901
|
Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 2002; 162:1445-56. [PMID: 12454087 PMCID: PMC1462317 DOI: 10.1093/genetics/162.3.1445] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brassinosteroids (BRs) are a class of polyhydroxylated steroids that are important regulators of plant growth and development. We have identified three closely related basic helix-loop-helix (bHLH) transcription factors, BEE1, BEE2, and BEE3, as products of early response genes required for full BR response. Comparison of the phenotypes of plants that overexpress BEE1 with bee1 bee2 bee3 triple-knockout mutant plants suggests that BEE1, BEE2, and BEE3 are functionally redundant positive regulators of BR signaling. Expression of BEE1, BEE2, and BEE3 is also regulated by other hormones, notably abscisic acid (ABA), a known antagonist of BR signaling. Reduced ABA response in plants overexpressing BEE1 suggests that BEE proteins may function as signaling intermediates in multiple pathways.
Collapse
Affiliation(s)
- Danielle M Friedrichsen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
902
|
Clouse SD. Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 2002; 10:973-82. [PMID: 12453407 DOI: 10.1016/s1097-2765(02)00744-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent genetic screens for novel components of brassinosteroid signaling have revealed proteins with cell surface, cytoplasmic, and nuclear localization that function as either positive activators or negative regulators of the brassinosteroid response. Initial microarray experiments have expanded the number of known brassinosteroid-regulated genes, providing a useful resource for better understanding terminal events in signal transduction.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
903
|
Identification of 6-Deoxocastasterone and Brassinolide from a Liverwort, Marchantia polymorpha. B KOREAN CHEM SOC 2002. [DOI: 10.5012/bkcs.2002.23.10.1473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
904
|
Canales C, Bhatt AM, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 2002; 12:1718-27. [PMID: 12401166 DOI: 10.1016/s0960-9822(02)01151-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Plant germlines arise late in development from archesporial initials in the L2 layer of the anther and ovule primordia. These cells generate a radially symmetrical array of tissues that, in the Arabidopsis anther, comprises a core of sporogenous cells (meiocytes) and the enveloping tapetum, middle cell, and endothecium layers. The putative transcription factor NZZ/SPL is required for the specification of archesporial cells, but nothing is known of how their number is regulated, or what controls cell fate in the lineages they generate. Here, we report detailed characterization of extra sporogenous cells (exs), a male sterile mutant that generates extra meiocytes but lacks tapetal and middle cell layers. RESULTS We identified the EXS locus by map-based cloning and found it to encode a putative LRR receptor kinase. In the anther, an increased number of L2 layer cells assume an archesporial fate and divide to generate a larger number of sporogenous cells. In seeds, the exs mutation results in smaller embryonic cells, delayed embryo development, and smaller mature embryos. Consistent with the observed phenotype, EXS is expressed in the inflorescence meristem, floral apices, anthers, and in developing seeds. CONCLUSIONS EXS regulates the number of cells that divide in the L2 layer of the anther, and thus the number of functional male archesporial initials. In the young seed, EXS affects cell size in the embryo and the rate at which it develops. The apparently contrasting roles of EXS in the anther and embryo suggest that signaling through the EXS receptor kinase is a feature of a number of regulatory pathways in Arabidopsis.
Collapse
Affiliation(s)
- Claudia Canales
- Department of Plant Sciences, South Parks Road, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
905
|
Jonak C, Hirt H. Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. TRENDS IN PLANT SCIENCE 2002; 7:457-61. [PMID: 12399181 DOI: 10.1016/s1360-1385(02)02331-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Animal glycogen synthase kinase 3 (GSK-3)/SHAGGY kinases have been studied for more than 20 years, whereas plant glycogen synthase kinase 3/SHAGGY-like kinases (GSKs) have only recently entered the scene. Present evidence indicates that plant GSKs are involved in different processes, such as flower development, brassinosteroid signaling, NaCl stress and wound responses. In contrast to mammals, which contain two genes, plants have a multigene family of GSKs. Analysis of the Arabidopsis genome revealed the existence of ten GSK genes that fall into four distinct subfamilies. We discuss the functions and mechanisms of GSK action in plants and other organisms.
Collapse
Affiliation(s)
- Claudia Jonak
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr. Bohrgasse 9, Wien, Austria.
| | | |
Collapse
|
906
|
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, , (919) 515-5360 (PHONE), (919) 515-2505 (FAX)
| |
Collapse
|
907
|
Finkelstein RR, Rock CD. Abscisic Acid biosynthesis and response. THE ARABIDOPSIS BOOK 2002; 1:e0058. [PMID: 22303212 PMCID: PMC3243367 DOI: 10.1199/tab.0058] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Ruth R. Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106
- Corresponding author: Telephone: (805) 893-4800, Fax: (805) 893-4724,
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131
| |
Collapse
|
908
|
Bancoş S, Nomura T, Sato T, Molnár G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. PLANT PHYSIOLOGY 2002; 130:504-13. [PMID: 12226529 PMCID: PMC166582 DOI: 10.1104/pp.005439] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 04/25/2002] [Accepted: 05/24/2002] [Indexed: 05/18/2023]
Abstract
Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90D1, and CYP85A2 are still unknown. Semiquantitative reverse transcriptase-polymerase chain reaction analyses show that transcript levels of CYP85 and CYP90 genes are down-regulated by brassinolide, the end product of the BR biosynthesis pathway. Feedback control of the CYP90C1, CYP90D1, and CYP85A2 genes by brassinolide suggests that the corresponding enzymes might also participate in BR synthesis. CYP85 and CYP90 mRNAs show strong and transient accumulation during the 1st week of seedling development, as well as characteristic organ-specific distribution. Transcripts of CYP90A1 and CYP85A2 are preferentially represented in shoots and CYP90C1, CYP90D1, and CYP85A1 mRNAs are more abundant in roots, whereas CYP90B1 is ubiquitously expressed. Remarkably, the spatial pattern of CYP90A1 expression is maintained in the BR-insensitive cbb2 mutant, indicating the independence of organ-specific and BR-dependent regulation. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in shoots and roots of Arabidopsis, pea (Pisum sativum), and tomato (Lycopersicon esculentum) reveal similar partitioning patterns of BR intermediates in these species. Inverse correlation between CYP90A1/CPD transcript levels and the amounts of the CYP90A1 substrate 6-deoxocathasterone in shoots and roots suggests that transcriptional regulation plays an important role in controlling BR biosynthesis.
Collapse
Affiliation(s)
- Simona Bancoş
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
909
|
Guo Z, Benten WPM, Krücken J, Wunderlich F. Nongenomic testosterone calcium signaling. Genotropic actions in androgen receptor-free macrophages. J Biol Chem 2002; 277:29600-7. [PMID: 12048191 DOI: 10.1074/jbc.m202997200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormones exert genotropic actions through members of the nuclear receptor family. Here, we have demonstrated genotropic actions of testosterone that are independent of intracellular androgen receptors (iAR). Through plasma membrane androgen receptors (mAR), testosterone induces a rapid rise in the intracellular free Ca(2+) concentration of iAR-free murine RAW 264.7 macrophages. This nongenomic testosterone signaling, which is independent of both iAR and estrogen receptors, does not in itself activate either the mitogen-activated protein kinase (MAPK) families ERK1/2, p38, and JNK/SAPK, the stably and transiently transfected c-fos promoter, or NO production. In the context of lipopolysaccharide (LPS) signaling, however, testosterone attenuates LPS activation of the c-fos promoter and NO production, which is abolished by the intracellular Ca(2+) chelator BAPTA. Testosterone also attenuates the LPS activation of p38 but not that of ERK1/2 and JNK/SAPK, and this attenuation is abrogated by BAPTA. Moreover, the p38 inhibitor, SB 203580, largely reduces LPS activation of the c-fos promoter and NO production, and the remaining levels are no longer regulated by testosterone. This study is the first to provide information on genotropic actions of mAR-mediated nongenomic testosterone Ca(2+) signaling by cross-talk with the LPS signaling pathway through p38 MAPK with impact on cell function.
Collapse
Affiliation(s)
- Zhiyong Guo
- Division of Molecular Parasitology and the Centre of Biological Medical Research, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
910
|
Zhao DZ, Wang GF, Speal B, Ma H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 2002; 16:2021-31. [PMID: 12154130 PMCID: PMC186413 DOI: 10.1101/gad.997902] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell differentiation is essential for the development of multicellular organisms. In flowering plants, the haploid male gametophytes (pollen grains) are generated in the anther from reproductive cells called microsporocytes. Several types of somatic cells ensure successful pollen development, and thus reproduction. However, it is not clear what genes regulate the differentiation of these diverse, highly specialized cells in the anther. We report here the isolation and characterization of a novel Arabidopsis thaliana male sterile mutant, excess microsporocytes1 (ems1), that produces excess microsporocytes, lacks tapetal cells, and abnormally maintains middle layer cells. Although the meiotic nuclear division in the ems1 mutant is normal, the microsporocytes do not undergo cytokinesis, resulting in failed microsporogenesis and male sterility. The EMS1 gene encodes a putative leucine-rich repeat receptor protein kinase (LRR-RPK), and its expression is associated with the differentiation of the microsporocytes and tapetal cells, suggesting that EMS1 mediates signals that control the fate of reproductive cells and their contiguous somatic cells.
Collapse
Affiliation(s)
- Da-Zhong Zhao
- Department of Biology and the Life Sciences Consortium, Pennsylvania State University, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
911
|
Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 2002; 110:213-22. [PMID: 12150929 DOI: 10.1016/s0092-8674(02)00812-7] [Citation(s) in RCA: 985] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Brassinosteroids regulate plant growth and development through a protein complex that includes the leucine-rich repeat receptor-like protein kinase (LRR-RLK) brassinosteroid-insensitive 1 (BRI1). Activation tagging was used to identify a dominant genetic suppressor of bri1, bak1-1D (bri1-associated receptor kinase 1-1Dominant), which encodes an LRR-RLK, distinct from BRI1. Overexpression of BAK1 results in elongated organ phenotypes, while a null allele of BAK1 displays a semidwarfed phenotype and has reduced sensitivity to brassinosteroids (BRs). BAK1 is a serine/threonine protein kinase, and BRI1 and BAK1 interact in vitro and in vivo. Expression of a dominant-negative mutant allele of BAK1 causes a severe dwarf phenotype, resembling the phenotype of null bri1 alleles. These results indicate BAK1 is a component of BR signaling.
Collapse
Affiliation(s)
- Jia Li
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
912
|
Abstract
The Arabidopsis BAK1 (BRI1 Associated receptor Kinase 1) was identified by a yeast two-hybrid screen as a specific interactor for BRI1, a critical component of a membrane brassinosteroid (BR) receptor. In yeast, BAK1/BRI1 interaction activates their kinase activities through transphosphorylation. BAK1 and BRI1 share similar gene expression and subcellular localization patterns and physically associate with each other in plants. Overexpression of the BAK1 gene leads to a phenotype reminiscent of BRI1-overexpression transgenic plants and rescues a weak bri1 mutant. In contrast, a bak1 knockout mutation gives rise to a weak bri1-like phenotype and enhances a weak bri1 mutation. We propose that BAK1 and BRI1 function together to mediate plant steroid signaling.
Collapse
Affiliation(s)
- Kyoung Hee Nam
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
913
|
Abstract
Continued genetic screening and analysis of Arabidopsis mutants has extended our view of brassinosteroid signaling beyond hormone perception to downstream events involving a negative cytoplasmic regulator and nuclear localized positive activators of the brassinosteroid response.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh 27695, USA
| |
Collapse
|
914
|
He JX, Gendron JM, Yang Y, Li J, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A 2002; 99:10185-90. [PMID: 12114546 PMCID: PMC126645 DOI: 10.1073/pnas.152342599] [Citation(s) in RCA: 503] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/07/2002] [Indexed: 12/26/2022] Open
Abstract
Brassinosteroids (BRs) are a class of steroid hormones essential for normal growth and development in plants. BR signaling involves the cell-surface receptor BRI1, the glycogen synthase kinase-3-like kinase BIN2 as a negative regulator, and nuclear proteins BZR1 and BZR2/BES1 as positive regulators. The interactions among these components remain unclear. Here we report that BRs induce dephosphorylation and accumulation of BZR1 protein. Experiments using a proteasome inhibitor, MG132, suggest that phosphorylation of BZR1 increases its degradation by the proteasome machinery. BIN2 directly interacts with BZR1 in yeast two-hybrid assays, phosphorylates BZR1 in vitro, and negatively regulates BZR1 protein accumulation in vivo. These results strongly suggest that BIN2 phosphorylates BZR1 and targets it for degradation and that BR signaling causes BZR1 dephosphorylation and accumulation by inhibiting BIN2 activity.
Collapse
Affiliation(s)
- Jun-Xian He
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
915
|
Yin Y, Cheong H, Friedrichsen D, Zhao Y, Hu J, Mora-Garcia S, Chory J. A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proc Natl Acad Sci U S A 2002; 99:10191-6. [PMID: 12119417 PMCID: PMC126646 DOI: 10.1073/pnas.152337599] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant steroid hormones, brassinosteroids (BRs), play important roles throughout plant growth and development. Plants defective in BR biosynthesis or perception display cell elongation defects and severe dwarfism. Two dwarf mutants named bin3 and bin5 with identical phenotypes to each other display some characteristics of BR mutants and are partially insensitive to exogenously applied BRs. In the dark, bin3 or bin5 seedlings are de-etiolated with short hypocotyls and open cotyledons. Light-grown mutant plants are dwarfs with short petioles, epinastic leaves, short inflorescence stems, and reduced apical dominance. We cloned BIN3 and BIN5 and show that BIN5 is one of three putative Arabidopsis SPO11 homologs (AtSPO11-3) that also shares significant homology to archaebacterial topoisomerase VI (TOP6) subunit A, whereas BIN3 represents a putative eukaryotic homolog of TOP6B. The pleiotropic dwarf phenotypes of bin5 establish that, unlike all of the other SPO11 homologs that are involved in meiosis, BIN5/AtSPO11-3 plays a major role during somatic development. Furthermore, microarray analysis of the expression of about 5500 genes in bin3 or bin5 mutants indicates that about 321 genes are down-regulated in both of the mutants, including 18 of 30 BR-induced genes. These results suggest that BIN3 and BIN5 may constitute an Arabidopsis topoisomerase VI that modulates expression of many genes, including those regulated by BRs.
Collapse
Affiliation(s)
- Yanhai Yin
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
916
|
Yin Y, Wu D, Chory J. Plant receptor kinases: systemin receptor identified. Proc Natl Acad Sci U S A 2002; 99:9090-2. [PMID: 12093928 PMCID: PMC123096 DOI: 10.1073/pnas.152330799] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yanhai Yin
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
917
|
Scheer JM, Ryan CA. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci U S A 2002; 99:9585-90. [PMID: 12060717 PMCID: PMC123184 DOI: 10.1073/pnas.132266499] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The isolation to homogeneity of the 160-kDa systemin cell-surface receptor (SR160) from plasma membranes of suspension cultured cells of Lycopersicon peruvianum is reported. The purification procedure resulted in recovery of 13 microg of pure receptor protein, representing an 8,200-fold purification. Gel blot analyses using SR160-specific antibodies confirmed that a cross-reacting protein in the membranes of suspension-cultured cells comigrates with both the native and a deglycosylated form of the radiolabeled receptor. Internal amino acid sequences of the purified protein facilitated the isolation of a cDNA clone encoding the 160-kDa receptor. The identity of the encoded protein as SR160 was further confirmed by a comparison of its sequence with a mass spectral fingerprint of the SR160 protein. The deduced amino acid sequence of SR160 revealed that it is a member of the leucine-rich repeat (LRR) receptor kinase family, closely related to the brassinolide receptor kinase, BRI1.
Collapse
Affiliation(s)
- Justin M Scheer
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
918
|
Shah K, Russinova E, Gadella TWJ, Willemse J, De Vries SC. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev 2002; 16:1707-20. [PMID: 12101128 PMCID: PMC186368 DOI: 10.1101/gad.220402] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Accepted: 05/08/2002] [Indexed: 11/24/2022]
Abstract
The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does not interact with a catalytically inactive kinase mutant. Using mutant AtSERK1 proteins in which Thr 462, Thr 463, and Thr 468 in the A-loop of the AtSERK1 kinase domain were replaced by alanines, we show that phosphorylation status of the receptor is involved in interaction with KAPP. KAPP and AtSERK1 cDNAs were fused to two different variants of green fluorescent protein (GFP), the yellow fluorescent protein (YFP) or the cyan fluorescent protein (CFP). Both KAPP and AtSERK1 proteins are found at the plasma membrane. Our results show that AtSERK1-CFP becomes sequestered into intracellular vesicles when transiently coexpressed with KAPP-YFP proteins. AtSERK1(T463A)-CFP and AtSERK1(3T-->A)-CFP proteins were partially sequestered intracellularly in the absence of KAPP-YFP protein, suggesting an active role for KAPP dephosphorylation of threonine residues in the AtSERK1 A-loop in receptor internalization. The interaction between the KAPP-CFP/YFP and AtSERK1-CFP/YFP fusion proteins was investigated with fluorescence spectral imaging microscopy (FSPIM). Our results show that AtSERK1-CFP and KAPP-YFP proteins are colocalized at the plasma membrane but only show fluorescence energy transfer (FRET) indicative of physical interaction in intracellular vesicles. These results suggest that KAPP is an integral part of the AtSERK1 endocytosis mechanism.
Collapse
Affiliation(s)
- Khalid Shah
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
919
|
Symons GM, Schultz L, Kerckhoffs LHJ, Davies NW, Gregory D, Reid JB. Uncoupling brassinosteroid levels and de-etiolation in pea. PHYSIOLOGIA PLANTARUM 2002; 115:311-319. [PMID: 12060251 DOI: 10.1034/j.1399-3054.2002.1150219.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The suggestion that brassinosteroids (BRs) have a negative regulatory role in de-etiolation is based largely on correlative evidence, which includes the de-etiolated phenotypes of, and increased expression of light-regulated genes in, dark-grown mutants defective in BR biosynthesis or response. However, we have obtained the first direct evidence which shows that endogenous BR levels in light-grown pea seedlings are increased, not decreased, in comparison with those grown in the dark. Similarly, we found no evidence of a decrease in castasterone (CS) levels in seedlings that were transferred from the dark to the light for 24 h. Furthermore, CS levels in the constitutively de-etiolated lip1 mutant are similar to those in wild-type plants, and are not reduced as is the case in the BR-deficient lkb plants. Unlike lip1, the pea BR-deficient mutants lk and lkb are not de-etiolated at the morphological or molecular level, as they exhibit neither a de-etiolated phenotype or altered expression of light-regulated genes when grown in the dark. Similarly, dark-grown WT plants treated with the BR biosynthesis inhibitor, Brz, do not exhibit a de-etiolated phenotype. In addition, analysis of the lip1lkb double mutant revealed an additive phenotype indicative of the two genes acting in independent pathways. Together these results strongly suggest that BR levels do not play a negative-regulatory role in de-etiolation in pea.
Collapse
Affiliation(s)
- Gregory M Symons
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | |
Collapse
|
920
|
Møller SG, Ingles PJ, Whitelam GC. The cell biology of phytochrome signalling. THE NEW PHYTOLOGIST 2002; 154:553-590. [PMID: 33873456 DOI: 10.1046/j.1469-8137.2002.00419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome signal transduction has in the past often been viewed as being a nonspatially separated linear chain of events. However, through a combination of molecular, genetic and cell biological approaches, it is becoming increasingly evident that phytochrome signalling constitutes a highly ordered multidimensional network of events. The discovery that some phytochromes and signalling intermediates show light-dependent nucleo-cytoplasmic partitioning has not only led to the suggestion that early signalling events take place in the nucleus, but also that subcellular localization patterns most probably represent an important signalling control point. Moreover, detailed characterization of signalling intermediates has demonstrated that various branches of the signalling network are spatially separated and take place in different cellular compartments including the nucleus, cytosol, and chloroplasts. In addition, proteasome-mediated degradation of signalling intermediates most probably act in concert with subcellular partitioning events as an integrated checkpoint. An emerging view from this is that phytochrome signalling is separated into several subcellular organelles and that these are interconnected in order to execute accurate responses to changes in the light environment. By integrating the available data, both at the cellular and subcellular level, we should be able to construct a solid foundation for further dissection of phytochrome signal transduction in plants. Contents Summary 553 I. Introduction 554 II. Nucleus vs cytoplasm 556 III. The nucleus 562 IV. The cytoplasm 571 V. Interactions with other signalling pathways 577 VI. Conclusions and the future 582 Acknowledgements 583 References 583.
Collapse
Affiliation(s)
- Simon G Møller
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Patricia J Ingles
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Garry C Whitelam
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
921
|
Abstract
Stomata regulate gas exchange and are distributed across the leaf epidermis with characteristic spacing. Arabidopsis stomata are produced by asymmetric cell divisions. Mutations in the gene TOO MANY MOUTHS (TMM) disrupt patterning by randomizing the plane of formative asymmetric divisions and by permitting ectopic divisions. TMM encodes a leucine-rich repeat-containing receptor-like protein expressed in proliferative postprotodermal cells. TMM appears to function in a position-dependent signaling pathway that controls the plane of patterning divisions as well as the balance between stem cell renewal and differentiation in stomatal and epidermal development.
Collapse
Affiliation(s)
- Jeanette A Nadeau
- Department of Plant Biology, Ohio State University, 1735 Neil Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
922
|
Matsubayashi Y, Ogawa M, Morita A, Sakagami Y. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 2002; 296:1470-2. [PMID: 12029134 DOI: 10.1126/science.1069607] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The sulfated peptide phytosulfokine (PSK) is an intercellular signal that plays a key role in cellular dedifferentiation and proliferation in plants. Using ligand-based affinity chromatography, we purified a 120-kilodalton membrane protein, specifically interacting with PSK, from carrot microsomal fractions. The corresponding complementary DNA encodes a 1021-amino acid receptor kinase that contains extracellular leucine-rich repeats, a single transmembrane domain, and a cytoplasmic kinase domain. Overexpression of this receptor kinase in carrot cells caused enhanced callus growth in response to PSK and a substantial increase in the number of tritium-labeled PSK binding sites, suggesting that PSK and this receptor kinase act as a ligand-receptor pair.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding, Competitive
- Cell Line
- Chromatography, Affinity
- DNA, Complementary
- Daucus carota/cytology
- Daucus carota/enzymology
- Daucus carota/genetics
- Daucus carota/growth & development
- Genes, Plant
- Glycosylation
- Leucine
- Ligands
- Microsomes/enzymology
- Molecular Sequence Data
- Molecular Weight
- Peptide Hormones
- Plant Growth Regulators
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/isolation & purification
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Polymerase Chain Reaction
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Repetitive Sequences, Amino Acid
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
923
|
Sharma VK, Fletcher JC. Maintenance of shoot and floral meristem cell proliferation and fate. PLANT PHYSIOLOGY 2002; 129:31-9. [PMID: 12011335 PMCID: PMC1540224 DOI: 10.1104/pp.010987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Vijay K Sharma
- United States Department of Agriculture-Plant Gene Expression Center, Plant and Microbial Biology Department, University of California at Berkeley, 800 Buchanan Street, Albany, California 94710, USA
| | | |
Collapse
|
924
|
Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 2002; 109:181-91. [PMID: 12007405 DOI: 10.1016/s0092-8674(02)00721-3] [Citation(s) in RCA: 833] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant steroid hormones, known as brassinosteroids (BRs), signal through a plasma membrane localized receptor kinase BRI1. We identified bes1, a semidominant suppressor of bri1, which exhibits constitutive BR response phenotypes including long and bending petioles, curly leaves, accelerated senescence, and constitutive expression of BR-response genes. BES1 accumulates in the nucleus in response to BRs. BES1 is phosphorylated and appears to be destabilized by the glycogen synthase kinase-3 (GSK-3) BIN2, a negative regulator of the BR pathway. These results establish a signaling cascade for BRs with similarities to the Wnt pathway, in which signaling through cell surface receptors leads to inactivation of a GSK-3 allowing accumulation of a nuclear protein that regulates target gene expression.
Collapse
Affiliation(s)
- Yanhai Yin
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
925
|
Abstract
The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants.The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy.Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the determination of leaf shape, and this topic is reviewed in this resource by Turner (see also Dengler and Kang, 2001). The interested reader is also referred to work on the basic characterization of the vascular patterning in foliage leaves of Arabidopsis has been carried out by Candela et al. (1999) and Semiarti et al. (2001). For terminology, see (Fig. 1).
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- National Institute for Basic Biology/Center for Integrated Bioscience, Okazaki National Institutes, Myodaiji-cho, Okazaki 444-8585, Japan; Additional affiliations: 'Form and Function', PRESTO, Japan Science and Technology Corporation, Japan; School of Advanced Sciences, The Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan; fax: +81-564-55-7512;
| |
Collapse
|
926
|
Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2002; 2:505-13. [PMID: 11970900 DOI: 10.1016/s1534-5807(02)00153-3] [Citation(s) in RCA: 743] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plant steroid hormones, brassinosteroids (BRs), are perceived by a cell surface receptor kinase, BRI1, but how BR binding leads to regulation of gene expression in the nucleus is unknown. Here we describe the identification of BZR1 as a nuclear component of the BR signal transduction pathway. A dominant mutation bzr1-1D suppresses BR-deficient and BR-insensitive (bri1) phenotypes and enhances feedback inhibition of BR biosynthesis. BZR1 protein accumulates in the nucleus of elongating cells of dark-grown hypocotyls and is stabilized by BR signaling and the bzr1-1D mutation. Our results demonstrate that BZR1 is a positive regulator of the BR signaling pathway that mediates both downstream BR responses and feedback regulation of BR biosynthesis.
Collapse
Affiliation(s)
- Zhi Yong Wang
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
927
|
Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:681-91. [PMID: 12148527 DOI: 10.1046/j.1365-313x.2002.01257.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to their essential role in plant development, brassinosteroids have the ability to protect plants from various environmental stresses. Currently it is not understood how brassinosteroids control plant stress responses at the molecular level. We have begun an investigation into the molecular mechanisms underlying 24-epibrassinolide (EBR)-mediated stress resistance. Earlier we found that treatment of Brassica napus seedlings with EBR leads to a significant increase in their basic thermotolerance, and results in higher accumulation of four major classes of heat-shock proteins (hsps) as compared to untreated seedlings. Surprisingly, previous studies have shown that while hsp levels were significantly higher in treated seedlings during the recovery period, transcripts corresponding to these hsps were present at higher levels in untreated seedlings. To understand mechanisms controlling hsp synthesis in EBR-treated and untreated seedlings, we studied protein synthesis in vivo as well as in vitro, and assessed the levels of components of the translational machinery in these seedlings. We report here that increased accumulation of hsps in EBR-treated seedlings results from higher hsp synthesis, even when the mRNA levels are lower than in untreated seedlings, and that several translation initiation and elongation factors are present at significantly higher levels in EBR-treated seedlings as compared to untreated seedlings. These results suggest that EBR treatment limits the loss of some of the components of the translational apparatus during prolonged heat stress, and increases the level of expression of some of the components of the translational machinery during recovery, which correlates with a more rapid resumption of cellular protein synthesis following heat stress and a higher survival rate.
Collapse
|
928
|
Rivas S, Mucyn T, van den Burg HA, Vervoort J, Jones JDG. An approximately 400 kDa membrane-associated complex that contains one molecule of the resistance protein Cf-4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:783-96. [PMID: 12148536 DOI: 10.1046/j.1365-313x.2002.01254.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite sharing more than 91% sequence identity, the tomato Cf-4 and Cf-9 proteins discriminate between two Cladosporium-encoded avirulence determinants, Avr4 and Avr9. Comparative studies between Cf-4 and Cf-9 are thus of particular interest. To investigate Cf-4 protein function in initiating defence signalling, we established transgenic tobacco lines and derived cell suspension cultures expressing c-myc-tagged Cf-4. Cf-4:myc encodes a membrane-localized glycoprotein of approximately 145 kDa, which confers recognition of Avr4. Elicitation of Cf-4:myc and Cf-9:myc tobacco cell cultures with Avr4 and Avr9, respectively, triggered the synthesis of active oxygen species and MAP kinase activation. Additionally, an Agrobacterium-mediated transient assay was used to express Cf-4:myc and a newly engineered fusion protein Cf-4:TAP. Both transiently expressed proteins were found to be functional in an in vivo assay, conferring a hypersensitive response (HR) to Avr4. Consistent with previous observations that Cf-9 is present in a protein complex, gel filtration analysis of microsomal fractions solubilized with octylglucoside revealed that epitope-tagged Cf-4 proteins migrated at a molecular mass of 350-475 kDa. Using blue native gel electrophoresis, the molecular size was confirmed to be approximately 400 kDa. Significantly, this complex appeared to contain only one Cf-4 molecule, supporting the idea that, as previously described for Cf-9, additional glycoprotein partners participate with Cf-4 in the perception of the Avr4 protein. Intriguingly, Cf proteins and Clavata2 (CLV2) of Arabidopsis are highly similar in structure, and the molecular mass of Cf-4 and CLV complexes is also very similar (400 and 450 kDa, respectively). However, extensive characterization of the Cf-4 complex revealed essentially identical characteristics to the Cf-9 complex and significant differences from the CLV2 complex.
Collapse
Affiliation(s)
- Susana Rivas
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, UK
| | | | | | | | | |
Collapse
|
929
|
Back TG, Janzen L, Pharis RP, Yan Z. Synthesis and bioactivity of C-2 and C-3 methyl ether derivatives of brassinolide. PHYTOCHEMISTRY 2002; 59:627-34. [PMID: 11867094 DOI: 10.1016/s0031-9422(02)00019-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The following six novel methyl ether derivatives of brassinolide were prepared and their brassinosteroid activity was measured by means of the rice leaf lamina inclination bioassay: 2-O-methylbrassinolide, 3-O-methylbrassinolide, 2,22,23-tri-O-methylbrassinolide, 3,22,23-tri-O-methylbrassinolide, 2-O-methyl-25-methoxybrassinolide and 3-O-methyl-25-methoxybrassinolide. Brassinolide was used as a standard for comparison. All six compounds were also tested in the presence of 1000 ng of indole-3-acetic acid (IAA), an auxin that synergizes the effects of brassinosteroids. The 2-O-methyl- and 3-O-methylbrassinolide derivatives showed weak activity at high doses, which was enhanced by IAA, especially in the case of the 3-O-methyl derivative. Similarly, the 2,22,23-tri-O-methyl- and 3,22,23-tri-O-methyl derivatives displayed weak bioactivity on their own, but significantly stronger activity when applied with IAA. The 3-O-methyl and 3,22,23-tri-O-methyl analogues plus IAA were comparable in bioacivity to brassinolide alone, but were less active than brassinolide plus IAA. In each case, O-methylation at C-2 resulted in a greater loss of activity than O-methylation at C-3 under the same conditions. The relatively strong activity of 3,22,23-tri-O-methylbrassinolide in the presence of IAA is especially noteworthy as it indicates that free hydroxyl groups at C-3, C-22, and C-23 are not essential for bioactivity. Finally, 2-O-methyl- and 3-O-methyl-25-methoxybrassinolide were essentially inactive alone, and showed only a modest increase in bioactivity when coapplied with IAA.
Collapse
Affiliation(s)
- Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB, Canada T2N 1N4.
| | | | | | | |
Collapse
|
930
|
Abstract
If the last common ancestor of plants and animals was unicellular, comparison of the developmental mechanisms of plants and animals would show that development was independently invented in each lineage. And if this is the case, comparison of plant and animal developmental processes would give us a truly comparative study of development, which comparisons merely among animals, or merely among plants, do not-because in each of these lineages, the fundamental mechanisms are similar by descent. Evidence from studies of developmental mechanisms in both kingdoms, and data from genome-sequencing projects, indicate that development evolved independently in the lineages leading to plants and to animals.
Collapse
Affiliation(s)
- Elliot M Meyerowitz
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
931
|
Abstract
GSK3/SHAGGY is a highly conserved serine/threonine kinase implicated in many signaling pathways in eukaryotes. Although many GSK3/SHAGGY-like kinases have been identified in plants, little is known about their functions in plant growth and development. Here we show that the Arabidopsis BRASSINOSTEROID-INSENSITIVE 2 (BIN2) gene encodes a GSK3/SHAGGY-like kinase. Gain-of-function mutations within its coding sequence or its overexpression inhibit brassinosteroid (BR) signaling, resulting in plants that resemble BR-deficient and BR-response mutants. In contrast, reduced BIN2 expression via cosuppression partially rescues a weak BR-signaling mutation. Thus, BIN2 acts as a negative regulator to control steroid signaling in plants.
Collapse
Affiliation(s)
- Jianming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
932
|
Pérez-Pérez JM, Ponce MR, Micol JL. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 2002; 242:161-73. [PMID: 11820813 DOI: 10.1006/dbio.2001.0543] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most signal transduction pathways central to development are not shared by plants and animals. Such is the case of the Wingless/Wnt signaling pathway, whose components play key roles in metazoan pattern formation and tumorigenesis, but are absent in plants, with the exception of SHAGGY/GSK3, a cytoplasmic protein kinase represented in the genome of Arabidopsis thaliana by a family of 10 AtSK genes for which mutational evidence is scarce. Here, we describe the characterization of mutant alleles of the Arabidopsis ULTRACURVATA1 (UCU1) gene, the two strongest of which dramatically reduce cell expansion along the proximodistal axis, dwarfing the mutant plants, whose cells expand properly across but not along most organs. Proximodistal expansion of adaxial (dorsal) and abaxial (ventral) leaf cells exhibits a differential dependence on UCU1 function, as suggested by the leaves of ucu1 mutants, which are rolled spirally downward in a circinate manner. We have positionally cloned the UCU1 gene, which encodes an AtSK protein involved in the cross-talk between auxin and brassinosteroid signaling pathways, as indicated by the responses of ucu1 mutants to plant hormones and the phenotypes of double mutants involving ucu1 alleles.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
933
|
Nakaya M, Tsukaya H, Murakami N, Kato M. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:239-44. [PMID: 11867704 DOI: 10.1093/pcp/pcf024] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The growth of leaves in the model plant, Arabidopsis thaliana (L.) Heynh., is determined by the extent of expansion of individual cells and by cell proliferation. Mutants of A. thaliana with known defects in the biosynthesis or perception of brassinosteroids develop small leaves. When the leaves of brassinosteroid-related mutants, det2 (de-etiolated2 = cro1) and dwf1 (dwarf1 = cro2) were compared to wild-type plants, an earlier cessation of leaf expansion was observed; a detailed anatomical analysis further revealed that the mutants had fewer cells per leaf blade. Treatment of the det2 mutants with the brassinosteroid, brassinolide, reversed the mutation and restored the potential for growth to that of the wild type. Restoration of leaf size could not be explained solely on the basis of an increase in individual cell volume, thus suggesting that brassinosteroids play a dual role in regulating cell expansion and proliferation.
Collapse
Affiliation(s)
- Masaki Nakaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033 Japan
| | | | | | | |
Collapse
|
934
|
Borevitz JO, Maloof JN, Lutes J, Dabi T, Redfern JL, Trainer GT, Werner JD, Asami T, Berry CC, Weigel D, Chory J. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics 2002; 160:683-96. [PMID: 11861571 PMCID: PMC1461994 DOI: 10.1093/genetics/160.2.683] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have mapped quantitative trait loci (QTL) responsible for natural variation in light and hormone response between the Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions of Arabidopsis thaliana using recombinant inbred lines (RILs). Hypocotyl length was measured in four light environments: white, blue, red, and far-red light and in the dark. In addition, white light plus gibberellin (GA) and dark plus the brassinosteroid biosynthesis inhibitor brassinazole (BRZ) were used to detect hormone effects. Twelve QTL were identified that map to loci not previously known to affect light response, as well as loci where candidate genes have been identified from known mutations. Some QTL act in all environments while others show genotype-by-environment interaction. A global threshold was established to identify a significant epistatic interaction between two loci that have few main effects of their own. LIGHT1, a major QTL, has been confirmed in a near isogenic line (NIL) and maps to a new locus with effects in all light environments. The erecta mutation can explain the effect of the HYP2 QTL in the blue, BRZ, and dark environments, but not in far-red. LIGHT2, also confirmed in an NIL, has effects in white and red light and shows interaction with GA. The phenotype and map position of LIGHT2 suggest the photoreceptor PHYB as a candidate gene. Natural variation in light and hormone response thus defines both new genes and known genes that control light response in wild accessions.
Collapse
Affiliation(s)
- Justin O Borevitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
935
|
Affiliation(s)
- Jennifer Nemhauser
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1099
- Corresponding author: Plant Biology Laboratory, Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037-1099; Phone 858-453-4100 x1128; Fax 858-558-6379;
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1099
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037-1099
| |
Collapse
|
936
|
Abstract
The shoot apical meristem (SAM) of higher plants functions as a site of continuous organogenesis within which a small pool of pluripotent stem cells replenishes the cells incorporated into lateral organs. This article summarizes recent results demonstrating that the fate of stem cells in Arabidopsis shoot and floral meristems is controlled by overlapping spatial and temporal signaling systems. Stem cell maintenance is an active process requiring constant communication between neighboring groups of SAM cells. Information flows via a ligand-receptor signal transduction pathway, resulting in the formation of a spatial feedback loop that stabilizes the size of the stem cell population. Termination of stem cell activity during flower development is achieved by a temporal feedback loop involving both stem cell maintenance genes and flower patterning genes. These investigations are providing exciting insights into the components and activities of the stem cell regulatory pathway and into the interaction of this pathway with molecular mechanisms that control floral patterning.
Collapse
Affiliation(s)
- Jennifer C Fletcher
- Plant and Microbial Biology Department, University of California Berkeley, USDA Plant Gene Expression Center, Albany, California 94710, USA.
| |
Collapse
|
937
|
Shiu SH, Bleecker AB. Plant receptor-like kinase gene family: diversity, function, and signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re22. [PMID: 11752632 DOI: 10.1126/stke.2001.113.re22] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative amino-terminal extracellular domains and carboxyl-terminal intracellular kinase domains, with striking resemblance in domain organization to the animal receptor tyrosine kinases such as epidermal growth factor receptor. The recently sequenced Arabidopsis genome contains more than 600 RLK homologs, representing nearly 2.5% of the annotated protein-coding genes in Arabidopsis. Although only a handful of these genes have known functions and fewer still have identified ligands or downstream targets, the studies of several RLKs such as CLAVATA1, Brassinosteroid Insensitive 1, Flagellin Insensitive 2, and S-locus receptor kinase provide much-needed information on the functions mediated by members of this large gene family. RLKs control a wide range of processes, including development, disease resistance, hormone perception, and self-incompatibility. Combined with the expression studies and biochemical analysis of other RLKs, more details of RLK function and signaling are emerging.
Collapse
Affiliation(s)
- S H Shiu
- The Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
938
|
|
939
|
Matsubayashi Y, Yang H, Sakagami Y. Peptide signals and their receptors in higher plants. TRENDS IN PLANT SCIENCE 2001; 6:573-7. [PMID: 11738382 DOI: 10.1016/s1360-1385(01)02148-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At least four peptides play a vital role in plant cell-cell communication by means of their specific receptors. Two of these receptors have been identified as receptor kinases, which form a large family of receptor molecules in plants. These findings highlight the significance of receptor-mediated peptide signaling in various physiological events in plants, and predict the existence of further peptide-signal-interacting receptor kinases. Some candidates have been found in plant genomes. Here, we outline recent progress and future challenges in the signaling peptide analysis, which began with systemin, phytosulfokine, CLAVATA3 and S-locus cysteine-rich protein (also called S-locus protein 11).
Collapse
Affiliation(s)
- Y Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | |
Collapse
|
940
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
941
|
Federici L, Caprari C, Mattei B, Savino C, Di Matteo A, De Lorenzo G, Cervone F, Tsernoglou D. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci U S A 2001; 98:13425-30. [PMID: 11687632 PMCID: PMC60887 DOI: 10.1073/pnas.231473698] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Accepted: 09/06/2001] [Indexed: 11/18/2022] Open
Abstract
To invade a plant tissue, phytopathogenic fungi produce several cell wall-degrading enzymes; among them, endopolygalacturonase (PG) catalyzes the fragmentation and solubilization of homogalacturonan. Polygalacturonase-inhibiting proteins (PGIPs), found in the cell wall of many plants, counteract fungal PGs by forming specific complexes with them. We report the crystal structure at 1.73 A resolution of PG from the phytopathogenic fungus Fusarium moniliforme (FmPG). The structure of FmPG was useful to study the mode of interaction of the enzyme with PGIP-2 from Phaseolus vulgaris. Several amino acids of FmPG were mutated, and their contribution to the formation of the complex with PGIP-2 was investigated by surface plasmon resonance. The residues Lys-269 and Arg-267, located inside the active site cleft, and His-188, at the edge of the active site cleft, are critical for the formation of the complex, which is consistent with the observed competitive inhibition of the enzyme played by PGIP-2. The replacement of His-188 with a proline or the insertion of a tryptophan after position 270, variations that both occur in plant PGs, interferes with the formation of the complex. We suggest that these variations are important structural requirements of plant PGs to prevent PGIP binding.
Collapse
Affiliation(s)
- L Federici
- Dipartimento di Scienze Biochimiche, Università di Roma La Sapienza, Piazzale le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
942
|
Shah K, Vervoort J, de Vries SC. Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. J Biol Chem 2001; 276:41263-9. [PMID: 11509554 DOI: 10.1074/jbc.m102381200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene encodes a receptor-like protein kinase that is transiently expressed during embryogenesis. To determine the intrinsic biochemical properties of the AtSERK1 protein, we have expressed the intracellular catalytic domain as a glutathione S-transferase fusion protein in Escherichia coli. The AtSERK1-glutathione S-transferase fusion protein mainly autophosphorylates on threonine residues (K(m) for ATP, 4 x 10(-6) m), and the reaction is Mg(2+) dependent and inhibited by Mn(2+). A K330E substitution in the kinase domain of AtSERK1 abolishes all kinase activity. The active AtSERK1(kin) can phosphorylate inactive AtSERK1(K330E) protein, suggesting an intermolecular mechanism of autophosphorylation. The AtSERK1 kinase protein was modeled using the insulin receptor kinase as a template. On the basis of this model, threonine residues in the AtSERK1 activation loop of catalytic subdomain VIII are potential targets for phosphorylation. AtSERK1 phosphorylation on myelin basic protein and casein showed tyrosine, serine, and threonine as targets, demonstrating that AtSERK1 is a dual specificity kinase. Replacing Thr-468 with either alanine or glutamic acid not only obliterated the ability of the AtSERK1 protein to be phosphorylated but also inhibited phosphorylation on myelin basic protein and casein, suggesting that Thr-468 is essential for AtSERK-mediated signaling.
Collapse
Affiliation(s)
- K Shah
- Laboratory of Molecular Biology, Wageningen University and Research Center, 6703 HA Wageningen, The Netherlands.
| | | | | |
Collapse
|
943
|
Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. PLANT PHYSIOLOGY 2001; 127:803-816. [PMID: 11706164 DOI: 10.1104/pp.010324] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report here the isolation of the Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (AtSERK1) gene and we demonstrate its role during establishment of somatic embryogenesis in culture. The AtSERK1 gene is highly expressed during embryogenic cell formation in culture and during early embryogenesis. The AtSERK1 gene is first expressed in planta during megasporogenesis in the nucellus [corrected] of developing ovules, in the functional megaspore, and in all cells of the embryo sac up to fertilization. After fertilization, AtSERK1 expression is seen in all cells of the developing embryo until the heart stage. After this stage, AtSERK1 expression is no longer detectable in the embryo or in any part of the developing seed. Low expression is detected in adult vascular tissue. Ectopic expression of the full-length AtSERK1 cDNA under the control of the cauliflower mosaic virus 35S promoter did not result in any altered plant phenotype. However, seedlings that overexpressed the AtSERK1 mRNA exhibited a 3- to 4-fold increase in efficiency for initiation of somatic embryogenesis. Thus, an increased AtSERK1 level is sufficient to confer embryogenic competence in culture.
Collapse
Affiliation(s)
- V Hecht
- Laboratory of Molecular Biology, Wageningen University, 6703HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
944
|
Abstract
Steroid hormones are signaling molecules important for normal growth, development and differentiation of multicellular organisms. Brassinosteroids (BRs) are a class of polyhydroxylated steroids that are necessary for plant development. Molecular genetic studies in Arabidopsis thaliana have led to the cloning and characterization of the BR receptor, BRI1, which is a transmembrane receptor serine/threonine kinase. The extracellular domain of BRI1, which is composed mainly of leucine-rich repeats, can confer BR responsivity to heterologous cells and is required for BR binding. Although downstream components of BR action are mostly unknown, multiple genes whose expression are regulated by BRs have been identified and suggest mechanisms by which BRs affect cell elongation and division.
Collapse
Affiliation(s)
- D Friedrichsen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
945
|
Abstract
Biochemical studies suggest that G proteins mediate a variety of signaling processes in plants, yet Arabidopsis has only one gene, GPA1, for a canonical G protein alpha subunit. Recent studies indicate that the GPA1 protein is involved in a number of very different cellular processes.
Collapse
Affiliation(s)
- H Ma
- Department of Biology and the Life Sciences Consortium, 504 Wartik Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
946
|
Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 2001; 15:2755-66. [PMID: 11641280 PMCID: PMC312812 DOI: 10.1101/gad.208501] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability to initiate organs throughout the lifecycle is a unique feature of plant development that is executed by groups of stem cells called meristems. The balance between stem cell proliferation and organ initiation is carefully regulated and ensures that organs can be initiated in regular geometric patterns. To understand how this regulation is achieved, we isolated a novel mutant of maize, fasciated ear2 (fea2), which causes a massive overproliferation of the ear inflorescence meristem and a more modest effect on floral meristem size and organ number. We cloned the fea2 gene using transposon tagging, and it encodes a membrane localized leucine-rich repeat receptor-like protein that is most closely related to CLAVATA2 from Arabidopsis. These findings provide evidence that the CLAVATA pathway for regulation of meristem size is functionally conserved throughout the angiosperms. A possible connection of fea2 to the control of crop yields is discussed.
Collapse
|
947
|
Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J. Control of specific gene expression by gibberellin and brassinosteroid. PLANT PHYSIOLOGY 2001. [PMID: 11598220 DOI: 10.1104/pp.010173] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We identified a recessive, brassinolide-insensitive mutant caused by a deletion allele (bri1-201) of the brassinosteroid (BR) receptor BRI1. The bri1-201 mutant displayed altered expression levels of genes differentially regulated by gibberellin (GA). RNA-blot analysis revealed that BR and GA antagonistically regulate the accumulation of mRNAs of the GA-responsive GASA1 gene, as well as the GA-repressible GA5 gene. Expression studies with cycloheximide indicated that the antagonistic effects of GA and BR on GA5 require de novo protein synthesis. Reporter transgene analyses and RNA-blot analysis showed that BR and GA modulate GA5 expression, at least in part, at the transcriptional level, and that the signals are independent and subtractive.
Collapse
Affiliation(s)
- T Bouquin
- Department of Plant Physiology, Molecular Biology Institute, Copenhagen University, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
948
|
Abstract
Growth and development of higher plants is directed by the continuous activity of meristems, sites of sustained cell division. Organs are formed at the flanks of the shoot meristem, while the central region contains pluripotent stem cells. The developmental programme of the meristem is coordinated by interactions between cells in separate regions of meristems, and some of the genes involved have been studied. Transcription factors can be exchanged between meristem cell layers. The control of stem cell fate involves a ligand/receptor interaction that regulates the activity of a transcription factor, and genes expressed in organ primordia can feedback to restrict the activity of meristematic genes.
Collapse
Affiliation(s)
- R Simon
- Institut für Entwicklungsbiologie, Universität zu Köln, D-50931 Köln, Gyrhofstrasse 17, Germany.
| |
Collapse
|
949
|
Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 2001; 98:10763-8. [PMID: 11526204 PMCID: PMC58549 DOI: 10.1073/pnas.181141598] [Citation(s) in RCA: 1040] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats.
Collapse
Affiliation(s)
- S H Shiu
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
950
|
Li J, Nam KH, Vafeados D, Chory J. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:14-22. [PMID: 11553730 PMCID: PMC117958 DOI: 10.1104/pp.127.1.14] [Citation(s) in RCA: 347] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Revised: 04/16/2001] [Accepted: 06/02/2001] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) play important roles throughout plant development. Although many genes have been identified that are involved in BR biosynthesis, genetic approaches in Arabidopsis have led to the identification of only one gene, BRI1, that encodes a membrane receptor for BRs. To expand our knowledge of the molecular mechanism(s) of plant steroid signaling, we analyzed many dwarf and semidwarf mutants collected from our previous genetic screens and identified a semidwarf mutant that showed little response to exogenous BR treatments. Genetic analysis of the bin2 (BR-INSENSITIVE 2) mutant indicated that the BR-insensitive dwarf phenotype was due to a semidominant mutation in the BIN2 gene that mapped to the middle of chromosome IV between the markers CH42 and AG. A direct screening for similar semidwarf mutants resulted in the identification of a second allele of the BIN2 gene. Despite some novel phenotypes observed with the bin2/+ mutants, the homozygous bin2 mutants were almost identical to the well-characterized bri1 mutants that are defective in BR perception. In addition to the BR-insensitive dwarf phenotype, bin2 mutants exhibited BR insensitivity when assayed for root growth inhibition and feedback inhibition of CPD gene expression. Furthermore, bin2 mutants displayed an abscisic acid-hypersensitive phenotype that is shared by the bri1 and BR-deficient mutants. A gene dosage experiment using triploid plants suggested that the bin2 phenotypes were likely caused by either neomorphic or hypermorphic gain-of-function mutations in the BIN2 gene. Thus, the two bin2 mutations define a novel genetic locus whose gene product might play a role in BR signaling.
Collapse
Affiliation(s)
- J Li
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | | | | | |
Collapse
|