901
|
Abstract
Type 2 diabetes mellitus is characterised by insulin resistance as well as progressive pancreatic beta cell dysfunction. The cornerstone of current oral blood-glucose lowering therapy consists of metformin, which primarily lowers hepatic glucose production, and the sulphonylureas that act by stimulating pancreatic beta-cells to secrete insulin. Recently, a novel class of agents, the thiazolidinediones, has been introduced that favourably influence insulin sensitivity and possibly also pancreatic beta-cell function. The thiazolidinediones are synthetic ligands that bind to the nuclear peroxisome proliferator-activated receptor-gamma and exert their action by activating transcription of genes that, among others, regulate adipocyte differentiation and adipogenesis as well as glucose and lipid metabolism. To date, the precise mechanisms underlying the actions of thiazolidinediones are largely unknown. When given as monotherapy or in combination with sulphonylureas, metformin or insulin in patients with type 2 diabetes, the currently available thiazolidinediones (rosiglitazone and pioglitazone) ameliorate glycaemic control, by lowering fasting and postprandial blood glucose levels, and improve insulin sensitivity in placebo-controlled trials. They seem to have differential effects on dyslipidaemia in patients with type 2 diabetes; rosiglitazone increases total cholesterol as well as high-density lipoprotein (HDL) and low-density lipoprotein cholesterol levels and affects plasma triglyceride levels depending on the baseline values, whereas pioglitazone lowers triglycerides and increases HDL cholesterol levels. The adverse events of both agents that occur with greater frequency than in patients treated with placebo are fluid retention and oedema. As demonstrated, mainly in preclinical studies to date, rosiglitazone and pioglitazone possess beneficial effects on other cardiovascular risk factors associated with the insulin resistance syndrome. Thus, these agents were shown to decrease blood pressure, enhance myocardial function and fibrinolysis, as well as possess anti-inflammatory and other beneficial vascular effects. Long-term efficacy and surveillance of this promising class of drugs in patients, however, still need to be demonstrated in outcome trials.
Collapse
Affiliation(s)
- Michaela Diamant
- Department of Endocrinology, Diabetes Centre, VU University Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|
902
|
|
903
|
|
904
|
Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM. Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 2003; 278:33904-11. [PMID: 12815040 DOI: 10.1074/jbc.m304724200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Thus far, three isoforms of SCD (SCD1, SCD2, and SCD3) have been identified and characterized. Regulation of the SCD1 isoform has been shown to be an important component of the metabolic actions of leptin in liver, but the effects of leptin on SCD isoforms in other tissues have not been investigated. We found that although the mRNA levels of SCD1 and SCD2 were not affected by leptin deficiency in the hearts of ob/ob mice, the SCD activity and levels of monounsaturated fatty acids were increased, implying the existence of another SCD isoform. This observation has led to the cDNA cloning and characterization of a fourth SCD isoform (SCD4) that is expressed exclusively in the heart. SCD4 encodes a 352-amino acid protein that shares 79% sequence identity with the SCD1, SCD2, and SCD3 isoforms. Liver X receptor alpha (LXR alpha) agonists and a high carbohydrate fat-free diet induced SCD4 expression, but unlike SCD1, SCD4 expression was not repressed by dietary polyunsaturated fatty acids. SCD4 mRNA levels were elevated 5-fold in the hearts of leptin-deficient ob/ob mice relative to wild type controls. Treatment of ob/ob mice with leptin decreased mRNA levels of SCD4, whereas levels of SCD1 and SCD2 were not affected. Furthermore, in the hearts of SCD1-deficient mice, SCD4 mRNA levels were induced 3-fold, whereas the levels of SCD2 were not altered. The current studies identify a novel heart-specific SCD isoform that demonstrates tissue-specific regulation by leptin and dietary factors.
Collapse
Affiliation(s)
- Makoto Miyazaki
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
905
|
Finck BN, Lehman JJ, Barger PM, Kelly DP. Regulatory networks controlling mitochondrial energy production in the developing, hypertrophied, and diabetic heart. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:371-82. [PMID: 12858562 DOI: 10.1101/sqb.2002.67.371] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- B N Finck
- Center for Cardiovascular Research, Department of Medicine, Departments of Molecular Biology & Pharmacology and Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
906
|
Abstract
There is a high frequency of heart failure (HF) accompanied by an increased mortality risk for patients with diabetes. The poor prognosis of these patients has been explained by an underlying diabetic cardiomyopathy exacerbated by hypertension and ischemic heart disease. In these patients, activation of the sympathetic nervous system results in increased myocardial utilization of fatty acids and induction of fetal gene programs, decreasing myocardial function. Activation of the renin-angiotensin system results in myocardial remodeling. It is imperative for physicians to intercede early to stop the progression of HF, yet at least half of patients with left ventricular dysfunction remain undiagnosed and untreated until advanced disease causes disability. This delay is largely because of the asymptomatic nature of early HF, which necessitates more aggressive assessment of HF risk factors and early clinical signs. Utilization of beta-blockade, ACE inhibitors, or possibly angiotensin receptor blockers is essential in preventing remodeling with its associated decline in ventricular function. beta-Blockers not only prevent, but may also reverse, cardiac remodeling. Glycemic control may also play an important role in the therapy of diabetic HF. The adverse metabolic side effects that have been associated with beta-adrenergic inhibitors in the diabetic patient may be circumvented by use of a third-generation beta-blocker. Prophylactic utilization of ACE inhibitors and beta-blockers to avoid, rather than await, the need to treat HF should be considered in high-risk diabetic patients.
Collapse
Affiliation(s)
- David S H Bell
- Department of Medicine, University of Alabama at Birmingham, USA.
| |
Collapse
|
907
|
Jain M, Liao R, Miller TA, LeBrasseur NK, Sawyer DB. Mechanisms in the pathogenesis of diabetic cardiomyopathy. ACTA ACUST UNITED AC 2003. [DOI: 10.1097/00060793-200308000-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
908
|
Christoffersen C, Bollano E, Lindegaard MLS, Bartels ED, Goetze JP, Andersen CB, Nielsen LB. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 2003; 144:3483-90. [PMID: 12865329 DOI: 10.1210/en.2003-0242] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P < 0.0005) than ob/+ mouse hearts. Histological examinations showed marked accumulation of neutral lipid droplets within cardiac myocytes but not increased deposition of collagen between myocytes in ob/ob compared with ob/+ mouse hearts. On echocardiography, the ratio of E to A transmitral flow velocities (an indicator of diastolic function) was 1.8 +/- 0.1 in ob/ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased expression of cardiac gene products that stimulate myocyte fatty acid uptake and triglyceride storage and accumulate neutral lipids within the cardiac myocytes. The results also suggest that the cardiac lipid accumulation is paralleled by cardiac diastolic dysfunction in ob/ob mice.
Collapse
Affiliation(s)
- Christina Christoffersen
- Departments of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark 2100
| | | | | | | | | | | | | |
Collapse
|
909
|
Diamant M, Lamb HJ, Groeneveld Y, Endert EL, Smit JWA, Bax JJ, Romijn JA, de Roos A, Radder JK. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 2003; 42:328-35. [PMID: 12875772 DOI: 10.1016/s0735-1097(03)00625-9] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study evaluated myocardial function in relation to high-energy phosphate (HEP) metabolism in asymptomatic patients with uncomplicated type 2 diabetes mellitus using magnetic resonance (MR) techniques. BACKGROUND Myocardial dysfunction may occur in patients with type 2 diabetes mellitus in the absence of coronary artery disease or left ventricular (LV) hypertrophy. The mechanisms underlying this diabetic cardiomyopathy are largely unknown, but may involve altered myocardial energy metabolism. METHODS We assessed myocardial systolic and diastolic function and HEP metabolism in 12 asymptomatic normotensive male patients with recently diagnosed, well-controlled type 2 diabetes and 12 controls, using MR imaging and phosphorus-31-nuclear MR spectroscopy (31P-MRS) on a 1.5 T clinical scanner; 31P-MR spectra were quantified, and myocardial HEP metabolism was expressed as phosphocreatine to adenosine-triphosphate (PCr/ATP) ratio. RESULTS No differences were found in LV mass and systolic function between patients and controls. However, early (E) acceleration peak, deceleration peak, peak filling rate, and transmitral early-to-late diastolic peak flow (E/A) ratio, all indexes of diastolic function, were significantly decreased in patients compared with controls (p < 0.02). In addition, myocardial PCr/ATP in patients was significantly lower than in controls (1.47 vs. 1.88, p < 0.01). Inverse associations were found between myocardial PCr/ATP and E acceleration peak, E deceleration peak, and E peak filling rate (all, p < 0.05). CONCLUSIONS These results indicate that altered myocardial energy metabolism may contribute to LV diastolic functional changes in patients with recently diagnosed, well-controlled and uncomplicated type 2 diabetes.
Collapse
Affiliation(s)
- Michaela Diamant
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
910
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)-alpha is a member of a large nuclear receptor superfamily whose main role is to activate genes involved in fatty acid oxidation in the liver, heart, kidney, and skeletal muscle. While currently used mainly as hypolipidemic agents, the cardiac effects and anti-inflammatory actions of PPAR-alpha agonists in arterial wall cells suggest other potential cardioprotective and antiatherosclerotic effects of these agents. This review summarizes current knowledge regarding the effects of PPAR-alpha agonists on lipid and lipoprotein metabolism, the heart, and the vessel wall and introduces some of the insights gained in these areas from studying PPAR-alpha-deficient mice. The introduction of new and more potent PPAR-alpha agonists will provide important insights into the overall benefits of activating PPAR-alpha clinically for the treatment of dyslipidemia and prevention of vascular disease.
Collapse
Affiliation(s)
- Gordon A Francis
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | |
Collapse
|
911
|
Abstract
Here we explore the physiologic role of leptin as a liporegulatory hormone responsible for maintaining intracellular homeostasis in the face of wide variations in caloric intake. Normally, rats can tolerate a 60% fat diet because 96% of the surplus fat is deposited in adipocytes. In contrast, when leptin is congenitally absent or inactive, even on a normal diet, unutilized dietary fat is deposited in nonadipose tissues, causing dysfunction (lipotoxicity) and possible cell death (lipoapoptosis). We theorize that in diet-induced obesity, acquired leptin resistance may also develop as the result of increase in certain leptin resistance factors. Acquired leptin resistance occurs in aging, obesity, Cushing's syndrome, and acquired lipodystrophy, and preliminary evidence suggests that ectopic lipid deposition is increased. We speculate that the metabolic syndrome may be the human equivalent of the lipotoxic syndrome of rodents.
Collapse
Affiliation(s)
- Roger H Unger
- Gifford Laboratories, Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA.
| |
Collapse
|
912
|
Abstract
PURPOSE OF REVIEW This review will provide the reader with an update on our understanding of the adverse effects of fatty acid accumulation in non-adipose tissues, a phenomenon known as lipotoxicity. Recent studies will be reviewed. Cellular mechanisms involved in the lipotoxic response will be discussed. Physiologic responses to lipid overload and therapeutic approaches to decreasing lipid accumulation will be discussed, as they add to our understanding of important pathophysiologic mechanisms. RECENT FINDINGS Excess lipid accumulation in non-adipose tissues may arise in the setting of high plasma free fatty acids or triglycerides. Alternatively, lipid overload results from mismatch between free fatty acid import and utilization. Evidence from human studies and animal models suggests that lipid accumulation in the heart, skeletal muscle, pancreas, liver, and kidney play an important role in the pathogenesis of heart failure, obesity and diabetes. Excess free fatty acids may impair normal cell signaling, causing cellular dysfunction. In some circumstances, excess free fatty acids induce apoptotic cell death. SUMMARY Recent studies provide clues regarding the cellular mechanisms that determine whether excess lipid accumulation is well tolerated or cytotoxic. Critical in this process are physiologic mechanisms for directing excess free fatty acids to specific tissues as well as cellular mechanisms for channeling excess fatty acid to particular metabolic fates. Insight into these mechanisms may contribute to the development of more effective therapies for common human disorders in which lipotoxicity contributes to pathogenesis.
Collapse
Affiliation(s)
- Jean E Schaffer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
913
|
Atkinson LL, Kozak R, Kelly SE, Onay Besikci A, Russell JC, Lopaschuk GD. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab 2003; 284:E923-30. [PMID: 12464581 DOI: 10.1152/ajpendo.00360.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The accumulation of intracellular triacylglycerol (TG) is highly correlated with muscle insulin resistance. However, it is controversial whether the accumulation of TG is the result of increased fatty acid supply, decreased fatty acid oxidation, or both. Because abnormal fatty acid metabolism is a key contributor to the pathogenesis of diabetes-related cardiovascular dysfunction, we examined fatty acid and glucose metabolism in hearts of insulin-resistant JCR:LA-cp rats. Isolated working hearts from insulin-resistant rats had glycolytic rates that were reduced to 50% of lean control levels (P < 0.05). Cardiac TG content was increased by 50% (P < 0.05) in the insulin-resistant rats, but palmitate oxidation rates remained similar between the insulin-resistant and lean control rats. However, plasma fatty acids and TG levels, as well as cardiac fatty acid-binding protein (FABP) expression, were significantly increased in the insulin-resistant rats. AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid and glucose metabolism. When activated, AMPK increases fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels, and it decreases TG content by inhibiting glycerol-3-phosphate acyltransferase (GPAT), the rate-limiting step in TG synthesis. The activation of AMPK also stimulates cardiac glucose uptake and glycolysis. We thus investigated whether a decrease in AMPK activity was responsible for the reduced cardiac glycolysis and increased TG content in the insulin-resistant rats. However, we found no significant difference in AMPK activity. We also found no significant difference in various established downstream targets of AMPK: ACC activity, malonyl-CoA levels, carnitine palmitoyltransferase I activity, or GPAT activity. We conclude that hearts from insulin-resistant JCR:LA-cp rats accumulate substantial TG as a result of increased fatty acid supply rather than from reduced fatty acid oxidation. Furthermore, the accumulation of cardiac TG is associated with a reduction in insulin-stimulated glucose metabolism.
Collapse
Affiliation(s)
- Laura L Atkinson
- Cardiovascular Research Group, Department of Pediatrics, Faculty of Medicine, The University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | |
Collapse
|
914
|
Kong JY, Rabkin SW. Mitochondrial effects with ceramide-induced cardiac apoptosis are different from those of palmitate. Arch Biochem Biophys 2003; 412:196-206. [PMID: 12667483 DOI: 10.1016/s0003-9861(03)00008-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to evaluate whether ceramide, palmitate, and inhibitors of mitochondrial electron transport chain shared similar effects on the mitochondria of intact cardiomyocytes in order to determine the likelihood that ceramide and palmitate utilize similar mitochondrial mechanisms or pathways to apoptosis. In embryonic chick cardiomyocytes, ceramide, 100 microM for 24h, induced a 42.9+/-5.8% increase in cell death assessed by the MTT assay, and a significant (P<0.01) 3.9+/-0.6-fold increase in apoptosis assessed by propidium iodide staining of permeabilized cells. Mitochondrial potential (delta psi (m)), as demonstrated microscopically and by flow cytometry of cardiomyocytes stained with a J-aggregate dye, was markedly and significantly reduced by ceramide, palmitate, and two different inhibitors of the mitochondrial electron transport chain-rotenone and antimycin A. In contrast, the effect on mitochondria as assessed by CMX-Ros oxidation was dramatically different, as palmitate, rotenone, and antimycin A each produced a reduction, while ceramide increased CMX-Ros fluorescence. Further ceramide-induced cardiomyocyte apoptosis and loss of delta psi (m) operated through a cyclosporine-insensitive pathway similar to rotenone and antimycin A but distinct from palmitate which induced apoptosis though a cyclosporine-sensitive mechanism in these cells. These data suggest that ceramide acts on the mitochondria of intact cells through a cyclosporine-insensitive mechanism likely from a combination of actions including production of mitochondrial oxidants. The discordant findings between ceramide and palmitate suggest that palmitate-induced cell death is not primarily mediated by de novo ceramide synthesis.
Collapse
Affiliation(s)
- Jennifer Y Kong
- Department of Medicine, University of British Columbia, Room D410, 2733 Heather Street, Vancouver, BC, Canada V5Z 3J5
| | | |
Collapse
|
915
|
Jia D, Otsuki M. Bezafibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, prevents pancreatic degeneration in obese and diabetic rats. Pancreas 2003; 26:286-91. [PMID: 12657956 DOI: 10.1097/00006676-200304000-00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Damage to the exocrine pancreas has been observed in patients and animals with hyperlipidemia and hyperglycemia. Bezafibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, has been shown to improve lipid and glucose metabolism, and to interfere with the inflammatory response. AIM To examine the effects of bezafibrate on exocrine pancreas in hyperlipidemic obese and diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats that have no cholecystokinin-1 receptor gene expression. METHODOLOGY One group of rats (n = 8) received a bezafibrate-rich diet (150 mg/100 g normal chow) from 12 weeks of age until 30 weeks of age, whereas a control group (n = 8) received standard rat chow. RESULTS Bezafibrate treatment significantly reduced serum triglyceride, total cholesterol, and free fatty acids levels and significantly increased the pancreatic wet weight (1,145 +/- 54 vs 874 +/- 33 mg/rat, p < 0.01), and protein (169 +/- 7 vs 128 +/- 11 mg/pancreas p < 0.01) and enzyme contents in the pancreas compared with those in untreated control rats. Immunohistochemical studies of the pancreas showed that expression of proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1beta and interleukin-6, and alpha-smooth muscle actin in bezafibrate-treated rats was greatly suppressed compared with that in the untreated control rats. The histopathologic changes such as vacuolar degeneration and tubular complexes observed in the control rat pancreas were markedly improved in bezafibrate-treated rats. CONCLUSIONS Our results suggest that bezafibrate reduces hyperlipidemia, inhibits pancreatic inflammation, and prevents pancreatic degeneration in obese and diabetic OLETF rats.
Collapse
Affiliation(s)
- Dongmei Jia
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, Japan
| | | |
Collapse
|
916
|
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003; 100:3077-82. [PMID: 12629214 PMCID: PMC152249 DOI: 10.1073/pnas.0630588100] [Citation(s) in RCA: 1521] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic beta-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation.
Collapse
Affiliation(s)
- Laura L Listenberger
- Center for Cardiovascular Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1010, USA
| | | | | | | | | | | | | |
Collapse
|
917
|
|
918
|
Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D'Ambrosia G, Arbique D, Vongpatanasin W, Unger R, Victor RG. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003; 49:417-23. [PMID: 12594743 DOI: 10.1002/mrm.10372] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent experimental data suggest that adiposity directly damages the heart by promoting ectopic deposition of triglyceride, a process known as myocardial steatosis. The goal of this study was to develop and validate proton magnetic resonance spectroscopy ((1)H MRS) as an in vivo tool to measure myocardial lipid content. Complementary studies in rat tissue ex vivo and in 15 healthy humans in vivo provided evidence that (1)H MRS constitutes a reproducible technique for the measurement of myocardial triglyceride. In myocardial tissue from Zucker rats, the (1)H MRS measurement of triglyceride matched that obtained by biochemical measurement (P < 0.001). In human subjects triglyceride was evident in the hearts of even the very lean individuals and was elevated in overweight and obese subjects. Increased myocardial triglyceride content was accompanied by elevated LV mass and suppressed septal wall thickening as measured by cardiac imaging.
Collapse
Affiliation(s)
- Lidia S Szczepaniak
- Department of Internal Medicine, University of Texas, Southwestern Medical Center at Dallas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
919
|
Toblli JE, DeRosa G, Rivas C, Cao G, Piorno P, Pagano P, Forcada P. Cardiovascular protective role of a low-dose antihypertensive combination in obese Zucker rats. J Hypertens 2003; 21:611-20. [PMID: 12640256 DOI: 10.1097/00004872-200303000-00028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Obesity, non-insulin-dependent diabetes mellitus (NIDDM) and hypertension are leading causes associated with increased cardiovascular morbidity and mortality. In modern times, the combined first line antihypertensive therapy with at least two drugs with a different mechanism of action to achieve a better blood pressure control, is increasing in acceptance worldwide. The aim of the present study was to determine possible beneficial effects of the low-dose combination (LDC) of an angiotensin-converting enzyme (ACE) inhibitor, perindopril (PER), and the diuretic indapamide (IND), regarding myocardial and vessels protection in an animal model of hypertension, obesity and NIDDM, such as the obese Zucker rat (OZR), and control lean Zucker rats (LZR). DESIGN Ten-week-old male OZR (fa/fa) and LZR (Fa/fa) were used in this study. OZR group (G1, n=8), OZR with LDC group (G2, n=8); LZR group (G3, n=8) and LZR with LDC group (G4, n=8). During 6 months, G2 and G4 received a daily dose of 1 mg/kg combination of 0.76 mg/kg PER + 0.24 mg/kg IND, (ratio of doses 0.32), by gavage, and G1 and G3 received an equal volume of vehicle throughout the experiment. In order to evaluate cardiac dimensions and left ventricular mass (LVM) transthoracic echocardiograms were performed, at baseline and at the end of the experiment. Urine and blood samples for biochemical determination were obtained. After 6 months of treatment all rats were sacrificed, hearts were harvested for light microscopy (LM), high-resolution light microscopy (HRLM), immunohistochemistry including monoclonal antibodies against transforming growth factor beta (TGFbeta1) and anti-collagen type I (COL I) and type III (COL III) and electron microscopy (EM) studies. RESULTS At the end of the study OZR treated with LDC presented: (1) lower blood pressure (128.9 +/- 4 versus 150.3 +/- 3.6 mmHg, P< 0.05); (2) smaller cardiac dimensions (P< 0.01); (3) lower LVM/100 g body weight (0.17 +/- 0.02 versus 0.30 +/- 0.05, P< 0.01); (4) higher fractional shortening (34.5 +/- 3.2 versus 23.3 +/- 5.9%, P< 0.01) than OZR untreated. Moreover, OZR that received LDC showed higher: (1) myocyte density (48 +/- 1.5 versus 20 +/- 2.5 myocytes/area, P< 0.01); (2) capillary density (30.5 +/- 3.1 versus 9.5 +/- 1.6 capillaries/area, P<0.01); (3) myofilament thickness (12.05 +/- 0.27 versus 9.83 +/- 0.39 nm, P<0.01); and lower amounts of: (1) TGFbeta1 in myocytes (P< 0.01), interstitium (P< 0.01) and vessel wall (P< 0.05); (2) COL I and COL III (P< 0.01), and COL I /COL III ratio (P< 0.01), compared with untreated OZR. Finally, OZR-treated with LDC showed not only unsubstantial modification in carbohydrate and lipid metabolism when compared with untreated OZR, but also an improvement in insulin/glucose ratio (P< 0.05). CONCLUSION These results suggest that LDC of PER + IND can control cardiovascular damage in OZR providing an additional help in the metabolic scenario likewise.
Collapse
Affiliation(s)
- Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, CONICET, Av. Pueyrredon 1640, Buenos Aires 1118, Argentina.
| | | | | | | | | | | | | |
Collapse
|
920
|
Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha ) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A 2003; 100:1711-6. [PMID: 12578979 PMCID: PMC149898 DOI: 10.1073/pnas.0337639100] [Citation(s) in RCA: 335] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The myocyte enhancer factor-2 (MEF2) transcription factor regulates muscle development and calcium-dependent gene expression. MEF2 activity is repressed by class II histone deacetylases (HDACs), which dissociate from MEF2 when phosphorylated on two serine residues in response to calcium signaling. To explore the potential importance of MEF2/HDAC interactions in the heart, we generated transgenic mice expressing a signal-resistant form of HDAC5 under cardiac-specific and doxycycline-inducible regulation. Transgene expression resulted in sudden death in male mice accompanied by loss and morphologic changes of cardiac mitochondria and down-regulation of mitochondrial enzymes. The transcriptional coactivator PGC-1 alpha, a master regulator of mitochondrial biogenesis and fatty acid oxidation, was also down-regulated in response to HDAC5 expression. Examination of the PGC-1 alpha promoter revealed two MEF2-binding sites that mediate transcriptional activation by MEF2 and repression by HDAC5. These findings identify PGC-1 alpha as a key target of the MEF2/HDAC regulatory pathway and demonstrate this pathway's importance in maintenance of cardiac mitochondrial function.
Collapse
Affiliation(s)
- Michael P Czubryt
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
921
|
Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 2003; 100:1226-31. [PMID: 12552126 PMCID: PMC298755 DOI: 10.1073/pnas.0336724100] [Citation(s) in RCA: 415] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To explore the role of peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated derangements in myocardial metabolism in the pathogenesis of diabetic cardiomyopathy, insulinopenic mice with PPARalpha deficiency (PPARalpha(-/-)) or cardiac-restricted overexpression [myosin heavy chain (MHC)-PPAR] were characterized. Whereas PPARalpha(-/-) mice were protected from the development of diabetes-induced cardiac hypertrophy, the combination of diabetes and the MHC-PPAR genotype resulted in a more severe cardiomyopathic phenotype than either did alone. Cardiomyopathy in diabetic MHC-PPAR mice was accompanied by myocardial long-chain triglyceride accumulation. The cardiomyopathic phenotype was exacerbated in MHC-PPAR mice fed a diet enriched in triglyceride containing long-chain fatty acid, an effect that was reversed by discontinuing the high-fat diet and absent in mice given a medium-chain triglyceride-enriched diet. Reactive oxygen intermediates were identified as candidate mediators of cardiomyopathic effects in MHC-PPAR mice. These results link dysregulation of the PPARalpha gene regulatory pathway to cardiac dysfunction in the diabetic and provide a rationale for serum lipid-lowering strategies in the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Brian N Finck
- Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
922
|
Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 2003; 52:434-41. [PMID: 12540618 DOI: 10.2337/diabetes.52.2.434] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucose and palmitate metabolism and contractile function were measured with ex vivo perfused working hearts from control (db/+) and diabetic (db/db) female mice at 6, 10-12, and 16-18 weeks of age. Palmitate oxidation was increased by 2.2-fold in 6-week-old db/db hearts and remained elevated in 10- to 12- and 16- to 18-week-old hearts. Carbohydrate oxidation was normal at 6 weeks but was reduced to 27 and 23% of control at 10-12 and 16-18 weeks, respectively. At 6 weeks, db/db hearts exhibited a slight reduction in mechanical function, whereas marked signs of dysfunction were evident at 10-12 and 16-18 weeks. Mechanical function after ischemia-reperfusion was examined in hearts from male mice; at 6 weeks, db/db hearts showed normal recovery, whereas at 12 weeks it was markedly reduced. Fatty acid oxidation was the predominant substrate used after reperfusion. Thus, diabetic db/db hearts exhibit signs of a progressive cardiomyopathy; increased fatty acid oxidation preceded reductions in carbohydrate oxidation. Postischemic recovery of function was reduced in db/db hearts, in parallel with age-dependent changes in normoxic contractile performance. Finally, peroxisome proliferator-activated receptor-alpha treatment (3 weeks) did not affect sensitivity to ischemia-reperfusion, even though carbohydrate oxidation was increased and palmitate oxidation was decreased.
Collapse
Affiliation(s)
- Ellen Aasum
- Department of Medical Physiology, Faculty of Medicine, University of Tromsoe, Norway.
| | | | | | | |
Collapse
|
923
|
Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg IJ. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 2003; 111:419-26. [PMID: 12569168 PMCID: PMC151861 DOI: 10.1172/jci16751] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipoprotein lipase is the principal enzyme that hydrolyzes circulating triglycerides and liberates free fatty acids that can be used as energy by cardiac muscle. Although lipoprotein lipase is expressed by and is found on the surface of cardiomyocytes, its transfer to the luminal surface of endothelial cells is thought to be required for lipoprotein lipase actions. To study whether nontransferable lipoprotein lipase has physiological actions, we placed an alpha-myosin heavy-chain promoter upstream of a human lipoprotein lipase minigene construct with a glycosylphosphatidylinositol anchoring sequence on the carboxyl terminal region. Hearts of transgenic mice expressed the altered lipoprotein lipase, and the protein localized to the surface of cardiomyocytes. Hearts, but not postheparin plasma, of these mice contained human lipoprotein lipase activity. More lipid accumulated in hearts expressing the transgene; the myocytes were enlarged and exhibited abnormal architecture. Hearts of transgenic mice were dilated, and left ventricular systolic function was impaired. Thus, lipoprotein lipase expressed on the surface of cardiomyocytes can increase lipid uptake and produce cardiomyopathy.
Collapse
Affiliation(s)
- Hiroaki Yagyu
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
924
|
Neitzel AS, Carley AN, Severson DL. Chylomicron and palmitate metabolism by perfused hearts from diabetic mice. Am J Physiol Endocrinol Metab 2003; 284:E357-65. [PMID: 12397026 DOI: 10.1152/ajpendo.00380.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrolysis of triacylglycerols (TG) in circulating chylomicrons by endothelium-bound lipoprotein lipase (LPL) provides a source of fatty acids (FA) for cardiac metabolism. The effect of diabetes on the metabolism of chylomicrons by perfused mouse hearts was investigated with db/db (type 2) and streptozotocin (STZ)-treated (type 1) diabetic mice. Endothelium-bound heparin-releasable LPL activity was unchanged in both type 1 and type 2 diabetic hearts. The metabolism of LPL-derived FA was examined by perfusing hearts with chylomicrons containing radiolabeled TG and by measuring (3)H(2)O accumulation in the perfusate (oxidation) and incorporation of radioactivity into tissue TG (esterification). Rates of LPL-derived FA oxidation and esterification were increased 2.3-fold and 1.7-fold in db/db hearts. Similarly, LPL-derived FA oxidation and esterification were increased 3.4-fold and 2.5-fold, respectively, in perfused hearts from STZ-treated mice. The oxidation and esterification of [(3)H]palmitate complexed to albumin were also increased in type 1 and type 2 diabetic hearts. Therefore, diabetes may not influence the supply of LPL-derived FA, but total FA utilization (oxidation and esterification) was enhanced.
Collapse
Affiliation(s)
- Andrew S Neitzel
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
925
|
Soriguer F, Moreno F, Rojo-Martínez G, Cardona F, Tinahones F, Gómez-Zumaquero JM, García-Fuentes E, Morcillo S. Redistribution of abdominal fat after a period of food restriction in rats is related to the type of dietary fat. Br J Nutr 2003; 89:115-22. [PMID: 12568671 DOI: 10.1079/bjn2002742] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present experiment was to test the hypothesis that during refeeding a redistribution of intra-abdominal fat takes place and that both the recovery of weight and the redistribution of intra-abdominal fat are related to the type of dietary fat. The experimental study was carried out using male Sprague-Dawley rats. Three groups of animals were fed diets with three different fatty acid profiles. Each group contained two branches, one fed normally and the other fed initially with a 50 % energy reduction followed by refeeding ad libitum with the same isoenergetic diet as the control branch, giving a total of six treatments. Measurements were made of the final and incremental weight of the rat, weight of the intra-abdominal adipose tissue (total intra-abdominal, epididymal, omental and retroperitoneal adipose tissue weight), and feed efficacy (weight increment/metabolizable energy intake). Carcass, epididymal, omental, and muscle lipid contents, carcass protein and energy density were also measured. The results revealed that diets rich in fish oil or olive oil increase catch-up growth more than diets rich in saturated fats. During refeeding the lipid content in the adipose tissue increases while that of muscle tissue decreases. A diet rich in saturated fats induces a relative increase in the amount of intra-abdominal adipose tissue. The lipid content in adipose and muscle tissues and the distribution of intra-abdominal fat can all be modified by the type of dietary fat.
Collapse
Affiliation(s)
- Federico Soriguer
- Endocrinology and Nutrition Service, Clinical and Experimental Investigation Unit, Civil Hospital, Carlos Haya Hospital Complex, Pza. del Hospital Civil s/n, 29009-Málaga, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
926
|
Zhang W, Elimban V, Nijjar MS, Gupta SK, Dhalla NS. Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol 2003; 8:173-83. [PMID: 19649217 PMCID: PMC2719157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) are involved in the regulation of various cellular responses including cell proliferation, differentiation and survival. Although MAPKs are activated by MAPK kinase and inactivated by phosphatases, different types of MAPKs, including extracellular signal-regulated kinases (ERK1 and 2), c-jun N-terminal protein kinases (JNK) and p38 kinases are known to participate in different signalling pathways. This article will review some salient features of the regulation and function of different forms of MAPKs in the heart. Furthermore, the status of cardiac MAPKs under different pathophysiological conditions will be described. OBSERVATIONS A wide variety of external stimuli are known to activate MAPKs, which are then translocated from the cytoplasm to the nucleus and regulate cardiac gene expression by phosphorylating various transcriptional factors. By virtue of the involvement of ERK1/2 in hypertrophic response and of the stress-activated JNKs and p38 kinases in the process of apoptosis, MAPKs are considered to be intimately involved in cardiac remodelling. Both growth factors and phorbol esters have been shown to strongly activate ERK1/2, whereas the activation of JNKs and p38 kinases by these agents is weak. Although ischemia-reperfusion activates all types of MAPKs, JNKs and p38 kinases are mainly proapoptotic, whereas ERK1/2 are antiapoptotic. CONCLUSIONS The activation of ERK1/2 is involved in signal transduction pathways associated with cardiac hypertrophy; however, the exact status of MAPKs in heart failure remains to be clearly defined. While both JNKs and p38 kinases appear to participate in the genesis of ischemia-reperfusion injury, ERK1/2 are considered to be cytoprotective.
Collapse
Affiliation(s)
- Weihua Zhang
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Mohinder S Nijjar
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Suresh K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
927
|
Abstract
The balance between cell division and cell death determines the cell population of an organ. When cell death exceeds cell replacement in an organ, a functional deficit is created. A metabolic cause of programmed cell death, lipoapoptosis, has recently been identified to occur in obesity and aging. If nonadipose tissues are exposed to an excess of long-chain fatty acids, unless leptin action increases their oxidation sufficiently, unoxidized fatty acids enter nonoxidative pathways. While initially they are sequestered as harmless neutral fat, ultimately some will enter more toxic pathways. One of these, the de novo ceramide pathway, has been implicated in the lipoapoptosis of beta-cells and myocardiocytes of congenitally obese rats in which leptin action is defective. Here we review the mechanisms of lipoapoptosis and the diseases that result from this cause of a diminishing cell population of these organs. We suggest that some of the components of the metabolic syndrome of obese humans and the sarcopenia of aging may be result of failure of leptin liporegulation to prevent lipid overload of lean body mass and lipoapoptosis in certain organ systems.
Collapse
Affiliation(s)
- Roger H Unger
- Gifford Laboratories, Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8854, USA.
| | | |
Collapse
|
928
|
Affiliation(s)
- C P Day
- Centre for Liver Research, Medical School, Newcastle upon Tyne, UK.
| | | |
Collapse
|
929
|
Kakuma T, Lee Y, Unger RH. Effects of leptin, troglitazone, and dietary fat on stearoyl CoA desaturase. Biochem Biophys Res Commun 2002; 297:1259-63. [PMID: 12372423 DOI: 10.1016/s0006-291x(02)02375-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin, troglitazone, and high fat feeding profoundly influence the lipid content of various tissues. To determine if they affect the expression of stearoyl CoA desaturase (SCD)-1 and -2, their mRNA was measured in livers of normal, hyperleptinemic, troglitazone-treated, and fat-fed rats. Hyperleptinemia, which reduces tissue TG by downregulating lipogenic enzymes and upregulating fatty acid oxidation, lowered SCD-1 96% below controls and reduced SCD-2 slightly. By contrast, hepatic SCD-1 mRNA of leptin-resistant fa/fa rats was five times wild-type controls, but SCD-2 mRNA was 66% lower. High fat feeding lowered SCD-1 by 80%, possibly by inducing hyperleptinemia. Troglitazone treatment, which reduces nonadipose tissue TG of fa/fa rats without downregulating lipogenic enzymes, raised SCD-2 13-fold but lowered SCD-1 by 25%. The findings suggest that leptin controls SCD-1 expression and that troglitazone's antilipotoxic action may involve SCD-2 upregulation.
Collapse
Affiliation(s)
- Tetsuya Kakuma
- Department of Internal Medicine, Gifford Laboratories, Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8854, USA
| | | | | |
Collapse
|
930
|
Finck BN, Kelly DP. Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol 2002; 34:1249-57. [PMID: 12425323 DOI: 10.1006/jmcc.2002.2061] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tremendous energy demands of the post-natal mammalian heart are fulfilled via dynamic flux through mitochondrial oxidative pathways. The capacity for energy production via fatty acid (FA) beta-oxidation pathway is determined, in part, by the regulated expression of genes encoding FA utilization enzymes and varies in accordance with diverse dietary and physiologic conditions. For example, fasting and diabetes activate the expression of cardiac FA oxidation (FAO). Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor that is known to control the expression of many genes involved in cellular FA import and oxidation. Cardiac FA utilization rates are reduced in PPARalpha null mice due to diminished expression of genes encoding FAO enzymes. Recent work has shown that the PPARalpha regulatory pathway is deactivated in pathologic cardiac hypertrophy and hypoxia, two circumstances characterized by reduced FAO and increased dependence on glucose as a fuel source. Conversely, the activity of the PPARalpha gene regulatory pathway is increased in the diabetic heart, which relies primarily on FAO for energy production. In fact, evidence is emerging that excessive FA import and oxidation may be a cause of pathologic cardiac remodeling in the diabetic heart. This review summarizes the regulation of cardiac substrate utilization pathways via the PPARalpha complex in the normal and diseased heart.
Collapse
Affiliation(s)
- Brian N Finck
- Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
931
|
Abstract
Understanding the pathogenesis of non-alcoholic steatohepatitis has recently assumed great importance with the recognition that it has the potential to progress to fibrosis and cirrhosis. The 'two-hit' model of pathogenesis was proposed in 1998, with the first 'hit' - steatosis - increasing the sensitivity of the liver to the second 'hits' mediating liver injury. The main aim of this chapter is to review this model in the light of studies that have been published over the subsequent 4 years. Particular attention will be focused on the role of insulin resistance and recent advances in our understanding of the basic cellular mechanisms linking obesity and insulin resistance. Based on this information I will propose a modification of the two-hit model that places more emphasis on the role of free fatty acids. This model will provide the basis for further research and enable the rational design of treatment strategies.
Collapse
Affiliation(s)
- C P Day
- Centre for Liver Research, Floor 4 William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
932
|
Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 2002; 283:H976-82. [PMID: 12181126 DOI: 10.1152/ajpheart.00088.2002] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Control db/+ and diabetic db/db mice at 6 and 12 wk of age were subjected to echocardiography to determine whether contractile function was reduced in vivo and restored in transgenic db/db-human glucose transporter 4 (hGLUT4) mice (12 wk old) in which cardiac metabolism has been normalized. Systolic function was unchanged in 6-wk-old db/db mice, but fractional shortening and velocity of circumferential fiber shortening were reduced in 12-wk-old db/db mice (43.8 +/- 2.1% and 8.3 +/- 0.5 circs/s, respectively) relative to db/+ control mice (59.5 +/- 2.3% and 11.8 +/- 0.4 circs/s, respectively). Doppler flow measurements were unchanged in 6-wk-old db/db mice. The ratio of E and A transmitral flows was reduced from 3.56 +/- 0.29 in db/+ mice to 2.40 +/- 0.20 in 12-wk-old db/db mice, indicating diastolic dysfunction. Thus a diabetic cardiomyopathy with systolic and diastolic dysfunction was evident in 12-wk-old diabetic db/db mice. Cardiac function was normalized in transgenic db/db-hGLUT4 mice, indicating that altered cardiac metabolism can produce contractile dysfunction in diabetic db/db hearts.
Collapse
Affiliation(s)
- Lisa M Semeniuk
- Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
933
|
Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, Larsen TS. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol 2002; 283:H949-57. [PMID: 12181123 DOI: 10.1152/ajpheart.00226.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hearts from diabetic db/db mice, a model of Type 2 diabetes, exhibit left ventricular failure and altered metabolism of exogenous substrates. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligands reduce plasma lipid and glucose concentrations and improve insulin sensitivity in db/db mice. Consequently, the effect of 4- to 5-wk treatment of db/db mice with a novel PPAR-alpha ligand (BM 17.0744; 25-38 mg x kg(-1) x day(-1)), commencing at 8 wk of age, on ex vivo cardiac function and metabolism was determined. Elevated plasma concentrations of glucose, fatty acids, and triacylglycerol (34.0 +/- 3.6, 2.0 +/- 0.4, and 0.9 +/- 0.1 mM, respectively) were reduced to normal after treatment with BM 17.0744 (10.8 +/- 0.6, 1.1 +/- 0.1, and 0.6 +/- 0.1 mM). Plasma insulin was also reduced significantly in treated compared with untreated db/db mice. Chronic treatment of db/db mice with the PPAR-alpha agonist resulted in a 50% reduction in rates of fatty acid oxidation, with a concomitant increase in glycolysis (1.7-fold) and glucose oxidation (2.3- fold). Correction of the diabetes-induced abnormalities in systemic and cardiac metabolism after BM 17.0744 treatment did not, however, improve left ventricular contractile function.
Collapse
Affiliation(s)
- Ellen Aasum
- Department of Medical Physiology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
934
|
Nielsen LB, Perko M, Arendrup H, Andersen CB. Microsomal triglyceride transfer protein gene expression and triglyceride accumulation in hypoxic human hearts. Arterioscler Thromb Vasc Biol 2002; 22:1489-94. [PMID: 12231571 DOI: 10.1161/01.atv.0000030199.06252.26] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Cardiac myocytes secrete apolipoprotein (apo)B-containing lipoproteins. Their function may be the removal of triglycerides when beta-oxidation of fatty acids is decreased, eg, during hypoxia. To test this hypothesis, we examined heart biopsies from patients undergoing coronary artery bypass graft (CABG, n=13) or valve replacement (n=6) surgery. METHODS AND RESULTS Ventricular microsomal triglyceride transfer protein (P=0.02) and apoB (P=0.04) mRNA levels were both approximately 2-fold higher in CABG compared with valve replacement patients. In CABG patients, ventricular microsomal triglyceride transfer protein mRNA levels were negatively associated with the triglyceride content in ventricular myocytes (r=-0.70; P=0.02) and with mRNA levels of sterol regulatory element binding protein-1 (r=-0.74; P=0.004). CONCLUSIONS The results are compatible with the notion that cardiac lipoprotein production is increased in hypoxic human ventricle, possibly as a result of decreased sterol regulatory element binding protein-1 expression. This might attenuate accumulation of triglycerides in cardiac myocytes.
Collapse
Affiliation(s)
- Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
935
|
Atkinson LL, Fischer MA, Lopaschuk GD. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem 2002; 277:29424-30. [PMID: 12058043 DOI: 10.1074/jbc.m203813200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leptin regulates fatty acid metabolism in liver, skeletal muscle, and pancreas by partitioning fatty acids into oxidation rather than triacylglycerol (TG) storage. Although leptin receptors are present in the heart, it is not known whether leptin also regulates cardiac fatty acid metabolism. To determine whether leptin directly regulates cardiac fatty acid metabolism, isolated working rat hearts were perfused with 0.8 mm [9,10-(3)H]palmitate and 5 mm [1-(14)C]glucose to measure palmitate and glucose oxidation rates. Leptin (60 ng/ml) significantly increased palmitate oxidation rates 60% above control hearts (p < 0.05) and decreased TG content by 33% (p < 0.05) over the 60-min perfusion period. In contrast, there was no difference in glucose oxidation rates between leptin-treated and control hearts. Although leptin did not affect cardiac work, oxygen consumption increased by 30% (p < 0.05) and cardiac efficiency was decreased by 42% (p < 0.05). AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels. Leptin has also been shown to increase fatty acid oxidation in skeletal muscle through the activation of AMPK. However, we demonstrate that leptin had no significant effect on AMPK activity, AMPK phosphorylation state, ACC activity, or malonyl-CoA levels. AMPK activity and its phosphorylation state were also unaffected after 5 and 10 min of perfusion in the presence of leptin. The addition of insulin (100 microunits/ml) to the perfusate reduced the ability of leptin to increase fatty acid oxidation and decrease cardiac TG content. These data demonstrate for the first time that leptin activates fatty acid oxidation and decreases TG content in the heart. We also show that the effects of leptin in the heart are independent of changes in the AMPK-ACC-malonyl-CoA axis.
Collapse
Affiliation(s)
- Laura L Atkinson
- Cardiovascular Research Group, Muttart Diabetes Research and Training Center, Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
936
|
Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, Kannel WB, Vasan RS. Obesity and the risk of heart failure. N Engl J Med 2002; 347:305-13. [PMID: 12151467 DOI: 10.1056/nejmoa020245] [Citation(s) in RCA: 2138] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extreme obesity is recognized to be a risk factor for heart failure. It is unclear whether overweight and lesser degrees of obesity also pose a risk. METHODS We investigated the relation between the body-mass index (the weight in kilograms divided by the square of the height in meters) and the incidence of heart failure among 5881 participants in the Framingham Heart Study (mean age, 55 years; 54 percent women). With the use of Cox proportional-hazards models, the body-mass index was evaluated both as a continuous variable and as a categorical variable (normal, 18.5 to 24.9; overweight, 25.0 to 29.9; and obese, 30.0 or more). RESULTS During follow-up (mean, 14 years), heart failure developed in 496 subjects (258 women and 238 men). After adjustment for established risk factors, there was an increase in the risk of heart failure of 5 percent for men and 7 percent for women for each increment of 1 in body-mass index. As compared with subjects with a normal body-mass index, obese subjects had a doubling of the risk of heart failure. For women, the hazard ratio was 2.12 (95 percent confidence interval, 1.51 to 2.97); for men, the hazard ratio was 1.90 (95 percent confidence interval, 1.30 to 2.79). A graded increase in the risk of heart failure was observed across categories of body-mass index. The hazard ratios per increase in category were 1.46 in women (95 percent confidence interval, 1.23 to 1.72) and 1.37 in men (95 percent confidence interval, 1.13 to 1.67). CONCLUSIONS In our large, community-based sample, increased body-mass index was associated with an increased risk of heart failure. Given the high prevalence of obesity in the United States, strategies to promote optimal body weight may reduce the population burden of heart failure.
Collapse
|
937
|
Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S, Youker KA, Taegtmeyer H. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 2002; 51:2587-95. [PMID: 12145175 DOI: 10.2337/diabetes.51.8.2587] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated whether decreased responsiveness of the heart to physiological increases in fatty acid availability results in lipid accumulation and lipotoxic heart disease. Lean and obese Zucker rats were either fed ad libitum or fasted overnight. Fasting increased plasma nonesterified fatty acid levels in both lean and obese rats, although levels were greatest in obese rats regardless of nutritional status. Despite increased fatty acid availability, the mRNA transcript levels of peroxisome proliferator-activated receptor (PPAR)-alpha-regulated genes were similar in fed lean and fed obese rat hearts. Fasting increased expression of all PPAR-alpha -regulated genes in lean Zucker rat hearts, whereas, in obese Zucker rat hearts, muscle carnitine palmitoyltransferase and medium-chain acyl-CoA dehydrogenase were unaltered with fasting. Rates of oleate oxidation were similar for hearts from fed rats. However, fasting increased rates of oleate oxidation only in hearts from lean rats. Dramatic lipid deposition occurred within cardiomyocytes of obese, but not lean, Zucker rats upon fasting. Cardiac output was significantly depressed in hearts isolated from obese rats compared with lean rats, regardless of nutritional status. Fasting increased cardiac output in hearts of lean rats only. Thus, the heart's inability to increase fatty acid oxidation in proportion to increased fatty acid availability is associated with lipid accumulation and contractile dysfunction of the obese Zucker rat.
Collapse
Affiliation(s)
- Martin E Young
- Department of Internal Medicine, Division of Cardiology, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
938
|
Coleman RA, Lewin TM, Van Horn CG, Gonzalez-Baró MR. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 2002; 132:2123-6. [PMID: 12163649 DOI: 10.1093/jn/132.8.2123] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies suggest that the long-chain acyl-CoA synthetases (ACS) may play a role in channeling fatty acids either toward complex lipid synthesis and storage or toward oxidation. Each of the five members of the ACS family that has been cloned has a distinct tissue distribution and subcellular location, and is regulated independently during cellular differentiation and by diverse hormones and nuclear transcription factors including adrenocorticotropic hormone (ACTH), peroxisomal proliferator-activated receptor-alpha (PPARalpha) and sterol regulatory element binding protein. Taken as a whole, these features suggest that in liver, ACS1 and ACS5 may provide acyl-CoA destined primarily for triacylglycerol synthesis or for mitochondrial oxidation, respectively. ACS4 may provide acyl-CoA for both synthesis and peroxisomal oxidation, depending on whether the enzyme is associated with the mitochondrial-associated membrane or with peroxisomes. It should be emphasized that although the data for acyl-CoA channeling are strong, they are indirect. Rigorous testing of these predictions will be required.
Collapse
|
939
|
Nielsen LB, Bartels ED, Bollano E. Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem 2002; 277:27014-20. [PMID: 12015323 DOI: 10.1074/jbc.m203458200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heart secretes apolipoprotein B (apoB) containing lipoproteins. Herein, we examined whether the overexpression of a human apoB transgene in the heart affects triglyceride accumulation and development of cardiac dysfunction in streptozotocin-treated diabetic mice. Blood glucose, plasma free fatty acids, and plasma triglycerides were similarly affected in diabetic wild type mice and diabetic apoB transgenic mice as compared with non-diabetic mice of the same genotype. After 12 weeks, heart triglycerides were increased by 48% in diabetic wild type mice. These mice displayed an increased expression of brain natriuretic peptide and deterioration of heart function on echocardiography. In diabetic apoB transgenic mice, heart triglyceride levels were identical to those in non-diabetic wild type and apoB transgenic mice, and brain natriuretic peptide expression as well as echocardiographic indexes of heart function were only marginally affected or unaffected. The findings suggest that triglyceride accumulation in the heart is important for development of diabetic cardiomyopathy in mice, and that lipoprotein formation by cardiomyocytes plays an integrated role in cardiac lipid metabolism.
Collapse
Affiliation(s)
- Lars Bo Nielsen
- Department of Clinical Biochemistry KB3011, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
940
|
Suzuki J, Shen WJ, Nelson BD, Selwood SP, Murphy GM, Kanehara H, Takahashi S, Oida K, Miyamori I, Kraemer FB, Kanefara H. Cardiac gene expression profile and lipid accumulation in response to starvation. Am J Physiol Endocrinol Metab 2002; 283:E94-E102. [PMID: 12067848 DOI: 10.1152/ajpendo.00017.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Starvation induces many biochemical and histological changes in the heart; however, the molecular events underlying these changes have not been fully elucidated. To explore the molecular response of the heart to starvation, microarray analysis was performed together with biochemical and histological investigations. Serum free fatty acids increased twofold in both 16- and 48-h-fasted mice, and cardiac triglyceride content increased threefold and sixfold in 16- and 48-h-fasted mice, respectively. Electron microscopy showed numerous lipid droplets in hearts of 48-h-fasted mice, whereas fewer numbers of droplets were seen in hearts from 16-h-fasted mice. Expression of 11,000 cardiac genes was screened by microarrays. More than 50 and 150 known genes were detected by differential expression analysis after 16- and 48-h-fasts, respectively. Genes for fatty acid oxidation and gluconeogenesis were increased, and genes for glycolysis were decreased. Many other genes for metabolism, signaling/cell cycle, cytoskeleton, and tissue antigens were affected by fasting. These data provide a broad perspective of the molecular events occurring physiologically in the heart in response to starvation.
Collapse
Affiliation(s)
- Jinya Suzuki
- Third Department of Internal Medicine, Fukui Medical University, Fukui 910-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
941
|
Eckel RH, Barouch WW, Ershow AG. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the pathophysiology of obesity-associated cardiovascular disease. Circulation 2002; 105:2923-8. [PMID: 12070124 DOI: 10.1161/01.cir.0000017823.53114.4c] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert H Eckel
- University of Colorado Health Sciences Center, Denver, USA.
| | | | | |
Collapse
|
942
|
Abstract
In order to enable detailed studies of free fatty acid (FFA) metabolism, we recently introduced a method for the evaluation of tissue-specific FFA metabolism in vivo. The method is based on the simultaneous use of 14C-palmitate (14C-P) and the non-beta-oxidizable FFA analogue, [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP). Indices of total FFA utilization and incorporation into storage products are obtained from tissue concentrations of 3H and 14C, respectively, following intravenous administration of 3H-R-BrP and 14C-P and their disappearance from plasma into tissues. This review covers the basis for, and developments in, the methodology, as well as some of the applications to date. In the rat, the method has been used to characterize tissue-specific alterations in FFA metabolism in various situations, including skeletal muscle contraction, fasting, hyperinsulinemia, and various pharmacological manipulations. The results of all these studies clearly demonstrate tissue-level control of FFA utilization and metabolic fate, refuting the traditional view that FFA utilization is simply supply-driven. Recent developments enable the simultaneous evaluation of both tissue-specific FFA and glucose metabolism by integrating the use of 2-deoxyglucose and stable isotope-labeled glucose tracers. In conclusion, the 3H-R-BrP methodology, especially in combination with other tracers, represents a powerful tool for elucidation of tissue-specific fatty acid metabolism in vivo.
Collapse
|
943
|
Marti A, Vaquerizo J, Zulet MA, Moreno-Aliaga MJ, Martínez JA. Down-regulation of heart HFABP and UCP2 gene expression in diet-induced (cafeteria) obese rats. J Physiol Biochem 2002; 58:69-74. [PMID: 12435081 DOI: 10.1007/bf03179841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Long-term exposure to hypercaloric high fat diet induced marked tissue fatty acid accumulation and may influence cell function. Previous results in our laboratory showed that uncoupling proteins (UCPs) and fatty acid-binding protein (FABP) gene expression are changed in adipose tissue and skeletal muscle tissue in diet-induced (cafeteria) obese animals. The aim of this study was to examine heart FABP (HFABP) and UCP2 gene expressions in dietary obese rats. Rats fed on a high-fat diet for 65 days had significantly higher fat stores and body weight than control rats. Interestingly, we found that both HFABP and UCP2 mRNA levels were significantly reduced in cafeteria-obese rats when compared to control animals. Moreover, a statistically significant correlation was observed between the two gene expression levels. The down-regulation of heart HFABP and UCP2 parallels the lower lipid utilization which may account for an enhanced fat deposition. It is plausible that these two genes are regulated by the same family of transcription factors.
Collapse
Affiliation(s)
- A Marti
- Dpto de Fisiología y Nutrición, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
944
|
Abstract
I review evidence that leptin is a liporegulatory hormone that controls lipid homeostasis in nonadipose tissues during periods of overnutrition. When adipocytes store excess calories as triacylglycerol (TG), leptin secretion rises so as to prevent accumulation of lipids in nonadipose tissues, which are not adapted for TG storage. Whenever leptin action is lacking, whether through leptin deficiency or leptin resistance, overnutrition causes disease of nonadipose tissues with generalized steatosis, lipotoxicity, and lipoapoptosis. Examples of such disorders of liporegulation include generalized lipodystrophies, mutations of leptin and leptin receptor genes, and diet-induced obesity. Lipotoxicity of pancreatic beta-cells, myocardium, and skeletal muscle leads, respectively, to type 2 diabetes, cardiomyopathy, and insulin resistance. In humans this constellation of abnormalities is referred to as the metabolic syndrome, a major health problem in the United States. When lipids overaccumulate in nonadipose tissues during overnutrition, fatty acids enter deleterious pathways such as ceramide production, which, through increased nitric oxide formation, causes apoptosis of lipid-laden cells, such as beta-cells and cardiomyocytes. Lipoapoptosis can be prevented by caloric restriction, by thiazolidinedione treatment, and by administration of nitric oxide blockers. There is now substantial evidence that complications of human obesity may reflect lipotoxicity similar to that described in rodents.
Collapse
Affiliation(s)
- Roger H Unger
- Gifford Laboratories, Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA.
| |
Collapse
|
945
|
Affiliation(s)
- Martin E Young
- Department of Internal Medicine, Division of Cardiology, University of Texas-Houston Medical School, Houston, Tex 77030, USA
| | | | | |
Collapse
|
946
|
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23:201-29. [PMID: 11943743 DOI: 10.1210/edrv.23.2.0461] [Citation(s) in RCA: 769] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The primary genetic, environmental, and metabolic factors responsible for causing insulin resistance and pancreatic beta-cell failure and the precise sequence of events leading to the development of type 2 diabetes are not yet fully understood. Abnormalities of triglyceride storage and lipolysis in insulin-sensitive tissues are an early manifestation of conditions characterized by insulin resistance and are detectable before the development of postprandial or fasting hyperglycemia. Increased free fatty acid (FFA) flux from adipose tissue to nonadipose tissue, resulting from abnormalities of fat metabolism, participates in and amplifies many of the fundamental metabolic derangements that are characteristic of the insulin resistance syndrome and type 2 diabetes. It is also likely to play an important role in the progression from normal glucose tolerance to fasting hyperglycemia and conversion to frank type 2 diabetes in insulin resistant individuals. Adverse metabolic consequences of increased FFA flux, to be discussed in this review, are extremely wide ranging and include, but are not limited to: 1) dyslipidemia and hepatic steatosis, 2) impaired glucose metabolism and insulin sensitivity in muscle and liver, 3) diminished insulin clearance, aggravating peripheral tissue hyperinsulinemia, and 4) impaired pancreatic beta-cell function. The precise biochemical mechanisms whereby fatty acids and cytosolic triglycerides exert their effects remain poorly understood. Recent studies, however, suggest that the sequence of events may be the following: in states of positive net energy balance, triglyceride accumulation in "fat-buffering" adipose tissue is limited by the development of adipose tissue insulin resistance. This results in diversion of energy substrates to nonadipose tissue, which in turn leads to a complex array of metabolic abnormalities characteristic of insulin-resistant states and type 2 diabetes. Recent evidence suggests that some of the biochemical mechanisms whereby glucose and fat exert adverse effects in insulin-sensitive and insulin-producing tissues are shared, thus implicating a diabetogenic role for energy excess as a whole. Although there is now evidence that weight loss through reduction of caloric intake and increase in physical activity can prevent the development of diabetes, it remains an open question as to whether specific modulation of fat metabolism will result in improvement in some or all of the above metabolic derangements or will prevent progression from insulin resistance syndrome to type 2 diabetes.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, Division of Endocrinology, University of Toronto, Canada M5G 2C4.
| | | | | | | |
Collapse
|
947
|
Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. Diabetes 2002; 51:1110-7. [PMID: 11916933 DOI: 10.2337/diabetes.51.4.1110] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is associated with risk factors for cardiovascular disease, including insulin resistance, and can lead to cardiac hypertrophy and congestive heart failure. Here, we used the insulin-sensitizing agent rosiglitazone to investigate the cellular mechanisms linking insulin resistance in the obese Zucker rat heart with increased susceptibility to ischemic injury. Rats were treated for 7 or 14 days with 3 mg/kg per os rosiglitazone. Hearts were isolated and perfused before and during insulin stimulation or during 32 min low-flow ischemia at 0.3 ml small middle dot min(-1) small middle dot grams wet wt(-1) and reperfusion. D[2-(3)H]glucose was used as a tracer of glucose uptake, and phosphorus-31 nuclear magnetic resonance spectroscopy was used to follow energetics during ischemia. At 12 months of age, obese rat hearts were insulin resistant with decreased GLUT4 protein expression. During ischemia, glucose uptake was lower and depletion of ATP was greater in obese rat hearts, thereby significantly impairing recovery of contractile function during reperfusion. Rosiglitazone treatment normalized the insulin resistance and restored GLUT4 protein levels in obese rat hearts. Glucose uptake during ischemia was also normalized by rosiglitazone treatment, thereby preventing the greater loss of ATP and restoring recovery of contractile function to that of lean rat hearts. We conclude that rosiglitazone treatment, by normalizing glucose uptake, protected obese rat hearts from ischemic injury.
Collapse
Affiliation(s)
- Robert J Sidell
- Department of Biochemistry, University of Oxford, Oxford, U.K. GlaxoSmithKline, Harlow, Essex, U.K
| | | | | | | | | | | |
Collapse
|
948
|
Abstract
Accumulation of long-chain fatty acids in the heart has been proposed to play a role in the development of heart failure and diabetic cardiomyopathy. Several animal models with increased cardiomyocyte lipid accumulation suggest a link between the accumulation of lipid, cardiomyocyte cell death and the development of cardiomyopathy. In this review, we discuss the mechanism through which fatty acid accumulation may contribute to the development or progression of heart failure by initiation of apoptotic cell death. Long-chain saturated fatty acids induce apoptosis through a mechanism involving the generation of reactive intermediates. Reactive intermediate production occurs in concert with de novo ceramide synthesis, but ceramide production is not required for cell death. Cardiomyocyte dysfunction and death from reactive intermediates generated by long-chain saturated fatty acids may contribute to the pathogenesis of human heart disease.
Collapse
Affiliation(s)
- Laura L Listenberger
- Center for Cardiovascular Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | | |
Collapse
|
949
|
Abstract
Efficient uptake and channeling of long-chain fatty acids (LCFAs) are critical cellular functions. Although spontaneous flip-flop of nonionized LCFAs from one leaflet of a bilayer to the other is rapid, evidence is emerging that proteins are important mediators and/or regulators of trafficking of LCFAs into and within cells. Genetic screens have led to the identification of proteins that are required for fatty acid import and utilization in prokaryotic organisms. In addition, functional screens have elucidated proteins that facilitate fatty acid import into mammalian cells. Although the mechanisms by which these proteins mediate LCFA import are not well understood, studies in both prokaryotic and eukaryotic organisms provide compelling evidence that uptake of LCFAs across cellular membranes is coupled to esterification by acyl-CoA synthetases. This review will summarize results of studies of non-protein-mediated and protein-mediated LCFA transport and discuss how these different mechanisms may contribute to cellular metabolism.
Collapse
Affiliation(s)
- Jean E Schaffer
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
950
|
Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK. Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 2002; 277:3585-92. [PMID: 11724781 DOI: 10.1074/jbc.m107995200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator activator receptor (PPAR)-binding protein (PBP) is an important coactivator for PPARgamma and other nuclear receptors. It has been identified as an integral component of a multiprotein thyroid hormone receptor-associated protein/vitamin D(3) receptor-interacting protein/activator-recruited cofactor complexes required for transcriptional activity. Here, we show that PBP is critical for the development of placenta and for the normal embryonic development of the heart, eye, vascular, and hematopoietic systems. The primary functional cause of embryonic lethality at embryonic day11.5 observed with PBP null mutation was cardiac failure because of noncompaction of the ventricular myocardium and resultant ventricular dilatation. There was a paucity of retinal pigment, defective lens formation, excessive systemic angiogenesis, a deficiency in the number of megakaryocytes, and an arrest in erythrocytic differentiation. Some of these defects involve PPARgamma and retinoid-sensitive sites, whereas others have not been recognized in the PPAR-signaling pathway. Phenotypic changes in four organ systems observed in PBP null mice overlapped with those in mice deficient in members of GATA, a family of transcription factors known to regulate differentiation of megakaryocytes, erythrocytes, and adipocytes. We demonstrate that PBP interacts with all five GATA factors analyzed, GATA-1, GATA-2, GATA-3, GATA-4, and GATA-6, and show that the binding of GATA-1, GATA-4, and GATA-6 to PBP is not dependent on the nuclear receptor recognition sequence motif LXXLL (where L is leucine and X is any amino acid) in PBP. Coexpression of PBP with GATA-3 markedly enhanced transcriptional activity of GATA-3 in nonhematopoietic cells. These observations identify the GATA family of transcription factors as a new interacting partner of PBP and demonstrate that PBP is essential for normal development of vital organ systems.
Collapse
Affiliation(s)
- Susan E Crawford
- Department of Pathology, Northwestern University School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | | | | | |
Collapse
|