751
|
Zhu J, Zhou M, Zhao X, Mu M, Cheng M. Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Funct 2018; 9:6298-6306. [PMID: 30411754 DOI: 10.1039/c8fo01227j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent diseases worldwide. Blueberry, combined with probiotics (BP), might be a potential candidate for NAFLD treatment, due to its anti-inflammatory and anti-apoptotic properties. Here, we investigated whether the anti-inflammatory cytokine, IL-22, was involved in the therapeutic process of BP, using cell and rat models of NAFLD. Results indicated that BP significantly reduced lipid droplets and triglyceride (TG) accumulation in NAFLD cells. However, when IL-22 was deficient, the lipid droplets and TG content were significantly increased. In vivo, the serum parameters and pathological degree of NAFLD rats were significantly improved by BP, while IL-22 silencing significantly abolished the BP effect. Immunohistochemistry, immunofluorescence, qRT-PCR, and western blotting showed that the NAFLD group expressed significantly lower levels of IL-22, JAK1, and STAT3, and higher levels of BAX, than the normal group. Furthermore, BP significantly elevated the levels of IL-22, JAK1 and STAT3, and reduced the level of BAX in NAFLD, while IL-22 silencing prevented BP from restoring the expression of JAK1, STAT3, and BAX. We conclude that IL-22 is vital for the therapeutic effect of BP, and acts via activation of JAK1/STAT3 signaling and inhibition of the apoptosis factor BAX, which makes IL-22 a promising target for therapy of NAFLD.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyang Street, Guiyang 550001, Guizhou, China.
| | | | | | | | | |
Collapse
|
752
|
Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 2018; 109:418-428. [PMID: 30221912 DOI: 10.23736/s0026-4806.18.05845-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The manipulation of gut microbiota via administration of probiotics has been proposed as a potential strategy for the treatment of non-alcoholic fatty liver disease (NAFLD). Hence, we performed a double-blind single center randomized placebo-controlled trial (RCT) to evaluate the efficacy of coadministration of probiotics with omega-3 vs. placebo in type-2 diabetic patients with NAFLD. METHODS A total of 48 patients met the criteria for inclusion. They were randomly assigned to receive "Symbiter Omega" combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or placebo for 8-weeks. The primary main outcomes were the change in fatty liver index (FLI) and liver stiffness (LS) measured by Shear Wave Elastography (SWE). Secondary outcomes were the changes in transaminases level, serum lipids and cytokines levels. RESULTS In probiotic-omega group, FLI significantly decreased from 83.53±2.60 to 76.26±2.96 (P<0.001) while no significant changes were observed in the placebo group (82.86±2.45 to 81.09±2.84; P=0.156). Changes of LS in both groups were insignificant. Analysis of secondary outcomes showed that the coadministration of probiotics with omega-3 lead to significant reduction of serum gamma-glutamyl transpeptidase, triglycerides, and total cholesterol. Chronic systemic inflammatory markers after intervention decrease significantly only in Symbiter Omega group: IL-1β (P=0.029), TNF-α (P<0.001), IL-8 (P=0.029), IL-6 (P=0.003), and INF-γ (P=0.016). CONCLUSIONS Coadministration of a live multi-strain probiotic mixture with omega-3 fatty acids once daily for 8 weeks to patients with NAFLD can reduce liver fat, improve serum lipids, metabolic profile, and reduce chronic systemic inflammatory state.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Galyna Mykhalchyshyn
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- Research Department, Greenwood Genetic Center, Greenwood School of Health Research, Clemson University, Clemson, SC, USA
| | - Liudmyla Kononenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Kyriienko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
- Kyiv City Clinical Endocrinology Center, Kyiv, Ukraine
| | - Iuliia Komisarenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleg Dynnyk
- Bogomolets Institute of Physiology of the Ukrainian National Academy of Science, Kyiv, Ukraine
| |
Collapse
|
753
|
Parafati M, Lascala A, La Russa D, Mignogna C, Trimboli F, Morittu VM, Riillo C, Macirella R, Mollace V, Brunelli E, Janda E. Bergamot Polyphenols Boost Therapeutic Effects of the Diet on Non-Alcoholic Steatohepatitis (NASH) Induced by "Junk Food": Evidence for Anti-Inflammatory Activity. Nutrients 2018; 10:nu10111604. [PMID: 30388763 PMCID: PMC6267059 DOI: 10.3390/nu10111604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Wrong alimentary behaviors and so-called “junk food” are a driving force for the rising incidence of non-alcoholic fatty liver disease (NAFLD) among children and adults. The “junk food” toxicity can be studied in “cafeteria” (CAF) diet animal model. Young rats exposed to CAF diet become obese and rapidly develop NAFLD. We have previously showed that bergamot (Citrus bergamia Risso et Poiteau) flavonoids, in the form of bergamot polyphenol fraction (BPF), effectively prevent CAF diet-induced NAFLD in rats. Here, we addressed if BPF can accelerate therapeutic effects of weight loss induced by a normocaloric standard chow (SC) diet. 21 rats fed with CAF diet for 16 weeks to induce NAFLD with inflammatory features (NASH) were divided into three groups. Two groups were switched to SC diet supplemented or not with BPF (CAF/SC±BPF), while one group continued with CAF diet (CAF/CAF) for 10 weeks. BPF had no effect on SC diet-induced weight loss, but it accelerated hepatic lipid droplets clearance and reduced blood triglycerides. Accordingly, BPF improved insulin sensitivity, but had little effect on leptin levels. Interestingly, the inflammatory parameters were still elevated in CAF/SC livers compared to CAF/CAF group after 10 weeks of dietary intervention, despite over 90% hepatic fat reduction. In contrast, BPF supplementation decreased hepatic inflammation by reducing interleukin 6 (Il6) mRNA expression and increasing anti-inflammatory Il10, which correlated with fewer Kupffer cells and lower inflammatory foci score in CAF/SC+BPF livers compared to CAF/SC group. These data indicate that BPF mediates a specific anti-inflammatory activity in livers recovering from NASH, while it boosts lipid-lowering and anti-diabetic effects of the dietary intervention.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Daniele La Russa
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Chiara Mignogna
- Department of Experimental and Clinical Medicine, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Francesca Trimboli
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Valeria Maria Morittu
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| |
Collapse
|
754
|
Influence of Probiotics Administration on Gut Microbiota Core: A Review on the Effects on Appetite Control, Glucose, and Lipid Metabolism. J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S50-S56. [PMID: 29864068 DOI: 10.1097/mcg.0000000000001064] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An increasing number of studies has shown that dietary probiotics exert beneficial health effects in both humans and animals. It is well established that gut microbiota play a pivotal role in regulating host metabolism, and a growing number of studies has elucidated that probiotics positively interfere with gut microbiota. Accumulating evidence shows that probiotics, through their metabolic activity, produce metabolites that in turn contribute to positively affect host physiology. For these reasons, probiotics have shown significant potential as a therapeutic tool for a diversity of diseases, but the mechanisms through which probiotics act has not been fully elucidated yet. The goal of this review was to provide evidence on the effects of probiotics on gut microbiota changes associated with host metabolic variations, specifically focusing on feed intake and lipid and glucose metabolism. In addition, we review probiotic interaction with the gut microbiota. The information collected here will give further insight into the effects of probiotics on the gut microbiota and their action on metabolite release, energy metabolism, and appetite. This information will help to improve knowledge to find better probiotic therapeutic strategies for obesity and eating disorders.
Collapse
|
755
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
756
|
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2018; 11:104. [PMID: 30314377 PMCID: PMC6315965 DOI: 10.3390/ph11040104] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
The main treatments for patients with nonalcoholic fatty liver disease (NAFLD) are currently based on lifestyle changes, including ponderal decrease and dietary management. However, a subgroup of patients with nonalcoholic steatohepatitis (NASH), who are unable to modify their lifestyle successfully, may benefit from pharmaceutical support. Several drugs targeting pathogenic mechanisms of NAFLD have been evaluated in clinical trials for the treatment of NASH. Farnesoid X receptor (FXR) is a nuclear key regulator controlling several processes of the hepatic metabolism. NAFLD has been proven to be associated with abnormal FXR activity. Obeticholic acid (OCA) is a first-in-class selective FXR agonist with anticholestatic and hepato-protective properties. Currently, OCA is registered for the treatment of primary biliary cholangitis. However, promising effects of OCA on NASH and its metabolic features have been reported in several studies.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 8810 Catanzaro, Italy.
| | - Tetyana Falalyeyeva
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC 29646, USA.
- School of Health Research, Clemson University, Clemson, SC 29646, USA.
| | - Olena Tsyryuk
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Pushkinska 22a, 01610 Kiev, Ukraine.
| |
Collapse
|
757
|
Schwenger KJP, Bolzon CM, Li C, Allard JP. Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria. Eur J Nutr 2018; 58:1771-1784. [PMID: 30306296 DOI: 10.1007/s00394-018-1844-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty-liver disease (NAFLD) is now considered one of the leading causes of liver disease worldwide and is associated with metabolic syndrome and obesity. There are several factors contributing to the disease state. Recent research suggests that the intestinal microbiota (IM) and bacterial products may play a role through several mechanisms which include increased energy uptake, intestinal permeability and chronic inflammation. In addition to diet and exercise, treatment options targeting the IM are being investigated and include the use of pre-, pro- and synbiotics as well as the possibility of fecal microbial transfers. This literature review explores the relationship between NAFLD and the IM as well as highlight new IM treatment options that may become available in the near future.
Collapse
Affiliation(s)
- Katherine J P Schwenger
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada
| | - Colin M Bolzon
- Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada
| | - Carrie Li
- Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
758
|
Boonyavarakul A, Leelawattana R, Pongchaiyakul C, Buranapin S, Phanachet P, Pramyothin P. Effects of meal replacement therapy on metabolic outcomes in Thai patients with type 2 diabetes: A randomized controlled trial. Nutr Health 2018; 24:261-268. [PMID: 30270717 PMCID: PMC6340108 DOI: 10.1177/0260106018800074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: A meal replacement (MR) with a low glycemic index (GI) is possibly beneficial for
glycemic control. However, the effects of MR on diabetes mellitus have not been studied
among Thai patients with type 2 diabetes (T2DM). Aim: To compare metabolic outcomes between T2DM patients receiving the new MR formula (ONCE
PRO) and normal controlled diets. Methods: A multicenter, open-labeled, randomized controlled trial was conducted. Eligible
patients received either ONCE PRO for one meal daily with controlled diets or only
controlled diets for 3 months. The differences in metabolic profile between the baseline
and end point of each group and between groups were measured. Results: 110 participants were enrolled; the mean difference and standard deviation in
hemoglobin A1C (HbA1c) (%) from baseline were –0.21 ± 0.78 (p = 0.060)
and –0.27 ± 0.60 (p = 0.001) in the MR and control groups,
respectively; however, there was no significant difference between groups
(p = 0.637). Patients consuming a MR instead of breakfast had a
significant decrease in HbA1c (p = 0.040). Body weight (BW) and body
mass index (BMI) were significantly reduced in both groups. There were no significant
change in waist circumference, fasting plasma glucose, total cholesterol and
triglycerides. Low-density lipoprotein cholesterol (LDL-C) was significantly decreased
in the MR group compared with the control group (p = 0.049). Conclusions: Short-term conventional diet control and the low-GI MR product were associated with a
decreased BW and BMI. Changes in the other metabolic outcomes, HbA1c, total cholesterol
and triglycerides, were comparable despite ONCE PRO as the MR having a better effect on
LDL-C lowering.
Collapse
Affiliation(s)
- Apussanee Boonyavarakul
- Division of Endocrinology, Department of Internal Medicine, Phramongkutklao Hospital, Thailand
| | - Rattana Leelawattana
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Thailand
| | - Chatlert Pongchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khonkaen University, Thailand
| | - Supawan Buranapin
- Division of Endocrinology, Department of Internal medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Pariya Phanachet
- Division of Nutrition and Biochemical Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Thailand
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
759
|
Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition 2018; 54:40-47. [DOI: 10.1016/j.nut.2018.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
|
760
|
Altamirano-Barrera A, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. The role of the gut microbiota in the pathology and prevention of liver disease. J Nutr Biochem 2018; 60:1-8. [PMID: 29653359 DOI: 10.1016/j.jnutbio.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
|
761
|
Hua C, Geng Y, Chen Q, Niu L, Cai L, Tao S, Ni Y, Zhao R. Effects of chronic dexamethasone exposure on bile acid metabolism and cecal epithelia function in goats. Domest Anim Endocrinol 2018; 65:9-16. [PMID: 29803110 DOI: 10.1016/j.domaniend.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/20/2023]
Abstract
Bile acids (BAs) are synthesized in the liver via the oxidation of cholesterol and further metabolized by microbiota in the gut, where they simultaneously impact gut function. In the present study, 10 goats were randomly divided into 2 groups; 1 group was injected with dexamethasone (Dex; 0.2 mg/kg), and the other group was injected with saline as the control (Con) for 21 d. Expression levels of key genes and proteins in the liver and gut mucosa were analyzed and compared to investigate the impact of chronic stress on BA metabolism and related functions in ruminants. The results revealed that Dex decreased plasma total BAs (TBAs) concentration (P < 0.05) but increased TBA concentration in the cecal digesta (P < 0.05). Total cholesterol in the liver decreased moderately in response to Dex. The protein expression of cytochrome P450 family 7 subfamily A member 1 and cytochrome P450 family 27 subfamily A member 1, 2 enzymes that control BA synthesis in the liver, remained unchanged by Dex administration (P > 0.05). The expression of several genes in the cecal mucosa encoding epithelial tight junction proteins, including occludin (P < 0.05), tight junction protein 1 (P < 0.01), and claudin 1 (P < 0.05), increased significantly in response to Dex, and expression of defensin beta 1, which can strengthen the innate immune system, was also upregulated (P < 0.05). In addition, BAs increased the expression of the Solute Carrier family 9 member A 2 (P < 0.01) that encodes a sodium hydrogen exchanger. These results suggest that the Dex-induced disruption of BA homeostasis might be mediated through a liver-independent pathway in goats, and the Dex-induced accumulation of TBAs in the cecal digesta may improve volatile fatty acid transportation and mucosal defense.
Collapse
Affiliation(s)
- C Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| | - Y Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| | - Q Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| | - L Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| | - L Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| | - S Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| | - Y Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China.
| | - R Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
762
|
Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci Rep 2018; 38:BSR20181061. [PMID: 30177523 PMCID: PMC6153372 DOI: 10.1042/bsr20181061] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023] Open
Abstract
Ghrelin, an acylated peptide hormone of 28 amino acids, is an endogenous ligand of the released growth hormone secretagogue receptor (GHSR). Ghrelin has been isolated from human and rat stomach and is also detected in the hypothalamic arcuate nucleus. Ghrelin receptor is primarily located in the neuropeptide Y and agouti-related protein neurons. Many previous studies have shown that ghrelin and GHSR are involved in the regulation of energy homeostasis, and its administration can increase food intake and body weight gain. AMP-activated protein kinase is activated by ghrelin in the hypothalamus, which contributes to lower intracellular long-chain fatty acid level. Ghrelin appears to modulate the response to food cues via a neural network involved in the regulation of feeding and in the appetitive response to food cues. It also increases the response of brain areas involved in visual processing, attention, and memory to food pictures. Ghrelin is also an important factor linking the central nervous system with peripheral tissues that regulate lipid metabolism. It promotes adiposity by the activation of hypothalamic orexigenic neurons and stimulates the expression of fat storage-related proteins in adipocytes. Meanwhile, ghrelin exerts direct peripheral effects on lipid metabolism, including increase in white adipose tissue mass, stimulation of lipogenesis in the liver, and taste sensitivity modulation.
Collapse
|
763
|
Response to: Comment on "Gut Microbiota as a Driver of Inflammation in Nonalcoholic Fatty Liver Disease". Mediators Inflamm 2018; 2018:7328057. [PMID: 30210263 PMCID: PMC6120259 DOI: 10.1155/2018/7328057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
|
764
|
Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, De Michieli F, Paschetta E, Musso G. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep 2018; 18:98. [PMID: 30215149 DOI: 10.1007/s11892-018-1057-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In the last decade many studies have suggested an association between the altered gut microbiota and multiple systemic diseases including diabetes. In this review, we will discuss potential pathophysiological mechanisms, the latest findings regarding the mechanisms linking gut dysbiosis and type 2 diabetes (T2D), and the results obtained with experimental modulation of microbiota. RECENT FINDINGS In T2D, gut dysbiosis contributes to onset and maintenance of insulin resistance. Different strategies that reduce dysbiosis can improve glycemic control. Evidence in animals and humans reveals differences between the gut microbial composition in healthy individuals and those with T2D. Changes in the intestinal ecosystem could cause inflammation, alter intestinal permeability, and modulate metabolism of bile acids, short-chain fatty acids and metabolites that act synergistically on metabolic regulation systems contributing to insulin resistance. Interventions that restore equilibrium in the gut appear to have beneficial effects and improve glycemic control. Future research should examine in detail and in larger studies other possible pathophysiological mechanisms to identify specific pathways modulated by microbiota modulation and identify new potential therapeutic targets.
Collapse
Affiliation(s)
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Francesca Castellino
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Franco De Michieli
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy.
| |
Collapse
|
765
|
Han R, Ma J, Li H. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front Med 2018; 12:645-657. [PMID: 30178233 DOI: 10.1007/s11684-018-0645-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
766
|
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr 2018; 12:617-624. [PMID: 29661605 DOI: 10.1016/j.dsx.2018.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Probiotics have beneficial effect on obesity related disorders in animal models. Despite a large number of animal data, randomized placebo-controlled trials (RCT) concluded that probiotics have a moderate effect on glycemic control-related parameters. However, effect of probiotics on insulin resistance are inconsistent. AIM In a double-blind single center RCT, effect of alive multistrain probiotic vs. placebo on insulin resistance in type 2 diabetes patient were assessed. METHODS A total of 53 patients met the criteria for inclusion. They were randomly assigned to receive multiprobiotic "Symbiter" (concentrated biomass of 14 probiotic bacteria genera Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium) or placebo for 8-weeks administered as a sachet formulation. The primary main outcome was the change HOMA-IR (homeostasis model assessment-estimated insulin resistance) which calculated using Matthews et al.'s equation. Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables and cytokines. RESULTS Supplementation with alive multiprobiotic for 8 weeks was associated with significant reduction of HOMA-IR from 6.85 ± 0.76 to 5.13 ± 0.49 (p = 0.047), but remained static in the placebo group. With respect to our secondary outcomes, HbA1c insignificant decreased by 0.09% (p = 0.383) and 0.24% (p = 0.068) respectively in placebo and probiotics groups. However, in probiotic responders (n = 22, patient with decrease in HOMA-IR) after supplementation a significant reduction in HbA1c by 0.39% (p = 0.022) as compared to non-responders was observed. In addition, from markers of chronic systemic inflammatory state only TNF-α and IL-1β changes significantly after treatment with probiotics. CONCLUSION Probiotic therapies modestly improved insulin resistance in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine.
| | - Galyna Mykhalchyshyn
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| | - Dmytro Kyriienko
- Kyiv City Clinical Endocrinology Center, Pushkinska Str., 22a, Kyiv, 01601, Ukraine.
| | - Iuliia Komissarenko
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| |
Collapse
|
767
|
Konopelniuk V, Falalyeyeva T, Tsyryuk O, Savchenko Y, Prybytko I, Kobyliak N, Kovalchuk O, Boyko A, Arkhipov VV, Moroz Y, Ostapchenko L. The correction of the metabolic parameters of msg-induced obesity in rats by 2-[4-(benzyloxy) phenoxy] acetic acid. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018. [DOI: 10.1016/j.jnim.2018.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
768
|
Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, Giustina A, Gazzaruso C. Microbiota and metabolic diseases. Endocrine 2018; 61:357-371. [PMID: 29721802 DOI: 10.1007/s12020-018-1605-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
The microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi, living in different districts of the human body, such as the gastro-enteric tube, skin, mouth, respiratory system, and the vagina. Over 70% of the microbiota lives in the gastrointestinal tract in a mutually beneficial relationship with its host. The microbiota plays a major role in many metabolic functions, including modulation of glucose and lipid homeostasis, regulation of satiety, production of energy and vitamins. It exerts a role in the regulation of several biochemical and physiological mechanisms through the production of metabolites and substances. In addition, the microbiota has important anti-carcinogenetic and anti-inflammatory actions. There is growing evidence that any modification in the microbiota composition can lead to several diseases, including metabolic diseases, such as obesity and diabetes, and cardiovascular diseases. This is because alterations in the microbiota composition can cause insulin resistance, inflammation, vascular, and metabolic disorders. The causes of the microbiota alterations and the mechanisms by which microbiota modifications can act on the development of metabolic and cardiovascular diseases have been reported. Current and future preventive and therapeutic strategies to prevent these diseases by an adequate modulation of the microbiota have been also discussed.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Pharmacology section, University of Pavia, 27100, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology section, University of Pavia, 27100, Pavia, Italy
| | - Cristina Marelli
- Department of Drug Sciences, Pharmacology section, University of Pavia, 27100, Pavia, Italy
| | - Adriana Coppola
- Diabetes and endocrine and metabolic diseases Unit and the Centre for Applied Clinical Research (Ce.R.C.A.) Clinical Institute "Beato Matteo" (Hospital Group San Donato), 27029, Vigevano, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, 20100, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, 20097, San Donato Milanese, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology section, University of Pavia, 27100, Pavia, Italy
| | - Andrea Giustina
- Chair of Endocrinology San Raffaele Vita-Salute University, Milan, Italy
| | - Carmine Gazzaruso
- Diabetes and endocrine and metabolic diseases Unit and the Centre for Applied Clinical Research (Ce.R.C.A.) Clinical Institute "Beato Matteo" (Hospital Group San Donato), 27029, Vigevano, Italy.
| |
Collapse
|
769
|
Cantero I, Abete I, Del Bas JM, Caimari A, Arola L, Zulet MA, Martinez JA. Changes in lysophospholipids and liver status after weight loss: the RESMENA study. Nutr Metab (Lond) 2018; 15:51. [PMID: 30026784 PMCID: PMC6050739 DOI: 10.1186/s12986-018-0288-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Background Obesity and comorbidities such as non-alcoholic fatty liver disease (NAFLD) are major public health burdens. Alterations in lipid metabolism are involved in hepatic diseases. The objective of this study was to assess the influence of weight loss on lysophospholipid (LP) metabolism and liver status in obese subjects as well as to provide new evidence regarding the interaction of LP metabolism as a key factor in the onset and management of obesity-related diseases such as liver damage. Methods Thirty-three subjects from the RESMENA (Reduction of Metabolic Syndrome in Navarra, NCT01087086) study were selected based on their Fatty Liver Index (FLI). Plasma lipid species (lysophosphatidilcholine: LPC, lysophosphatidilethanolamines: LPE and lysophosphatidylinositols: LPI specifically) were determined by LC-MS, while waist circumference (WC) and other non-invasive liver markers such as, FLI and BAAT scores as well as dietary records, anthropometrical measurements, body composition by DXA and other metabolic determinants were analyzed before and after a six-month hypocaloric nutritional intervention. Results Computed Z-scores of total LP (LPC, LPE, and LPI) were significantly decreased after 6-months of following a hypocaloric diet. Specifically, LPC14:0, LPC15:0, LPC16:1, LPC18:4, LPC20:4, showed clear relationships with weight loss. Changes in FLI score, WC and BAAT score revealed associations with general changes in LPC score. Interestingly the BAAT score was statistically associated with the LPC score after adjustment for weight loss. Conclusion The lipidomic LPC profile analysis revealed a generalized decrease in circulating lysophospholipids after weight loss. The involvement of particular LP in liver metabolism and obesity merit further attention, as some of these specific non-invasive liver markers were reduced independently of weight loss. Trial registration NCT01087086. Registered 15 March 2010, retrospectively registry.
Collapse
Affiliation(s)
- Irene Cantero
- 1Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,2Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Itziar Abete
- 1Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,2Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,3CIBERobn, Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Maria Del Bas
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Antoni Caimari
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - M Angeles Zulet
- 1Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,2Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,3CIBERobn, Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- 1Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,2Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,3CIBERobn, Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,6IMDEA Food, Madrid, Spain
| |
Collapse
|
770
|
Chung HJ, Sim JH, Min TS, Choi HK. Metabolomics and Lipidomics Approaches in the Science of Probiotics: A Review. J Med Food 2018; 21:1086-1095. [PMID: 30004273 DOI: 10.1089/jmf.2017.4175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal microflora plays important roles in the health of the host, such as nutrient processing and the modulation of intestinal immune responses. The constituents of the diet greatly affect the composition of the microbiota and its metabolites. The human intestinal microbiota is made up of around 100 trillion microbial cells encompassing at least 300 species. Consuming probiotics may lead to changes in the intestinal microflora that influence host health. Metabolomics is a powerful tool for revealing metabolic changes in biofluids, tissues, and organs of hosts induced by the consumption of probiotics, and lipidomics in particular is a technical approach that focuses on the analysis of lipids in various cells and biofluids. Metabolomics and lipidomics have been used to investigate intracellular and extracellular metabolites as well as for the nontargeted profiling and fingerprinting of metabolites. Based on metabolomics and lipidomics investigations, we reviewed the effects of consuming probiotics on metabolic profiles in controlled intestinal environments. We also discuss the associations between metabolic changes and human diseases after consuming probiotics in uncontrolled intestinal environments. In addition, we review the metabolic changes that take place within the food matrix during probiotic fermentation.
Collapse
Affiliation(s)
- Hyuk-Jin Chung
- 1 College of Pharmacy, Chung-Ang University , Seoul, Korea.,2 Korea Yakult Co., Ltd. , Yongin, Korea
| | | | - Tae-Sun Min
- 3 Faculty of Biotechnology, SARI, Jeju National University , Jeju, Korea
| | | |
Collapse
|
771
|
Kobyliak N, Falalyeyeva T, Boyko N, Tsyryuk O, Beregova T, Ostapchenko L. Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res Clin Pract 2018; 141:190-199. [PMID: 29772287 DOI: 10.1016/j.diabres.2018.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The beneficial interaction between the microbiota and humans is how bacteria contained within the gut 'talk' to the immune system and in this landscape, probiotics and nutraceuticals play a major role. The study aims to determine whether probiotics plus nutraceuticals such as smectite or omega-3 are superior to probiotic alone on the monosodium glutamate (MSG) induced obesity model in rats. METHODS Totally, 75 rats divided into five groups were included (n = 15, in each). Rats in group I were intact. Newborn rats in groups II-V were injected with MSG. Group III (Symbiter) received 2.5 ml/kg of multiprobiotic "Symbiter" containing concentrated biomass of 14 probiotic bacteria genera. Groups IV (Symbiter-Omega) and V (Symbiter-Smectite) received a combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or smectite gel (250 mg), respectively. RESULTS In all interventional groups, significant reductions of total body and visceral adipose tissue weight as compared to MSG-obesity were observed. However, the lowest prevalence of obesity was noted for Symbiter-Omega (20% vs 33.3% as compared to other interventional groups). Moreover, supplementation of probiotics with omega-3 lead to a more pronounced decrease in HOMA-IR (2.31 ± 0.13 vs 4.02 ± 0.33, p < 0.001) and elevation of adiponectin levels (5.67 ± 0.39 vs 2.61 ± 0.27, P < 0.001), compared to the obesity group. CONCLUSION Probiotics and nutraceuticals led to a significantly lower prevalence of obesity, reduction of insulin resistance, total and VAT weight. Our study demonstrated that supplementation of probiotics with omega-3 may have the most beneficial antiobesity properties.
Collapse
Affiliation(s)
- N Kobyliak
- Bogomolets National Medical University, Kyiv, Ukraine.
| | - T Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - N Boyko
- Uzhhorod National University, Uzhhorod, Ukraine
| | - O Tsyryuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Beregova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - L Ostapchenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
772
|
Les dosages d’IgG anti-aliments : méthodes et pertinence clinique des résultats. Position du groupe de travail de biologie de la Société française d’allergologie. REVUE FRANCAISE D ALLERGOLOGIE 2018. [DOI: 10.1016/j.reval.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
773
|
Kang Y, Cai Y. The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones (Athens) 2018; 17:141-151. [PMID: 29858841 DOI: 10.1007/s42000-018-0003-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity is a growing epidemic worldwide. The most frequent cause leading to the development of obesity is an imbalance between energy intake and energy expenditure. The gut microbiota is an environmental factor involved in obesity and metabolic disorders which reveals that obese animal and human subjects present alterations in the composition of the gut microbiota compared to their lean counterparts. Furthermore, evidence has so far demonstrated that the gut microbiota, which influences whole-body metabolism, by affecting energy balance, but also inflammation and gut barrier function, integrates peripheral and central food intake regulatory signals, thereby altering body weight. At the same time, these data suggest that species of intestinal commensal bacteria may play either a pathogenic or a protective role in the development of obesity. Though still a relatively nascent field of research, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of obesity. Various studies have described the beneficial effects of specific bacteria on the characteristics of obesity. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the notable advances and contributions in the field that may prove useful for identifying probiotics that target obesity and its related disorders.
Collapse
Affiliation(s)
- Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Yue Cai
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China
- Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
774
|
Khalili L, Alipour B, Asghari Jafar-Abadi M, Faraji I, Hassanalilou T, Mesgari Abbasi M, Vaghef-Mehrabany E, Alizadeh Sani M. The Effects of Lactobacillus casei on Glycemic Response, Serum Sirtuin1 and Fetuin-A Levels in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 29803203 PMCID: PMC6305821 DOI: 10.29252/.23.1.68] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) is related to the gut microbiota with numerous molecular mechanisms. Modulating the gut microbiota by probiotics could be effective in management of T2DM. The aim of the present trial was to evaluate the effect of Lactobacillus casei on glycemic control and serum sirtuin1 (SIRT1) and fetuin-A in patients with T2DM. Methods: Forty patients with T2DM (n = 20 for each group) were divided into intervention (probiotic) and placebo groups. The intervention group received a daily capsule containing 108 cfu of L. casei for eight weeks. The patients in placebo group took capsules containing maltodextrin for the same time duration. Anthropometric measurements, dietary intake questionnaires, and blood samples were collected, and the patients were assessed by an endocrinologist at the beginning and at the end of the trial. Results: Fasting blood sugar, insulin concentration, and insulin resistance significantly decreased in probiotic group compared with placebo group (-28.32 [-50.23 to -6.41], 0.013; -3.12 [-5.90 to -0.35], 0.028; -32.31 [-55.09 to -9.54], 0.007, respectively). Moreover, HbA1c reduced after intervention, but the reduction was not significant (-0.45 [-0.96 to 0.05], 0.077). In comparison with placebo, the L. casei supplementation significantly increased SIRT1 and decreased fetuin-A levels at the end of the trial (0.52 [0.026 to 1.02], 0.040; -17.56 [-32.54 to -2.58], 0.023, respectively). Conclusion: L. casei supplementation affected SIRT1 and fetuin-A levels in a way that improved glycemic response in subjects with T2DM. Affecting the SIRT1 and fetuin-A levels introduces a new known mechanism of probiotic action in diabetes management.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Beitullah Alipour
- Department of Community Nutrition, Faculty of nutrition and food sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafar-Abadi
- Department of statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ismail Faraji
- Internist, fellow of Endocrinology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Hassanalilou
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Elnaz Vaghef-Mehrabany
- Department of Nutrition, Biochemistry and Diet Therapy, Faculty of nutrition and food science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, Faculty of nutrition and food sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
775
|
Jin G, Asou Y, Ishiyama K, Okawa A, Kanno T, Niwano Y. Proanthocyanidin-Rich Grape Seed Extract Modulates Intestinal Microbiota in Ovariectomized Mice. J Food Sci 2018; 83:1149-1152. [PMID: 29578242 DOI: 10.1111/1750-3841.14098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 12/21/2022]
Abstract
Grape-seed extract (GSE) is rich in proanthocyanidins (polymers of flavan-3-ols). GSE is well known to have various beneficial effects to health. The objective of this study was to examine the effect of dietary GSE on the intestinal microbiota in ovariectomized (OVX) mice as a model of menopause. Phylum-level analyses using 16S rRNA-targeted group-specific polymerase-chain reaction primers in fecal samples collected 8 weeks postoperatively from OVX mice revealed that the proportion of Firmicutes and Bacteroidetes populations became imbalanced as compared with that in sham-operated control mice. That is, the ratio of Firmicutes:Bacteroidetes populations in the OVX group were increased significantly. When OVX animals were given dietary GSE, the imbalanced proportion of Firmicutes and Bacteroidetes populations was normalized to that seen in control mice. In addition, the body weight of OVX animals measured at 6 weeks postoperatively was significantly higher than that in sham-operated control animals. Dietary GSE also prevented OVX animals from increasing body weight. Thus, we postulated that GSE can improve imbalanced populations of intestinal microbiota, leading to prevention of obesity under conditions of not only menopause but morbidity. PRACTICAL APPLICATION The GSE has a great potential to be a functional food to improve dysbiosis in post-menopausal women.
Collapse
Affiliation(s)
- Guangwen Jin
- Dept. of Orthopaedic Surgery, Tokyo Medical and Dental Univ., 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Dept. of Orthopaedic Surgery, Yanbian Univ. Hospital, 1327 Juzi St, Yanji City, Jilin Province, China
| | - Yoshinori Asou
- Dept. of Orthopaedic Surgery, Tokyo Medical and Dental Univ., 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kirika Ishiyama
- Graduate School of Dentistry, Tohoku Univ., 4-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Atsushi Okawa
- Dept. of Orthopaedic Surgery, Tokyo Medical and Dental Univ., 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taro Kanno
- Graduate School of Dentistry, Tohoku Univ., 4-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshimi Niwano
- Graduate School of Dentistry, Tohoku Univ., 4-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
776
|
Kobyliak N, Abenavoli L, Falalyeyeva T, Beregova T. Efficacy of Probiotics and Smectite in Rats with Non-Alcoholic Fatty Liver Disease. Ann Hepatol 2018; 17:153-161. [PMID: 29311399 DOI: 10.5604/01.3001.0010.7547] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Today probiotics have been suggested as a treatment for the prevention of non-alcoholic fatty liver disease (NAFLD). Smectite is a natural silicate that binds to digestive mucous and has the ability to bind endo- and exotoxins. The present study was designed to determine whether probiotics plus smectite is superior to probiotic alone on the monosodium glutamate (MSG) induced NAFLD model in rats. MATERIALS AND METHODS We included 60 rats divided into 4 groups 15 animals in each. Rats of group I were intact. Newborns rats of groups II-IV were injected with MSG. The III (Symbiter) group received 2.5 ml/kg of multiprobiotic "Symbiter" containing concentrated biomass of 14 probiotic bacteria genera. The IV (Symbiter+Smectite) groups received "Symbiter Forte" combination of probiotic biomass with smectite gel (250 mg). RESULTS In both interventional groups reduction of total NAS score as compared to MSG-obesity was observed. Indeed similar values of steatosis score (0.93 ± 0.22 vs. 0.87 ± 0.16) in both treatment groups, we observed that lower total score for Symbiter+ Smectite are associated with more pronounced reduction of lobular inflammation (0.13 ± 0.09 vs. 0.33 ± 0.15) as compared to administration of probiotic alone. This data accompanied with significant reduction of IL-1 and restoration of IL-10 between these 2 groups. CONCLUSIONS Additional to alive probiotic administration of smectite gel due to his absorbent activity and mucus layer stabilization properties can impact on synergistic enhancement of single effect which manifested with reduction of lobular inflammation and at list partly steatohepatitis prevention.
Collapse
|
777
|
Heat-killed Bifidobacterium animalis subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
778
|
He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 2017; 7:54. [PMID: 29090088 PMCID: PMC5655955 DOI: 10.1186/s13578-017-0183-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome (MS) comprises central obesity, increased plasma glucose levels, hyperlipidemia and hypertension, and its incidence is increasing due to changes in lifestyle and dietary structure in recent years. MS has been proven to be associated with an increased incidence of cardiovascular diseases and type 2 diabetes mellitus, leading to morbidity and mortality. In this manuscript, we review recent studies concerning the role of the gut microbiota in MS modulation. Manipulation of the gut microbiota through the administration of prebiotics or probiotics may assist in weight loss and reduce plasma glucose and serum lipid levels, decreasing the incidence of cardiovascular diseases and type 2 diabetes mellitus. To the best of our knowledge, short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), metabolic endotoxemia and the endocannabinoid (eCB) system are essential in regulating the initiation and progression of MS through the normalization of adipogenesis and the regulation of insulin secretion, fat accumulation, energy homeostasis, and plasma cholesterol levels. Therefore, the gut microbiota may serve as a potential therapeutic target for MS. However, further studies are needed to enhance our understanding of manipulating the gut microbiota and the role of the gut microbiota in MS prevention and treatment.
Collapse
Affiliation(s)
- Mingqian He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061 Shaanxi People's Republic of China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061 Shaanxi People's Republic of China
| |
Collapse
|
779
|
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients 2017; 9:nu9101124. [PMID: 29035308 PMCID: PMC5691740 DOI: 10.3390/nu9101124] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.
Collapse
|
780
|
Saokaew S, Kanchanasuwan S, Apisarnthanarak P, Charoensak A, Charatcharoenwitthaya P, Phisalprapa P, Chaiyakunapruk N. Clinical risk scoring for predicting non-alcoholic fatty liver disease in metabolic syndrome patients (NAFLD-MS score). Liver Int 2017; 37:1535-1543. [PMID: 28294515 DOI: 10.1111/liv.13413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) can progress from simple steatosis to hepatocellular carcinoma. None of tools have been developed specifically for high-risk patients. This study aimed to develop a simple risk scoring to predict NAFLD in patients with metabolic syndrome (MetS). METHODS A total of 509 patients with MetS were recruited. All were diagnosed by clinicians with ultrasonography-confirmed whether they were patients with NAFLD. Patients were randomly divided into derivation (n=400) and validation (n=109) cohort. To develop the risk score, clinical risk indicators measured at the time of recruitment were built by logistic regression. Regression coefficients were transformed into item scores and added up to a total score. A risk scoring scheme was developed from clinical predictors: BMI ≥25, AST/ALT ≥1, ALT ≥40, type 2 diabetes mellitus and central obesity. The scoring scheme was applied in validation cohort to test the performance. RESULTS The scheme explained, by area under the receiver operating characteristic curve (AuROC), 76.8% of being NAFLD with good calibration (Hosmer-Lemeshow χ2 =4.35; P=.629). The positive likelihood ratio of NAFLD in patients with low risk (scores below 3) and high risk (scores 5 and over) were 2.32 (95% CI: 1.90-2.82) and 7.77 (95% CI: 2.47-24.47) respectively. When applied in validation cohort, the score showed good performance with AuROC 76.7%, and illustrated 84%, and 100% certainty in low- and high-risk groups respectively. CONCLUSIONS A simple and non-invasive scoring scheme of five predictors provides good prediction indices for NAFLD in MetS patients. This scheme may help clinicians in order to take further appropriate action.
Collapse
Affiliation(s)
- Surasak Saokaew
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,School of Pharmacy, Monash University Malaysia, Selangor, Malaysia.,Center of Pharmaceutical Outcomes Research (CPOR), Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Shada Kanchanasuwan
- Clinical and Administrative Pharmacy, The University of Georgia College of Pharmacy, Athens, GA, USA
| | - Piyaporn Apisarnthanarak
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aphinya Charoensak
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phunchai Charatcharoenwitthaya
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathorn Chaiyakunapruk
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia.,Center of Pharmaceutical Outcomes Research (CPOR), Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,School of Pharmacy, University of Wisconsin, Madison, WI, USA.,School of Population Health, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
781
|
Abenavoli L, Milic N, Luzza F, Boccuto L, De Lorenzo A. Polyphenols Treatment in Patients with Nonalcoholic Fatty Liver Disease. J Transl Int Med 2017; 5:144-147. [PMID: 29164049 DOI: 10.1515/jtim-2017-0027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects 25-30% of the general population worldwide and this high prevalence is linked with lifestyle and dietetic changes, not only in Western countries, but also in the urban areas of developing countries. Several pharmacological approaches were proposed in the treatment of NAFLD, but the reported results are inconclusive. International guidelines recommended the reduction of dietary fat and fructose, in association with some physical activity. In this context, it was reported that the protective effects of traditional Mediterranean diet, related to the high concentration of antioxidant compounds, particularly of polyphenols. Polyphenols are a heterogeneous class of plant derived compounds, with some proven hepatoprotective effects. Our opinion is that the adherence to traditional Mediterranean diet characterized by the consumption of antioxidant-rich foods in general and of polyphenols in particular, can be considered as a potential new approach in the treatment of NAFLD.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Græcia, Campus Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Natasa Milic
- Department of Pharmacy, University of Novi Sad, Hajduk Veljkova, 3, 21000, Novi Sad, Serbia
| | - Francesco Luzza
- Department of Health Sciences, University Magna Græcia, Campus Germaneto, Viale Europa, 88100, Catanzaro, Italy
| | - Luigi Boccuto
- Greenwood Genetic Center, 113 Gregor Mendel Circle, 29646, Greenwood, SC, USA.,Clemson University School of Health Research, 101 Calhoun Drive, 29634, Clemson, SC, USA
| | - Antonino De Lorenzo
- Division of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
782
|
El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging Trends in "Smart Probiotics": Functional Consideration for the Development of Novel Health and Industrial Applications. Front Microbiol 2017; 8:1889. [PMID: 29033923 PMCID: PMC5626839 DOI: 10.3389/fmicb.2017.01889] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The link between gut microbiota and human health is well-recognized and described. This ultimate impact on the host has contributed to explain the mutual dependence between humans and their gut bacteria. Gut microbiota can be manipulated through passive or active strategies. The former includes diet, lifestyle, and environment, while the latter comprise antibiotics, pre- and probiotics. Historically, conventional probiotic strategies included a phylogenetically limited diversity of bacteria and some yeast strains. However, biotherapeutic strategies evolved in the last years with the advent of fecal microbiota transplant (FMT), successfully applied for treating CDI, IBD, and other diseases. Despite the positive outcomes, long-term effects resulting from the uncharacterized nature of FMT are not sufficiently studied. Thus, developing strategies to simulate the FMT, using characterized gut colonizers with identified phylogenetic diversity, may be a promising alternative. As the definition of probiotics states that the microorganism should have beneficial effects on the host, several bacterial species with proven efficacy have been considered next generation probiotics. Non-conventional candidate strains include Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, and members of the Clostridia clusters IV, XIVa, and XVIII. However, viable intestinal delivery is one of the current challenges, due to their stringent survival conditions. In this review, we will cover current perspectives on the development and assessment of next generation probiotics and the approaches that industry and stakeholders must consider for a successful outcome.
Collapse
Affiliation(s)
| | | | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
783
|
Zhou Z, Chen H, Ju H, Sun M. Circulating retinol binding protein 4 levels in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2017; 16:180. [PMID: 28931435 PMCID: PMC5607593 DOI: 10.1186/s12944-017-0566-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 01/02/2023] Open
Abstract
Background Retinol binding protein 4 (RBP4) is implicated in obesity, insulin resistance and type 2 diabetes mellitus that are closely associated with nonalcoholic fatty liver disease (NAFLD). However, recent investigations regarding circulating RBP4 levels in NAFLD are conflicting. This meta-analysis is to determine whether NAFLD, non-alcoholic steatohepatitis (NASH) and simple steatosis (SS) patients have altered RBP4 levels. Methods We performed a systematic search in PubMed, EMBASE and The Cochrane Library up until 18 March 2017, and 12 studies comprising a total of 4247 participants (2271 NAFLD patients and 1976 controls) were included in the meta-analysis. Results There were no significant differences of circulating RBP4 levels in the following comparisons: (1) NAFLD patients vs controls (standardized mean differences [SMD]: 0.08; 95% CI: −0.21, 0.38); (2) NASH patients vs controls (SMD: −0.49; 95% CI: −1.09, 0.12); (3) SS patients vs controls (SMD: −0.72; 95% CI: −1.64, 0.20) and (4) NASH vs SS patients (SMD: −0.04; 95% CI: −0.32, 0.24). The results remained essentially unchanged in the comparisons between NAFLD patients and controls after excluding single individual study or bariatric studies (n = 2). No significant publication bias was detected. However, there was significant heterogeneity among studies and the subgroup and meta-regression analyses did not find the potential sources. Conclusions Circulating RBP4 levels may not be associated with NAFLD. Further prospective cohort studies are required to confirm these findings. Electronic supplementary material The online version of this article (10.1186/s12944-017-0566-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongwei Zhou
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, No. 75 Juchang Road, Tinghu, Yancheng, Jiangsu, 224001, People's Republic of China
| | - Hongmei Chen
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, No. 75 Juchang Road, Tinghu, Yancheng, Jiangsu, 224001, People's Republic of China
| | - Huixiang Ju
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, No. 75 Juchang Road, Tinghu, Yancheng, Jiangsu, 224001, People's Republic of China
| | - Mingzhong Sun
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, No. 75 Juchang Road, Tinghu, Yancheng, Jiangsu, 224001, People's Republic of China.
| |
Collapse
|
784
|
Effect of Mediterranean Diet and Antioxidant Formulation in Non-Alcoholic Fatty Liver Disease: A Randomized Study. Nutrients 2017; 9:nu9080870. [PMID: 28805669 PMCID: PMC5579663 DOI: 10.3390/nu9080870] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/20/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, characterized by liver fatty acid accumulation and fibrosis, not due to excessive alcohol consumption. Notably, nutritional habits have been reported to be implicated in the onset and severity of the hepatic damage, while the Mediterranean diet has shown beneficial effects on NAFLD. Free radicals and oxidative stress were suggested to be involved in the pathogenesis and progression of NAFLD, and several data highlighted the efficacy of antioxidant supplementation in its treatment. The aim of this study was to compare the effects of the Mediterranean diet, with or without an antioxidant complex supplement, in overweight patients suffering from NAFLD. In this prospective study, fifty Caucasian overweight patients were randomized into three groups (Groups A-C). A personalized moderately hypocaloric Mediterranean diet was prescribed to all patients included in the A and B groups. In addition to the diet, Group B was administered antioxidant supplementation daily and for the period of six months. Group C did not have any type of treatment. The study proved that the Mediterranean diet alone or in association with the antioxidant complex improved anthropometric parameters, lipid profile and reduced hepatic fat accumulation and liver stiffness. However, Group B patients, in which the diet was associated with antioxidant intake, showed not only a significant improvement in insulin sensitivity, but also a more consistent reduction of anthropometric parameters when compared with Group A patients. Taken together, these results support the benefit of antioxidant supplementation in overweight patients with NAFLD.
Collapse
|
785
|
Dai H, Wang W, Chen R, Chen Z, Lu Y, Yuan H. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr Metab (Lond) 2017; 14:49. [PMID: 28775758 PMCID: PMC5539973 DOI: 10.1186/s12986-017-0206-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD), recognized as the liver manifestation of metabolic syndrome, is highly prevalent in the general population. Recent studies suggest that lipid accumulation product is significantly associated with metabolic abnormalities. The aim of this study was to assess the accuracy of lipid accumulation product (LAP) as an effective screening tool for diagnosing NAFLD in the general population. Methods A total of 40,459 subjects aged ≥18 years were enrolled in this cross-sectional study. LAP was calculated as [waist circumference (cm) – 65] × triglyceride concentration (mmol//L) in men and [waist circumference (cm) – 58] × triglyceride concentration (mmol/L) in women. Multiple logistic regression and receiver operating characteristic (ROC) analyses were performed. Results According to multiple logistic regression analyses, LAP was significantly associated with a higher prevalence and severity of NAFLD in both men and women. When assessed using ROC curve analyses, LAP exhibited high diagnostic accuracy for identifying NAFLD, and the areas under the curves (AUC) in men and women were 0.843 (95% CI 0.837, 0.849) and 0.887 (95% CI 0.882, 0.892), respectively. After further analyzed in different age groups, the diagnostic accuracy of LAP was found to be significantly better in younger age groups (aged 18-34 for men; aged 18-34 and 35-44 years for women) for both sexes. Conclusions LAP is significantly associated with the presence and severity of NAFLD, and has a high diagnostic accuracy for identifying NAFLD in the general population. The diagnostic accuracy of LAP was especially high among younger age groups. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0206-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haijiang Dai
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China.,Center of Health Management, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013 People's Republic of China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022 People's Republic of China
| | - Ruifang Chen
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China
| | - Zhiheng Chen
- Center of Health Management, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013 People's Republic of China
| | - Yao Lu
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China
| | - Hong Yuan
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China
| |
Collapse
|
786
|
Chabanova E, Fonvig CE, Bøjsøe C, Holm JC, Thomsen HS. 1H MRS Assessment of Hepatic Fat Content: Comparison Between Normal- and Excess-weight Children and Adolescents. Acad Radiol 2017; 24:982-987. [PMID: 28462823 DOI: 10.1016/j.acra.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of the present study was to obtain a cutoff value of liver fat content for the diagnosis of hepatic steatosis by comparing magnetic resonance (MR) spectroscopy results in children and adolescents with normal and excess weight. MATERIALS AND METHODS The study included 420 children and adolescents (91 normal-weight, 99 overweight, and 230 obese) 8-18 years of age. Proton magnetic resonance spectroscopy was performed with a 3T MR system using point resolved spectroscopy sequence with series echo times. RESULTS The mean absolute mass concentration of liver fat was obtained: 0.5 ± 0.04% in normal-weight boys; 0.5 ± 0.03% in normal-weight girls; 0.9 ± 0.16% in boys with overweight; 1.1 ± 0.24% in girls with overweight; 1.7 ± 0.24% in boys with obesity; and 1.4 ± 0.21% in girls with obesity. The cutoff value of absolute mass concentration of liver fat for hepatic steatosis was found to be 1.5%. Based on this cutoff value, hepatic steatosis was diagnosed in 16% of boys with overweight, 11% of girls with overweight, 32% of boys with obesity, and 27% of girls with obesity. CONCLUSIONS Proton magnetic resonance spectroscopy was successfully applied to obtain the cutoff value of absolute mass concentration of liver fat for the diagnosis of hepatic steatosis in children and adolescents. Children and adolescents with obesity have higher risk of hepatic steatosis than their peers with overweight.
Collapse
Affiliation(s)
- Elizaveta Chabanova
- Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | - Cilius Esmann Fonvig
- The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
| | - Christine Bøjsøe
- The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik S Thomsen
- Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
787
|
Duranti S, Ferrario C, van Sinderen D, Ventura M, Turroni F. Obesity and microbiota: an example of an intricate relationship. GENES AND NUTRITION 2017. [PMID: 28638490 PMCID: PMC5473000 DOI: 10.1186/s12263-017-0566-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that metabolic disorders, such as obesity, are closely linked to lifestyle and diet. Recently, the central role played by the intestinal microbiota in human metabolism and in progression of metabolic disorders has become evident. In this context, animal studies and human trials have demonstrated that alterations of the intestinal microbiota towards enhanced energy harvest is a characteristic of the obese phenotype. Many publications, involving both animal studies and clinical trials, have reported on the successful exploitation of probiotics and prebiotics to treat obesity. However, the molecular mechanisms underlying these observed anti-obesity effects of probiotics and prebiotic therapies are still obscure. The aim of this mini-review is to discuss the intricate relationship of various factors, including diet, gut microbiota, and host genetics, that are believed to impact on the development of obesity, and to understand how modulation of the gut microbiota with dietary intervention may alleviate obesity-associated symptoms.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
788
|
de Castro CA, dos Santos Dias MM, da Silva KA, dos Reis SA, da Conceição LL, De Nadai Marcon L, de Sousa Moraes LF, do Carmo Gouveia Peluzio M. Liver Biomarkers and Their Applications to Nutritional Interventions in Animal Studies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-94-007-7675-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
789
|
Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T. Probiotics Supplemented with Omega-3 Fatty Acids are More Effective for Hepatic Steatosis Reduction in an Animal Model of Obesity. Probiotics Antimicrob Proteins 2017; 9:123-130. [PMID: 27660157 DOI: 10.1007/s12602-016-9230-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today probiotics have been suggested as a treatment for the prevention of NAFLD. Omega-3 fatty acid supplementation may have beneficial effects in regulating hepatic lipid metabolism, adipose tissue function and inflammation. The present study was designed to determine whether probiotics plus omega-3 are superior to probiotics alone on the monosodium glutamate (MSG)-induced NAFLD model in rats. We included 60 rats divided into four groups, 15 animals in each. Rats of group I were intact. Newborn rats of groups II-IV were injected with MSG. The III (Symbiter) group received 2.5 ml/kg of multiprobiotic "Symbiter" containing concentrated biomass of 14 probiotic bacteria genera. The IV (Symbiter-Omega) groups received "Symbiter-Omega" combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5 %). In both interventional groups reduction in total NAS score was observed. Supplementation of alive probiotic mixture with omega-3 fatty acids lead to 20 % higher decrease in steatosis score (0.73 ± 0.11 vs 0.93 ± 0.22, p = 0.848) and reduction by 16.6 % of triglycerides content in liver as compared to probiotic alone. Our study demonstrated more pronounced reduction in hepatic steatosis and hepatic lipid accumulation after treatment with combination of alive probiotics and omega-3 as compared to probiotics alone.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Bogomolets National Medical University, T. Shevchenko Boulevard, 13, Kiev, 01601, Ukraine.
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kiev, 01601, Ukraine
| | - Petro Bodnar
- Bogomolets National Medical University, T. Shevchenko Boulevard, 13, Kiev, 01601, Ukraine
| | - Tetyana Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kiev, 01601, Ukraine
| |
Collapse
|
790
|
Doulberis M, Kotronis G, Gialamprinou D, Kountouras J, Katsinelos P. Non-alcoholic fatty liver disease: An update with special focus on the role of gut microbiota. Metabolism 2017; 71:182-197. [PMID: 28521872 DOI: 10.1016/j.metabol.2017.03.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/19/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant global health burden in children, adolescents and adults with substantial rise in prevalence over the last decades. Accumulating data from manifold studies support the idea of NAFLD as a hepatic manifestation of metabolic syndrome, being rather a systemic metabolic disease than a liver confined pathology. Emerging data support that the gut microbiome represents a significant environmental factor contributing to NAFLD development and progression. Apart from other regimens, probiotics may have a positive role in the management of NAFLD through a plethora of possible mechanisms. The current review focuses on the NAFLD multifactorial pathogenesis, including mainly the role of intestinal microbiome and all relevant issues are raised. Furthermore, the clinical manifestations and appropriate diagnostic approach of the disease are discussed, with all possible therapeutic measures that can be taken, also including the potential beneficial effect of probiotics.
Collapse
Affiliation(s)
- Michael Doulberis
- Bürgerspital Hospital, Department of Internal Medicine, Solothurn 4500, Switzerland.
| | - Georgios Kotronis
- Agios Pavlos Hospital, Department of Internal Medicine, Thessaloniki, Macedonia, 55134, Greece
| | - Dimitra Gialamprinou
- Papageorgiou General Hospital, Department of Pediatrics, Aristotle University of Thessaloniki, Macedonia, 56403, Greece
| | - Jannis Kountouras
- Ippokration Hospital, Department of Internal Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, 54642, Greece
| | - Panagiotis Katsinelos
- Ippokration Hospital, Department of Internal Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, 54642, Greece
| |
Collapse
|
791
|
Kobyliak N, Virchenko O, Falalyeyeva T, Kondro M, Beregova T, Bodnar P, Shcherbakov O, Bubnov R, Caprnda M, Delev D, Sabo J, Kruzliak P, Rodrigo L, Opatrilova R, Spivak M. Cerium dioxide nanoparticles possess anti-inflammatory properties in the conditions of the obesity-associated NAFLD in rats. Biomed Pharmacother 2017; 90:608-614. [PMID: 28411553 DOI: 10.1016/j.biopha.2017.03.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for non-alcoholic fatty liver disease (NAFLD). The disease is associated with impairment of pro/antioxidant equilibrium and the inflammation in liver tissue. The aim of the work was to investigate the anti-inflammatory properties of the nanocrystalline cerium dioxide (nCeO2) on the rat model of NAFLD associated with monosodium glutamate (MSG)-induced obesity. METHODS The study was carried out on three groups of rats: control, MSG- and MSG+nCeO2. They were injected with saline (control) or MSG. A month after born MSG-rats had been treated with water in a volume of 2.9ml/kg, MSG+CeO2 groups - with CeO2 intragastrically (i.g.). The anthropometric and carbohydrate metabolism parameters, content of proinflammatory cytokines (interleukin (IL)-1β, IL-12Bp40, interferon-γ (INF-γ)) and anti-inflammatory cytokines (IL-4, IL-10, tumor growth factor-β (TGF-β)) were measured by ELISA. RESULTS We have demonstrated the anti-obesity effect of nanocrystalline cerium dioxide and for the first time its anti-inflammatory properties. Nanoparticles reduced the content of pro-inflammatory cytokines (IL-1β, IL-12Bp40) in rat serum and restored the level of anti-inflammatory cytokines (IL-4, IL-10, TGF-β) to the control values. CONCLUSION The precise mechanisms of this phenomenon remain to be unclear but we suppose they are at least partially associated with the strong anti-oxidant action of studied substance. Nanocrystalline cerium dioxide attenuates the inflammatory processes in rat blood that can prevent obesity complications and liver injury.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleksandr Virchenko
- Department of Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Maryana Kondro
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tetyana Beregova
- Institute of Biology, Taras Shevchenko National University, Kyiv, Ukraine
| | - Petro Bodnar
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleksandr Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Rostyslav Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Delian Delev
- Department Pharmacology and Clinical Pharmacology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, Kosice, 040 11, Slovakia.
| | - Peter Kruzliak
- Research and Development Services, Brno, Czech Republic; Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1/1946, Brno, 612 42, Czech Republic; 2nd Department of Surgery, Faculty of Medicine, Masaryk University a St. Anne's University Hospital, Brno, Czech Republic.
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, Spain
| | | | - Mykola Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
792
|
Clark AK, Haas KN, Sivamani RK. Edible Plants and Their Influence on the Gut Microbiome and Acne. Int J Mol Sci 2017; 18:ijms18051070. [PMID: 28513546 PMCID: PMC5454980 DOI: 10.3390/ijms18051070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Acne vulgaris affects most people at some point in their lives. Due to unclear etiology, likely with multiple factors, targeted and low-risk treatments have yet to be developed. In this review, we explore the multiple causes of acne and how plant-based foods and supplements can control these. The proposed causative factors include insulin resistance, sex hormone imbalances, inflammation and microbial dysbiosis. There is an emerging body of work on the human gut microbiome and how it mediates feedback between the foods we eat and our bodies. The gut microbiome is also an important mediator of inflammation in the gut and systemically. A low-glycemic load diet, one rich in plant fibers and low in processed foods, has been linked to an improvement in acne, possibly through gut changes or attenuation of insulin levels. Though there is much interest in the human microbiome, there is much more unknown, especially along the gut-skin axis. Collectively, the evidence suggests that approaches such as plant-based foods and supplements may be a viable alternative to the current first line standard of care for moderate acne, which typically includes antibiotics. Though patient compliance with major dietary changes is likely much lower than with medications, it is a treatment avenue that warrants further study and development.
Collapse
Affiliation(s)
- Ashley K Clark
- School of Medicine, University of California-Davis, Sacramento, CA 95816, USA.
| | - Kelly N Haas
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
| | - Raja K Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA.
| |
Collapse
|
793
|
Chen J, Liu J, Wang Y, Hu X, Zhou F, Hu Y, Yuan Y, Xu Y. Wogonin mitigates nonalcoholic fatty liver disease via enhancing PPARα/AdipoR2, in vivo and in vitro. Biomed Pharmacother 2017; 91:621-631. [PMID: 28486193 DOI: 10.1016/j.biopha.2017.04.125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
Wogonin has been reported to attenuate hyperglycemia in diabetic mice via anti-adipogenic effect on adipocytes. The potential therapeutic role of wogonin in nonalcoholic fatty liver disease (NAFLD) remains obscure. The aim of the present study was to explore the protective effect of wogonin on NAFLD mice and cultured NCTC 1469 cells exposed to palmitate. Wogonin supplementation significantly improved metabolic parameters in NAFLD mice, including body weight, blood glucose, insulin resistance, adiponectin, blood lipids, aminotransferases and hepatic histopathology. Further research in liver tissues from NAFLD mice and NCTC 1469 cells stressed by lipotoxicity showed wogonin treatment reduced inflammatory response by lowering interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), alleviated oxidative stress by preventing the accumulation of oxidative product malondialdehyde (MDA) and strengthening the anti-oxidative capacity of glutathione (GSH), Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPX). In addition, wogonin repaired the lipotoxicity-induced decline of peroxisome proliferator- activated receptor α (PPARα) and adiponectin receptor 2 (AdipoR2) in hepatocytes, in vivo and in vitro. Knock-down of PPARα abolished the protective effect of wogonin on NCTC 1469 cells, including the up-regulation of AdipoR2. Taken together, the current study demonstrated wogonin might be a potential therapeutic agent for NAFLD via up-regulation of hepatic PPARα/AdipoR2.
Collapse
Affiliation(s)
- Jing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Department of Integrated Wards, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Ye Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xuemei Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Feng Zhou
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yimeng Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yin Yuan
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
794
|
The Microbiota-Obesity Connection, Part 2. Holist Nurs Pract 2017; 31:204-209. [PMID: 28406874 DOI: 10.1097/hnp.0000000000000213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
795
|
Belemets N, Kobyliak N, Virchenko O, Falalyeyeva T, Olena T, Bodnar P, Savchuk O, Galenova T, Caprnda M, Rodrigo L, Skladany L, Delev D, Opatrilova R, Kruzliak P, Beregova T, Ostapchenko L. Effects of polyphenol compounds melanin on NAFLD/NASH prevention. Biomed Pharmacother 2017; 88:267-276. [DOI: 10.1016/j.biopha.2017.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/25/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
|
796
|
Le Jemtel TH, Richardson W, Samson R, Jaiswal A, Oparil S. Pathophysiology and Potential Non-Pharmacologic Treatments of Obesity or Kidney Disease Associated Refractory Hypertension. Curr Hypertens Rep 2017; 19:18. [PMID: 28243928 DOI: 10.1007/s11906-017-0713-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The review assesses the role of non-pharmacologic therapy for obesity and chronic kidney disease (CKD) associated refractory hypertension (rf HTN). RECENT FINDINGS Hypertensive patients with markedly heightened sympathetic nervous system (SNS) activity are prone to develop refractory hypertension (rfHTN). Patients with obesity and chronic kidney disease (CKD)-associated HTN have particularly heightened SNS activity and are at high risk of rfHTN. The role of bariatric surgery is increasingly recognized in treatment of obesity. Current evidence advocates for a greater role of bariatric surgery in the management of obesity-associated HTN. In contrast, renal denervation does not appear have a role in the management of obesity or CKD-associated HTN. The role of baroreflex activation as adjunctive anti-hypertensive therapy remains to be defined.
Collapse
Affiliation(s)
- Thierry H Le Jemtel
- Division of Cardiology, Tulane University Medical Center, New Orleans, Louisiana, USA.
- Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Ave SL-42, New Orleans, LA, 70112, USA.
| | - William Richardson
- Department of Surgery, Ochsner Health System, New Orleans, Louisiana, USA
| | - Rohan Samson
- Division of Cardiology, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Abhishek Jaiswal
- Division of Cardiology, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Suzanne Oparil
- Division of Cardiovascular Disease, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
797
|
Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 2017; 14:81-96. [PMID: 27780972 PMCID: PMC5725959 DOI: 10.1038/nrgastro.2016.160] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.
Collapse
Affiliation(s)
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado
| | | | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado,Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, MS 8106, Aurora, Colorado 80045, USA
| |
Collapse
|
798
|
Stanaway IB, Wallace JC, Shojaie A, Griffith WC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, McLean JS, Thompson B, Faustman EM. Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Appl Environ Microbiol 2017; 83:e02149-16. [PMID: 27836847 PMCID: PMC5203616 DOI: 10.1128/aem.02149-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
In a longitudinal agricultural community cohort sampling of 65 adult farmworkers and 52 adult nonfarmworkers, we investigated agricultural pesticide exposure-associated changes in the oral buccal microbiota. We found a seasonally persistent association between the detected blood concentration of the insecticide azinphos-methyl and the taxonomic composition of the buccal swab oral microbiome. Blood and buccal samples were collected concurrently from individual subjects in two seasons, spring/summer 2005 and winter 2006. Mass spectrometry quantified blood concentrations of the organophosphate insecticide azinphos-methyl. Buccal oral microbiome samples were 16S rRNA gene DNA sequenced, assigned to the bacterial taxonomy, and analyzed after "centered-log-ratio" transformation to handle the compositional nature of the proportional abundances of bacteria per sample. Nonparametric analysis of the transformed microbiome data for individuals with and without azinphos-methyl blood detection showed significant perturbations in seven common bacterial taxa (>0.5% of sample mean read depth), including significant reductions in members of the common oral bacterial genus Streptococcus Diversity in centered-log-ratio composition between individuals' microbiomes was also investigated using principal-component analysis (PCA) to reveal two primary PCA clusters of microbiome types. The spring/summer "exposed" microbiome cluster with significantly less bacterial diversity was enriched for farmworkers and contained 27 of the 30 individuals who also had azinphos-methyl agricultural pesticide exposure detected in the blood. IMPORTANCE In this study, we show in human subjects that organophosphate pesticide exposure is associated with large-scale significant alterations of the oral buccal microbiota composition, with extinctions of whole taxa suggested in some individuals. The persistence of this association from the spring/summer to the winter also suggests that long-lasting effects on the commensal microbiota have occurred. The important health-related outcomes of these agricultural community individuals' pesticide-associated microbiome perturbations are not understood at this time. Future investigations should index medical and dental records for common and chronic diseases that may be interactively caused by this association between pesticide exposure and microbiome alteration.
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - James C Wallace
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Carly S Wilder
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Foad H Green
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Misty Knight
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Eric M Vigoren
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Jeffrey S McLean
- School of Dentistry, Periodontics, University of Washington, Seattle, Washington, USA
| | - Beti Thompson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| |
Collapse
|
799
|
|
800
|
Foghsgaard S, Andreasen C, Vedtofte L, Andersen ES, Bahne E, Strandberg C, Buhl T, Holst JJ, Svare JA, Clausen TD, Mathiesen ER, Damm P, Gluud LL, Knop FK, Vilsbøll T. Nonalcoholic Fatty Liver Disease Is Prevalent in Women With Prior Gestational Diabetes Mellitus and Independently Associated With Insulin Resistance and Waist Circumference. Diabetes Care 2017; 40:109-116. [PMID: 27810989 DOI: 10.2337/dc16-1017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/10/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes increases the risk of nonalcoholic fatty liver disease (NAFLD), which is a potentially reversible condition but is also associated with progressive fibrosis and cirrhosis. Women with prior gestational diabetes mellitus (pGDM) have a higher risk for NAFLD. RESEARCH DESIGN AND METHODS One hundred women without diabetes who had pGDM (median [interquartile range]: age 38.6 [6.4] years; BMI 31.0 [6.2] kg/m2) and 11 healthy control subjects without NAFLD (age 37.9 [7.8] years; BMI 28.1 [0.8] kg/m2) underwent a 75-g oral glucose tolerance test (OGTT), DXA whole-body scan, and ultrasonic evaluation of hepatic steatosis. RESULTS Twenty-four (24%) women with pGDM had NAFLD on the basis of the ultrasound scan. None had cirrhosis. Women with NAFLD had a higher BMI (P = 0.0002) and waist circumference (P = 0.0003), increased insulin resistance (P = 0.0004), and delayed suppression of glucagon after the OGTT (P < 0.0001), but NAFLD was not associated with the degree of glucose intolerance (P = 0.2196). Visceral fat mass differed among the three groups, with the NAFLD group having the highest amount of fat and the control subjects the lowest (P = 0.0003). By logistic regression analysis, insulin resistance (P = 0.0057) and waist circumference (P = 0.0109) were independently associated with NAFLD. CONCLUSIONS NAFLD was prevalent in this cohort of relatively young and nonseverely obese women with pGDM who are considered healthy apart from their increased risk for diabetes. Insulin resistance and a larger waist circumference were independently associated with the presence of NAFLD, whereas glucose intolerance was not.
Collapse
Affiliation(s)
- Signe Foghsgaard
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Camilla Andreasen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Louise Vedtofte
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Emilie S Andersen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Emilie Bahne
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Charlotte Strandberg
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Thora Buhl
- Department of Nuclear Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Hellerup, Denmark
| | - Jens A Svare
- Department of Obstetrics and Gynecology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Tine D Clausen
- Department of Gynecology and Obstetrics, Nordsjællands Hospital, University of Copenhagen, Hillerød, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lise L Gluud
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|