specific role and carries out different functions [4]. Each layer is equipped with its own arsenal of defense molecules, and the various systems differ from each other based on the layer's susceptibility to oxidative stress and its function. It is generally agreed that one of the major and important contributions to skin aging, skin disorders and skin diseases results from reactive oxygen species (ROS) [1, 5]. Due to the high occurrence of potential biological targets for oxidative damage, skin is very susceptible to such reactions. For example, skin is rich in lipids, proteins, and DNA, all of which are extremely sensitive to the oxidation process [6-8]. Elucidation of the mechanisms involved in skin oxidation and the examination of the defense systems may contribute to the understanding of skin aging and of the mechanisms involved in the various pathological processes of skin. This review addresses the antioxidant defense mechanism of the skin, the role it plays during the aging process, and the role skin has following exposure to oxidative stresses.
Collapse
Affiliation(s)
- R Kohen
- Department of Pharmaceutics, School of Pharmacy, Hebrew University of Jerusalem, Israel
| |
Collapse
|
650
|
Abstract
Almost a decade ago, based on analytical measurements of the oxidative DNA adduct 8-oxo-deoxyguanosine (oxo8dG), it was reported that mitochondrial DNA suffers greater endogenous oxidative damage than nuclear DNA. The subsequent discovery that somatic deletions of mitochondrial DNA occur in humans, and that they do so to the greatest extent in metabolically active tissues, strengthened the hypothesis that mitochondrial DNA is particularly susceptible to endogenous oxidative attack. This hypothesis was (and is) appealing for a number of reasons. Nevertheless, solid direct support for the hypothesis is lacking. Since the initial measurements, attempts to repeat the observation of greater oxidation of mitochondrial DNA have resulted in a range of measurements that spans over four orders of magnitude. Moreover, this range includes values that are as low as published values for nuclear DNA. In the last 2 years or so, it has become apparent that the quantification of oxidative DNA adducts is prone to artifactual oxidation. We have reported that the analysis of small quantities of DNA may be particularly susceptible to such interference. Because yields of mitochondrial DNA are generally low, a systematic artifact associated with low quantities of DNA may have elevated the apparent level of adduct oxo8dG in mitochondrial DNA relative to nuclear DNA in some studies. Whatever the cause for the experimental variation, the huge disparity between published measurements of oxidative damage makes it impossible to conclude that mitochondrial DNA suffers greater oxidation than nuclear DNA. Despite the present confusion, however, there are reasons to hypothesize that this is indeed the case. We briefly describe methods being developed by a number of workers that are likely to surmount current obstacles and allow the hypothesis to be tested definitively.
Collapse
Affiliation(s)
- K B Beckman
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall, Berkeley, CA 94720-3202, USA.
| | | |
Collapse
|