751
|
Iwashima Y, Eto M, Horiuchi S, Sano H. Advanced glycation end product-induced peroxisome proliferator-activated receptor gamma gene expression in the cultured mesangial cells. Biochem Biophys Res Commun 1999; 264:441-8. [PMID: 10529383 DOI: 10.1006/bbrc.1999.1539] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We identified the AGEs-induced expression of peroxisome proliferator-activated gamma (PPAR gamma) in the cultured mesangial cells using reverse transcription-polymerase chain reaction, electrophoretic mobility shift assay (EMSA), and Western immunoblotting. Administration of AGEs-BSA into the cultured mesangial cells resulted in an increase in the levels of mRNA and proteins for PPAR gamma in a dose-dependent manner. Specific bands which indicate the protein binding to PPAR gamma responsive element (PPRE) in the nuclear extracts were also detected in AGEs-BSA-treated mesangial cells, but not found in BSA-treated cells by EMSA. Antioxidants, NAC, PDTC, and aminoguanidine, attenuated the gene expression and activity of PPAR gamma induced by AGEs. These results indicate that PPAR gamma was induced and activated by the oxidative signal(s) evoked by AGEs-ligand-receptor interactions. AGEs-induced gene expression of PPAR gamma and the signal intensity of PPAR gamma and PPRE complex were attenuated furthermore by protein kinase C inhibitors, calphostin C and staurospolin, but not abolished completely, indicating that both signal transduction pathways through the induction of PKC activation and independent of PKC activation were involved in the AGEs-mediated expression and activation process of PPAR gamma. AGEs also increased the gene expression of smooth muscle alpha-actin, which is a marker for phenotypic change in mesangial cells. It is suggested therefore that AGEs-induced transcription factor as the oxidative stress may have a role in the differentiation of mesangial cells.
Collapse
Affiliation(s)
- Y Iwashima
- Department of Internal Medicine, Sano Hospital, Suehiro 3-3-1-15, Asahikawa, 078-8133, Japan
| | | | | | | |
Collapse
|
752
|
Abstract
Oxidative stress and the production of intracellular reactive oxygen species (ROS) have been implicated in the pathogenesis of a variety of diseases. In excess, ROS and their byproducts that are capable of causing oxidative damage may be cytotoxic to cells. However, it is now well established that moderate amounts of ROS play a role in signal transduction processes such as cell growth and posttranslational modification of proteins. Oxidants, antioxidants, and other determinants of the intracellular reduction-oxidation (redox) state play an important role in the regulation of gene expression. Recent insights into the etiology and pathogenesis of atherosclerosis suggest that this disease may be viewed as an inflammatory disease linked to an abnormality in oxidation-mediated signals in the vasculature. In this review, we summarize the evidence supporting the notion that oxidative stress and the production of ROS function as physiological regulators of vascular gene expression mediated via specific redox-sensitive signal transduction pathways and transcriptional regulatory networks. Elucidating, at the molecular level, the regulatory processes involved in redox-sensitive vascular gene expression represents a foundation not only for understanding the pathogenesis of atherosclerosis and other inflammatory diseases but also for the development of novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- C Kunsch
- AtheroGenics, Inc, Alpharetta, GA 30004, USA
| | | |
Collapse
|
753
|
Pugliese G, Pricci F, Romeo G, Leto G, Amadio L, Iacobini C, Di Mario U. Autocrine and paracrine mechanisms in the early stages of diabetic nephropathy. J Endocrinol Invest 1999; 22:708-35. [PMID: 10595837 DOI: 10.1007/bf03343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G Pugliese
- Dipartimento di Scienze Cliniche, Endocrinologia III, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
754
|
Paredi P, Biernacki W, Invernizzi G, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease? Chest 1999; 116:1007-11. [PMID: 10531166 DOI: 10.1378/chest.116.4.1007] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE In diabetes, the interaction of glycated proteins with their cell-surface binding sites leads to oxidative stress and induction of the stress protein heme oxygenase (HO)-1. Considering that carbon monoxide (CO) is a product of HO activity, we studied the level of exhaled CO as a marker of oxidative stress in diabetes. METHODS Eight patients with insulin-dependent diabetes mellitus (type 1) (4 men, 4 women; [mean +/- SEM] age, 50 +/- 8 years) were studied, of whom 2 had peripheral neuropathy and 1 had renal failure. Sixteen patients with non-insulin-dependent diabetes mellitus (type 2) (5 men, 11 women; age 63 +/- 8 years) were studied, of whom 2 had peripheral neuropathy. Glycosylated hemoglobin (HbA(1)c) levels were higher (7.4 +/- 0.3%) in patients with type 1 (mean duration of the disease, 20 +/- 5 years) than in type 2 (4.9 +/- 0.4%; p < 0.05; mean duration of the disease, 11 +/- 2 years). All of the patients were lifelong nonsmokers. RESULTS Levels of exhaled CO were higher in patients with diabetes (type 1, 4.0 +/- 0.7 ppm; type 2, 5.0 +/- 0.4 ppm) when compared to 37 nonsmoking healthy subjects (20 men, 17 women; age, 33 +/- 3 years) (2.9 +/- 0.2 ppm; p < 0.05). There was a positive correlation between exhaled CO levels and the incidence of glycemia in all subjects (r = 0.52, p < 0.05) and the duration of diabetes (r = 0.48, p < 0.05), but there was not a strong correlation with concentrations of HbA(1)c (r = 0.06, p = 0.8). In addition, an oral glucose tolerance test was performed in five healthy nonsmoking volunteers (three men; age, 33 +/- 4 years). The maximal glucose increase (from 3.9 +/- 0.2 to 5.5 +/- 0.1 mmol/L at 15 min; p < 0.05) was associated with a significant increase in exhaled CO concentration (from 3.0 +/- 0.5 to 6.3 +/- 1.0 ppm; p < 0. 05). Both parameters returned to the baseline at 40 min after glucose administration. CONCLUSIONS Elevated levels of exhaled CO in diabetes may reflect HO-1 induction and oxidative stress. The measurement of CO may be a new tool for disease monitoring.
Collapse
Affiliation(s)
- P Paredi
- Department of Thoracic Medicine , Imperial College, School of Medicine, National Heart and Lung Institute, London, England
| | | | | | | | | |
Collapse
|
755
|
Prevost G, Fajardy I, Fontaine P, Danze PM, Besmond C. Human RAGE GLY82SER dimorphism and HLA class II DRB1-DQA1-DQB1 haplotypes in type 1 diabetes. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1999; 26:343-8. [PMID: 10553500 DOI: 10.1046/j.1365-2370.1999.00168.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) are believed to play an important role in the development of diabetic complications. AGEs increase in diabetes and modulate cellular functions through binding to a specific cell surface receptor (RAGE). The RAGE gene maps to chromosome 6p in the HLA class III area and is telomeric to the class II region at 250 kb from DRA. A recent report described the characterization of a major RAGE gene variant as a biallelic single base polymorphism (G/A 557) in the exon 3 sequence leading to a change of a glycine to a serine at position 82. Using DGGE and PCR-RFLP, we have investigated the distribution of this dimorphism in conjunction with HLA class II genes in large populations of type 1 diabetic patients and healthy subjects. Although no association of this RAGE gene polymorphism with disease susceptibility was found, we report a strong linkage disequilibrium between the variant carrying the serine amino acid at position 82 and two HLA-DR2 and HLA-DR4 specificities. In particular, we describe two major extensive HLA class II haplotypes associated with this serine variant and identified as DRB1*0401-DQA1*0301-DQB1*0301 in the diabetic group and DRB1*1501-DQA1*0102-DQB1*0602 in control individuals. These data were partially confirmed by family transmission analysis.
Collapse
Affiliation(s)
- G Prevost
- Service d'Endocrinologie et de Diabétologie, Clinique Marc Linquette, Centre Hospitalier Régional, Lille, France
| | | | | | | | | |
Collapse
|
756
|
Abstract
Hyperglycemia, a well recognized pathogenetic factor of long-term complications in diabetes mellitus, not only generates more reactive oxygen species but also attenuates antioxidative mechanisms through glycation of the scavenging enzymes. Therefore, oxidative stress has been considered to be a common pathogenetic factor of the diabetic complications including nephropathy. A causal relationship between oxidative stress and diabetic nephropathy has been established by observations that (1) lipid peroxides and 8-hydroxydeoxyguanosine, indices of oxidative tissue injury, were increased in the kidneys of diabetic rats with albuminuria; (2) high glucose directly increases oxidative stress in glomerular mesangial cells, a target cell of diabetic nephropathy; (3) oxidative stress induces mRNA expression of TGF-beta1 and fibronectin which are the genes implicated in diabetic glomerular injury, and (4) inhibition of oxidative stress ameliorates all the manifestations associated with diabetic nephropathy. Proposed mechanisms involved in oxidative stress associated with hyperglycemia are glucose autooxidation, the formation of advanced glycosylation end products, and metabolic stress resulting from hyperglycemia. Since the inhibition of protein kinase C (PKC) effectively blocks not only phorbol ester-induced but also high glucose- and H2O2-induced fibronectin production, the activation of PKC under diabetic conditions may also have a modulatory role in oxidative stress-induced renal injury in diabetes mellitus.
Collapse
Affiliation(s)
- H Ha
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea.
| | | |
Collapse
|
757
|
Abstract
Diabetes mellitus is postulated to be associated with increased lipid peroxidation, which may contribute to vascular complications. One potential mechanism of the increased lipid peroxidation in diabetes is lipid-linked advanced glycosylation and oxidation. Aminoguanidine (AMGN), the prototype inhibitor of advanced glycosylation end product (AGE) formation, has been recently shown to prevent oxidative modification of low-density lipoprotein (LDL) in vitro at a moderate concentration. It is unknown whether AMGN may act as an antioxidant against lipid peroxidation under hyperglycemia in vivo. To investigate the in vivo effect of AMGN on lipid peroxidation in diabetes, we administered AMGN (1 g/L in drinking water) or vitamin E (400 mg/d for 5 d/wk) to streptozotocin (STZ)-induced diabetic rats for 9 weeks and measured plasma lipid hydroperoxides by ferrous oxidation with xylenol orange II (FOX method) and red blood cell (RBC) membrane malondialdehyde (MDA) and related aldehydes as thiobarbituric acid-reactive substances (TBARS). Plasma lipid hydroperoxide was higher in STZ-induced diabetic rats versus control rats (mean +/- SD, 7.53 +/- 2.03 v 5.62 +/- 0.44 micromol/L, P < .05; n = 8 to 14). RBC membrane TBARS were also higher in STZ-induced diabetic rats than in control rats (2.67 +/- 0.46 v 1.81 +/- 0.19 nmol/mL, P < .05). Plasma lipid hydroperoxide was lower in AMGN-treated (6.23 +/- 0.59 micromol/L, P < .05) and vitamin E-treated (5.29 +/- 0.27 micromol/L, P < .05) diabetic rats than in untreated diabetic rats. RBC membrane TBARS were also lower in AMGN-treated (1.93 +/- 0.12 nmol/mL, P < .05) diabetic rats than in untreated diabetic rats. There was no significant difference in plasma glucose, cholesterol, and triglyceride levels among diabetic groups. Although the mechanism(s) of action of AMGN on lipid peroxidation in vivo should be studied further, these results suggest that AMGN may have an additional beneficial effect as an antioxidant against lipid peroxidation in a prevention trial for diabetic vascular complications.
Collapse
Affiliation(s)
- S H Ihm
- Department of Internal Medicine, College of Medicine, Hallym University, Seoul, South Korea
| | | | | | | |
Collapse
|
758
|
Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999; 274:19919-24. [PMID: 10391939 DOI: 10.1074/jbc.274.28.19919] [Citation(s) in RCA: 499] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth in vitro on amphoterin-coated substrates. Ligation of RAGE by two other ligands, advanced glycation end products or amyloid beta-peptide, is suggested to play a role in cell injury mechanisms involving cellular oxidant stress and activation of the transcription factor NF-kappaB. However, the RAGE signaling pathways in neurite outgrowth and cell injury are largely unknown. Here we show that transfection of RAGE to neuroblastoma cells induces extension of filopodia and neurites on amphoterin-coated substrates. Furthermore, ligation of RAGE in transfected cells enhances NF-kappaB-dependent transcription. Both the RAGE-mediated neurite outgrowth and activation of NF-kappaB are blocked by deletion of the cytoplasmic domain of RAGE. Moreover, dominant negative Rac and Cdc42 but not dominant negative Ras inhibit the extension of neurites induced by RAGE-amphoterin interaction. In contrast, the activation of NF-kappaB is inhibited by dominant negative Ras but not Rac or Cdc42. These data suggest that distinct signaling pathways are used by RAGE to induce neurite outgrowth and regulate gene expression through NF-kappaB.
Collapse
Affiliation(s)
- H J Huttunen
- Laboratory of Molecular Neurobiology, Institute of Biotechnology, and Department of Biosciences, Division of Biochemistry, University of Helsinki, Finland.
| | | | | |
Collapse
|
759
|
Lundberg MS, Crow MT. Age-related changes in the signaling and function of vascular smooth muscle cells. Exp Gerontol 1999; 34:549-57. [PMID: 10817810 DOI: 10.1016/s0531-5565(99)00036-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aging is an independent risk factor for the development of atherosclerosis, a vascular abnormality that plays a significant role in the development of many cardiovascular disorders. Animal experiments have demonstrated that aging predisposes the vasculature to advanced atherosclerotic disease and vessel injury and that this predisposition is a function of age-associated changes in the vessel wall itself. Because vascular smooth muscle cells play important roles in the pathogenesis of many vascular disorders, identifying age-associated differences in the way these cells respond to extracellular clues has been an area of active research. Currently, the most remarkable differences in intracellular signaling between vascular smooth muscle cells isolated from young and old animals are related to the control of cell migration through the CamKII pathways and the accelerated transition of older vascular smooth muscle cells from the contractile to the synthetic phenotype. These differences may be due to alternative signaling pathways revealed by the inability of older cells to respond to inhibitors, such as transforming growth factor (TGF)-beta1, or to altered interactions with the extracellular matrix resulting from age-associated shifts in integrin expression or changes in the matrix composition of blood vessels. The exact role that these alterations have in explaining age-associated differences in the response of the vessel wall to injury and its increased susceptibility to developing advanced atherosclerotic lesions remains to be determined but will be guided by studies on intracellular signaling mechanisms.
Collapse
Affiliation(s)
- M S Lundberg
- Vascular Biology Unit, Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
760
|
Menè P, Pascale C, Teti A, Bernardini S, Cinotti GA, Pugliese F. Effects of advanced glycation end products on cytosolic Ca2+ signaling of cultured human mesangial cells. J Am Soc Nephrol 1999; 10:1478-86. [PMID: 10405203 DOI: 10.1681/asn.v1071478] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advanced glycation end product (AGE) accumulation in a high glucose (HG) environment is thought to mediate some of the vascular complications of diabetes. Transmembrane signaling of contractile cells is generally inhibited by HG, with implications for systemic and target organ hemodynamics. In the kidney, glomerular mesangial cells grown in HG media are hyporesponsive to the effects of vasoconstrictor agents, possibly explaining the hyperfiltration and increased capillary pressure that eventually lead to diabetic glomerulopathy. To verify whether AGE binding to specific mesangial receptors could mediate these effects of HG, cultured human mesangial cells (HMC) were exposed to in vitro glycated bovine serum albumin (BSA) for 60 min at 37 degrees C before measurement of cytosolic Ca2+ ([Ca2+]i) by microfluorometric techniques in monolayers or single cells. AGE-BSA (2 mg/ml) reduced Ca2+ release from intracellular stores by 1 microM angiotensin II from peak [Ca2+]i levels of 843+/-117 to 390+/-50 nM in monolayers and from 689+/-68 to 291+/-36 nM in individual cells (P < 0.05). Nonglycated BSA and BSA exposed to 250 mM glucose-6-phosphate for 30 d in the presence of 250 mM aminoguanidine (AMGD), an inhibitor of nonenzymatic glycation, had no effect on the angiotensin II-induced [Ca2+]i spike (peak 766+/-104 and 647+/-87 nM, monolayers/ single cells, respectively, P = NS). AGE also inhibited store-operated Ca2+ influx through plasma membrane channels, assessed by addition of 1 to 10 mM extracellular Ca2+ to cells previously held in Ca2(+)-free media (control 339+/- 46/593 +/- 51, +AGE-BSA 236 +/- 25/390 +/- 56, +AMGD 483+/-55/ 374+/-64 nM [Ca2+]i, monolayers/single cells at 10 mM Ca2+, respectively; +AGE-BSA, P < 0.05 versus control). Contrary to HG, AGE-BSA did not translocate protein kinase C isoforms alpha, zeta, and delta to the plasma membrane. Culture of HMC in HG supplemented with 1 mM AMGD prevented downregulation of [Ca2+]i signaling. These data suggest that glycated macromolecules or matrix components may inhibit transmembrane Ca2+ signaling of glomerular cells through binding to a specific AGE receptor, thus mediating some of the known functional effects of HG on the kidney.
Collapse
Affiliation(s)
- P Menè
- Division of Nephrology, University La Sapienza of Rome, Italy.
| | | | | | | | | | | |
Collapse
|
761
|
Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest 1999; 104:103-13. [PMID: 10393704 PMCID: PMC408396 DOI: 10.1172/jci3042] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Reactive aldehydes derived from reducing sugars and peroxidation of lipids covalently modify proteins and may contribute to oxidative tissue damage. We recently described another mechanism for generating reactive aldehydes from free alpha-amino acids. The pathway begins with myeloperoxidase, a heme enzyme secreted by activated neutrophils. Conversion of alpha-amino acids to aldehydes requires hypochlorous acid (HOCl), formed from H2O2 and chloride by myeloperoxidase. When L-serine is the substrate, HOCl generates high yields of glycolaldehyde. We now demonstrate that a model protein, ribonuclease A (RNase A), exposed to free L-serine and HOCl exhibits the biochemical hallmarks of advanced glycation end (AGE) products -- browning, increased fluorescence, and cross-linking. Furthermore, Nepsilon-(carboxymethyl)lysine (CML), a chemically well-characterized AGE product, was generated on RNase A when it was exposed to reagent HOCl-serine, the myeloperoxidase-H2O2-chloride system plus L-serine, or activated human neutrophils plus L-serine. CML production by neutrophils was inhibited by the H2O2 scavenger catalase and the heme poison azide, implicating myeloperoxidase in the cell-mediated reaction. CML was also generated on RNase A by a myeloperoxidase-dependent pathway when neutrophils were activated in a mixture of amino acids. Under these conditions, we observed both L-serine-dependent and L-serine-independent pathways of CML formation. The in vivo production of glycolaldehyde and other reactive aldehydes by myeloperoxidase may thus play an important pathogenic role by generating AGE products and damaging tissues at sites of inflammation.
Collapse
Affiliation(s)
- M M Anderson
- Departments of Medicine, Biochemistry and Biophysics, and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
762
|
Greene DA, Stevens MJ, Obrosova I, Feldman EL. Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 1999; 375:217-23. [PMID: 10443578 DOI: 10.1016/s0014-2999(99)00356-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Diabetes Control and Complications Trial (DCCT) established the importance of hyperglyemia and other consequences of insulin deficiency in the pathogenesis of diabetic neuropathy, but the precise mechanisms by which metabolic alterations produce peripheral nerve fiber damage and loss remain unclear. Emerging data from human and animal studies suggest that glucose-derived oxidative stress may play a central role, linking together many of the other currently invoked pathogenetic mechanisms such as the aldose reductase and glycation pathways, vascular dysfunction, and impaired neurotrophic support. These relationships suggest combinations of pharmacological interventions that may synergistically protect the peripheral nervous system (PNS) against the metabolic derangements of diabetes mellitus.
Collapse
Affiliation(s)
- D A Greene
- Department of Internal Medicine, and Michigan Diabetes Research and Training Center, University of Michigan, Ann Arbor, USA.
| | | | | | | |
Collapse
|
763
|
Masaki H, Okano Y, Sakurai H. Generation of active oxygen species from advanced glycation end-products (AGEs) during ultraviolet light A (UVA) irradiation and a possible mechanism for cell damaging. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:45-56. [PMID: 10366759 DOI: 10.1016/s0304-4165(99)00056-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advanced glycation end-products (AGEs) have been reported to be accumulated in dermal skin. However, the role of AGEs in the photoaging of human skin remains unknown, and for this reason, we have examined the interaction between AGEs and ultraviolet A light (UVA) from both the chemical and biological aspects. Previously, we reported that exposing human dermal fibroblasts to UVA in the presence of AGEs that were prepared with bovine serum albumin (BSA) decreased the cell viability due to superoxide anion radical s (.O2(-)) and hydroxyl radicals (.OH) generated by AGEs under UVA irradiation, and active oxygen species are detected with ESR spin-trapping. To identify the active oxygen species in detail and to clarify the cell damaging mechanism, we performed several experiments and the following results were obtained. (1) In ESR spin-trapping, by addition of dimethyl sulfoxide and superoxide dismutase, ESR signals due to .O2(-) -derived DMPO-OOH and .OH-derived DMPO-OH adducts, respectively, were detectable. (2) UVA-irradiated AGEs elevated the lipid peroxide levels in both fibroblasts and liposomes. But the peroxidation in liposomes was inhibited by addition of deferoxamine. (3) Survival of fibroblasts exposed to UVA in the presence of AGEs was elevated by addition of deferoxamine. And finally, (4) survival of fibroblasts was found to be regulated by the level of H2O2. On the basis of these results, we propose a possible mechanism in which AGEs under UVA irradiation generate active oxygen species involving .O2(-), H2O2, and .OH, and the .OH species plays a harmful role in promoting cell damage.
Collapse
Affiliation(s)
- H Masaki
- Foundation Research Laboratories, Noevir Co., Ltd., 112-1, Okada-cho, Youkaichi, Shiga 527-8588, Japan
| | | | | |
Collapse
|
764
|
Neumann A, Schinzel R, Palm D, Riederer P, Münch G. High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett 1999; 453:283-7. [PMID: 10405161 DOI: 10.1016/s0014-5793(99)00731-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advanced glycation endproducts (AGEs), which accumulate on long-lived proteins and protein deposits (amyloids), induce the expression of proinflammatory cytokines through NF-kappaB-dependent pathways. Hyaluronic acid with a molecular weight above 1.2 MDa (HMW-HA) inhibits the AGE-induced activation of the transcription factor NF-kappaB and the NF-kappaB-regulated cytokines interleukin-1alpha, interleukin-6 and tumor necrosis factor-alpha. Since the molecular weight of hyaluronic acid in humans decreases with age and under conditions of oxidative stress, it is likely that the protective effect of HMW-HA against AGE-induced cellular activation is lost at sites of chronic inflammation and in older age.
Collapse
Affiliation(s)
- A Neumann
- Physiological Chemistry I, Biocenter, Würzburg, Germany
| | | | | | | | | |
Collapse
|
765
|
Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97:889-901. [PMID: 10399917 DOI: 10.1016/s0092-8674(00)80801-6] [Citation(s) in RCA: 1479] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury.
Collapse
Affiliation(s)
- M A Hofmann
- College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
766
|
Rellier N, Ruggiero-Lopez D, Lecomte M, Lagarde M, Wiernsperger N. In vitro and in vivo alterations of enzymatic glycosylation in diabetes. Life Sci 1999; 64:1571-83. [PMID: 10353622 DOI: 10.1016/s0024-3205(99)00094-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Carbohydrate composition changes of glycoconjugates constituting the glycocalix of microvascular cells could be involved in the alterations of cell-cell interactions observed in diabetic retinopathy. In this field, we have recently reported that advanced glycation end products (AGEs) modify galactose, fucose and sialic acid contents of specific cellular glycoproteins. To better understand the mechanisms involved in glycoprotein modifications in diabetes, we now investigate whether glucose and AGEs could affect the activities of enzymes involved in galactose, fucose and sialic acid metabolism : glycosyltransferases (synthesis) and glycosidases (catabolism). For this, bovine retinal endothelial cells (BREC) and pericytes (BRP) were cultured in the presence of high glucose concentration or AGEs, and cell glycosidase and glycosyltransferase activities were measured. The same enzymatic activities were studied in the whole retina from streptozotocin-treated rats. The results show that high glucose concentration did not affect glycosidases and glycosyltransferases neither in BRP nor in BREC except for galactosyltransferase activities in BREC. Concerning BRP, only galactosyltransferase activities were altered by AGEs. In contrast, in BREC, AGEs increased beta-D galactosidase, alpha-L fucosidase and neuraminidase activities (+37%, +56%, 36% respectively) whereas galactosyltransferase, fucosyltransferase and sialyltransferase activities were decreased (-11%, -24% and -23% respectively). In the retina from diabetic rats, beta-D galactosidase, alpha-L fucosidase and neuraminidase activities increased (+70%, +57%, +78% respectively) whereas fucosyl and sialyltransferase decreased (-7% and -15% respectively). The possible consequence of these enzymatic activity changes could be a defect in the carbohydrate content of some glycoproteins that might participate in the endothelial cell dysfunctions in diabetic microangiopathy.
Collapse
Affiliation(s)
- N Rellier
- Diabetic Microangiopathy Research Unit, LIPHA-INSERM U352, INSA-Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|
767
|
Nishigaki R, Guo F, Onda M, Yamada N, Yokoyama M, Naito Z, Asano G, ShimizuSuganuma M, Shichinohe K, Aramaki T. Ultrastructural changes and immunohistochemical localization of nitric oxide synthase, advanced glycation end products and NF-kappa B in aorta of streptozotocin treated Mongolian gerbils. NIHON IKA DAIGAKU ZASSHI 1999; 66:166-75. [PMID: 10401233 DOI: 10.1272/jnms.66.166] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To evaluate the relationship among the induction of nitric oxide synthase (NOS), advanced glycation end products (AGEs) and NF-kappa B for vascular damage in hyperglycemia, we injected Mongolian gerbils intravenously with 150 mg/kg streptozotocin (STZ) and observed over the next one year the resulting aortic changes by immunohistochemical and electron microscopical techniques. After STZ treatment, hyperglycemia was confirmed and body weight transiently decreased. Morphological observation revealed no remarkable changs in vascular endothelial cells or vascular smooth muscle cells in the aorta at one week after STZ administration. After 4 weeks increased collagen fibrils were observed in the pericellular spaces of media. At one year after STZ administration, increased collagen fibrils and thickened elastic fibers were found around the vascular smooth muscle cells with vacuolization and increased cytoplasmic organellae compared with non-treated animals of the same age. Immunohistochemically endothelial constitutive NOS (ecNOS) was localized in the endothelium of the aorta of Mongolian gerbils. At one year after STZ administration, the reaction products of iNOS, AGEs and NF-kappa B in vascular endothelial cells and smooth muscle cells were much more greatly increased than at one week and 4 weeks. After STZ administration, the localization of NOS, AGEs and NF-kappa B was observed in the aorta, which suggests these factors play important roles in the pathogenesis of vasculopathy in diabetes mellitus.
Collapse
Affiliation(s)
- R Nishigaki
- Department of Pathology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
768
|
Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease. FEBS Lett 1999; 451:39-44. [PMID: 10356980 DOI: 10.1016/s0014-5793(99)00522-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Alzheimer's disease and related dementias, human tau protein aggregates into paired helical filaments and neurofibrillary tangles. However, such tau aggregates have not yet been demonstrated in transgenic mouse models of the disease. One of the possible explanations would be that mouse tau has different properties which prevents it from aggregating. We have cloned several murine tau isoforms, containing three or four repeats and different combinations of inserts, expressed them in Escherichia coli and show here that they can all be assembled into paired helical filaments similar to those in Alzheimer's disease, using the same protocols as with human tau. Therefore, the absence of pathologically aggregated tau in transgenic mice cannot be explained by intrinsic differences in mouse tau protein and instead must be explained by other as yet unknown factors.
Collapse
Affiliation(s)
- T Kampers
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
769
|
Khalifah RG, Baynes JW, Hudson BG. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun 1999; 257:251-8. [PMID: 10198198 DOI: 10.1006/bbrc.1999.0371] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present review focuses on the background and progress that led to discovery of specific inhibition of post-Amadori formation of advanced glycation end products, or AGEs. The "classic" or Hodge pathway begins with glucose condensation with amino groups to form a Schiff base aldimine adduct that undergoes rearrangement to a ketoamine Amadori product. This pathway is considered an important route to AGE formation that has been implicated in glucose-mediated damage in vivo (3-5). We recently described a facile procedure for isolation of proteins rich in Amadori adducts but free of AGEs, thus permitting study of pathways of conversion of Amadori compounds to AGEs. This in turn led to a unique and rapid post-Amadori screening assay for putative "Amadorins," which we define here as inhibitors of the conversion of Amadori intermediates to AGEs in the absence of excess free or reversibly bound (Schiff base) sugar. Our screening assay then led to the identification of pyridoxamine (Pyridorin) as the first member of this class of Amadorin compounds. Rather unexpectedly, the assay also led to the clear demonstration that the well-known AGE inhibitor aminoguanidine, currently in Phase 3 clinical trials for treatment of diabetic nephropathy, has negligible Amadorin activity. In view of the importance of Amadori compounds as intermediates in AGE formation in vivo, the therapeutic potential of Pyridorin is currently being investigated and is now showing highly promising results in different animal models.
Collapse
Affiliation(s)
- R G Khalifah
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160-7421, USA.
| | | | | |
Collapse
|
770
|
Cavanagh JB. Corpora-amylacea and the family of polyglucosan diseases. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:265-95. [PMID: 10209236 DOI: 10.1016/s0165-0173(99)00003-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The history, characters, composition and topography of corpora amylacea (CA) in man and the analogous polyglucosan bodies (PGB) in other species are documented, noting particularly the wide variation in the numbers found with age and in neurological disease. Their origins from both neurons and glia and their probable migrations and ultimate fate are discussed. Their presence is also noted in other organs, particularly in the heart. The occurrence in isolated cases of occasional 'massive' usually focal accumulations of similar polyglucosan bodies in association with certain chronic neurological diseases is noted and the specific conditions Adult Polyglucosan body disease and type IV glycogenosis where they are found throughout the nervous system in great excess is discussed. The distinctive differences of CA from the PGB of Lafora body disease and Bielschowsky body disease are emphasised. When considering their functional roles, a parallel is briefly drawn on the one hand between normal CA and the bodies in the polyglucosan disorders and on the other with the lysosomal system and its associated storage diseases. It is suggested that these two systems are complementary ways by which large, metabolically active cells such as neurons, astrocytes, cardiac myocytes and probably many other cell types, dispose of the products of stressful metabolic events throughout life and the continuing underlying process of aging and degradation of long lived cellular proteins. Each debris disposal system must be regulated in its own way and must inevitably, a priori, be heir to metabolic defects that give rise in each to its own set of metabolic disorders.
Collapse
Affiliation(s)
- J B Cavanagh
- Department of Clinical Neurosciences, Institute of Psychiatry, De Crespigny Avenue, London SE5 8AF, UK
| |
Collapse
|
771
|
Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999; 84:489-97. [PMID: 10082470 DOI: 10.1161/01.res.84.5.489] [Citation(s) in RCA: 553] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules and engages diverse ligands relevant to distinct pathological processes. One class of RAGE ligands includes glycoxidation products, termed advanced glycation end products, which occur in diabetes, at sites of oxidant stress in tissues, and in renal failure and amyloidoses. RAGE also functions as a signal transduction receptor for amyloid beta peptide, known to accumulate in Alzheimer disease in both affected brain parenchyma and cerebral vasculature. Interaction of RAGE with these ligands enhances receptor expression and initiates a positive feedback loop whereby receptor occupancy triggers increased RAGE expression, thereby perpetuating another wave of cellular activation. Sustained expression of RAGE by critical target cells, including endothelium, smooth muscle cells, mononuclear phagocytes, and neurons, in proximity to these ligands, sets the stage for chronic cellular activation and tissue damage. In a model of accelerated atherosclerosis associated with diabetes in genetically manipulated mice, blockade of cell surface RAGE by infusion of a soluble, truncated form of the receptor completely suppressed enhanced formation of vascular lesions. Amelioration of atherosclerosis in these diabetic/atherosclerotic animals by soluble RAGE occurred in the absence of changes in plasma lipids or glycemia, emphasizing the contribution of a lipid- and glycemia-independent mechanism(s) to atherogenesis, which we postulate to be interaction of RAGE with its ligands. Future studies using mice in which RAGE expression has been genetically manipulated and with selective low molecular weight RAGE inhibitors will be required to definitively assign a critical role for RAGE activation in diabetic vasculopathy. However, sustained receptor expression in a microenvironment with a plethora of ligand makes possible prolonged receptor stimulation, suggesting that interaction of cellular RAGE with its ligands could be a factor contributing to a range of important chronic disorders.
Collapse
Affiliation(s)
- A M Schmidt
- Division of Surgical Science, Department of Surgery, College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
772
|
Klein JB, McLeish KR, Ward RA. Transplantation, not dialysis, corrects azotemia-dependent priming of the neutrophil oxidative burst. Am J Kidney Dis 1999; 33:483-91. [PMID: 10070912 DOI: 10.1016/s0272-6386(99)70185-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oxidative burst of neutrophils from patients with renal failure before the initiation of dialysis is primed for an enhanced response after stimulation by phagocytosis or chemoattractants. This study shows that phagocytosis-stimulated oxidative burst activity remains primed in patients treated with both high-efficiency hemodialysis and continuous ambulatory peritoneal dialysis (CAPD), but it is normal in patients with a functioning renal transplant. Incubation of normal neutrophils or HL-60 granulocytes in azotemic plasma results in increased resting and phagocytosis-stimulated H2O2 production, which is rapidly reversible on removal of the plasma. Priming of the oxidative burst by azotemic plasma is independent of changes in opsonization and phagocytosis and does not require protein synthesis. These results suggest that azotemic plasma contains a substance or substances capable of reversibly priming oxidative burst activity in neutrophils and neutrophil-like cell lines. The Inability of high-efficiency hemodialysis and CAPD to normalize oxidative burst activity suggests that this substance is of higher molecular weight.
Collapse
Affiliation(s)
- J B Klein
- Department of Medicine, School of Medicine, University of Louisville, Veterans Affairs Medical Center, KY 40202-1718, USA
| | | | | |
Collapse
|
773
|
Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications. Kidney Int 1999; 55:389-99. [PMID: 9987064 DOI: 10.1046/j.1523-1755.1999.00302.x] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Advanced glycation end products (AGEs), formed during Maillard or browning reactions by nonenzymatic glycation and oxidation (glycoxidation) of proteins, have been implicated in the pathogenesis of several diseases, including diabetes and uremia. AGEs, such as pentosidine and carboxymethyllysine, are markedly elevated in both plasma proteins and skin collagen of uremic patients, irrespective of the presence of diabetes. The increased chemical modification of proteins is not limited to AGEs, because increased levels of advanced lipoxidation end products (ALEs), such as malondialdehydelysine, are also detected in plasma proteins in uremia. The accumulation of AGEs and ALEs in uremic plasma proteins is not correlated with increased blood glucose or triglycerides, nor is it determined by a decreased removal of chemically modified proteins by glomerular filtration. It more likely results from increased plasma concentrations of small, reactive carbonyl precursors of AGEs and ALEs, such as glyoxal, methylglyoxal, 3-deoxyglucosone, dehydroascorbate, and malondialdehyde. Thus, uremia may be described as a state of carbonyl overload or "carbonyl stress" resulting from either increased oxidation of carbohydrates and lipids (oxidative stress) or inadequate detoxification or inactivation of reactive carbonyl compounds derived from both carbohydrates and lipids by oxidative and nonoxidative chemistry. Carbonyl stress in uremia may contribute to the long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and accelerated atherosclerosis. The increased levels of AGEs and ALEs in uremic blood and tissue proteins suggest a broad derangement in the nonenzymatic biochemistry of both carbohydrates and lipids.
Collapse
Affiliation(s)
- T Miyata
- Institute of Medical Sciences, Tokai University School of Medicine, Kanagawa, Japan.
| | | | | | | |
Collapse
|
774
|
|
775
|
Nawroth PP, Bierhaus A, Vogel GE, Hofmann MA, Zumbach M, Wahl P, Ziegler R. [Non-enzymatic glycation and oxidative stress in chronic illnesses and diabetes mellitus]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:29-38. [PMID: 10081287 DOI: 10.1007/bf03044692] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
UNLABELLED New approaches in biochemistry and molecular biology have increased the knowledge on the pathophysiology of chronic diseases as late diabetic complications, Alzheimer's disease, arteriosclerosis and vascular disease by defining the concept of "AGE-formation and oxidative stress." Nonenzymatic glycation, in which reducing sugars are covalently bound to free aminogroups of macromolecules, results in the formation of Advanced Glycation End products (AGEs) which accumulate during aging and at accelerated rate during the course of diabetes. Glycation accompanying oxidation processes support AGE-formation. AGE-formation changes the physicochemical properties of proteins, lipids and nucleic acids. In addition, binding of AGEs to specific surface receptors induces cellular signalling and cell activation. Interaction of AGEs with one of the receptors, RAGE, generates intracellular oxidative stress, which results in activation of the transcription factor NF-kappa B and subsequent gene expression, which might be relevant in late diabetic complications. CONCLUSION Knowledge of the basis molecular mechanisms allows to understand the interplay of different inducers such as redicals, cytokines, AGE-proteins and amyloid-beta-peptids and to define oxidative stress as a "common endpoint" of cell dysfunction. With respect to therapeutic options it is now possible not only to optimize blood glycemic control, but also to design drugs such as AGE-inhibitors and AGE-"cross-link" breakers. In addition patients with chronic disease associated with increased oxidative stress ay benefit from an antioxidant rich (and AGE protein poor?) nutrition.
Collapse
Affiliation(s)
- P P Nawroth
- Abteilung Innere Medizin I, Endokrinologie und Stoffwechsel, Universität Heidelberg.
| | | | | | | | | | | | | |
Collapse
|
776
|
Li J, Pak JH, Huang FL, Huang KP. N-methyl-D-aspartate induces neurogranin/RC3 oxidation in rat brain slices. J Biol Chem 1999; 274:1294-300. [PMID: 9880498 DOI: 10.1074/jbc.274.3.1294] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurogranin/RC3 (Ng), a postsynaptic neuronal protein kinase C (PKC) substrate, binds calmodulin (CaM) at low level of Ca2+. In vitro, rat brain Ng can be oxidized by nitric oxide (NO) donors and by oxidants to form an intramolecular disulfide bond with resulting downward mobility shift on nonreducing SDS-polyacrylamide gel electrophoresis. The oxidized Ng, as compared with the reduced form, is a poorer substrate of PKC but like the PKC-phosphorylated Ng has a lower affinity for CaM than the reduced form. To investigate the physiological relevance of Ng oxidation, we tested the effects of neurotransmitter, N-methyl-D-aspartate (NMDA), NO donors, and other oxidants such as hydrogen peroxide and oxidized glutathione on the oxidation of this protein in rat brain slices. Western blot analysis showed that the NMDA-induced oxidation of Ng was rapid and transient, it reached maximum within 3-5 min and declined to base line in 30 min. The response was dose-dependent (EC50 approximately 100 microM) and could be blocked by NMDA-receptor antagonist 2-amino-5-phosphonovaleric acid and by NO synthase inhibitor NG-nitro-L-arginine methyl ester and NG-monomethyl-L-arginine. Ng was oxidized by NO donors, sodium nitroprusside, S-nitroso-N-acetylpenicillamine, and S-nitrosoglutathione, and H2O2 at concentrations less than 0.5 mM. Oxidation of Ng in brain slices induced by sodium nitroprusside could be reversed by dithiothreitol, ascorbic acid, or reduced glutathione. Reversible oxidation and reduction of Ng were also observed in rat brain extracts, in which oxidation was enhanced by Ca2+ and the oxidized Ng could be reduced by NADPH or reduced glutathione. These results suggest that redox of Ng is involved in the NMDA-mediated signaling pathway and that there are enzymes catalyzing the oxidation and reduction of Ng in the brain. We speculate that the redox state of Ng, similar to the state of phosphorylation of this protein, may regulate the level of CaM, which in turn modulates the activities of CaM-dependent enzymes in the neurons.
Collapse
Affiliation(s)
- J Li
- Section on Metabolic Regulation, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
777
|
Intenational Society of Nephrology. Kidney Int 1999. [DOI: 10.1046/j.1523-1755.1999.t01-1-00298.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
778
|
Akhand AA, Kato M, Suzuki H, Liu W, Du J, Hamaguchi M, Miyata T, Kurokawa K, Nakashima I. Carbonyl compounds cross-link cellular proteins and activate protein-tyrosine kinase p60c-Src. J Cell Biochem 1999; 72:1-7. [PMID: 10025661 DOI: 10.1002/(sici)1097-4644(19990101)72:1<1::aid-jcb1>3.0.co;2-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glyoxal, a dicarbonyl compound, is produced under oxidative stress by the autoxidation of glucose and reacts with the protein amino group to form Schiff base. In vitro treatment of murine thymocytes and fibroblasts with glyoxal induced extensive tyrosine phosphorylation of multiple proteins, which was drastically inhibited by the addition of OPB-9195, an inhibitor of the carbonyl reaction with proteins. Glyoxal induced cross-linking of a number of cellular proteins, including glycosylphosphatidylinositol (GPI)-anchored cell surface Thy-1. We then demonstrated that treatment of cells with glyoxal promptly induced activation of non-receptor protein-tyrosine kinase c-Src, which was partially inhibited by OPB-9195. It is suggested from these results that carbonyl amine reaction quickly activates c-Src, possibly through cross-linkage of GPI-anchored proteins or putative specific receptors.
Collapse
Affiliation(s)
- A A Akhand
- Department of Immunology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
779
|
Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 1999; 10:157-67. [PMID: 10609877 DOI: 10.1002/biof.5520100211] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A common endpoint of hyperglycemia dependent cellular changes is the generation of reactive oxygen intermediates (ROIs) and the presence of elevated oxidative stress. Therefore, oxidative stress is supposed to play an important role in the development of late diabetic complications. Formation of advanced glycation end products (AGE's) due to elevated nonenzymatic glycation of proteins, lipids and nucleic acids is accompanied by oxidative, radical-generating reactions and thus represents a major source for oxygen free radicals under hyperglycemic conditions. Once formed, AGE's can influence cellular function by binding to several binding sites including the receptor for AGE's, RAGE. Binding of AGE's (and other ligands) to RAGE results in generation of intracellular oxidative stress and subsequent activation of the redox-sensitive transcription factor NF-kappaB in vitro and in vivo. Consistently, activation of NF-kappaB in diabetic patients correlates with the quality of glycemic control and can be reduced by treatment with the antioxidant alpha-lipoic acid. The development of techniques allowing for a tissue culture independent measurement of NF-kappaB activation in patients with diabetes mellitus gives insights into the molecular mechanisms linking diabetes mellitus and hyperglycemia with formation of advanced glycated endproducts and generation of oxidative stress finally resulting in oxidative stress mediated cellular activation.
Collapse
Affiliation(s)
- A K Mohamed
- Medizinische Klinik I der Universitat Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
780
|
Cassarino DS, Bennett JP. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:1-25. [PMID: 9974149 DOI: 10.1016/s0165-0173(98)00046-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is mounting evidence for mitochondrial involvement in neurodegenerative diseases including Alzheimer's and Parkinson's disease and amyotrophic lateral sclerosis. Mitochondrial DNA mutations, whether inherited or acquired, lead to impaired electron transport chain (ETC) functioning. Impaired electron transport, in turn, leads to decreased ATP production, formation of damaging free-radicals, and altered calcium handling. These toxic consequences of ETC dysfunction lead to further mitochondrial damage including oxidation of mitochondrial DNA, proteins, and lipids, and opening of the mitochondrial permeability transition pore, an event linked to cell death in numerous model systems. Although protective nuclear responses such as antioxidant enzymes and bcl-2 may be induced to combat these pathological changes, such a vicious cycle of increasing oxidative damage may insidiously damage neurons over a period of years, eventually leading to neuronal cell death. This hypothesis, a synthesis of the mitochondrial mutations and oxidative stress hypotheses of neurodegeneration, is readily tested experimentally, and clearly points out many potential therapeutic targets for preventing or ameliorating these diseases.
Collapse
Affiliation(s)
- D S Cassarino
- Medical Scientist Training Program, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
781
|
|
782
|
Li J, Qu X, Schmidt AM. Sp1-binding elements in the promoter of RAGE are essential for amphoterin-mediated gene expression in cultured neuroblastoma cells. J Biol Chem 1998; 273:30870-8. [PMID: 9812979 DOI: 10.1074/jbc.273.47.30870] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor for AGE (RAGE) and the polypeptide amphoterin are highly expressed and co-localized in neurons of the developing central nervous system of the rat. In vitro, the interaction of amphoterin with neuronal RAGE induces neurite outgrowth. We tested the hypothesis that interaction of amphoterin with neuronal cells enhances RAGE expression, thereby providing a mechanism by which amphoterin-mediated regulation of RAGE might contribute to promotion of neurite growth and spreading. Incubation of cultured neuroblastoma cells with amphoterin resulted in increased transcription and translation of RAGE, a process largely inhibited in the presence of anti-RAGE IgG but not by nonimmune IgG. To begin to delineate molecular mechanisms underlying these findings, we identified multiple putative binding elements within the 5'-flanking region of the RAGE gene for Sp1, a transcription factor that has been critically linked to the process of normal development. DNase I footprinting and electrophoretic mobility shift assays demonstrated multiple functional Sp1-binding sites within the region -245 to -40 of the RAGE promoter. Transient transfection of cultured SK-N-SH neuroblastoma cells with chimeric 5'-deletion constructs linked to luciferase reporter revealed that the region containing Sp1-binding elements did not contribute uniquely to basal expression of the RAGE gene. Simultaneous mutation of the multiple Sp1-binding elements in this region did not affect basal promoter function; however, promoter responsiveness to amphoterin was markedly attenuated. These results point to Sp1-dependent mechanisms underlying amphoterin-mediated increases in RAGE expression in neuroblastoma cells and further link amphoterin-RAGE interaction to development of the nervous system.
Collapse
Affiliation(s)
- J Li
- Division of Surgical Science, Department of Surgery, and Departments of Physiology and Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
783
|
Interaction of Sickle Erythrocytes With Endothelial Cells in the Presence of Endothelial Cell Conditioned Medium Induces Oxidant Stress Leading to Transendothelial Migration of Monocytes. Blood 1998. [DOI: 10.1182/blood.v92.10.3924] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AbstractThe abnormal adherence of sickle red blood cells (SS RBC) to endothelial cells has been thought to contribute to vascular occlusion, a major cause of morbidity in sickle cell disease (SCD). We determined whether the interaction of SS RBC with cultured endothelial cells induced cellular oxidant stress that would culminate in expression of cell adhesion molecules (CAMs) involved in the adhesion and diapedesis of monocytes and the adherence of SS reticulocytes. We showed that the interaction of SS RBC at 2% concentration in the presence of multimers of von Willebrand factor (vWf), derived from endothelial cell-derived conditioned medium (E-CM) with cultured human umbilical vein endothelial cells (HUVEC), resulted in a fivefold increased formation of thiobarbituric acid-reactive substances (TBARS) and activation of the transcription factor NF-kB, both indicators of cellular oxidant stress. Normal RBC show none of these phenomena. The oxidant stress-induced signaling resulted in an increased surface expression of a subset of CAMs, ICAM-1, E-selectin, and VCAM-1 in HUVEC. The addition of oxygen radical scavenger enzymes (catalase, superoxide dismutase) and antioxidant (probucol) inhibited these events. Additionally, preincubation of HUVEC with a synthetic peptide Arg-Gly-Asp (RGD) that prevents vWf-mediated adhesion of SS RBC reduced the surface expression of VCAM-1 and NF-kB activation. Furthermore, SS RBC-induced oxidant stress resulted in a twofold increase in the transendothelial migration of both monocyte-like HL-60 cells and human peripheral blood monocytes, and approximately a sixfold increase in platelet-endothelial cell adhesion molecule-1 (PECAM-1) phosphorylation, each of which was blocked by protein kinase C inhibitor and antioxidants. These results suggest that the adherence/contact of SS RBC to endothelial cells in large vessel can generate enhanced oxidant stress leading to increased adhesion and diapedesis of monocytes, as well as heightened adherence of SS reticulocytes, indicating that injury/activation of endothelium can contribute to vaso-occlusion in SCD.
Collapse
|
784
|
Interaction of Sickle Erythrocytes With Endothelial Cells in the Presence of Endothelial Cell Conditioned Medium Induces Oxidant Stress Leading to Transendothelial Migration of Monocytes. Blood 1998. [DOI: 10.1182/blood.v92.10.3924.422k07_3924_3935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The abnormal adherence of sickle red blood cells (SS RBC) to endothelial cells has been thought to contribute to vascular occlusion, a major cause of morbidity in sickle cell disease (SCD). We determined whether the interaction of SS RBC with cultured endothelial cells induced cellular oxidant stress that would culminate in expression of cell adhesion molecules (CAMs) involved in the adhesion and diapedesis of monocytes and the adherence of SS reticulocytes. We showed that the interaction of SS RBC at 2% concentration in the presence of multimers of von Willebrand factor (vWf), derived from endothelial cell-derived conditioned medium (E-CM) with cultured human umbilical vein endothelial cells (HUVEC), resulted in a fivefold increased formation of thiobarbituric acid-reactive substances (TBARS) and activation of the transcription factor NF-kB, both indicators of cellular oxidant stress. Normal RBC show none of these phenomena. The oxidant stress-induced signaling resulted in an increased surface expression of a subset of CAMs, ICAM-1, E-selectin, and VCAM-1 in HUVEC. The addition of oxygen radical scavenger enzymes (catalase, superoxide dismutase) and antioxidant (probucol) inhibited these events. Additionally, preincubation of HUVEC with a synthetic peptide Arg-Gly-Asp (RGD) that prevents vWf-mediated adhesion of SS RBC reduced the surface expression of VCAM-1 and NF-kB activation. Furthermore, SS RBC-induced oxidant stress resulted in a twofold increase in the transendothelial migration of both monocyte-like HL-60 cells and human peripheral blood monocytes, and approximately a sixfold increase in platelet-endothelial cell adhesion molecule-1 (PECAM-1) phosphorylation, each of which was blocked by protein kinase C inhibitor and antioxidants. These results suggest that the adherence/contact of SS RBC to endothelial cells in large vessel can generate enhanced oxidant stress leading to increased adhesion and diapedesis of monocytes, as well as heightened adherence of SS reticulocytes, indicating that injury/activation of endothelium can contribute to vaso-occlusion in SCD.
Collapse
|
785
|
Sowers JR. Comorbidity of hypertension and diabetes: the fosinopril versus amlodipine cardiovascular events trial (FACET). Am J Cardiol 1998; 82:15R-19R. [PMID: 9822138 DOI: 10.1016/s0002-9149(98)00751-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Macrovascular disease is the major cause of mortality in persons with type 2 diabetes mellitus, and hypertension is an important factor contributing to this high prevalence. High blood pressure is about twice as common in persons with diabetes mellitus as in those without. Up to 75% of diabetes-related cardiovascular complications are attributed to hypertension. These observations are part of the rationale for recommendations for more aggressive lowering of blood pressure (to < 130/85 mm Hg) in persons with coexistent diabetes and hypertension. This may require therapy with a combination of antihypertensive agents. The Fosinopril versus Amlodipine Cardiovascular Events Trial (FACET), discussed herein, supports the case for combination therapy with an angiotensin-converting enzyme (ACE) inhibitor and a calcium antagonist in diabetic patients with hypertension.
Collapse
Affiliation(s)
- J R Sowers
- Division of Endocrinology, Metabolism and Hypertension, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
786
|
Deora AA, Win T, Vanhaesebroeck B, Lander HM. A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3'-kinase to Ras by redox stress. J Biol Chem 1998; 273:29923-8. [PMID: 9792710 DOI: 10.1074/jbc.273.45.29923] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive free radical species are known to trigger biochemical events culminating in transcription factor activation and modulation of gene expression. The cytosolic signaling events triggered by free radicals that result in nuclear responses are largely unknown. Here we identify a signaling cascade triggered immediately upon redox activation of Ras. We examined two physiologically relevant models of redox signaling: 1) nitric oxide in human T cells, and 2) advanced glycation end product in rat pheochromocytoma cells. Reactive free radical species generated by nitric oxide donors and the interaction of advanced glycation end product with its receptor led to the recruitment of p85/p110 phosphatidylinositol 3'-kinase (PI3K) to the plasma membrane, where it associated directly with the effector domain of Ras and became activated. Only the p110beta and p110delta (but not p110alpha) catalytic subunits were recruited by redox-activated Ras. Activation of downstream targets of PI3K such as protein kinase B/Akt and mitogen-activated protein kinase was found to be PI3K dependent. Our study demonstrates that nitrosative and oxidative stressors trigger Ras-dependent and PI3K-regulated events in cells and define a biochemical pathway that is triggered by redox signaling.
Collapse
Affiliation(s)
- A A Deora
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
787
|
Goldkorn T, Balaban N, Matsukuma K, Chea V, Gould R, Last J, Chan C, Chavez C. EGF-Receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am J Respir Cell Mol Biol 1998; 19:786-98. [PMID: 9806743 DOI: 10.1165/ajrcmb.19.5.3249] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammation of the respiratory tract is associated with the production of reactive oxygen species, such as hydrogen peroxide (H2O2) and superoxide (O2-), which contribute extensively to lung injury in diseases of the respiratory tract. The mechanisms and target molecules of these oxidants are mainly unknown but may involve modifications of growth-factor receptors. We have shown that H2O2 induces epidermal growth factor (EGF)-receptor tyrosine phosphorylation in intact cells as well as in membranes of A549 lung epithelial cells. On the whole, total phosphorylation of the EGF receptor induced by H2O2 was lower than that induced by the ligand EGF. Phosphorylation was confined to tyrosine residues and was inhibited by addition of genistein, indicating that it was due to the activation of protein tyrosine kinase (PTK). Phosphoamino acid analysis revealed that although the ligand, EGF, enhanced the phosphorylation of serine, threonine, and tyrosine residues, H2O2 preferentially enhanced tyrosine phosphorylation of the EGF receptor. Serine and threonine phosphorylation did not occur, and the turnover rate of the EGF receptor was slower after H2O2 exposure. Selective H2O2-mediated phosphorylation of tyrosine residues on the EGF receptor was sufficient to activate phosphorylation of an SH2-group-bearing substrate, phospholipase C-gamma (PLC-gamma), but did not increase mitogen-activated protein (MAP) kinase activity. Moreover, H2O2 exposure decreased protein kinase C (PKC)-alpha activity by causing translocation of PKC-alpha from the membrane to the cytoplasm. These studies provide novel insights into the capacity of a reactive oxidant, such as H2O2, to modulate EGF-receptor function and its downstream signaling. The H2O2-induced increase in tyrosine phosphorylation of the EGF receptor, and the receptor's slower rate of turnover and altered downstream phosphorylation signals may represent a mechanism by which EGF-receptor signaling can be modulated during inflammatory processes, thereby affecting cell proliferation and thus having implications in wound repair or tumor formation.
Collapse
Affiliation(s)
- T Goldkorn
- Department of Medicine, University of California, Davis School of Medicine, Davis, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
788
|
Abstract
Glycation of proteins, which is accelerated in the diabetic state, has been implicated in many of the long-term complications of diabetes. This process can be inhibited by members of the tetracycline family of compounds. This novel finding is supported by studies conducted on drug (streptozotocin)induced Type I and genetic (ZDF/Gmi-fa/fa) Type II diabetic rats. These animals were orally gavaged daily with 5 mg of doxycycline and a variety of non-antimicrobial chemically modified tetracycline derivatives for time periods of 3 weeks to 11 months, while control untreated diabetic and nondiabetic animals were gavaged with vehicle alone (2% CMC). Blood and tissue samples were collected and analyzed for glucose and glycated proteins. None of the treatments had any effect on the severity of hyperglycemia or the intracellular glycation of hemoglobin of either Type I or II diabetic animals. However, the tetracycline analogues did affect the extracellular glycation of several proteins such as those found in the serum as well as skin collagen. In the Type II (ZDF) animals, initial mortality (3-5 months) was seen only in the doxycycline-treated animals, associated with infection by tetracycline-resistant micro-organisms, which was eventually surpassed by mortality rates in the untreated diabetics (6-9 months). CMT treatment not only decreased mortality but also increased longevity in the Type II diabetic animals, most likely by preventing the development of a number of long-term complications of uncontrolled diabetes, including glycation of proteins, that eventually lead to the demise of untreated diabetic animals.
Collapse
Affiliation(s)
- M E Ryan
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York at Stony Brook 11794-8702, USA
| | | | | |
Collapse
|
789
|
Lee C, Yim MB, Chock PB, Yim HS, Kang SO. Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. J Biol Chem 1998; 273:25272-8. [PMID: 9737992 DOI: 10.1074/jbc.273.39.25272] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation were investigated. Glycation of bovine serum albumin by methylglyoxal generated the protein-bound free radical, probably the cation radical of the cross-linked Schiff base, as observed in the reaction of methylglyoxal with L-alanine (Yim, H.-S., Kang, S.-O., Hah, Y. C., Chock, P. B., and Yim, M. B. (1995) J. Biol. Chem. 270, 28228-28233) or with Nalpha-acetyl-L-lysine. The glycated bovine serum albumin showed increased electrophoretic mobility suggesting that the basic residues, such as lysine, were modified by methylglyoxal. The glycated protein reduced ferricytochrome c to ferrocytochrome c in the absence of oxygen or added metal ions. This reduction of cytochrome c was accompanied by a large increase in the amplitude of the electron paramagnetic resonance signal originated from the protein-bound free radical. In addition, the glycated protein catalyzed the oxidation of ascorbate in the presence of oxygen, whereas the protein free radical signal disappeared. These results indicate that glycation of protein generates active centers for catalyzing one-electron oxidation-reduction reactions. This active center, which exhibits enzyme-like characteristic, was suggested to be the cross-linked Schiff base/the cross-linked Schiff base radical cation of the protein. It mimics the characteristics of the metal-catalyzed oxidation system. The glycated bovine serum albumin cross-linked further to the cytochrome c in the absence of methylglyoxal. The cross-linked cytochrome c maintains its oxidation-reduction properties. These results together indicate that glycated proteins accumulated in vivo provide stable active sites for catalyzing the formation of free radicals.
Collapse
Affiliation(s)
- C Lee
- Laboratory of Biophysics, Department of Microbiology, College of Natural Sciences, and the Research Center for Molecular Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
790
|
Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ, Chow WS, Stern D, Schmidt AM. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 1998; 4:1025-31. [PMID: 9734395 DOI: 10.1038/2012] [Citation(s) in RCA: 859] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accelerated atherosclerosis in patients with diabetes is a major cause of their morbidity and mortality, and it is unresponsive to therapy aimed at restoring relative euglycemia. In hyperglycemia, nonenzymatic glycation and oxidation of proteins and lipids results in the accumulation of irreversibly formed advanced glycation endproducts. These advanced glycation endproducts engage their receptor in cells of the blood vessel wall, thereby activating mechanisms linked to the development of vascular lesions. We report here a model of accelerated and advanced atherosclerosis in diabetic mice deficient for apolipoprotein E. Treatment of these mice with the soluble extracellular domain of the receptor for advanced glycation endproducts completely suppressed diabetic atherosclerosis in a glycemia- and lipid-independent manner. These findings indicate interaction between the advanced glycation endproducts and their receptor is involved in the development of accelerated atherosclerosis in diabetes, and identify this receptor as a new therapeutic target in diabetic macrovascular disease.
Collapse
Affiliation(s)
- L Park
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
791
|
Hangaishi M, Taguchi J, Miyata T, Ikari Y, Togo M, Hashimoto Y, Watanabe T, Kimura S, Kurokawa K, Ohno M. Increased aggregation of human platelets produced by advanced glycation end products in vitro. Biochem Biophys Res Commun 1998; 248:285-92. [PMID: 9675128 DOI: 10.1006/bbrc.1998.8945] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced glyco-oxidation end products (AGEs) generate oxygen free radicals that potentiate the development of atherosclerosis. Thus, AGEs may potentiate the aggregation of human platelets through oxidative stress. AGE-bovine serum albumin (BSA) and AGE-poly-L-lysine were evaluated for aggregation of human platelets. Superoxide in platelet-rich plasma (PRP) was measured using lucigenin-derived chemiluminescence. The platelet aggregation induced by ADP or U46619 was potentiated by preincubation with AGE-BSA, by 40% and by 59%, P < .05, respectively, vs BSA. Aggregation was increased by AGEs in a dose-dependent manner. The production of superoxide was significantly greater in PRP incubated with AGE-BSA vs BSA. The other Maillard reaction products, such as Amadori-, pentosidine-, and carboxymethyl lysine (CML)-BSA had no effect. Superoxide dismutase or indomethacin abolished the enhancing effect of AGEs on the platelet aggregation. AGEs potentiate platelet aggregation possibly with superoxide anions and prostanoids. AGE-induced potentiation of platelet aggregation may be involved in the development of atherosclerosis.
Collapse
Affiliation(s)
- M Hangaishi
- Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
792
|
Paget C, Lecomte M, Ruggiero D, Wiernsperger N, Lagarde M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radic Biol Med 1998; 25:121-9. [PMID: 9655530 DOI: 10.1016/s0891-5849(98)00071-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress is one possible pathogenic mechanism to explain diabetic microangiopathy. In the present study, we determined the antioxidant enzyme activities in bovine retinal microvessels and cultured retinal microvascular cells: endothelial cells (BREC) and pericytes (BRP). We further investigated the effects of high glucose and advanced glycation end products (AGE) on these enzyme activities in BREC and BRP. Antioxidant enzyme activities in native retinal microvessels and BREC were quite similar but differed markedly from the BRP ones. High glucose decreased Se-GPx activity (about 20%) in BREC compared to mannitol. High concentrations of mannitol or NaCl increased Se-GPx activity (up to 40%) compared to control medium, suggesting that hyperosmolarity could regulate Se-GPx in BREC. No changes in antioxidant enzyme activities were observed when BRP were cultured with glucose or mannitol at high concentrations. AGE-BSA had no effect on enzyme activities in BREC, whereas 20 microM AGE-BSA increased catalase (40%) and superoxide dismutase (60%) activities in BRP. Differences in antioxidant enzyme activities observed between BREC and BRP, cultured with high concentrations of glucose or AGE, might help to explain their different behavior during the pathogenesis of diabetic retinopathy, i.e., early pericyte drop-out and late endothelial cell proliferation.
Collapse
Affiliation(s)
- C Paget
- Diabetic Microangiopathy Research Unit, Villeurbanne, France.
| | | | | | | | | |
Collapse
|
793
|
Matsuse T, Ohga E, Teramoto S, Fukayama M, Nagai R, Horiuchi S, Ouchi Y. Immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J Clin Pathol 1998; 51:515-9. [PMID: 9797728 PMCID: PMC500804 DOI: 10.1136/jcp.51.7.515] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM To investigate the presence and distribution of advanced glycation end products (AGE) in pulmonary fibrosis. METHODS Lung tissue samples obtained from seven necropsy cases with idiopathic pulmonary fibrosis and seven with normal pulmonary parenchyma were examined immunohistochemically with a monoclonal antibody specific for AGE: 6D12. We also tested three cases with diffuse alveolar damage. RESULTS All the specimens from cases with pulmonary fibrosis and diffuse alveolar damage showed strong AGE expression on macrophages. Lung specimens from normal parenchyma showed positive AGE immunoreactivity on macrophages from only two of seven cases. CONCLUSIONS These findings suggest that AGE modified proteins accumulate in alveolar macrophages in patients with diffuse alveolar damage and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- T Matsuse
- Department of Geriatrics, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
794
|
Nishimura F, Takahashi K, Kurihara M, Takashiba S, Murayama Y. Periodontal Disease as a Complication of Diabetes Mellitus*. J Periodontol 1998. [DOI: 10.1902/jop.1998.3.1.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
795
|
Weiss MF, Rodby RA, Justice AC, Hricik DE, the Collaborative Study Group. Free pentosidine and neopterin as markers of progression rate in diabetic nephropathy. Kidney Int 1998. [DOI: 10.1046/j.1523-1755.1998.00982.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
796
|
Lalla E, Lamster IB, Schmidt AM. Enhanced interaction of advanced glycation end products with their cellular receptor RAGE: implications for the pathogenesis of accelerated periodontal disease in diabetes. ANNALS OF PERIODONTOLOGY 1998; 3:13-9. [PMID: 9722686 DOI: 10.1902/annals.1998.3.1.13] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The prevalence and severity of periodontal disease is increased in patients with both insulin-deficient and insulin-resistant forms of diabetes. While a number of underlying factors likely contribute to enhanced periodontal inflammation and alveolar bone loss in diabetes, a common characteristic of these disorders, regardless of etiology, is the presence of hyperglycemia. A critical consequence of hyperglycemia is non-enzymatic glycation and oxidation of proteins and lipids. After a series of reversible reactions which lead to the generation of Schiff bases/Amadori products, a further series of complex molecular rearrangements ensues which results in the formation of the irreversible advanced glycation end products, or AGEs. AGEs accumulate during the process of normal aging in the plasma and tissues, but to an accelerated degree in patients with diabetes. A central means by which AGEs are believed to impart their pathogenic effects is via interaction with specific cellular receptors; the best-characterized of these is receptor for AGE, or RAGE. RAGE, a member of the immunoglobulin superfamily of cell surface molecules, is present in increased levels on target cells in diabetes, such as endothelial cells and monocytes. One consequence of AGE-RAGE interaction is the generation of enhanced cellular oxidant stress, a means by which cell signaling pathways may be activated, thereby resulting in altered cellular phenotype and cellular dysfunction. In this report, we will review our studies to date on AGEs and RAGE and consider the implications of their enhanced interaction in the pathogenesis of accelerated periodontal disease in diabetes.
Collapse
Affiliation(s)
- E Lalla
- Division of Periodontics, Columbia University School of Dental and Oral Surgery, New York, NY, USA
| | | | | |
Collapse
|
797
|
Nishimura F, Takahashi K, Kurihara M, Takashiba S, Murayama Y. Periodontal disease as a complication of diabetes mellitus. ANNALS OF PERIODONTOLOGY 1998; 3:20-9. [PMID: 9722687 DOI: 10.1902/annals.1998.3.1.20] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Based on our clinical observations that patients with insulin-dependent diabetes mellitus (IDDM) are subject to periodontal disease, we developed the hypothesis that hyper- or hypoglycemia might contribute to the pathogenesis of diabetic periodontitis. In this article, experimental facts that substantiate this hypothesis are presented on the basis of our studies and then discussed. Hyperglycemia progressively glycates body proteins, forming advanced glycation end products (AGE), which stimulate phagocytes to release inflammatory cytokines such as TNF-alpha and IL-6. In this context, to understand the effects of hyperglycemic episodes on periodontal health, 24 adolescent IDDM patients were examined for their periodontal status, and 3 of them were found to have periodontitis. Laboratory analyses on these 3 patients revealed that 2 had elevated serum TNF-alpha levels. These results may partly support the current hypothesis of a mechanism of diabetic complications in which abnormal cytokine levels induced by AGE could exacerbate inflammatory responses. In IDDM patients, the diabetes is often accompanied not only by hyperglycemic episodes but also by iatrogenic hypoglycemia. Periodontal ligament cells (PDL) cultured under hyperglycemic conditions were impaired in such biological functions as adhesion and motility, while cells cultured under hypoglycemic conditions (10 mg/dL) gradually dissociated from their anchor and underwent cell death. These phenomena correlated well with the expression profile of fibronectin receptor. Interestingly, these changes due to the different glucose levels were observed more intensively in PDL than in other fibroblastic cells, suggesting that the biological functions of PDL are easily led to impairment by variation or rapid fluctuation of glucose levels. These observations suggest that hyperglycemia could indirectly exacerbate inflammatory tissue destruction through the body's scavenger system against AGE, and that both hyper- and hypoglycemia might directly impair the biological functions of periodontal connective tissues through cell-matrix interactions.
Collapse
Affiliation(s)
- F Nishimura
- Department of Periodontology and Endodontology, Okayama University Dental School, Japan
| | | | | | | | | |
Collapse
|
798
|
Handa JT, Reiser KM, Matsunaga H, Hjelmeland LM. The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells. Exp Eye Res 1998; 66:411-9. [PMID: 9593635 DOI: 10.1006/exer.1997.0442] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advanced glycation endproducts have been implicated in a number of diabetic and aging changes. Some of these effects occur in part through induction of cytokines such as platelet-derived growth factor (PDGF), which is expressed by the retinal pigment epithelium (RPE). In this study, cultures of RPE were evaluated for PDGF expression after treatment with pentosidine, a well characterized advanced glycation endproduct. Northern analysis provided evidence for the increased expression of a 3.7 kb PDGF-B transcript over unstimulated controls in the established ARPE-19 cell line. Western analysis demonstrated increased PDGF-BB protein in conditioned medium compared to controls of ARPE-19 cells. In addition, two different early passage cultures of RPE showed increased PDGF-BB protein after pentosidine treatment compared to unstimulated controls. The enhanced production of PDGF-BB could play a role in the maintenance of the RPE-Bruch's membrane complex and influence changes associated with diabetes and aging.
Collapse
Affiliation(s)
- J T Handa
- Department of Ophthalmology, University of California, Davis, CA 95616-8794, USA
| | | | | | | |
Collapse
|
799
|
Nitenberg A, Paycha F, Ledoux S, Sachs R, Attali JR, Valensi P. Coronary artery responses to physiological stimuli are improved by deferoxamine but not by L-arginine in non-insulin-dependent diabetic patients with angiographically normal coronary arteries and no other risk factors. Circulation 1998; 97:736-43. [PMID: 9498536 DOI: 10.1161/01.cir.97.8.736] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acetylcholine produces coronary artery (CA) constriction in diabetic patients, suggesting an impairment of endothelium-dependent dilation. In diabetes, multiple metabolic abnormalities may inactivate nitric oxide through oxygen free radical production. METHODS AND RESULTS To examine the mechanism of this abnormal response, two physiological tests (ie, a cold pressor test [CPT] and coronary flow increase induced by an injection of 10 mg papaverine [PAP] in the distal left anterior descending CA) were performed before and after either intravenous L-arginine (625 mg/min x 10 minutes) or intravenous deferoxamine (50 mg/min x 10 minutes) in 22 normotensive nonsmoking diabetic patients with angiographically normal CAs and normal cholesterol. Coronary surface areas were measured with quantitative angiography. Before the administration of L-arginine or deferoxamine, CPT induced CA constriction in both groups (-14 +/- 10% and -15 +/- 11%, respectively; each P<.001), and PAP injection in distal LAD did not modify significantly proximal LAD dimensions. In the 10 diabetic patients receiving L-arginine, responses to CPT and PAP were not modified. Conversely, in the 12 patients receiving deferoxamine, CA dilated in response to the two tests (+10 +/- 9% after CPT and +22 +/- 7% after PAP, each P<.001). Intracoronary isosorbide dinitrate, an endothelium-independent dilator, produced similar dilation in the two groups (+47 +/- 19% and +41 +/- 15%, respectively; each P<.001). CONCLUSIONS This study shows that (1) responses of angiographically normal CAs to CPT and to flow increase are impaired in diabetic patients; (2) abnormal responses are not improved by L-arginine, suggesting that a deficit in substrate for nitric oxide synthesis is not involved; and (3) deferoxamine restores a vasodilator response to the two tests, suggesting that inactivation of NO by oxygen species might be partly responsible for the impairment of CA dilation in diabetic patients.
Collapse
Affiliation(s)
- A Nitenberg
- Service de Physiologie et d'Explorations Fonctionnelles, INSERM, Hôpital Louis Mourier, CHU Xavier-Bichat, Colombes, France
| | | | | | | | | | | |
Collapse
|
800
|
Tohjima T, Honda N, Mochizuki K, Kinoshita J, Watanabe K, Arisaka T, Kawamori R, Nakamura M, Kurahashi Y, Yoshimoto T, Yamamoto S. Decreased activity of arachidonate 12-lipoxygenase in platelets of Japanese patients with non-insulin-dependent diabetes mellitus. Metabolism 1998; 47:257-63. [PMID: 9500559 DOI: 10.1016/s0026-0495(98)90253-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To study the metabolism of the platelet 12-lipoxygenase pathway in diabetes, we evaluated the correlation between the activity and amount of arachidonate 12-lipoxygenase in the platelets of patients with non-insulin-dependent-diabetes mellitus (NIDDM). There were four parts in this investigation: (1) examination of abnormalities in platelet 12-lipoxygenase in patients with NIDDM recruited from the Hospital of Juntendo University School of Medicine; (2) comparison of 12-lipoxygenase in the platelets of non-obese NIDDM patients without angiopathy versus normal subjects matched for age, sex, and body mass index (BMI); (3) evaluation of gender differences; and (4) assessment of the potential influence of glycemic control. The activity of 12-lipoxygenase was assayed by incubation of [1-14C]arachidonic acid with the platelet cytosol. The reaction mixture was extracted and separated by thin-layer chromatography, and the radioactive end products were detected. The activity of 12-lipoxygenase in the platelets of patients with NIDDM was significantly less than in normal subjects (P < .003), whereas the amount of 12-lipoxygenase protein did not differ between the two groups. Thus, the specific activity of 12-lipoxygenase in diabetic patients was significantly less than that of normal subjects (P < .001). The enzyme activity and the specific enzyme activity of 12-lipoxygenase in non-obese NIDDM patients without angiopathy were significantly lower than the values in normal subjects matched for gender, age, and BMI (P < .006 and P < .0007, respectively). No significant difference in the activity or amount of platelet 12-lipoxygenase was observed between males and females matched for age, BMI, and disease. In addition, no relationship was observed between 12-lipoxygenase activity and blood glucose levels measured at the time of specimen collection. However, slight negative correlations were noted between 12-lipoxygenase activity and 1,5-anhydroglucitol, hemoglobin A1c (HbA1c), and fructosamine (r = .369, -.354, and -.279, respectively). When recombinant 12-lipoxygenase was incubated with varying concentrations of glucose or fructose, enzyme inactivation was related to the length of incubation, and was unaffected by glucose or fructose. These observations suggest that the activity of 12-lipoxygenase in the platelets of patients with NIDDM is decreased by prolonged hyperglycemia. The mechanism involved requires further investigation.
Collapse
Affiliation(s)
- T Tohjima
- Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|