6951
|
Zhang Y, Li Y, Zheng X, Zhu L, Xu B. Association between alcohol consumption in midlife and cognitive function in old age: Findings from the China health and Nutrition Survey. Nutr Metab Cardiovasc Dis 2021; 31:3044-3053. [PMID: 34642057 DOI: 10.1016/j.numecd.2021.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Alcohol consumption has been reported to impair the physical and mental health of the elderly. This study aimed to explore the association between alcohol consumption patterns in midlife and cognition in the elderly among the Chinese population. METHODS AND RESULTS Study subjects were individuals aged ≥45 years in the shared database of the China Health and Nutrition Survey in 1997, who were followed up in 2006. A questionnaire was used to collect information about alcohol consumption (frequency, amount and type). Alcohol consumption (grams/week) was classified into none, light (≤84), light-to-moderate (84.01-168), moderate-to-heavy (168.01-336) and heavy (≥336.01) categories in men, and none, light (<42) and moderate (≥42) categories in women. Cognitive function was measured in 2006 using a subset of items from the modified Telephone Interview for Cognitive Status. The lowest quintile was used as the cut-off point for cognitive impairment. A multivariate logistic regression model was applied. The study involved 1926 participants with a mean age of 56.91 years, and men accounted for 51.66% of the total participants. Drinking behaviours and cognitive scores had significant sexual difference (P < 0.001). Cognitive impairment was identified in 135 men and 237 women. Compared with light drinking, heavy drinking and non-drinking were associated with cognitive impairment in men [adjusted odds ratio (aOR) and 95% CI were 2.19 (1.59-3.00), 1.54 (1.21-1.96), respectively; P < 0.001]. Compared with light drinkers, female non-drinkers and moderate drinkers were associated with cognitive impairment [aOR and 95% CI were 1.54 (1.16-2.03) and 1.75 (1.08-2.85), respectively; P < 0.001]. CONCLUSIONS Scientific evidence on the adverse effects of heavy drinking on elderly cognition and the possibly protective effects of light drinking could influence policy decisions on alcohol consumption in China.
Collapse
Affiliation(s)
- Yuge Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xubin Zheng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai, China
| | - Liping Zhu
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Biao Xu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai, China.
| |
Collapse
|
6952
|
Amariglio RE, Sikkes SAM, Marshall GA, Buckley RF, Gatchel JR, Johnson KA, Rentz DM, Donohue MC, Raman R, Sun CK, Yaari R, Holdridge KC, Sims JR, Grill JD, Aisen PS, Sperling RA. Item-Level Investigation of Participant and Study Partner Report on the Cognitive Function Index from the A4 Study Screening Data. J Prev Alzheimers Dis 2021; 8:257-262. [PMID: 34101781 PMCID: PMC8240963 DOI: 10.14283/jpad.2021.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Greater subjective cognitive changes on the Cognitive Function Index (CFI) was previously found to be associated with elevated amyloid (Aß) status in participants screening for the A4 Study, reported by study partners and the participants themselves. While the total score on the CFI related to amyloid for both sources respectively, potential differences in the specific types of cognitive changes reported by either participants or their study partners was not investigated. OBJECTIVES To determine the specific types of subjective cognitive changes endorsed by participants and their study partners that are associated with amyloid status in individuals screening for an AD prevention trial. DESIGN, SETTING, PARTICIPANTS Four thousand four hundred and eighty-six cognitively unimpaired (CDR=0; MMSE 25-30) participants (ages 65-85) screening for the A4 Study completed florbetapir (Aß) Positron Emission Tomography (PET) imaging. Participants were classified as elevated amyloid (Aß+; n=1323) or non-elevated amyloid (Aß-; n=3163). MEASUREMENTS Prior to amyloid PET imaging, subjective report of changes in cognitive functioning were measured using the CFI (15 item questionnaire; Yes/Maybe/No response options) and administered separately to both participants and their study partners (i.e., a family member or friend in regular contact with the participant). The impact of demographic factors on CFI report was investigated. For each item of the CFI, the relationship between Aß and CFI response was investigated using an ordinal mixed effects model for participant and study partner report. RESULTS Independent of Aß status, participants were more likely to report 'Yes' or 'Maybe' compared to the study partners for nearly all CFI items. Older age (r= 0.06, p<0.001) and lower education (r=-0.08, p<0.001) of the participant were associated with higher CFI. Highest coincident odds ratios related to Aß+ for both respondents included items assessing whether 'a substantial decline in memory' had occurred in the last year (ORsp= 1.35 [95% CI 1.11, 1.63]; ORp= 1.55 [95% CI 1.34, 1.79]) and whether the participant had 'seen a doctor about memory' (ORsp= 1.56 [95% CI 1.25, 1.95]; ORp =1.71 [95% CI 1.37, 2.12]). For two items, associations were significant for only study partner report; whether the participant 'Repeats questions' (ORsp = 1.30 [95% CI 1.07, 1.57]) and has 'trouble following the news' (ORsp= 1.46[95% CI 1.12, 1.91]). One question was significant only for participant report; 'trouble driving' (ORp= 1.25 [95% CI 1.04, 1.49]). CONCLUSIONS Elevated Aβ is associated with greater reporting of subjective cognitive changes as measured by the CFI in this cognitively unimpaired population. While participants were more likely than study partners to endorse change on most CFI items, unique CFI items were associated with elevated Aß for participants and their study partners, supporting the value of both sources of information in clinical trials.
Collapse
Affiliation(s)
- R E Amariglio
- R.E. Amariglio, Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6953
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
6954
|
Nakahori N, Sekine M, Yamada M, Tatsuse T, Kido H, Suzuki M. Future projections of the prevalence of dementia in Japan: results from the Toyama Dementia Survey. BMC Geriatr 2021; 21:602. [PMID: 34702187 PMCID: PMC8546941 DOI: 10.1186/s12877-021-02540-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to make future projections of the nationwide prevalence of dementia in Japan using the prevalence of dementia from the Toyama Dementia Survey and population projections. METHODS We performed linear regression analysis using the prevalence of dementia by sex and age in 1985, 1990, 1996, 2001, and 2014 from the Toyama Dementia Survey to calculate the estimated future prevalence by sex and age. The estimated prevalence was then multiplied by the estimated future population of people aged 65 years and older by sex and age in each of the 47 prefectures from 2020 to 2045 and added together to calculate the total number of people with dementia. The estimated future prevalence of dementia was calculated by dividing the calculated number of people with dementia by the estimated future population of people aged 65 years and older in each of the 47 prefectures. In addition, the estimated future prevalence of dementia in each of the 47 prefectures from 2020 to 2045 was presented on a map of Japan and grayscale-coded in four levels. RESULTS In 2020, the estimated future prevalence of dementia did not exceed 20% in any prefecture, but in 2025, five prefectures, mainly rural prefectures, had projected rates exceeding 20%. In 2030, the prevalence rate is projected to exceed 20% nationwide, and by 2035, the rate will exceed 25% in 42 prefectures. In 2045, all prefectures excluding Tokyo are projected to have a dementia prevalence rate exceeding 25%, and the rate will exceed 30% in 12 of 47 prefectures. CONCLUSIONS Over the next 25 years, the prevalence of dementia in people older than 65 years is projected to exceed 25% nationwide, including metropolitan areas.
Collapse
Affiliation(s)
- Nobue Nakahori
- Faculty of Nursing Science, Tsuruga Nursing University, 78-2-1 Kizaki, Tsuruga, Fukui, 914-0814, Japan.
- Department of Epidemiology and Health Policy, School of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Michikazu Sekine
- Department of Epidemiology and Health Policy, School of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Masaaki Yamada
- Department of Epidemiology and Health Policy, School of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Takashi Tatsuse
- Department of Epidemiology and Health Policy, School of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Hideki Kido
- Kiseikai, Kido Clinic, 244 Honoki, Imizu, Toyama, 934-0053, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, School of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
6955
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
6956
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6957
|
Debnath N, Kumar R, Kumar A, Mehta PK, Yadav AK. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev 2021; 37:105-153. [PMID: 34678130 DOI: 10.1080/02648725.2021.1989847] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Every individual harbours a complex, diverse and mutualistic microbial flora in their intestine and over the time it became an integral part of the body, affecting a plethora of activities of the host. Interaction between host and gut-microbiota affects several aspects of host physiology. Gut-microbiota affects host metabolism by fermenting unabsorbed/undigested carbohydrates in the large intestine. Not only the metabolic functions, any disturbances in the composition of the gut-microbiota during first 2-3 years of life may impact on the brain development and later affects cognition and behaviour. Thus, gut-dysbiosis causes certain serious pathological conditions in the host including metabolic disorders, inflammatory bowel disease and mood alterations, etc. Microbial-metabolites in recent times have emerged as key mediators and are responsible for microbiota induced beneficial effects on host. This review provides an overview of the mechanism of microbial-metabolite production, their respective physiological functions and the impact of gut-microbiome in health and diseases. Metabolites from dietary fibres, aromatic amino acids such as tryptophan, primary bile acids and others are the potential substances and link microbiota to host physiology. Many of these metabolites act as signalling molecules to a number of cells types and also help in the secretion of hormones. Moreover, interaction of microbiota derived metabolites with their host, immunity boosting mechanisms, protection against pathogens and modulation of metabolism is also highlighted here. Understanding all these functional attributes of metabolites produced from gut-microbiota may lead to the opening of a new avenue for preventing and developing potent therapies against several diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | | | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| |
Collapse
|
6958
|
Levin F, Jelistratova I, Betthauser TJ, Okonkwo O, Johnson SC, Teipel SJ, Grothe MJ. In vivo staging of regional amyloid progression in healthy middle-aged to older people at risk of Alzheimer's disease. Alzheimers Res Ther 2021; 13:178. [PMID: 34674764 PMCID: PMC8532333 DOI: 10.1186/s13195-021-00918-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND We investigated regional amyloid staging characteristics in 11C-PiB-PET data from middle-aged to older participants at elevated risk for AD enrolled in the Wisconsin Registry for Alzheimer's Prevention. METHODS We analyzed partial volume effect-corrected 11C-PiB-PET distribution volume ratio maps from 220 participants (mean age = 61.4 years, range 46.9-76.8 years). Regional amyloid positivity was established using region-specific thresholds. We used four stages from the frequency-based staging of amyloid positivity to characterize individual amyloid deposition. Longitudinal PET data was used to assess the temporal progression of stages and to evaluate the emergence of regional amyloid positivity in participants who were amyloid-negative at baseline. We also assessed the effect of amyloid stage on longitudinal cognitive trajectories. RESULTS The staging model suggested progressive accumulation of amyloid from associative to primary neocortex and gradually involving subcortical regions. Longitudinal PET measurements supported the cross-sectionally estimated amyloid progression. In mixed-effects longitudinal analysis of cognitive follow-up data obtained over an average period of 6.5 years following the baseline PET measurement, amyloid stage II showed a faster decline in executive function, and advanced amyloid stages (III and IV) showed a faster decline across multiple cognitive domains compared to stage 0. CONCLUSIONS Overall, the 11C-PiB-PET-based staging model was generally consistent with previously derived models from 18F-labeled amyloid PET scans and a longitudinal course of amyloid accumulation. Differences in longitudinal cognitive decline support the potential clinical utility of in vivo amyloid staging for risk stratification of the preclinical phase of AD even in middle-aged to older individuals at risk for AD.
Collapse
Affiliation(s)
- Fedor Levin
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| | - Irina Jelistratova
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| | - Tobey J Betthauser
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma Okonkwo
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, s/n, 41013, Seville, Spain.
| |
Collapse
|
6959
|
ŞAHİN MM, UZUNOĞLU E, YALÇIN M, CESUR G, YILDIZ M, AYSERT YILDIZ P, ÖZGER HS, CEBECİ S, KARAMERT R, DÜZLÜ M, TUTAR H, DİZBAY M, CEYLAN A. Assessment of olfactory and gustatory functions in COVID-19 patients. Turk J Med Sci 2021; 51:2296-2303. [PMID: 34333903 PMCID: PMC8742490 DOI: 10.3906/sag-2102-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/31/2021] [Indexed: 11/28/2022] Open
Abstract
Background/aim This study aims to evaluate of olfactory and gustatory functions of COVID-19 patients and possible risk factors for olfactory and gustatory dysfunctions. Materials and methods The cross-sectional study included adult patients who were diagnosed with COVID-19 in Gazi University Hospital between April 2020 and June 2020. Volunteered patients participated in a survey in which olfactory and gustatory functions and various clinical information were questioned. Sinonasal Outcome Test-22 was also administrated to all patients. Results A hundred and seventy-one patients participated in this study. Olfactory and gustatory dysfunctions rates were 10.5% (n: 18) and 10.5% (n: 18), respectively. Patients without any symptom other than smell and taste dysfunctions were clustered as group 1 and patients who are clinically symptomatic were clustered as group 2. Olfactory dysfunction occurred in 8% of group 1 and 17.4% of group 2 (p = 0.072). Gustatory dysfunction rate of smokers was 19.7% and significantly higher than gustatory dysfunction rate of nonsmokers (5.5%) (p = 0.007). Twenty-seven-point-eight percent of the patients with olfactory dysfunction (n = 5) were male and 72.2% (n: 13) were female. Sex did not show significant effect on rate of olfactory dysfunction. Twenty-five patients participated in psychophysical olfactory function test. No participant reported olfactory dysfunction at the time of test. Of the participants, 64% (n: 16) were normosmic and 36% (n: 9) were hyposmic according to Sniffin’ Stick test. Conclusion Olfactory and gustatory dysfunctions are more common in patients who are clinically symptomatic than those diagnosed during contact tracing. Objective tests may show that frequency of olfactory dysfunction is greater than frequency of self-reported olfactory dysfunction.
Collapse
Affiliation(s)
- Muammer Melih ŞAHİN
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Eray UZUNOĞLU
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Mücahit YALÇIN
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Gökçen CESUR
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Mehmet YILDIZ
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Pınar AYSERT YILDIZ
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Hasan Selçuk ÖZGER
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Süleyman CEBECİ
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Recep KARAMERT
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Mehmet DÜZLÜ
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Hakan TUTAR
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Murat DİZBAY
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Alper CEYLAN
- Department of Otorhinolaryngology/Head and Neck Surgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| |
Collapse
|
6960
|
Grasso SM, Peña ED, Kazemi N, Mirzapour H, Neupane R, Bonakdarpour B, Gorno-Tempini ML, Henry ML. Treatment for Anomia in Bilingual Speakers with Progressive Aphasia. Brain Sci 2021; 11:1371. [PMID: 34827370 PMCID: PMC8615710 DOI: 10.3390/brainsci11111371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Anomia is an early and prominent feature of primary progressive aphasia (PPA) and other neurodegenerative disorders. Research investigating treatment for lexical retrieval impairment in individuals with progressive anomia has focused primarily on monolingual speakers, and treatment in bilingual speakers is relatively unexplored. In this series of single-case experiments, 10 bilingual speakers with progressive anomia received lexical retrieval treatment designed to engage relatively spared cognitive-linguistic abilities and promote word retrieval. Treatment was administered in two phases, with one language targeted per phase. Cross-linguistic cognates (e.g., rose and rosa) were included as treatment targets to investigate their potential to facilitate cross-linguistic transfer. Performance on trained and untrained stimuli was evaluated before, during, and after each phase of treatment, and at 3, 6, and 12 months post-treatment. Participants demonstrated a significant treatment effect in each of their treated languages, with maintenance up to one year post-treatment for the majority of participants. Most participants showed a significant cross-linguistic transfer effect for trained cognates in both the dominant and nondominant language, with fewer than half of participants showing a significant translation effect for noncognates. A gradual diminution of translation and generalization effects was observed during the follow-up period. Findings support the implementation of dual-language intervention approaches for bilingual speakers with progressive anomia, irrespective of language dominance.
Collapse
Affiliation(s)
- Stephanie M. Grasso
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Elizabeth D. Peña
- School of Education, University of California, Irvine, CA 92697, USA;
| | - Nina Kazemi
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Haideh Mirzapour
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Rozen Neupane
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
| | - Borna Bonakdarpour
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Maya L. Henry
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78705, USA; (N.K.); (H.M.); (R.N.); (M.L.H.)
- Department of Neurology, Dell Medical School, University of Texas, Austin, TX 78705, USA
| |
Collapse
|
6961
|
Wang Q, Davis PB, Qi X, Chen SG, Gurney ME, Perry G, Doraiswamy PM, Xu R. Gut-microbiota-microglia-brain interactions in Alzheimer's disease: knowledge-based, multi-dimensional characterization. Alzheimers Res Ther 2021; 13:177. [PMID: 34670619 PMCID: PMC8529734 DOI: 10.1186/s13195-021-00917-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/10/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Interactions between the gut microbiota, microglia, and aging may modulate Alzheimer's disease (AD) pathogenesis but the precise nature of such interactions is not known. METHODS We developed an integrated multi-dimensional, knowledge-driven, systems approach to identify interactions among microbial metabolites, microglia, and AD. Publicly available datasets were repurposed to create a multi-dimensional knowledge-driven pipeline consisting of an integrated network of microbial metabolite-gene-pathway-phenotype (MGPPN) consisting of 34,509 nodes (216 microbial metabolites, 22,982 genes, 1329 pathways, 9982 mouse phenotypes) and 1,032,942 edges. RESULTS We evaluated the network-based ranking algorithm by showing that abnormal microglia function and physiology are significantly associated with AD pathology at both genetic and phenotypic levels: AD risk genes were ranked at the top 6.4% among 22,982 genes, P < 0.001. AD phenotypes were ranked at the top 11.5% among 9982 phenotypes, P < 0.001. A total of 8094 microglia-microbial metabolite-gene-pathway-phenotype-AD interactions were identified for top-ranked AD-associated microbial metabolites. Short-chain fatty acids (SCFAs) were ranked at the top among prioritized AD-associated microbial metabolites. Through data-driven analyses, we provided evidence that SCFAs are involved in microglia-mediated gut-microbiota-brain interactions in AD at both genetic, functional, and phenotypic levels. CONCLUSION Our analysis produces a novel framework to offer insights into the mechanistic links between gut microbial metabolites, microglia, and AD, with the overall goal to facilitate disease mechanism understanding, therapeutic target identification, and designing confirmatory experimental studies.
Collapse
Affiliation(s)
- QuanQiu Wang
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH, 44106, USA
| | - Pamela B Davis
- Center for Community Health Integration, Division of General Medical Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shu G Chen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, USA
| | - P Murali Doraiswamy
- Duke University School of Medicine and the Duke Institute for Brain Sciences, Durham, NC, 27710, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH, 44106, USA.
| |
Collapse
|
6962
|
Levy JP, Bezgin G, Savard M, Pascoal TA, Finger E, Laforce R, Sonnen JA, Soucy JP, Gauthier S, Rosa-Neto P, Ducharme S. 18F-MK-6240 tau-PET in genetic frontotemporal dementia. Brain 2021; 145:1763-1772. [PMID: 34664612 PMCID: PMC9166561 DOI: 10.1093/brain/awab392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient’s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer’s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer’s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer’s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer’s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability.
Collapse
Affiliation(s)
- Jake P Levy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Parkwood Institute, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques du CHU de Québec, Faculté de Médecine, Université Laval, QC, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Douglas Mental Health University Institute, Department of Psychiatry, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
6963
|
Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD. Front Mol Biosci 2021; 8:733507. [PMID: 34660695 PMCID: PMC8517136 DOI: 10.3389/fmolb.2021.733507] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a molecular metabolite derived from the gut flora, which has recently emerged as a candidate risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). TMAO is mainly derived from gut, where the gut microbiota converts TMA precursors into TMA, which is absorbed into the bloodstream through the intestinal mucosa, and then transformed into TMAO by hepatic flavin monooxygenases (FMOs) in the liver. High-nutrient diets rich in TMA precursors, such as red meat, eggs, and fish, are the main sources of TMAO. Excessively consuming such diets not only directly affects energy metabolism in liver, but also increases the concentration of TMAO in plasma, which promotes the development of MAFLD by affecting bile acid metabolism, unfolded protein response, and oxidative stress. In this review, we focused on the relationship between TMAO and MAFLD and summarized intervention strategies for reducing circulating TMAO concentration, aiming at providing new targets for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Hong
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6964
|
Mo M, Tang Y, Wei L, Qiu J, Peng G, Lin Y, Zhou M, Dai W, Zhang Z, Chen X, Liu H, Ding L, Ye P, Wu Y, Zhu X, Wu Z, Guo W, Xu P. Soluble Triggering Receptor Expressed on Myeloid Cells 2 From Cerebrospinal Fluid in Sleep Disorders Related to Parkinson's Disease. Front Aging Neurosci 2021; 13:753210. [PMID: 34658845 PMCID: PMC8511683 DOI: 10.3389/fnagi.2021.753210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor exclusively expressed in the central nervous system (CNS). It contributes to abnormal protein aggregation in neurodegenerative disorders, but its role in Parkinson’s disease (PD) is still unclear. Methods: In this case-control study, we measured the concentration of the soluble fragment of TREM2 (sTREM2) in PD patients, evaluated their sleep conditions by the PD sleep scale (PDSS), and analyzed the relationship between sTREM2 and PD symptoms. Results: We recruited 80 sporadic PD patients and 65 healthy controls without disease-related variants in TREM2. The concentration of sTREM2 in the CSF was significantly higher in PD patients than in healthy controls (p < 0.01). In the PD group, the concentration of sTREM2 had a positive correlation with α-syn in the CSF (Pearson r = 0.248, p = 0.027). Receiver operating characteristic curve (ROC) analyses showed that sTREM2 in the CSF had a significant diagnostic value for PD (AUC, 0.791; 95% CI, 0.711–0.871, p < 0.05). The subgroup analysis showed that PD patients with sleep disorders had a significantly higher concentration of sTREM2 in their CSF (p < 0.01). The concentration of sTREM2 in the CSF had a negative correlation with the PDSS score in PD patients (Pearson r = −0.555, p < 0.01). The ROC analyses showed that sTREM2 in the CSF had a significant diagnostic value for sleep disorders in PD (AUC, 0.733; 95% CI, 0.619–0.846, p < 0.05). Conclusion: Our findings suggest that CSF sTREM2 may be a potential biomarker for PD and it could help predict sleep disorders in PD patients, but multicenter prospective studies with more participants are still needed to confirm its diagnostic value in future.
Collapse
Affiliation(s)
- Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6965
|
Paranjpe MD, Belonwu S, Wang JK, Oskotsky T, Gupta A, Taubes A, Zalocusky KA, Paranjpe I, Glicksberg BS, Huang Y, Sirota M. Sex-Specific Cross Tissue Meta-Analysis Identifies Immune Dysregulation in Women With Alzheimer's Disease. Front Aging Neurosci 2021; 13:735611. [PMID: 34658838 PMCID: PMC8515049 DOI: 10.3389/fnagi.2021.735611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the United States. In spite of evidence of females having a greater lifetime risk of developing Alzheimer's Disease (AD) and greater apolipoprotein E4-related (APOE ε4) AD risk compared to males, molecular signatures underlying these differences remain elusive. Methods: We took a meta-analysis approach to study gene expression in the brains of 1,084 AD patients and age-matched controls and whole blood from 645 AD patients and age-matched controls in seven independent datasets. Sex-specific gene expression patterns were investigated through use of gene-based, pathway-based and network-based approaches. The ability of a sex-specific AD gene expression signature to distinguish Alzheimer's disease from healthy controls was assessed using a linear support vector machine model. Cell type deconvolution from whole blood gene expression data was performed to identify differentially regulated cells in males and females with AD. Results: Strikingly gene-expression, network-based analysis and cell type deconvolution approaches revealed a consistent immune signature in the brain and blood of female AD patients that was absent in males. In females, network-based analysis revealed a coordinated program of gene expression involving several zinc finger nuclease genes related to Herpes simplex viral infection whose expression was modulated by the presence of the APOE ε4 allele. Interestingly, this gene expression program was missing in the brains of male AD patients. Cell type deconvolution identified an increase in neutrophils and naïve B cells and a decrease in M2 macrophages, memory B cells, and CD8+ T cells in AD samples compared to controls in females. Interestingly, among males with AD, no significant differences in immune cell proportions compared to controls were observed. Machine learning-based classification of AD using gene expression from whole blood in addition to clinical features produced an improvement in classification accuracy upon stratifying by sex, achieving an AUROC of 0.91 for females and 0.80 for males. Conclusion: These results help identify sex and APOE ε4 genotype-specific transcriptomic signatures of AD and underscore the importance of considering sex in the development of biomarkers and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Manish D Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Stella Belonwu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Jason K Wang
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Aarzu Gupta
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Alice Taubes
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,The Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Kelly A Zalocusky
- The Gladstone Institute of Neurological Disease, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yadong Huang
- The Gladstone Institute of Neurological Disease, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6966
|
Carrick FR, Azzolino SF, Hunfalvay M, Pagnacco G, Oggero E, D’Arcy RCN, Abdulrahman M, Sugaya K. The Pupillary Light Reflex as a Biomarker of Concussion. Life (Basel) 2021; 11:life11101104. [PMID: 34685475 PMCID: PMC8537991 DOI: 10.3390/life11101104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
The size of our pupils changes continuously in response to variations in ambient light levels, a process known as the pupillary light reflex (PLR). The PLR is not a simple reflex as its function is modulated by cognitive brain function and any long-term changes in brain function secondary to injury should cause a change in the parameters of the PLR. We performed a retrospective clinical review of the PLR of our patients using the BrightLamp Reflex iPhone app. The PLR variables of latency, maximum pupil diameter (MaxPD), minimum pupil diameter (MinPD), maximum constriction velocity (MCV), and the 75% recovery time (75% PRT) were associated with significant differences between subjects who had suffered a concussion and those that had not. There were also significant differences in PLR metrics over the life span and between genders and those subjects with and without symptoms. The differences in PLR metrics are modulated not only by concussion history but also by gender and whether or not the person has symptoms associated with a head injury. A concussive injury to the brain is associated with changes in the PLR that persist over the life span, representing biomarkers that might be used in clinical diagnosis, treatment, and decision making.
Collapse
Affiliation(s)
- Frederick Robert Carrick
- College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
- MGH Institute for Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge CB2 1TN, UK
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Correspondence:
| | - Sergio F. Azzolino
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
| | - Melissa Hunfalvay
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
| | - Guido Pagnacco
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Elena Oggero
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Ryan C. N. D’Arcy
- BrainNET, Health and Technology District, Vancouver, BC V3V 0C6, Canada;
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC V3V 0C6, Canada
- DM Centre for Brain Health, Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahera Abdulrahman
- Health Informatics and Smart Health Department, Health Regulation Sector, Dubai Health Authority, Dubai 7272, United Arab Emirates;
| | - Kiminobu Sugaya
- College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
6967
|
Benedet AL, Milà-Alomà M, Vrillon A, Ashton NJ, Pascoal TA, Lussier F, Karikari TK, Hourregue C, Cognat E, Dumurgier J, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Salvadó G, Shekari M, Operto G, Gispert JD, Minguillon C, Fauria K, Kollmorgen G, Suridjan I, Zimmer ER, Zetterberg H, Molinuevo JL, Paquet C, Rosa-Neto P, Blennow K, Suárez-Calvet M. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol 2021; 78:1471-1483. [PMID: 34661615 PMCID: PMC8524356 DOI: 10.1001/jamaneurol.2021.3671] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-β (Aβ)–positive and Aβ-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating Aβ pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer’s and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisière cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-β 42/40 (Aβ42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisière participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) Aβ-negative individuals (TRIAD: Aβ-negative mean [SD], 185.1 [93.5] pg/mL, Aβ-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: Aβ-negative mean [SD], 121.9 [42.4] pg/mL, Aβ-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU Aβ-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] Aβ-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU Aβ-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI Aβ-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU Aβ-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated Aβ-positive from Aβ-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant Aβ pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and Aβ pathology even among individuals in the early stages of AD.
Collapse
Affiliation(s)
- Andréa L Benedet
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Marta Milà-Alomà
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Agathe Vrillon
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Université de Paris, Institut national de la santé et de la recherche médicale U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley National Health Service Foundation, London, United Kingdom
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Thomas K Karikari
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Hourregue
- Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Emmanuel Cognat
- Université de Paris, Institut national de la santé et de la recherche médicale U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Julien Dumurgier
- Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Nina M Poltronetti
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Gemma Salvadó
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory Operto
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | | | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Biochemistry (PPGBioq) and Phamacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom
| | - José Luis Molinuevo
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Claire Paquet
- Université de Paris, Institut national de la santé et de la recherche médicale U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | | |
Collapse
|
6968
|
Forno G, Lladó A, Hornberger M. Going round in circles-The Papez circuit in Alzheimer's disease. Eur J Neurosci 2021; 54:7668-7687. [PMID: 34656073 DOI: 10.1111/ejn.15494] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
The hippocampus is regarded as the pivotal structure for episodic memory symptoms associated with Alzheimer's disease (AD) pathophysiology. However, what is often overlooked is that the hippocampus is 'only' one part of a network of memory critical regions, the Papez circuit. Other Papez circuit regions are often regarded as less relevant for AD as they are thought to sit 'downstream' of the hippocampus. However, this notion is oversimplistic, and increasing evidence suggests that other Papez regions might be affected before or concurrently with the hippocampus. In addition, AD research has mostly focused on episodic memory deficits, whereas spatial navigation processes are also subserved by the Papez circuit with increasing evidence supporting its valuable potential as a diagnostic measure of incipient AD pathophysiology. In the current review, we take a step forward analysing recent evidence on the structural and functional integrity of the Papez circuit across AD disease stages. Specifically, we will review the integrity of specific Papez regions from at-genetic-risk (APOE4 carriers), to mild cognitive impairment (MCI), to dementia stage of sporadic AD and autosomal dominant AD (ADAD). We related those changes to episodic memory and spatial navigation/orientation deficits in AD. Finally, we provide an overview of how the Papez circuit is affected in AD diseases and their specific symptomology contributions. This overview strengthened the need for moving away from a hippocampal-centric view to a network approach on how the whole Papez circuit is affected in AD and contributes to its symptomology, informing future research and clinical approaches.
Collapse
Affiliation(s)
- Gonzalo Forno
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,School of Psychology, Universidad de los Andes, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
6969
|
Katayama O, Lee S, Bae S, Makino K, Chiba I, Harada K, Morikawa M, Tomida K, Shimada H. Are non-face-to-face interactions an effective strategy for maintaining mental and physical health? Arch Gerontol Geriatr 2021; 98:104560. [PMID: 34700135 PMCID: PMC8529631 DOI: 10.1016/j.archger.2021.104560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has led to social isolation measures, forcing many people to stay indoors, stop daily outdoor activities, and limit face-to-face social interactions with friends, colleagues, and family. This study aimed to identify if non-face-to-face interaction affects depressive symptoms and frailty in older adults. METHODS We included 3834 older adults (age: 71.1 ± 6.9 [mean ± standard deviation] years; range: 60-96 years; 2153 women) from the National Center for Geriatrics and Gerontology-Study of Geriatric Syndromes. Interaction status was assessed using a self-reported questionnaire. Participants were categorized into: "both interactions" (both face-to-face and non-face-to-face interactions), "face-to-face only" (only face-to-face interactions), "non-face-to-face only" (only non-face-to-face interactions), "no interactions" (neither face-to-face nor non-face-to-face interactions) groups. Depressive symptoms and frailty were measured using the 15-item Geriatric Depression Scale and Kihon Checklist, respectively. RESULTS Potential confounding factors-adjusted odds ratios for both, face-to-face only and non-face-to-face only groups for developing depressive symptoms were 0.39 (95%CI, 0.26-0.57; p<0.001), 0.56 (95%CI, 0.38-0.84; p=0.004), and 0.51 (95%CI, 0.27-0.96; p=0.038), respectively, and those for development of frailty were 0.44 (95%CI, 0.30-0.65; p<0.001), 0.59 (95%CI, 0.39-0.87; p=0.008), and 0.63 (95%CI, 0.34-1.15; p=0.128), respectively. CONCLUSIONS Our findings indicate that non-face-to-face interactions are also important in preventing the deterioration of mental health, which is a concern during the COVID-19 pandemic. However, non-face-to-face interactions alone may not be sufficient to maintain physical health, and it is important to maintain opportunities for face-to-face interaction among older adults, particularly during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osamu Katayama
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Sangyoon Lee
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Seongryu Bae
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Keitaro Makino
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ippei Chiba
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kenji Harada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Masanori Morikawa
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kouki Tomida
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| |
Collapse
|
6970
|
Added value of semiquantitative analysis of brain FDG-PET for the differentiation between MCI-Lewy bodies and MCI due to Alzheimer's disease. Eur J Nucl Med Mol Imaging 2021; 49:1263-1274. [PMID: 34651219 DOI: 10.1007/s00259-021-05568-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE FDG-PET is an established supportive biomarker in dementia with Lewy bodies (DLB), but its diagnostic accuracy is unknown at the mild cognitive impairment (MCI-LB) stage when the typical metabolic pattern may be difficultly recognized at the individual level. Semiquantitative analysis of scans could enhance accuracy especially in less skilled readers, but its added role with respect to visual assessment in MCI-LB is still unknown. METHODS We assessed the diagnostic accuracy of visual assessment of FDG-PET by six expert readers, blind to diagnosis, in discriminating two matched groups of patients (40 with prodromal AD (MCI-AD) and 39 with MCI-LB), both confirmed by in vivo biomarkers. Readers were provided in a stepwise fashion with (i) maps obtained by the univariate single-subject voxel-based analysis (VBA) with respect to a control group of 40 age- and sex-matched healthy subjects, and (ii) individual odds ratio (OR) plots obtained by the volumetric regions of interest (VROI) semiquantitative analysis of the two main hypometabolic clusters deriving from the comparison of MCI-AD and MCI-LB groups in the two directions, respectively. RESULTS Mean diagnostic accuracy of visual assessment was 76.8 ± 5.0% and did not significantly benefit from adding the univariate VBA map reading (77.4 ± 8.3%) whereas VROI-derived OR plot reading significantly increased both accuracy (89.7 ± 2.3%) and inter-rater reliability (ICC 0.97 [0.96-0.98]), regardless of the readers' expertise. CONCLUSION Conventional visual reading of FDG-PET is moderately accurate in distinguishing between MCI-LB and MCI-AD, and is not significantly improved by univariate single-subject VBA but by a VROI analysis built on macro-regions, allowing for high accuracy independent of reader skills.
Collapse
|
6971
|
Li QS, Vasanthakumar A, Davis JW, Idler KB, Nho K, Waring JF, Saykin AJ. Association of peripheral blood DNA methylation level with Alzheimer's disease progression. Clin Epigenetics 2021; 13:191. [PMID: 34654479 PMCID: PMC8518178 DOI: 10.1186/s13148-021-01179-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Identifying biomarkers associated with Alzheimer’s disease (AD) progression may enable patient enrichment and improve clinical trial designs. Epigenome-wide association studies have revealed correlations between DNA methylation at cytosine-phosphate-guanine (CpG) sites and AD pathology and diagnosis. Here, we report relationships between peripheral blood DNA methylation profiles measured using Infinium® MethylationEPIC BeadChip and AD progression in participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Results The rate of cognitive decline from initial DNA sampling visit to subsequent visits was estimated by the slopes of the modified Preclinical Alzheimer Cognitive Composite (mPACC; mPACCdigit and mPACCtrailsB) and Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) plots using robust linear regression in cognitively normal (CN) participants and patients with mild cognitive impairment (MCI), respectively. In addition, diagnosis conversion status was assessed using a dichotomized endpoint. Two CpG sites were significantly associated with the slope of mPACC in CN participants (P < 5.79 × 10−8 [Bonferroni correction threshold]); cg00386386 was associated with the slope of mPACCdigit, and cg09422696 annotated to RP11-661A12.5 was associated with the slope of CDR-SB. No significant CpG sites associated with diagnosis conversion status were identified. Genes involved in cognition and learning were enriched. A total of 19, 13, and 5 differentially methylated regions (DMRs) associated with the slopes of mPACCtrailsB, mPACCdigit, and CDR-SB, respectively, were identified by both comb-p and DMRcate algorithms; these included DMRs annotated to HOXA4. Furthermore, 5 and 19 DMRs were associated with conversion status in CN and MCI participants, respectively. The most significant DMR was annotated to the AD-associated gene PM20D1 (chr1: 205,818,956 to 205,820,014 [13 probes], Sidak-corrected P = 7.74 × 10−24), which was associated with both the slope of CDR-SB and the MCI conversion status. Conclusion Candidate CpG sites and regions in peripheral blood were identified as associated with the rate of cognitive decline in participants in the ADNI cohort. While we did not identify a single CpG site with sufficient clinical utility to be used by itself due to the observed effect size, a biosignature composed of DNA methylation changes may have utility as a prognostic biomarker for AD progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01179-2.
Collapse
Affiliation(s)
- Qingqin S Li
- Neuroscience, Janssen Research and Development, LLC, 1125 Trenton-Harbourton Road, Titusville, NJ, 08560, USA.
| | | | - Justin W Davis
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | | | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
6972
|
Musiek ES, Gomez-Isla T, Holtzman DM. Aducanumab for Alzheimer disease: the amyloid hypothesis moves from bench to bedside. J Clin Invest 2021; 131:e154889. [PMID: 34651585 PMCID: PMC8516468 DOI: 10.1172/jci154889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Erik S. Musiek
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Alzheimer’s Disease Research Center, Boston, Massachusetts, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6973
|
Wang H, Del Mar N, Deng Y, Reiner A. Rescue of BDNF expression by the thalamic parafascicular nucleus with chronic treatment with the mGluR2/3 agonist LY379268 may contribute to the LY379268 rescue of enkephalinergic striatal projection neurons in R6/2 Huntington's disease mice. Neurosci Lett 2021; 763:136180. [PMID: 34416343 DOI: 10.1016/j.neulet.2021.136180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
We have found that daily subcutaneous injection with a maximum tolerated dose of the mGluR2/3 agonist LY379268 (20 mg/kg) beginning at 4 weeks of age dramatically improves the motor, neuronal and neurochemical phenotype in R6/2 mice, a rapidly progressing transgenic model of Huntington's disease (HD). We also previously showed that the benefit of daily LY379268 in R6/2 mice was associated with increases in corticostriatal brain-derived neurotrophic factor (BDNF), and in particular was associated with a reduction in enkephalinergic striatal projection neuron loss. In the present study, we show that daily LY379268 also rescues expression of BDNF by neurons of the thalamic parafascicular nucleus in R6/2 mice, which projects prominently to the striatum, and this increase too is linked to the rescue of enkephalinergic striatal neurons. Thus, LY379268 may protect enkephalinergic striatal projection neurons from loss by boosting BDNF production and delivery via both the corticostriatal and thalamostriatal projection systems. These results suggest that chronic treatment with mGluR2/3 agonists may represent an approach for slowing enkephalinergic neuron loss in HD, and perhaps progression in general.
Collapse
Affiliation(s)
- H Wang
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - N Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - Y Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
6974
|
Pannee J, Shaw LM, Korecka M, Waligorska T, Teunissen CE, Stoops E, Vanderstichele HMJ, Mauroo K, Verberk IMW, Keshavan A, Pesini P, Sarasa L, Pascual‐Lucas M, Fandos N, Allué J, Portelius E, Andreasson U, Yoda R, Nakamura A, Kaneko N, Yang S, Liu H, Palme S, Bittner T, Mawuenyega KG, Ovod V, Bollinger J, Bateman RJ, Li Y, Dage JL, Stomrud E, Hansson O, Schott JM, Blennow K, Zetterberg H. The global Alzheimer's Association round robin study on plasma amyloid β methods. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12242. [PMID: 34692980 PMCID: PMC8515356 DOI: 10.1002/dad2.12242] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays. METHODS Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma Aβ concentrations. RESULTS Correlations were weak for Aβ42 while Aβ40 correlations were stronger. The ratio Aβ42/Aβ40 did not improve the correlations and showed weak correlations. DISCUSSION The poor correlations for Aβ42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma Aβ42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study.
Collapse
Affiliation(s)
- Josef Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalMölndalSweden
| | - Leslie M. Shaw
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Magdalena Korecka
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Teresa Waligorska
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | | | | | | | - Inge M. W. Verberk
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Ashvini Keshavan
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | | | | | | | | | - Erik Portelius
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalMölndalSweden
| | - Ulf Andreasson
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalMölndalSweden
| | - Ritsuko Yoda
- Koichi Tanaka Mass Spectrometry Research LaboratoryShimadzu CorporationKyotoJapan
| | - Akinori Nakamura
- Department of Biomarker ResearchNational Center for Geriatrics and GerontologyObuAichiJapan
| | - Naoki Kaneko
- Koichi Tanaka Mass Spectrometry Research LaboratoryShimadzu CorporationKyotoJapan
| | | | | | | | | | - Kwasi G. Mawuenyega
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Vitaliy Ovod
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - James Bollinger
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Yan Li
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Erik Stomrud
- Clinical Memory Research UnitFaculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Oskar Hansson
- Clinical Memory Research UnitFaculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research InstituteLondonUK
| |
Collapse
|
6975
|
Tan MS, Cheah PL, Chin AV, Looi LM, Chang SW. A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach. Comput Biol Med 2021; 139:104947. [PMID: 34678481 DOI: 10.1016/j.compbiomed.2021.104947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease that affects cognition and is the most common cause of dementia in the elderly. As the number of elderly individuals increases globally, the incidence and prevalence of AD are expected to increase. At present, AD is diagnosed clinically, according to accepted criteria. The essential elements in the diagnosis of AD include a patients history, a physical examination and neuropsychological testing, in addition to appropriate investigations such as neuroimaging. The omics-based approach is an emerging field of study that may not only aid in the diagnosis of AD but also facilitate the exploration of factors that influence the development of the disease. Omics techniques, including genomics, transcriptomics, proteomics and metabolomics, may reveal the pathways that lead to neuronal death and identify biomolecular markers associated with AD. This will further facilitate an understanding of AD neuropathology. In this review, omics-based approaches that were implemented in studies on AD were assessed from a bioinformatics perspective. Current state-of-the-art statistical and machine learning approaches used in the single omics analysis of AD were compared based on correlations of variants, differential expression, functional analysis and network analysis. This was followed by a review of the approaches used in the integration and analysis of multi-omics of AD. The strengths and limitations of multi-omics analysis methods were explored and the issues and challenges associated with omics studies of AD were highlighted. Lastly, future studies in this area of research were justified.
Collapse
Affiliation(s)
- Mei Sze Tan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Phaik-Leng Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai-Vyrn Chin
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6976
|
Shi H, Koronyo Y, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Mirzaei N, Koronyo-Hamaoui M. Retinal Vasculopathy in Alzheimer's Disease. Front Neurosci 2021; 15:731614. [PMID: 34630020 PMCID: PMC8493243 DOI: 10.3389/fnins.2021.731614] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The retina has been increasingly investigated as a site of Alzheimer’s disease (AD) manifestation for over a decade. Early reports documented degeneration of retinal ganglion cells and their axonal projections. Our group provided the first evidence of the key pathological hallmarks of AD, amyloid β-protein (Aβ) plaques including vascular Aβ deposits, in the retina of AD and mild cognitively impaired (MCI) patients. Subsequent studies validated these findings and further identified electroretinography and vision deficits, retinal (p)tau and inflammation, intracellular Aβ accumulation, and retinal ganglion cell-subtype degeneration surrounding Aβ plaques in these patients. Our data suggest that the brain and retina follow a similar trajectory during AD progression, probably due to their common embryonic origin and anatomical proximity. However, the retina is the only CNS organ feasible for direct, repeated, and non-invasive ophthalmic examination with ultra-high spatial resolution and sensitivity. Neurovascular unit integrity is key to maintaining normal CNS function and cerebral vascular abnormalities are increasingly recognized as early and pivotal factors driving cognitive impairment in AD. Likewise, retinal vascular abnormalities such as changes in vessel density and fractal dimensions, blood flow, foveal avascular zone, curvature tortuosity, and arteriole-to-venule ratio were described in AD patients including early-stage cases. A rapidly growing number of reports have suggested that cerebral and retinal vasculopathy are tightly associated with cognitive deficits in AD patients and animal models. Importantly, we recently identified early and progressive deficiency in retinal vascular platelet-derived growth factor receptor-β (PDGFRβ) expression and pericyte loss that were associated with retinal vascular amyloidosis and cerebral amyloid angiopathy in MCI and AD patients. Other studies utilizing optical coherence tomography (OCT), retinal amyloid-fluorescence imaging and retinal hyperspectral imaging have made significant progress in visualizing and quantifying AD pathology through the retina. With new advances in OCT angiography, OCT leakage, scanning laser microscopy, fluorescein angiography and adaptive optics imaging, future studies focusing on retinal vascular AD pathologies could transform non-invasive pre-clinical AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
6977
|
Santagata F, Massaia M, D'Amelio P. The doll therapy as a first line treatment for behavioral and psychologic symptoms of dementia in nursing homes residents: a randomized, controlled study. BMC Geriatr 2021; 21:545. [PMID: 34641791 PMCID: PMC8507228 DOI: 10.1186/s12877-021-02496-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background Patients living with dementia are severely affected by the development of behavioral and psychologic symptoms (BPSD) which represent a burden for patients and caregivers. The use of psychotropic drugs in the control of BPSD is widely diffused, however the use of a first line non-pharmacologic approach is highly recommended. Here we evaluate the effect of doll therapy (DT) in the management of BPSD, on the reduction of caregiver burden and delirium incidence in nursing home residents by a randomized controlled trial. Methods We enrolled fifty-two nursing homes residents living with dementia and BPSD. Subjects were randomized to DT (26) or standard treatment (ST, 26), we measured BPSD, caregiver burden and delirium with standard clinical scales at baseline, after 45 and 90 days. In order to evaluate the presence of BPSD we used Neuropsychiatric Inventory (NPI) scale and the A.Di.CO scale, the caregiver burden was measured by the Greutzner scale and delirium by the Confusion Assessment Method (CAM) scale. Results DT was more effective in reducing agitation and aggressiveness as respect to ST. Moreover DT globally reduced the presence of BPSD as dysphoria, wandering and apathy. We observed a significant reduction of the professional caregiver burden and the incidence of delirium was significantly reduced in subjects treated with DT. Conclusions We show that DT is more effective that ST in the control of BSPD in patients affected by moderate to severe dementia. Moreover we suggest that DT may effective in reducing the incidence of delirium. Trial registration Retrospectively registered in ClinicalTrials.gov the 10th June 2, 2021 trial registration number NCT04920591.
Collapse
Affiliation(s)
- Francesca Santagata
- Department of Medical Science, Geriatric and Bone Diseases Unit, University of Turin, corso Dogliotti 14, 10126, Torino, Italy
| | - Massimiliano Massaia
- Department of Medical Science, Geriatric and Bone Diseases Unit, University of Turin, corso Dogliotti 14, 10126, Torino, Italy
| | - Patrizia D'Amelio
- Department of Medical Science, Geriatric and Bone Diseases Unit, University of Turin, corso Dogliotti 14, 10126, Torino, Italy. .,Department of Medicine, Service of Geriatric Medicine & Geriatric Rehabilitation, University of Lausanne Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
6978
|
Phospholipase Cγ2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proc Natl Acad Sci U S A 2021; 118:2112971118. [PMID: 34607960 DOI: 10.1073/pnas.2112971118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2 -/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.
Collapse
|
6979
|
Pasquini J, Brooks DJ, Pavese N. The Cholinergic Brain in Parkinson's Disease. Mov Disord Clin Pract 2021; 8:1012-1026. [PMID: 34631936 DOI: 10.1002/mdc3.13319] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The central cholinergic system includes the basal forebrain nuclei, mainly projecting to the cortex, the mesopontine tegmental nuclei, mainly projecting to the thalamus and subcortical structures, and other groups of projecting neurons and interneurons. This system regulates many functions of human behavior such as cognition, locomotion, and sleep. In Parkinson's disease (PD), disruption of central cholinergic transmission has been associated with cognitive decline, gait problems, freezing of gait (FOG), falls, REM sleep behavior disorder (RBD), neuropsychiatric manifestations, and olfactory dysfunction. Neuropathological and neuroimaging evidence suggests that basal forebrain pathology occurs simultaneously with nigrostriatal denervation, whereas pathology in the pontine nuclei may occur before the onset of motor symptoms. These studies have also detailed the clinical implications of cholinergic dysfunction in PD. Degeneration of basal forebrain nuclei and consequential cortical cholinergic denervation are associated with and may predict the subsequent development of cognitive decline and neuropsychiatric symptoms. Gait problems, FOG, and falls are associated with a complex dysfunction of both pontine and basal forebrain nuclei. Olfactory impairment is associated with cholinergic denervation of the limbic archicortex, specifically hippocampus and amygdala. Available evidence suggests that cholinergic dysfunction, alongside failure of the dopaminergic and other neurotransmitters systems, contributes to the generation of a specific set of clinical manifestations. Therefore, a "cholinergic phenotype" can be identified in people presenting with cognitive decline, falls, and RBD. In this review, we will summarize the organization of the central cholinergic system and the clinical correlates of cholinergic dysfunction in PD.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Pathophysiology and Transplantation University of Milan Milan Italy.,Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom
| | - David J Brooks
- Positron Emission Tomography Centre Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
6980
|
Ranson JM, Rittman T, Hayat S, Brayne C, Jessen F, Blennow K, van Duijn C, Barkhof F, Tang E, Mummery CJ, Stephan BCM, Altomare D, Frisoni GB, Ribaldi F, Molinuevo JL, Scheltens P, Llewellyn DJ. Modifiable risk factors for dementia and dementia risk profiling. A user manual for Brain Health Services-part 2 of 6. Alzheimers Res Ther 2021; 13:169. [PMID: 34635138 PMCID: PMC8507172 DOI: 10.1186/s13195-021-00895-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
We envisage the development of new Brain Health Services to achieve primary and secondary dementia prevention. These services will complement existing memory clinics by targeting cognitively unimpaired individuals, where the focus is on risk profiling and personalized risk reduction interventions rather than diagnosing and treating late-stage disease. In this article, we review key potentially modifiable risk factors and genetic risk factors and discuss assessment of risk factors as well as additional fluid and imaging biomarkers that may enhance risk profiling. We then outline multidomain measures and risk profiling and provide practical guidelines for Brain Health Services, with consideration of outstanding uncertainties and challenges. Users of Brain Health Services should undergo risk profiling tailored to their age, level of risk, and availability of local resources. Initial risk assessment should incorporate a multidomain risk profiling measure. For users aged 39-64, we recommend the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) Dementia Risk Score, whereas for users aged 65 and older, we recommend the Brief Dementia Screening Indicator (BDSI) and the Australian National University Alzheimer's Disease Risk Index (ANU-ADRI). The initial assessment should also include potentially modifiable risk factors including sociodemographic, lifestyle, and health factors. If resources allow, apolipoprotein E ɛ4 status testing and structural magnetic resonance imaging should be conducted. If this initial assessment indicates a low dementia risk, then low intensity interventions can be implemented. If the user has a high dementia risk, additional investigations should be considered if local resources allow. Common variant polygenic risk of late-onset AD can be tested in middle-aged or older adults. Rare variants should only be investigated in users with a family history of early-onset dementia in a first degree relative. Advanced imaging with 18-fluorodeoxyglucose positron emission tomography (FDG-PET) or amyloid PET may be informative in high risk users to clarify the nature and burden of their underlying pathologies. Cerebrospinal fluid biomarkers are not recommended for this setting, and blood-based biomarkers need further validation before clinical use. As new technologies become available, advances in artificial intelligence are likely to improve our ability to combine diverse data to further enhance risk profiling. Ultimately, Brain Health Services have the potential to reduce the future burden of dementia through risk profiling, risk communication, personalized risk reduction, and cognitive enhancement interventions.
Collapse
Affiliation(s)
- Janice M Ranson
- College of Medicine and Health, University of Exeter, Exeter, UK
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
| | - Timothy Rittman
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Shabina Hayat
- Department of Public Health and Primary Care, Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Frederik Barkhof
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eugene Tang
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine J Mummery
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
- Dementia Research Centre, Institute of Neurology, University College London, and National Hospital for Neurology and Neurosurgery, University College London Hospital, London, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, Nottingham University, Nottingham, UK
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Life Science Partners, Amsterdam, The Netherlands
| | - David J Llewellyn
- College of Medicine and Health, University of Exeter, Exeter, UK.
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK.
- Alan Turing Institute, London, UK.
- 2.04 College House, St Luke's Campus, University of Exeter Medical School, Exeter, EX1 2 LU, UK.
| |
Collapse
|
6981
|
Kotredes KP, Oblak A, Pandey RS, Lin PBC, Garceau D, Williams H, Uyar A, O’Rourke R, O’Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope Z, Foley KE, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Sasner M, Lamb BT, Howell GR. Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H. Front Aging Neurosci 2021; 13:735524. [PMID: 34707490 PMCID: PMC8544520 DOI: 10.3389/fnagi.2021.735524] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.
Collapse
Affiliation(s)
| | - Adrian Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O’Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | | | - Zackary Cope
- Department of Medicine—Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kate E. Foley
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | - Stacey J. Sukoff Rizzo
- Department of Medicine—Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | | | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | |
Collapse
|
6982
|
Quadalti C, Calandra-Buonaura G, Baiardi S, Mastrangelo A, Rossi M, Zenesini C, Giannini G, Candelise N, Sambati L, Polischi B, Plazzi G, Capellari S, Cortelli P, Parchi P. Neurofilament light chain and α-synuclein RT-QuIC as differential diagnostic biomarkers in parkinsonisms and related syndromes. NPJ Parkinsons Dis 2021; 7:93. [PMID: 34635674 PMCID: PMC8505434 DOI: 10.1038/s41531-021-00232-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Neurofilament light chain (NfL) and α-synuclein oligomeric seeds (α-syn-s) are promising biomarkers for patients with parkinsonism. We assessed their performance in discriminating Parkinson disease (PD) from atypical parkinsonisms (APDs) and evaluated the association between NfL levels and clinical measures of disease severity. We measured NfL in cerebrospinal fluid (CSF) and/or plasma by immunoassays and α-syn-s in CSF by real-time quaking-induced conversion (RT-QuIC) in patients with PD (n = 153), multiple system atrophy (MSA) (n = 80), progressive supranuclear palsy/cortico-basal syndrome (PSP/CBS) (n = 58), dementia with Lewy bodies (n = 64), isolated REM-sleep behaviour disorder (n = 19), and isolated autonomic failure (n = 30). Measures of disease severity included disease duration, UPDRS-III score, Hoehn and Yahr stage, orthostatic hypotension, MMSE score, and CSF amyloid-beta profile. Both CSF NfL (cNfL) and plasma NfL (pNfL) levels were markedly elevated in APDs, and allowed differentiation with PD (vs. APDs, cNfL AUC 0.96; pNfL AUC 0.95; vs. MSA cNfL AUC 0.99; pNfL AUC 0.97; vs. PSP/CBS cNfL AUC 0.94; pNfL AUC 0.94). RT-QuIC detected α-syn-s in 91.4% of PD, but only 2.5% of APDs (all MSA). In PD/PDD, motor scales significantly correlated with cNfL levels. Although pNfL and both cNfL and α-syn-s accurately distinguished PD from APDs, the combined assessment of CSF markers provided a higher diagnostic value (PD vs. APDs AUC 0.97; vs. MSA AUC 0.97; vs. PSP/CBS AUC 0.99) than RT-QuIC alone (p = 0.047 vs. APDs; p = 0.002 vs MSA; p = 0.007 vs PSP/CBS), or cNfL alone (p = 0.011 vs. APDs; p = 0.751 vs MSA; p = 0.0001 vs. PSP/CBS). The results support the use of these assays in specialised clinics.
Collapse
Affiliation(s)
- Corinne Quadalti
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Simone Baiardi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Niccolò Candelise
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Barbara Polischi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabina Capellari
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy. .,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
6983
|
Altomare D, Molinuevo JL, Ritchie C, Ribaldi F, Carrera E, Dubois B, Jessen F, McWhirter L, Scheltens P, van der Flier WM, Vellas B, Démonet JF, Frisoni GB. Brain Health Services: organization, structure, and challenges for implementation. A user manual for Brain Health Services-part 1 of 6. Alzheimers Res Ther 2021; 13:168. [PMID: 34635163 PMCID: PMC8507194 DOI: 10.1186/s13195-021-00827-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Dementia has a devastating impact on the quality of life of patients and families and comes with a huge cost to society. Dementia prevention is considered a public health priority by the World Health Organization. Delaying the onset of dementia by treating associated risk factors will bring huge individual and societal benefit. Empirical evidence suggests that, in higher-income countries, dementia incidence is decreasing as a result of healthier lifestyles. This observation supports the notion that preventing dementia is possible and that a certain degree of prevention is already in action. Further reduction of dementia incidence through deliberate prevention plans is needed to counteract its growing prevalence due to increasing life expectancy.An increasing number of individuals with normal cognitive performance seek help in the current memory clinics asking an evaluation of their dementia risk, preventive interventions, or interventions to ameliorate their cognitive performance. Consistent evidence suggests that some of these individuals are indeed at increased risk of dementia. This new health demand asks for a shift of target population, from patients with cognitive impairment to worried but cognitively unimpaired individuals. However, current memory clinics do not have the programs and protocols in place to deal with this new population.We envision the development of new services, henceforth called Brain Health Services, devoted to respond to demands from cognitively unimpaired individuals concerned about their risk of dementia. The missions of Brain Health Services will be (i) dementia risk profiling, (ii) dementia risk communication, (iii) dementia risk reduction, and (iv) cognitive enhancement. In this paper, we present the organizational and structural challenges associated with the set-up of Brain Health Services.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland.
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emmanuel Carrera
- Department of Neurology, Stroke Center, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, INSERM, Institut du Cerveau et de la Moelle Épinière, UMR-S975, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Laura McWhirter
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Life Science Partners, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bruno Vellas
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), Toulouse, France
| | - Jean-François Démonet
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
| |
Collapse
|
6984
|
Maiti P, Manna J, Thammathong J, Evans B, Dubey KD, Banerjee S, Dunbar GL. Tetrahydrocurcumin Has Similar Anti-Amyloid Properties as Curcumin: In Vitro Comparative Structure-Activity Studies. Antioxidants (Basel) 2021; 10:antiox10101592. [PMID: 34679727 PMCID: PMC8533373 DOI: 10.3390/antiox10101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Despite its potent anti-amyloid properties, the utility of curcumin (Cur) for the treatment of Alzheimer's disease (AD) is limited due to its low bioavailability. Tetrahydrocurcumin (THC), a more stable metabolite has been found in Cur-treated tissues. We compared the anti-amyloid and neuroprotective properties of curcumin, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and THC using molecular docking/dynamics, in-silico and in vitro studies. We measured the binding affinity, H-bonding capabilities of these compounds with amyloid beta protein (Aβ). Dot blot assays, photo-induced cross linking of unmodified protein (PICUP) and transmission electron microscopy (TEM) were performed to monitor the Aβ aggregation inhibition using these compounds. Neuroprotective effects of these derivatives were evaluated in N2a, CHO and SH-SY5Y cells using Aβ42 (10 µM) as a toxin. Finally, Aβ-binding capabilities were compared in the brain tissue derived from the 5× FAD mouse model of AD. We observed that THC had similar binding capability and Aβ aggregation inhibition such as keto/enol Cur and it was greater than BDMC and DMC. All these derivatives showed a similar degree of neuroprotection in vitro and labeled Aβ-plaques ex vivo. Overall, ECur and THC showed greater anti-amyloid properties than other derivatives. Therefore, THC, a more stable and bioavailable metabolite may provide greater therapeutic efficacy in AD than other turmeric derivatives.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604, USA;
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Brain Research Laboratory, College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48604, USA
- Correspondence: (P.M.); (G.L.D.)
| | - Jayeeta Manna
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604, USA;
| | - Joshua Thammathong
- Department of Physical Sciences, College of Science, Technology, Engineering, and Mathematics, University of Arkansas Fort Smith, Fort Smith, AR 72913, USA; (J.T.); (B.E.); (S.B.)
| | - Bobbi Evans
- Department of Physical Sciences, College of Science, Technology, Engineering, and Mathematics, University of Arkansas Fort Smith, Fort Smith, AR 72913, USA; (J.T.); (B.E.); (S.B.)
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University, Delhi-NCR, Gautam Buddha Nagar 201314, India;
| | - Souvik Banerjee
- Department of Physical Sciences, College of Science, Technology, Engineering, and Mathematics, University of Arkansas Fort Smith, Fort Smith, AR 72913, USA; (J.T.); (B.E.); (S.B.)
| | - Gary L. Dunbar
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604, USA;
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Correspondence: (P.M.); (G.L.D.)
| |
Collapse
|
6985
|
Brioschi Guevara A, Bieler M, Altomare D, Berthier M, Csajka C, Dautricourt S, Démonet JF, Dodich A, Frisoni GB, Miniussi C, Molinuevo JL, Ribaldi F, Scheltens P, Chételat G. Protocols for cognitive enhancement. A user manual for Brain Health Services-part 5 of 6. Alzheimers Res Ther 2021; 13:172. [PMID: 34635149 PMCID: PMC8507160 DOI: 10.1186/s13195-021-00844-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022]
Abstract
Cognitive complaints in the absence of objective cognitive impairment, observed in patients with subjective cognitive decline (SCD), are common in old age. The first step to postpone cognitive decline is to use techniques known to improve cognition, i.e., cognitive enhancement techniques.We aimed to provide clinical recommendations to improve cognitive performance in cognitively unimpaired individuals, by using cognitive, mental, or physical training (CMPT), non-invasive brain stimulations (NIBS), drugs, or nutrients. We made a systematic review of CMPT studies based on the GRADE method rating the strength of evidence.CMPT have clinically relevant effects on cognitive and non-cognitive outcomes. The quality of evidence supporting the improvement of outcomes following a CMPT was high for metamemory; moderate for executive functions, attention, global cognition, and generalization in daily life; and low for objective memory, subjective memory, motivation, mood, and quality of life, as well as a transfer to other cognitive functions. Regarding specific interventions, CMPT based on repeated practice (e.g., video games or mindfulness, but not physical training) improved attention and executive functions significantly, while CMPT based on strategic learning significantly improved objective memory.We found encouraging evidence supporting the potential effect of NIBS in improving memory performance, and reducing the perception of self-perceived memory decline in SCD. Yet, the high heterogeneity of stimulation protocols in the different studies prevent the issuing of clear-cut recommendations for implementation in a clinical setting. No conclusive argument was found to recommend any of the main pharmacological cognitive enhancement drugs ("smart drugs", acetylcholinesterase inhibitors, memantine, antidepressant) or herbal extracts (Panax ginseng, Gingko biloba, and Bacopa monnieri) in people without cognitive impairment.Altogether, this systematic review provides evidence for CMPT to improve cognition, encouraging results for NIBS although more studies are needed, while it does not support the use of drugs or nutrients.
Collapse
Affiliation(s)
- Andrea Brioschi Guevara
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Melanie Bieler
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Marcelo Berthier
- Unit of Cognitive Neurology and Aphasia, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
| | - Chantal Csajka
- Center for Research and Innovation in clinical Pharmaceutical Sciences, University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Jean-François Démonet
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alessandra Dodich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gael Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| |
Collapse
|
6986
|
Solomon A, Stephen R, Altomare D, Carrera E, Frisoni GB, Kulmala J, Molinuevo JL, Nilsson P, Ngandu T, Ribaldi F, Vellas B, Scheltens P, Kivipelto M. Multidomain interventions: state-of-the-art and future directions for protocols to implement precision dementia risk reduction. A user manual for Brain Health Services-part 4 of 6. Alzheimers Res Ther 2021; 13:171. [PMID: 34635167 PMCID: PMC8507202 DOI: 10.1186/s13195-021-00875-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Although prevention of dementia and late-life cognitive decline is a major public health priority, there are currently no generally established prevention strategies or operational models for implementing such strategies into practice. This article is a narrative review of available evidence from multidomain dementia prevention trials targeting several risk factors and disease mechanisms simultaneously, in individuals without dementia at baseline. Based on the findings, we formulate recommendations for implementing precision risk reduction strategies into new services called Brain Health Services. A literature search was conducted using medical databases (MEDLINE via PubMed and SCOPUS) to select relevant studies: non-pharmacological multidomain interventions (i.e., combining two or more intervention domains), target population including individuals without dementia, and primary outcomes including cognitive/functional performance changes and/or incident cognitive impairment or dementia. Further literature searches covered the following topics: sub-group analyses assessing potential modifiers for the intervention effect on cognition in the multidomain prevention trials, dementia risk scores used as surrogate outcomes in multidomain prevention trials, dementia risk scores in relation to brain pathology markers, and cardiovascular risk scores in relation to dementia. Multidomain intervention studies conducted so far appear to have mixed results and substantial variability in target populations, format and intensity of interventions, choice of control conditions, and outcome measures. Most trials were conducted in high-income countries. The differences in design between the larger, longer-term trials that met vs. did not meet their primary outcomes suggest that multidomain intervention effectiveness may be dependent on a precision prevention approach, i.e., successfully identifying the at-risk groups who are most likely to benefit. One such successful trial has already developed an operational model for implementing the intervention into practice. Evidence on the efficacy of risk reduction interventions is promising, but not yet conclusive. More long-term multidomain randomized controlled trials are needed to fill the current evidence gaps, especially concerning low- and middle-income countries and integration of dementia prevention with existing cerebrovascular prevention programs. A precision risk reduction approach may be most effective for dementia prevention. Such an approach could be implemented in Brain Health Services.
Collapse
Affiliation(s)
- Alina Solomon
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
- Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden.
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK.
| | - Ruth Stephen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Emmanuel Carrera
- Stroke Center, Department of Neurology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Jenni Kulmala
- Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Peter Nilsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Bruno Vellas
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), Toulouse, France
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Miia Kivipelto
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6987
|
Milne R, Altomare D, Ribaldi F, Molinuevo JL, Frisoni GB, Brayne C. Societal and equity challenges for Brain Health Services. A user manual for Brain Health Services-part 6 of 6. Alzheimers Res Ther 2021; 13:173. [PMID: 34635173 PMCID: PMC8507368 DOI: 10.1186/s13195-021-00885-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022]
Abstract
Brain Health Services are a novel approach to the personalized prevention of dementia. In this paper, we consider how such services can best reflect their social, cultural, and economic context and, in doing so, deliver fair and equitable access to risk reduction. We present specific areas of challenge associated with the social context for dementia prevention. The first concentrates on how Brain Health Services engage with the "at-risk" individual, recognizing the range of factors that shape an individual's risk of dementia and the efficacy of risk reduction measures. The second emphasizes the social context of Brain Health Services themselves and their ability to provide equitable access to risk reduction. We then elaborate proposals for meeting or mitigating these challenges. We suggest that considering these challenges will enable Brain Health Services to address two fundamental questions: the balance between an individualized "high-risk" and population focus for public health prevention and the ability of services to meet ethical standards of justice and health equity.
Collapse
Affiliation(s)
- Richard Milne
- Society and Ethics Research Group, Wellcome Connecting Science, Hinxton, UK.
- Cambridge Public Health, University of Cambridge, Cambridge, UK.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
6988
|
Visser LNC, Minguillon C, Sánchez-Benavides G, Abramowicz M, Altomare D, Fauria K, Frisoni GB, Georges J, Ribaldi F, Scheltens P, van der Schaar J, Zwan M, van der Flier WM, Molinuevo JL. Dementia risk communication. A user manual for Brain Health Services-part 3 of 6. Alzheimers Res Ther 2021; 13:170. [PMID: 34635169 PMCID: PMC8507171 DOI: 10.1186/s13195-021-00840-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests dementia incidence can be reduced through prevention programs targeting risk factors. To accelerate the implementation of such prevention programs, a new generation of brain health services (BHS) is envisioned, involving risk profiling, risk communication, risk reduction, and cognitive enhancement. The purpose of risk communication is to enable individuals at risk to make informed decisions and take action to protect themselves and is thus a crucial step in tailored prevention strategies of the dementia incidence. However, communicating about dementia risk is complex and challenging.In this paper, we provide an overview of (i) perspectives on communicating dementia risk from an ethical, clinical, and societal viewpoint; (ii) insights gained from memory clinical practice; (iii) available evidence on the impact of disclosing APOE and Alzheimer's disease biomarker test results gathered from clinical trials and observational studies; (iv) the value of established registries in light of BHS; and (v) practical recommendations regarding effective strategies for communicating about dementia risk.In addition, we identify challenges, i.e., the current lack of evidence on what to tell on an individual level-the actual risk-and on how to optimally communicate about dementia risk, especially concerning worried yet cognitively unimpaired individuals. Ideally, dementia risk communication strategies should maximize the desired impact of risk information on individuals' understanding of their health/disease status and risk perception and minimize potential harms. More research is thus warranted on the impact of dementia risk communication, to (1) evaluate the merits of different approaches to risk communication on outcomes in the cognitive, affective and behavioral domains, (2) develop an evidence-based, harmonized dementia risk communication protocol, and (3) develop e-tools to support and promote adherence to this protocol in BHSs.Based on the research reviewed, we recommend that dementia risk communication should be precise; include the use of absolute risks, visual displays, and time frames; based on a process of shared decision-making; and address the inherent uncertainty that comes with any probability.
Collapse
Affiliation(s)
- Leonie N C Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marc Abramowicz
- Division of Genetic Medicine, Department of Diagnostics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | | | - Federica Ribaldi
- Division of Genetic Medicine, Department of Diagnostics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jetske van der Schaar
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marissa Zwan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| |
Collapse
|
6989
|
Costenoble A, Rossi G, Knoop V, Debain A, Smeys C, Bautmans I, Verté D, De Vriendt P, Gorus E. Does psychological resilience mediate the relation between daily functioning and prefrailty status? Int Psychogeriatr 2021; 34:1-10. [PMID: 34629136 DOI: 10.1017/s1041610221001058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Understanding of prefrailty's relationship with limitations in activities of daily living (ADLs) moderated by psychological resilience is needed, as resilience might support ADLs' maintenance and thus protect against frailty. Therefore, this study aims to analyze the influence of psychological resilience (using the Connor-Davidson Resilience Scale; CD-RISC) on the relation between ADLs and frailty status of older individuals (i.e. prefrail versus robust). DESIGN Cross-sectional design. SETTING UZ Brussels, Belgium. PARTICIPANTS Robust (Fried 0/4;n = 214; Age = 82.3 ± 2.1yrs) and prefrail (Fried 1-2/4; n = 191; Age = 83.8 ±3.2yrs) community-dwelling older individuals were included. MEASUREMENTS Frailty scores were obtained from weight loss, exhaustion, gait speed, and grip strength. A total Disability Index (DI) expressed dependency for basic (b-), instrumental (i-), and advanced (a-)ADLs. Mediation was investigated by estimating direct and indirect effects of all levels of ADLs and CD-RISC total score on prefrailty/robustness using a stepwise multiple regression approach. RESULTS Prefrailty/robustness significantly correlated with a-ADL-DI (point-biserial correlation (rpb) = 0.098; p<0.05). Adjusted for age and gender, the a-ADL-DI (p<0.05) had a significant protective direct effect against prefrailty. No effects were found with the CD-RISC total score. CONCLUSIONS Less limitation in a-ADLs is a directly correlated factor of prefrailty and might represent a higher likelihood of robustness.
Collapse
Affiliation(s)
- Axelle Costenoble
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Gerontology Department, VUB, Laarbeeklaan 103, B-1090Brussels, Belgium
| | - Gina Rossi
- Personality and Psychopathology Research Group, Faculty of Psychology and Educational Sciences, VUB, Brussels, Belgium
| | - Veerle Knoop
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Gerontology Department, VUB, Laarbeeklaan 103, B-1090Brussels, Belgium
| | - Aziz Debain
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Gerontology Department, VUB, Laarbeeklaan 103, B-1090Brussels, Belgium
- Geriatrics Department, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, B-1090Brussels, Belgium
| | - Celeste Smeys
- Geriatrics Department, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, B-1090Brussels, Belgium
| | - Ivan Bautmans
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Gerontology Department, VUB, Laarbeeklaan 103, B-1090Brussels, Belgium
- Geriatrics Department, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, B-1090Brussels, Belgium
| | - Dominique Verté
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Belgian Ageing Studies Research Group, VUB, Brussels, Belgium
| | - Patricia De Vriendt
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Gerontology Department, VUB, Laarbeeklaan 103, B-1090Brussels, Belgium
- Arteveldehogeschool, Ghent, Belgium
| | - Ellen Gorus
- Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090Brussels, Belgium
- Gerontology Department, VUB, Laarbeeklaan 103, B-1090Brussels, Belgium
- Geriatrics Department, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, B-1090Brussels, Belgium
| |
Collapse
|
6990
|
Interactions between dietary patterns and genetic factors in relation to incident dementia among 70-year-olds. Eur J Nutr 2021; 61:871-884. [PMID: 34632537 PMCID: PMC8854136 DOI: 10.1007/s00394-021-02688-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 10/28/2022]
Abstract
PURPOSE To investigate potential interactions between dietary patterns and genetic factors modulating risk for Alzheimer's disease (AD) in relation to incident dementia. METHODS Data were derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden, including 602 dementia-free 70-year-olds (examined 1992-93, or 2000-02; 64% women) followed for incident dementia until 2016. Two factors from a reduced rank regression analysis were translated into dietary patterns, one healthy (e.g., vegetables, fruit, and fish) and one western (e.g., red meat, refined cereals, and full-fat dairy products). Genetic risk was determined by APOE ε4 status and non-APOE AD-polygenic risk scores (AD-PRSs). Gene-diet interactions in relation to incident dementia were analysed with Cox regression models. The interaction p value threshold was < 0.1. RESULTS There were interactions between the dietary patterns and APOE ε4 status in relation to incident dementia (interaction p value threshold of < 0.1), while no evidence of interactions were found between the dietary patterns and the AD-PRSs. Those with higher adherence to a healthy dietary pattern had a reduced risk of dementia among ε4 non-carriers (HR: 0.77; 95% CI: 0.61; 0.98), but not among ε4 carriers (HR: 0.86; CI: 0.63; 1.18). Those with a higher adherence to the western dietary pattern had an increased risk of dementia among ε4 carriers (HR: 1.37; 95% CI: 1.05; 1.78), while no association was observed among ε4 non-carriers (HR: 0.99; CI: 0.81; 1.21). CONCLUSIONS The results of this study suggest that there is an interplay between dietary patterns and APOE ε4 status in relation to incident dementia.
Collapse
|
6991
|
Discovery of a Metabolic Signature Predisposing High Risk Patients with Mild Cognitive Impairment to Converting to Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222010903. [PMID: 34681563 PMCID: PMC8535253 DOI: 10.3390/ijms222010903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Assessing dementia conversion in patients with mild cognitive impairment (MCI) remains challenging owing to pathological heterogeneity. While many MCI patients ultimately proceed to Alzheimer’s disease (AD), a subset of patients remain stable for various times. Our aim was to characterize the plasma metabolites of nineteen MCI patients proceeding to AD (P-MCI) and twenty-nine stable MCI (S-MCI) patients by untargeted metabolomics profiling. Alterations in the plasma metabolites between the P-MCI and S-MCI groups, as well as between the P-MCI and AD groups, were compared over the observation period. With the help of machine learning-based stratification, a 20-metabolite signature panel was identified that was associated with the presence and progression of AD. Furthermore, when the metabolic signature panel was used for classification of the three patient groups, this gave an accuracy of 73.5% using the panel. Moreover, when specifically classifying the P-MCI and S-MCI subjects, a fivefold cross-validation accuracy of 80.3% was obtained using the random forest model. Importantly, indole-3-propionic acid, a bacteria-generated metabolite from tryptophan, was identified as a predictor of AD progression, suggesting a role for gut microbiota in AD pathophysiology. Our study establishes a metabolite panel to assist in the stratification of MCI patients and to predict conversion to AD.
Collapse
|
6992
|
Butler LM, Houghton R, Abraham A, Vassilaki M, Durán-Pacheco G. Comorbidity Trajectories Associated With Alzheimer's Disease: A Matched Case-Control Study in a United States Claims Database. Front Neurosci 2021; 15:749305. [PMID: 34690684 PMCID: PMC8531650 DOI: 10.3389/fnins.2021.749305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Trajectories of comorbidities among individuals at risk of Alzheimer's disease (AD) may differ from those aging without AD clinical syndrome. Therefore, characterizing the comorbidity burden and pattern associated with AD risk may facilitate earlier detection, enable timely intervention, and help slow the rate of cognitive and functional decline in AD. This case-control study was performed to compare the prevalence of comorbidities between AD cases and controls during the 5 years prior to diagnosis (or index date for controls); and to identify comorbidities with a differential time-dependent prevalence trajectory during the 5 years prior to AD diagnosis. Methods: Incident AD cases and individually matched controls were identified in a United States claims database between January 1, 2000 and December 31, 2016. AD status and comorbidities were defined based on the presence of diagnosis codes in administrative claims records. Generalized estimating equations were used to assess evidence of changes over time and between AD and controls. A principal component analysis and hierarchical clustering was performed to identify groups of AD-related comorbidities with respect to prevalence changes over time (or trajectory), and differences between AD and controls. Results: Data from 186,064 individuals in the IBM MarketScan Commercial Claims and Medicare Supplementary databases were analyzed (93,032 AD cases and 93,032 non-AD controls). In total, there were 177 comorbidities with a ≥ 5% prevalence. Five main clusters of comorbidities were identified. Clusters differed between AD cases and controls in the overall magnitude of association with AD, in their diverging time trajectories, and in comorbidity prevalence. Three clusters contained comorbidities that notably increased in frequency over time in AD cases but not in controls during the 5-year period before AD diagnosis. Comorbidities in these clusters were related to the early signs and/or symptoms of AD, psychiatric and mood disorders, cerebrovascular disease, history of hazard and injuries, and metabolic, cardiovascular, and respiratory complaints. Conclusion: We demonstrated a greater comorbidity burden among those who later developed AD vs. controls, and identified comorbidity clusters that could distinguish these two groups. Further investigation of comorbidity burden is warranted to facilitate early detection of individuals at risk of developing AD.
Collapse
Affiliation(s)
| | | | | | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
6993
|
Dąbrowska E, Galińska-Skok B, Waszkiewicz N. Depressive and Neurocognitive Disorders in the Context of the Inflammatory Background of COVID-19. Life (Basel) 2021; 11:1056. [PMID: 34685427 PMCID: PMC8541562 DOI: 10.3390/life11101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
The dysfunctional effects of the coronavirus disease 2019 (COVID-19) infection on the nervous system are established. The manifestation of neuropsychiatric symptoms during and after infection is influenced by the neuroinvasive and neurotrophic properties of SARS-CoV-2 as well as strong inflammation characterised by a specific "cytokine storm". Research suggests that a strong immune response to a SARS-CoV-2 infection and psychological stressors related to the pandemic may cause chronic inflammatory processes in the body with elevated levels of inflammatory markers contributing to the intensification of neurodegenerative processes. It is suggested that neuroinflammation and associated central nervous system changes may significantly contribute to the etiopathogenesis of depressive disorders. In addition, symptoms after a COVID-19 infection may persist for up to several weeks after an acute infection as a post-COVID-19 syndrome. Moreover, previous knowledge indicates that among SSRI (selective serotonin reuptake inhibitor) group antidepressants, fluoxetine is a promising drug against COVID-19. In conclusion, further research, observation and broadening of the knowledge of the pathomechanism of a SARS-CoV-2 infection and the impact on potential complications are necessary. It is essential to continue research in order to assess the long-term neuropsychiatric effects in COVID-19 patients and to find new therapeutic strategies.
Collapse
Affiliation(s)
- Eliza Dąbrowska
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (B.G.-S.); (N.W.)
| | | | | |
Collapse
|
6994
|
Ingala S, Tomassen J, Collij LE, Prent N, van 't Ent D, Ten Kate M, Konijnenberg E, Yaqub M, Scheltens P, de Geus EJC, Teunissen CE, Tijms B, Wink AM, Barkhof F, van Berckel BNM, Visser PJ, den Braber A. Amyloid-driven disruption of default mode network connectivity in cognitively healthy individuals. Brain Commun 2021; 3:fcab201. [PMID: 34617016 PMCID: PMC8490784 DOI: 10.1093/braincomms/fcab201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/03/2022] Open
Abstract
Cortical accumulation of amyloid beta is one of the first events of Alzheimer’s disease pathophysiology, and has been suggested to follow a consistent spatiotemporal ordering, starting in the posterior cingulate cortex, precuneus and medio-orbitofrontal cortex. These regions overlap with those of the default mode network, a brain network also involved in memory functions. Aberrant default mode network functional connectivity and higher network sparsity have been reported in prodromal and clinical Alzheimer’s disease. We investigated the association between amyloid burden and default mode network connectivity in the preclinical stage of Alzheimer’s disease and its association with longitudinal memory decline. We included 173 participants, in which amyloid burden was assessed both in CSF by the amyloid beta 42/40 ratio, capturing the soluble part of amyloid pathology, and in dynamic PET scans calculating the non-displaceable binding potential in early-stage regions. The default mode network was identified with resting-state functional MRI. Then, we calculated functional connectivity in the default mode network, derived from independent component analysis, and eigenvector centrality, a graph measure recursively defining important nodes on the base of their connection with other important nodes. Memory was tested at baseline, 2- and 4-year follow-up. We demonstrated that higher amyloid burden as measured by both CSF amyloid beta 42/40 ratio and non-displaceable binding potential in the posterior cingulate cortex was associated with lower functional connectivity in the default mode network. The association between amyloid burden (CSF and non-displaceable binding potential in the posterior cingulate cortex) and aberrant default mode network connectivity was confirmed at the voxel level with both functional connectivity and eigenvector centrality measures, and it was driven by voxel clusters localized in the precuneus, cingulate, angular and left middle temporal gyri. Moreover, we demonstrated that functional connectivity in the default mode network predicts longitudinal memory decline synergistically with regional amyloid burden, as measured by non-displaceable binding potential in the posterior cingulate cortex. Taken together, these results suggest that early amyloid beta deposition is associated with aberrant default mode network connectivity in cognitively healthy individuals and that default mode network connectivity markers can be used to identify subjects at risk of memory decline.
Collapse
Affiliation(s)
- Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Naomi Prent
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands.,Faculty of Behavioral and Movement Sciences, Section Clinical Neuropsychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Vesalius, Centre for Neuropsychiatry, GGZ Altrecht, 3447 GM Woerden, The Netherlands
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mara Ten Kate
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Elles Konijnenberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands.,Institute of Neurology and Healthcare Engineering, University College London, WC1E 6BT London, UK
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6995
|
Thurlow KE, Lovering RC, De Miranda Pinheiro S. Student biocuration projects as a learning environment. F1000Res 2021; 10:1023. [PMID: 35211294 PMCID: PMC8831850 DOI: 10.12688/f1000research.72808.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 08/23/2024] Open
Abstract
Background: Bioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon. Some universities do provide courses on a variety of bioinformatics resources and tools, a few also provide biocuration projects, during which students submit data to annotation resources. Methods: To assess the usefulness and enjoyability of annotation projects a survey was sent to University College London (UCL) students who have undertaken Gene Ontology biocuration projects. Results: Analysis of survey responses suggest that these projects provide students with an opportunity not only to learn about bioinformatics resources but also to improve their literature analysis, presentation and writing skills. Conclusion: Biocuration student projects provide valuable annotations as well as enabling students to develop a variety of skills relevant to their future careers. It is also hoped that, as future scientists, these students will critically assess their own manuscripts and ensure that these are written with the biocurators of the future in mind.
Collapse
Affiliation(s)
- Katherine E. Thurlow
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Sandra De Miranda Pinheiro
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| |
Collapse
|
6996
|
Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, Lakhani HV, Sodhi K. A Review of miRNAs as Biomarkers and Effect of Dietary Modulation in Obesity Associated Cognitive Decline and Neurodegenerative Disorders. Front Mol Neurosci 2021; 14:756499. [PMID: 34690698 PMCID: PMC8529023 DOI: 10.3389/fnmol.2021.756499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a progressive increase in the prevalence of obesity and its comorbidities such as type 2 diabetes and cardiovascular diseases worldwide. Recent studies have suggested that the crosstalk between adipose tissue and central nervous system (CNS), through cellular mediators and signaling pathways, may causally link obesity with cognitive decline and give rise to neurodegenerative disorders. Several mechanisms have been proposed in obesity, including inflammation, oxidative stress, insulin resistance, altered lipid and cholesterol homeostasis, which may result in neuroinflammation, altered brain insulin signaling, amyloid-beta (Aβ) deposition and neuronal cell death. Since obesity is associated with functional and morphological alterations in the adipose tissues, the resulting peripheral immune response augments the development and progression of cognitive decline and increases susceptibility of neurodegenerative disorders, such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Studies have also elucidated an important role of high fat diet in the exacerbation of these clinical conditions. However, the underlying factors that propel and sustain this obesity associated cognitive decline and neurodegeneration, remains highly elusive. Moreover, the mechanisms linking these phenomena are not well-understood. The cumulative line of evidence have demonstrated an important role of microRNAs (miRNAs), a class of small non-coding RNAs that regulate gene expression and transcriptional changes, as biomarkers of pathophysiological conditions. Despite the lack of utility in current clinical practices, miRNAs have been shown to be highly specific and sensitive to the clinical condition being studied. Based on these observations, this review aims to assess the role of several miRNAs and aim to elucidate underlying mechanisms that link obesity with cognitive decline and neurodegenerative disorders. Furthermore, this review will also provide evidence for the effect of dietary modulation which can potentially ameliorate cognitive decline and neurodegenerative diseases associated with obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Komal Sodhi
- Department of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
6997
|
PLCγ2 regulates TREM2 signalling and integrin-mediated adhesion and migration of human iPSC-derived macrophages. Sci Rep 2021; 11:19842. [PMID: 34615897 PMCID: PMC8494732 DOI: 10.1038/s41598-021-96144-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
Human genetic studies have linked rare coding variants in microglial genes, such as TREM2, and more recently PLCG2 to Alzheimer's disease (AD) pathology. The P522R variant in PLCG2 has been shown to confer protection for AD and to result in a subtle increase in enzymatic activity. PLCγ2 is a key component of intracellular signal transduction networks and induces Ca2+ signals downstream of many myeloid cell surface receptors, including TREM2. To explore the relationship between PLCγ2 and TREM2 and the role of PLCγ2 in regulating immune cell function, we generated human induced pluripotent stem cell (iPSC)- derived macrophages from isogenic lines with homozygous PLCG2 knockout (Ko). Stimulating TREM2 signalling using a polyclonal antibody revealed a complete lack of calcium flux and IP1 accumulation in PLCγ2 Ko cells, demonstrating a non-redundant role of PLCγ2 in calcium release downstream of TREM2. Loss of PLCγ2 led to broad changes in expression of several macrophage surface markers and phenotype, including reduced phagocytic activity and survival, while LPS-induced secretion of the inflammatory cytokines TNFα and IL-6 was unaffected. We identified additional deficits in PLCγ2- deficient cells that compromised cellular adhesion and migration. Thus, PLCγ2 is key in enabling divergent cellular functions and might be a promising target to increase beneficial microglial functions.
Collapse
|
6998
|
Alzheimer's disease clinical trial update 2019-2021. J Neurol 2021; 269:1038-1051. [PMID: 34609602 DOI: 10.1007/s00415-021-10790-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
The current clinical trial landscape targeting Alzheimer's disease (AD) is reviewed in the context of studies completed from 2019 to 2021. This review focuses on available data for observational and phase II/III clinical trial results, which will have the most impact on the field. ClinicalTrials.gov, the United States (US) comprehensive federal registry, was queried to identify completed trials. There are currently 226 interventional clinical trials and 51 observational studies completed, suspended, terminated, or withdrawn within our selected time frame. This review reveals that the role of biomarkers is expanding and although many lessons have been learned, many challenges remain when targeting disease modification of AD through amyloid and tau. In addition, to halt or slow clinical progression of AD, new clinical and observational trials are focusing on prevention as well as the role of more diverse biological processes known to influence AD pathology.
Collapse
|
6999
|
Tian T, Qin X, Wang Y, Shi Y, Yang X. 40 Hz Light Flicker Promotes Learning and Memory via Long Term Depression in Wild-Type Mice. J Alzheimers Dis 2021; 84:983-993. [PMID: 34602491 DOI: 10.3233/jad-215212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND 40 Hz light flicker is a well-known non-invasive treatment that is thought to be effective in treating Alzheimer's disease. However, the effects of 40 Hz visual stimulation on neural networks, synaptic plasticity, and learning and memory in wild-type animals remain unclear. OBJECTIVE We aimed to explore the impact of 40 Hz visual stimulation on synaptic plasticity, place cell, and learning and memory in wild-type mice. METHODS c-Fos+ cell distribution and in vivo electrophysiology was used to explore the effects of 40 Hz chronic visual stimulation on neural networks and neuroplasticity in wild-type mice. The character of c-Fos+ distribution in the brain and the changes of corticosterone levels in the blood were used to investigate the state of animal. Place cell analysis and novel location test were utilized to examine the effects of 40 Hz chronic visual stimulation on learning and memory in wild-type mice. RESULTS We found that 40 Hz light flicker significantly affected many brain regions that are related to stress. Also, 40 Hz induced gamma enrichment within 15 min after light flickers and impaired the expression of long-term potentiation (LTP), while facilitated the expression of long-term depression (LTD) in the hippocampal CA1. Furthermore, 40 Hz light flicker enhanced the expression of corticosterone, rendered well-formed place cells unstable and improved animal's learning and memory in novel local recognition test, which could be blocked by pre-treatment with the LTD specific blocker Glu2A-3Y. CONCLUSION These finding suggested that 40 Hz chronic light flicker contains stress effects, promoting learning and memory in wild-type mice via LTD.
Collapse
Affiliation(s)
- Tian Tian
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin Qin
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yan Shi
- Faculty of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Xin Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
7000
|
Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, Ferri R, Galvano F, Leggio GM, Grosso G, Caraci F. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2021; 232:108013. [PMID: 34624428 DOI: 10.1016/j.pharmthera.2021.108013] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 02/09/2023]
Abstract
Dietary polyphenols have been the focus of major interest for their potential benefits on human health. Several preclinical studies have been conducted to provide a rationale for their potential use as therapeutic agents in preventing or ameliorating cognitive decline. However, results from human studies are scarce and poorly documented. The aim of this review was to discuss the potential mechanisms involved in age-related cognitive decline or early stage cognitive impairment and current evidence from clinical human studies conducted on polyphenols and the aforementioned outcomes. The evidence published so far is encouraging but contrasting findings are to be taken into account. Most studies on anthocyanins showed a consistent positive effect on various cognitive aspects related to aging or early stages of cognitive impairment. Studies on cocoa flavanols, resveratrol, and isoflavones provided substantial contrasting results and further research is needed to clarify the therapeutic potential of these compounds. Results from other studies on quercetin, green tea flavanols, hydroxycinnamic acids (such as chlorogenic acid), curcumin, and olive oil tyrosol and derivatives are rather promising but still too few to provide any real conclusions. Future translational studies are needed to address issues related to dosage, optimal formulations to improve bioavailability, as well as better control for the overall diet, and correct target population.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|