51
|
Wang J, Du L, Zhang T, Chu Y, Wang Y, Wang Y, Ji X, Kang Y, Cui R, Zhang G, Liu J, Shi G. Edaravone Dexborneol ameliorates the cognitive deficits of APP/PS1 mice by inhibiting TLR4/MAPK signaling pathway via upregulating TREM2. Neuropharmacology 2024; 255:110006. [PMID: 38763325 DOI: 10.1016/j.neuropharm.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aβ deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China; Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longyuan Du
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junyan Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
52
|
Liu S, Hong Y, Wang BR, Wei ZQ, Zhao HD, Jiang T, Zhang YD, Shi JQ. The presence and clinical significance of autoantibodies in amyotrophic lateral sclerosis: a narrative review. Neurol Sci 2024; 45:4133-4149. [PMID: 38733435 DOI: 10.1007/s10072-024-07581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease, which is characterized by the selective loss of the upper and lower motor neurons. The pathogenesis of ALS remains to be elucidated and has been connected to genetic, environmental and immune conditions. Evidence from clinical and experimental studies has suggested that the immune system played an important role in ALS pathophysiology. Autoantibodies are essential components of the immune system. Several autoantibodies directed at antigens associated with ALS pathogenesis have been identified in the serum and/or cerebrospinal fluid of ALS patients. The aim of this review is to summarize the presence and clinical significance of autoantibodies in ALS.
Collapse
Affiliation(s)
- Shen Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Bian-Rong Wang
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Zi-Qiao Wei
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Hong-Dong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China.
| |
Collapse
|
53
|
Boadi BI, Ikwuegbuenyi CA, Inzerillo S, Dykhouse G, Bratescu R, Omer M, Kashlan ON, Elsayed G, Härtl R. Complications in Minimally Invasive Spine Surgery in the Last 10 Years: A Narrative Review. Neurospine 2024; 21:770-803. [PMID: 39363458 PMCID: PMC11456948 DOI: 10.14245/ns.2448652.326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Minimally invasive spine surgery (MISS) employs small incisions and advanced techniques to minimize tissue damage while achieving similar outcomes to open surgery. MISS offers benefits such as reduced blood loss, shorter hospital stays, and lower costs. This review analyzes complications associated with MISS over the last 10 years, highlighting common issues and the impact of technological advancements. METHODS A systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines was conducted using PubMed, MEDLINE, Embase via OVID, and Cochrane databases, covering publications from January 2013 to March 2024. Keywords related to MISS and complications were used. Studies on adult patients undergoing MISS with tubular, uniportal, or biportal endoscopy, reporting intraoperative or postoperative complications, were included. Non-English publications, abstracts, and small case series were excluded. Data on MISS approach, patient demographics, and complications were extracted and reviewed by 2 independent researchers. RESULTS The search identified 880 studies, with 137 included after screening and exclusions. Key complications in cervical MISS were hematomas, transient nerve root palsy, and dural tears. In thoracic MISS, complications included cerebrospinal fluid leaks and durotomy. In lumbar MISS, common complications were incidental dural injuries, postoperative neuropathic conditions, and disc herniation recurrences. Complications varied by surgical approach. CONCLUSION MISS offers reduced anatomical disruption compared to open surgery, potentially decreasing nerve injury risk. However, complications such as nerve injuries, durotomies, and hardware misplacement still occur. Intraoperative neuromonitoring and advanced technologies like navigation can help mitigate these risks. Despite variability in complication rates, MISS remains a safe, effective alternative with ongoing advancements enhancing its outcomes.
Collapse
Affiliation(s)
- Blake I. Boadi
- Department of Neurological Surgery, New York Presbyterian Hospital/Och Spine, Weill Cornell Medicine, New York, NY, USA
| | | | - Sean Inzerillo
- College of Medicine, SUNY Downstate Health Sciences University, New York, NY, USA
| | - Gabrielle Dykhouse
- Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, USA
| | - Rachel Bratescu
- Department of Neurological Surgery, New York Presbyterian Hospital/Och Spine, Weill Cornell Medicine, New York, NY, USA
| | - Mazin Omer
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Osama N. Kashlan
- Department of Neurological Surgery, New York Presbyterian Hospital/Och Spine, Weill Cornell Medicine, New York, NY, USA
| | - Galal Elsayed
- Department of Neurological Surgery, New York Presbyterian Hospital/Och Spine, Weill Cornell Medicine, New York, NY, USA
| | - Roger Härtl
- Department of Neurological Surgery, New York Presbyterian Hospital/Och Spine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
54
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
55
|
Alhadidi QM, Nash KM, Bahader GA, Zender E, McInerney MF, Shah ZA. Hyperglycemia in a NOD Mice Model of Type-I Diabetes Aggravates Collagenase-Induced Intracerebral Hemorrhagic Injury. Biomedicines 2024; 12:1867. [PMID: 39200331 PMCID: PMC11352023 DOI: 10.3390/biomedicines12081867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe type of stroke with high mortality. Persistent hyperglycemia following ICH is linked to deteriorated neurological functions and death. However, the exacerbating effect of hyperglycemia on ICH injury at the molecular level is still unclear. Therefore, this study explores the impact of diabetes on ICH injury using a non-obese diabetic (NOD) mouse model of type I diabetes mellitus. METHODS NOD and non-diabetic (non-obese resistant) mice subjected to ICH by intrastriatal injection of collagenase were sacrificed three days following the ICH. Brains were collected for hematoma volume measurement and immunohistochemistry. Neurobehavioral assays were conducted 24 h before ICH and then repeated at 24, 48 and 72 h following ICH. RESULTS NOD mice showed increased hematoma volume and impairment in neurological function, as revealed by rotarod and grip strength analyses. Immunohistochemical staining showed reduced glial cell activation, as indicated by decreased GFAP and Iba1 staining. Furthermore, the expression of oxidative/nitrosative stress markers represented by 3-nitrotyrosine and inducible nitric oxide synthase was reduced in the diabetic group. CONCLUSIONS Overall, our findings support the notion that hyperglycemia exacerbates ICH injury and worsens neurological function and that the mechanism of injury varies depending on the type of diabetes model used.
Collapse
Affiliation(s)
- Qasim M. Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala 21163, Iraq
| | - Kevin M. Nash
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Emily Zender
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Marcia F. McInerney
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
56
|
Delgado-García LM, Ojalvo-Sanz AC, Nakamura TKE, Martín-López E, Porcionatto M, Lopez-Mascaraque L. Dissecting reactive astrocyte responses: lineage tracing and morphology-based clustering. Biol Res 2024; 57:54. [PMID: 39143594 PMCID: PMC11323641 DOI: 10.1186/s40659-024-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Brain damage triggers diverse cellular and molecular events, with astrocytes playing a crucial role in activating local neuroprotective and reparative signaling within damaged neuronal circuits. Here, we investigated reactive astrocytes using a multidimensional approach to categorize their responses into different subtypes based on morphology. This approach utilized the StarTrack lineage tracer, single-cell imaging reconstruction and multivariate data analysis. Our findings identified three profiles of reactive astrocyte responses, categorized by their effects on cell size- and shape- related morphological parameters: "moderate", "strong," and "very strong". We also examined the heterogeneity of astrocyte reactivity, focusing on spatial and clonal distribution. Our research revealed a notable enrichment of protoplasmic and fibrous astrocytes within the "strong" and "very strong" response subtypes. Overall, our study contributes to a better understanding of astrocyte heterogeneity in response to an injury. By characterizing the diverse reactive responses among astrocyte subpopulations, we provide insights that could guide future research aimed at identifying novel therapeutic targets to mitigate brain damage and promote neural repair.
Collapse
Affiliation(s)
- Lina M Delgado-García
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
- Departamento de Bioquímica, Universidade Federal de Sao Paulo UNIFESP, Rua Pedro de Toledo 669, Sao Paulo, 04039032, Brazil
| | - Ana C Ojalvo-Sanz
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
| | - Thabatta K E Nakamura
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
- Departamento de Bioquímica, Universidade Federal de Sao Paulo UNIFESP, Rua Pedro de Toledo 669, Sao Paulo, 04039032, Brazil
| | - Eduardo Martín-López
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Marimelia Porcionatto
- Departamento de Bioquímica, Universidade Federal de Sao Paulo UNIFESP, Rua Pedro de Toledo 669, Sao Paulo, 04039032, Brazil
| | - Laura Lopez-Mascaraque
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
57
|
Kim SY, Lim W. Effect of adult-born immature granule cells on pattern separation in the hippocampal dentate gyrus. Cogn Neurodyn 2024; 18:2077-2093. [PMID: 39104672 PMCID: PMC11297892 DOI: 10.1007/s11571-023-09985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 08/07/2024] Open
Abstract
Young immature granule cells (imGCs) appear via adult neurogenesis in the hippocampal dentate gyrus (DG). In comparison to mature GCs (mGCs) (born during development), the imGCs exhibit two competing distinct properties such as high excitability (increasing activation degree) and low excitatory innervation (reducing activation degree). We develop a spiking neural network for the DG, incorporating both the mGCs and the imGCs. The mGCs are well known to perform "pattern separation" (i.e., a process of transforming similar input patterns into less similar output patterns) to facilitate pattern storage in the hippocampal CA3. In this paper, we investigate the effect of the young imGCs on pattern separation of the mGCs. The pattern separation efficacy (PSE) of the mGCs is found to vary through competition between high excitability and low excitatory innervation of the imGCs. Their PSE becomes enhanced (worsened) when the effect of high excitability is higher (lower) than the effect of low excitatory innervation. In contrast to the mGCs, the imGCs are found to perform "pattern integration" (i.e., making association between dissimilar patterns). Finally, we speculate that memory resolution in the hippocampal CA3 might be optimally maximized via mixed cooperative encoding through pattern separation and pattern integration.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
58
|
Tinkey RA, Smith BC, Habean ML, Williams JL. BATF2 is a regulator of interferon-γ signaling in astrocytes during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602938. [PMID: 39071355 PMCID: PMC11275732 DOI: 10.1101/2024.07.10.602938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Astrocytic interferon (IFN)γ signaling is associated with a reduction in neuroinflammation. We have previously shown that the benefits of astrocytic IFNγ arise from a variety of mechanisms; however, downstream effectors responsible for regulating this protection are unknown. We address this by identifying a specific transcription factor that may play a key role in modulating the consequences of IFNγ signaling. RNA-sequencing of primary human astrocytes treated with IFNγ revealed basic leucine zipper ATF-like transcription factor ( BATF )2 as a highly expressed interferon-specific gene. Primarily studied in the periphery, BATF2 has been shown to exert both inflammatory and protective functions; however, its function in the central nervous system (CNS) is unknown. Here, we demonstrate that human spinal cord astrocytes upregulate BATF2 transcript and protein in an IFNγ-specific manner. Additionally, we found that BATF2 prevents overexpression of interferon regulatory factor (IRF)1 and IRF1 targets such as Caspase-1, which are known downstream pro-inflammatory mediators. We also show that Batf2 -/- mice exhibit exacerbated clinical disease severity in a murine model of CNS autoimmunity, characterized by an increase in both CNS immune cell infiltration and demyelination. Batf2 -/- mice also exhibit increased astrocyte-specific expression of IRF1 and Caspase-1, suggesting an amplified interferon response in vivo . Further, we demonstrate that BATF2 is expressed primarily in astrocytes in MS lesions and that this expression is co-localized with IRF1. Collectively, our results further support a protective role for IFNγ and implicate BATF2 as a key suppressor of overactive immune signaling in astrocytes during neuroinflammation.
Collapse
|
59
|
Liu X, He W, Li M, Yang J, Huang J, Kong W, Guo C, Hu J, Liu S, Yang D, Song J, Peng Z, Li L, Tian Y, Zi W, Yue C, Li F. Predictors of outcome in large vessel occlusion stroke patients with intravenous tirofiban treatment: a post hoc analysis of the RESCUE BT clinical trial. BMC Neurol 2024; 24:227. [PMID: 38956505 PMCID: PMC11218210 DOI: 10.1186/s12883-024-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the factors influencing good outcomes in patients receiving only intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke. METHODS Post hoc exploratory analysis using the RESCUE BT trial identified consecutive patients who received intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke in 55 comprehensive stroke centers from October 2018 to January 2022 in China. RESULTS A total of 521 patients received intravenous tirofiban, 253 of whom achieved a good 90-day outcome (modified Rankin Scale [mRS] 0-2). Younger age (adjusted odds ratio [aOR]: 0.965, 95% confidence interval [CI]: 0.947-0.982; p < 0.001), lower serum glucose (aOR: 0.865, 95%CI: 0.807-0.928; p < 0.001), lower baseline National Institutes of Health Stroke Scale (NIHSS) score (aOR: 0.907, 95%CI: 0.869-0.947; p < 0.001), fewer total passes (aOR: 0.791, 95%CI: 0.665-0.939; p = 0.008), shorter punctures to recanalization time (aOR: 0.995, 95%CI:0.991-0.999; p = 0.017), and modified Thrombolysis in Cerebral Infarction (mTICI) score 2b to 3 (aOR: 8.330, 95%CI: 2.705-25.653; p < 0.001) were independent predictors of good outcomes after intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke. CONCLUSION Younger age, lower serum glucose level, lower baseline NIHSS score, fewer total passes, shorter punctures to recanalization time, and mTICI scores of 2b to 3 were independent predictors of good outcomes after intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke. CHINESE CLINICAL TRIAL REGISTRY IDENTIFIER ChiCTR-IOR-17014167.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wencheng He
- Department of Neurology, Guangxi Guiping People's Hospital, Guiping, Guangxi, China
| | - Meiqiong Li
- Department of Neurology, Guangxi Guiping People's Hospital, Guiping, Guangxi, China
| | - Jie Yang
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Jiacheng Huang
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Weilin Kong
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Changwei Guo
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Jinrong Hu
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shuai Liu
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Dahong Yang
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Jiaxing Song
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Zhouzhou Peng
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Linyu Li
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Yan Tian
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wenjie Zi
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Chengsong Yue
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| | - Fengli Li
- Department of Neurology, The Second Affiliated Hospital, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
60
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
61
|
Zhang J, Zhang Q, Gu H, Zhou Q, Li Z, Zhao X. Comparison of stress hyperglycemia ratio and glycemic gap on acute ICH in-hospital outcomes. Ann Clin Transl Neurol 2024; 11:1492-1501. [PMID: 38590111 PMCID: PMC11187964 DOI: 10.1002/acn3.52063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE To compare the effect of different indicators on stress-induced hyperglycemia for predicting in-hospital outcomes of acute intracerebral hemorrhage. METHODS Using data from the Chinese Stroke Center Alliance database, which is a national, multicenter, prospective, and consecutive program. Stress-induced hyperglycemia was described as glycemic gap (GG, defined as fasting blood glucose [FBG] minus estimated average blood glucose) and stress hyperglycemia ratio (SHR, defined as FBG-to-estimated average blood glucose ratio [SHR 1] or FBG-to-HbA1c ratio [SHR 2]). The primary outcome was in-hospital mortality, and the second outcome was hematoma expansion. RESULTS A total of 71,333 patients with acute intracerebral hemorrhage were included. In multivariate analyses, the highest levels of GG (OR 1.68, 95% CI 1.12-2.51), SHR 1 (OR 1.73, 95% CI 1.15-2.60), and SHR 2 (OR 2.07, 95% CI 1.33-3.23) were associated with in-hospital death (all the p trends <0.01). Only the highest level of SHR 2 (OR 1.24 [1.02-1.51], p trend >0.05) was related to hematoma expansion. No association between GG or SHR 1 and hematoma expansion was observed. The areas under the ROC curve of GG, SHR 1, and SHR 2 for in-hospital mortality were 0.8808 (95% CI 0.8603-0.9014), 0.8796 (95% CI 0.8589-0.9002), and 0.8806 (95% CI 0.8600-0.9012). The areas under the ROC curve of SHR 2 for hematoma expansion were 0.7133 (95% CI 0.6964-0.7302). INTERPRETATION SHR (FBG-to-HbA1c ratio) was associated with both in-hospital death and hematoma expansion in intracerebral hemorrhage, and might serve as an accessory indicator for the in-hospital prognosis of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Qian Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Hongqiu Gu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Qi Zhou
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijing100070China
- Center of Stroke, Beijing Institute of Brain DisordersCapital Medical UniversityBeijing100070China
| |
Collapse
|
62
|
Albano S, Brown NJ, Pennington Z, Nguyen A, Hsu TI, Pham MH, Oh MY. Risks Associated with Surgical Management of Lumbosacral Transitional Vertebrae: Systematic Review of Surgical Considerations and Illustrative Case. World Neurosurg 2024; 186:e54-e64. [PMID: 38350597 DOI: 10.1016/j.wneu.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Lumbosacral transitional vertebrae (LSTV) are congenital anomalies of the L5-S1 segments characterized by either sacralization of the most caudal lumbar vertebra or lumbarization of the most cephalad sacral vertebra. This variation in anatomy exposes patients to additional surgical risks. METHODS In order to shed light on surgical considerations reported for lumbar spine cases involving LSTV as described in the extant literature, we performed a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. We also present a case example in which wrong level surgery was avoided due to anatomical understanding of LSTV. RESULTS A 48-year-old female presented with severe back pain after sustaining a fall from ten feet. The patient exhibited full motor function in all extremities but had begun to experience urinary retention. On initial imaging read, the patient was suspected to have an L1 burst fracture. A review of the imaging demonstrated a transitional vertebra. Therefore, based on the last rib corresponding to T12, the fractured level was L2. This case illustrates the risk LSTV carries for wrong site surgery; appropriate levels were then decompressed and instrumented. On systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a three database literature search identified 39 studies describing 885 patients with LSTV and relevant surgical considerations. The primary indications for surgery were for disc herniation (37%), Bertolotti's syndrome (35%), and spinal stenosis (25%). This cohort displayed a mean follow-up time of 23 months. Reherniation occurred in 12 patients (5.5%). Medical management through steroid injection was 24, 72% (n = 80) for the sample. Wrong level surgery occurred in 1.4% (n = 12) of patients. CONCLUSIONS LSTV represents a constellation of changes in anatomy beyond just a sacralized or lumbarized vertebra. These anatomical differences expose the patient to additional surgical risks. This case and review of the literature highlight avoidable complications and in particular wrong level surgery.
Collapse
Affiliation(s)
- Stephen Albano
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA.
| | - Nolan J Brown
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Zach Pennington
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew Nguyen
- University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Timothy I Hsu
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Martin H Pham
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Michael Y Oh
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| |
Collapse
|
63
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
64
|
Tang J, Song T, Kuang M, Liu H. Analysis of online prescription patterns in Chinese patients with sequelae of cerebral infarction: a real-world study. Sci Rep 2024; 14:11962. [PMID: 38796623 PMCID: PMC11127947 DOI: 10.1038/s41598-024-62923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Cerebral infarction (CI) is a common cerebrovascular disease worldwide, and the burden caused by the sequelae of CI has increased significantly. However, current treatment guidelines lack standardized recommendations for pharmacotherapy of sequelae of CI. This retrospective study collected and analyzed 1.98 million prescriptions concerning sequelae of CI from patients admitted to Zhiyun Health Internet Hospital in 2022. The mean age of patients was 66.2 ± 11.4 years, and 52.40% were male. 79.73% had one or more comorbidities. For treatment, the prescriptions of 1-, 2- and ≥ 3-drug accounted for 64.55%, 23.77% and 11.68% respectively. Chinese patent medicine (CPM) prescriptions, western medicine (WM) prescriptions, and CPM and WM combined (CPM + WM) prescriptions accounted for 53.81%, 27.33%, and 18.86% respectively. In CPM prescriptions, the most frequently prescribed medications were Salvia miltiorrhiza (34.81%), Ginkgo biloba (24.96%), Panax notoginseng (20.67%), Gastrodia (7.15%) and Ligusticum Wallichii (4.90%). For WM prescriptions, the most commonly prescribed agents were anti-hypertensive (32.82%), anti-thrombotic (16.06%), vasodilator (15.70%), anti-dementia (10.88%), and lipid-lowering (9.58%) drugs. Among CPM + WM prescriptions, 72.61% had CPM/WM = 1, 21.20% had CPM/WM < 1, and 6.19% had CPM/WM > 1. This research utilized real-world data extracted from internet hospitals in China to present valuable evidence of online prescription patterns among patients experiencing sequelae of CI.
Collapse
Affiliation(s)
- Jia Tang
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Tiantian Song
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Ming Kuang
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Hongying Liu
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
65
|
Su Q, Su C, Zhang Y, Guo Y, Liu Y, Liu Y, Yong VW, Xue M. Adjudin protects blood-brain barrier integrity and attenuates neuroinflammation following intracerebral hemorrhage in mice. Int Immunopharmacol 2024; 132:111962. [PMID: 38565042 DOI: 10.1016/j.intimp.2024.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Secondary brain injury exacerbates neurological dysfunction and neural cell death following intracerebral hemorrhage (ICH), targeting the pathophysiological mechanism of the secondary brain injury holds promise for improving ICH outcomes. Adjudin, a potential male contraceptive, exhibits neuroprotective effects in brain injury disease models, yet its impact in the ICH model remains unknown. In this study, we investigated the effects of adjudin on brain injury in a mouse ICH model and explored its underlying mechanisms. ICH was induced in male C57BL/6 mice by injecting collagenase into the right striatum. Mice received adjudin treatment (50 mg/kg/day) for 3 days before euthanization and the perihematomal tissues were collected for further analysis. Adjudin significantly reduced hematoma volume and improved neurological function compared with the vehicle group. Western blot showed that Adjudin markedly decreased the expression of MMP-9 and increased the expression of tight junctions (TJs) proteins, Occludin and ZO-1, and adherens junctions (AJs) protein VE-cadherin. Adjudin also decreased the blood-brain barrier (BBB) permeability, as indicated by the reduced albumin and Evans Blue leakage, along with a decrease in brain water content. Immunofluorescence staining revealed that adjudin noticeably reduced the infiltration of neutrophil, activation of microglia/macrophages, and reactive astrogliosis, accompanied by an increase in CD206 positive microglia/macrophages which exhibit phagocytic characteristics. Adjudin concurrently decreased the generation of proinflammatory cytokines, such as TNF-α and IL-1β. Additionally, adjudin increased the expression of aquaporin 4 (AQP4). Furthermore, adjudin reduced brain cell apoptosis, as evidenced by increased expression of anti-apoptotic protein Bcl-2, and decreased expression of apoptosis related proteins Bax, cleaved caspase-3 and fewer TUNEL positive cells. Our data suggest that adjudin protects against ICH-induced secondary brain injury and may serve as a potential neuroprotective agent for ICH treatment.
Collapse
Affiliation(s)
- Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chunhe Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan Zhang
- Department of Neurology, People's Hospital of Qianxinan Prefecture, Guizhou, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yuanyuan Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
66
|
Alpay B, Cimen B, Akaydin E, Onat F, Bolay H, Sara Y. Extrasynaptic δGABAA receptors mediate resistance to migraine-like phenotype in rats. J Headache Pain 2024; 25:75. [PMID: 38724972 PMCID: PMC11083752 DOI: 10.1186/s10194-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Filiz Onat
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, 06560, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye.
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
| |
Collapse
|
67
|
Bakhtiarydavijani A, Stone TW. Impact of prior axonal injury on subsequent injury during brain tissue stretching - A mesoscale computational approach. J Mech Behav Biomed Mater 2024; 153:106489. [PMID: 38428206 DOI: 10.1016/j.jmbbm.2024.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Epidemiology studies of traumatic brain injury (TBI) show individuals with a prior history of TBI experience an increased risk of future TBI with a significantly more detrimental outcome. But the mechanisms through which prior head injuries may affect risks of injury during future head insults have not been identified. In this work, we show that prior brain tissue injury in the form of mechanically induced axonal injury and glial scar formation can facilitate future mechanically induced tissue injury. To achieve this, we use finite element computational models of brain tissue and a history-dependent pathophysiology-based mechanically-induced axonal injury threshold to determine the evolution of axonal injury and scar tissue formation and their effects on future brain tissue stretching. We find that due to the reduced stiffness of injured tissue and glial scars, the existence of prior injury can increase the risk of future injury in the vicinity of prior injury during future brain tissue stretching. The softer brain scar tissue is shown to increase the strain and strain rate in its vicinity by as much as 40% in its vicinity during dynamic stretching that reduces the global strain required to induce injury by 20% when deformed at 15 s-1 strain rate. The results of this work highlight the need to account for patient history when determining the risk of brain injury.
Collapse
Affiliation(s)
| | - Tonya W Stone
- Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, 39759, USA; Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
68
|
Yang Y, Liang S, Liu J, Man M, Si Y, Jia D, Li J, Tian X, Li L. Triglyceride-glucose index as a potential predictor for in-hospital mortality in critically ill patients with intracerebral hemorrhage: a multicenter, case-control study. BMC Geriatr 2024; 24:385. [PMID: 38693481 PMCID: PMC11061935 DOI: 10.1186/s12877-024-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The correlation between the triglyceride-glucose index (TyG) and the prognosis of ischemic stroke has been well established. This study aims to assess the influence of the TyG index on the clinical outcomes of critically ill individuals suffering from intracerebral hemorrhage (ICH). METHODS Patients diagnosed with ICH were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). Various statistical methods, including restricted cubic spline (RCS) regression, multivariable logistic regression, subgroup analysis, and sensitivity analysis, were employed to examine the relationship between the TyG index and the primary outcomes of ICH. RESULTS A total of 791 patients from MIMIC-IV and 1,113 ones from eICU-CRD were analyzed. In MIMIC-IV, the in-hospital and ICU mortality rates were 14% and 10%, respectively, while in eICU-CRD, they were 16% and 8%. Results of the RCS regression revealed a consistent linear relationship between the TyG index and the risk of in-hospital and ICU mortality across the entire study population of both databases. Logistic regression analysis revealed a significant positive association between the TyG index and the likelihood of in-hospital and ICU death among ICH patients in both databases. Subgroup and sensitivity analysis further revealed an interaction between patients' age and the TyG index in relation to in-hospital and ICU mortality among ICH patients. Notably, for patients over 60 years old, the association between the TyG index and the risk of in-hospital and ICU mortality was more pronounced compared to the overall study population in both MIMIC-IV and eICU-CRD databases, suggesting a synergistic effect between old age (over 60 years) and the TyG index on the in-hospital and ICU mortality of patients with ICH. CONCLUSIONS This study established a positive correlation between the TyG index and the risk of in-hospital and ICU mortality in patients over 60 years who diagnosed with ICH, suggesting that the TyG index holds promise as an indicator for risk stratification in this patient population.
Collapse
Affiliation(s)
- Yang Yang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shengru Liang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiangdong Liu
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Minghao Man
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yue Si
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dengfeng Jia
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jianwei Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaoxi Tian
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Lihong Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
69
|
Luo B, Li L, Song XD, Chen HX, Yun DB, Wang L, Zhang Y. MicroRNA-7 attenuates secondary brain injury following experimental intracerebral hemorrhage via inhibition of NLRP3. J Stroke Cerebrovasc Dis 2024; 33:107670. [PMID: 38438086 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE The pathophysiological mechanisms underlying brain injury resulting from intracerebral hemorrhage (ICH) remain incompletely elucidated, and efficacious therapeutic interventions to enhance the prognosis of ICH patients are currently lacking. Previous research indicates that MicroRNA-7 (miR-7) can suppress the expression of Nod-like receptor protein 3 (NLRP3), thereby modulating neuroinflammation in Parkinson's disease pathogenesis. However, the potential regulatory effects miR-7 on NLRP3 inflammasome after ICH are yet to be established. This study aims to ascertain whether miR-7 mitigates secondary brain injury following experimental ICH by inhibiting NLRP3 and to investigate the underlying mechanisms. METHODS An ICH model was established by stereotaxically injecting 100 μL of autologous blood into the right basal ganglia of Sprague-Dawley (SD) rats. Subsequently, these rats were allocated into three groups: sham, ICH + Vehicle, and ICH + miR-7, each comprising 18 animals. Twelve hours post-modeling, rats received intraventricular injections of 10 μL physiological saline, 10 μL phosphate, and 10 μL phosphate-buffered saline solution containing 0.5 nmol of miR-7 mimics, respectively. Neurological function was assessed on day three post-modeling, followed by euthanasia for brain tissue collection. Brain water content was determined using the dry-wet weight method. The expression of inflammatory cytokines in cerebral tissues surrounding the hematoma was analyzed through immunohistochemistry and Western blot assays. These cytokines were re-evaluated using Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Moreover, bioinformatics tools were employed to predict miR-7's binding to NLRP3. A wild-type luciferase reporter gene vector and a corresponding mutant vector were constructed, followed by transfection of miR-7 mimics into HEK293T cells to assess luciferase activity. RESULTS Our study demonstrates that the administration of miR-7 mimics markedly reduced neurological function scores and attenuated brain edema in rats following ICH. A significant upregulation of NLRP3 expression in microglia/macrophage adjacent to the hematoma was observed, substantially reduced after the treatment with miR-7 mimics. Furthermore, this intervention ameliorated neurodegenerative changes and effectively decreased the protein and mRNA levels of pro-inflammatory cytokines, namely TNF-α, IL-1β, IL-6, and Caspase1, in the cerebral tissues proximate to the hematomas. In addition, miR-7 mimics distinctly inhibited the luciferase activity associated with the wild-type reporter gene, an effect not mirrored in its mutant variant. CONCLUSIONS The miR-7 suppressed NLRP3 expression in microglia/macrophage to reduce the production of inflammatory cytokines, leading to conducting certain neuroprotection post-ICH in rats.
Collapse
Affiliation(s)
- Bo Luo
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Lin Li
- Department of Neurosurgery, Chongqing Cancer Hospital, No.181 Hanyu Road, Shapingba District 400000, Chongqing City, PR China
| | - Xu-Dong Song
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Hua-Xuan Chen
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - De-Bo Yun
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Lin Wang
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China.
| |
Collapse
|
70
|
Minhas R, Peker NY, Hakkoz MA, Arbatli S, Celik Y, Erdem CE, Semiz B, Peker Y. Association of Visual-Based Signals with Electroencephalography Patterns in Enhancing the Drowsiness Detection in Drivers with Obstructive Sleep Apnea. SENSORS (BASEL, SWITZERLAND) 2024; 24:2625. [PMID: 38676243 PMCID: PMC11055081 DOI: 10.3390/s24082625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Individuals with obstructive sleep apnea (OSA) face increased accident risks due to excessive daytime sleepiness. PERCLOS, a recognized drowsiness detection method, encounters challenges from image quality, eyewear interference, and lighting variations, impacting its performance, and requiring validation through physiological signals. We propose visual-based scoring using adaptive thresholding for eye aspect ratio with OpenCV for face detection and Dlib for eye detection from video recordings. This technique identified 453 drowsiness (PERCLOS ≥ 0.3 || CLOSDUR ≥ 2 s) and 474 wakefulness episodes (PERCLOS < 0.3 and CLOSDUR < 2 s) among fifty OSA drivers in a 50 min driving simulation while wearing six-channel EEG electrodes. Applying discrete wavelet transform, we derived ten EEG features, correlated them with visual-based episodes using various criteria, and assessed the sensitivity of brain regions and individual EEG channels. Among these features, theta-alpha-ratio exhibited robust mapping (94.7%) with visual-based scoring, followed by delta-alpha-ratio (87.2%) and delta-theta-ratio (86.7%). Frontal area (86.4%) and channel F4 (75.4%) aligned most episodes with theta-alpha-ratio, while frontal, and occipital regions, particularly channels F4 and O2, displayed superior alignment across multiple features. Adding frontal or occipital channels could correlate all episodes with EEG patterns, reducing hardware needs. Our work could potentially enhance real-time drowsiness detection reliability and assess fitness to drive in OSA drivers.
Collapse
Affiliation(s)
- Riaz Minhas
- College of Engineering, Koc University, Istanbul 34450, Turkey; (R.M.); (B.S.)
| | - Nur Yasin Peker
- Department of Mechatronics Engineering, Sakarya University of Applied Sciences, Sakarya 54050, Turkey;
| | - Mustafa Abdullah Hakkoz
- Graduate School of Computer Engineering, Istanbul Technical University, Istanbul 34469, Turkey;
| | - Semih Arbatli
- Graduate School of Health Sciences, Koc University, Istanbul 34010, Turkey;
| | - Yeliz Celik
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34010, Turkey;
| | - Cigdem Eroglu Erdem
- Department of Electrical and Electronics Engineering, Ozyegin University, Istanbul 34794, Turkey;
| | - Beren Semiz
- College of Engineering, Koc University, Istanbul 34450, Turkey; (R.M.); (B.S.)
| | - Yuksel Peker
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34010, Turkey;
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul 34010, Turkey
- Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- School of Medicine, Lund University, 22185 Lund, Sweden
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
71
|
Yang G, Ridgeway C, Miller A, Sarkar A. Comprehensive Assessment of Artificial Intelligence Tools for Driver Monitoring and Analyzing Safety Critical Events in Vehicles. SENSORS (BASEL, SWITZERLAND) 2024; 24:2478. [PMID: 38676095 PMCID: PMC11055067 DOI: 10.3390/s24082478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Human factors are a primary cause of vehicle accidents. Driver monitoring systems, utilizing a range of sensors and techniques, offer an effective method to monitor and alert drivers to minimize driver error and reduce risky driving behaviors, thus helping to avoid Safety Critical Events (SCEs) and enhance overall driving safety. Artificial Intelligence (AI) tools, in particular, have been widely investigated to improve the efficiency and accuracy of driver monitoring or analysis of SCEs. To better understand the state-of-the-art practices and potential directions for AI tools in this domain, this work is an inaugural attempt to consolidate AI-related tools from academic and industry perspectives. We include an extensive review of AI models and sensors used in driver gaze analysis, driver state monitoring, and analyzing SCEs. Furthermore, researchers identified essential AI tools, both in academia and industry, utilized for camera-based driver monitoring and SCE analysis, in the market. Recommendations for future research directions are presented based on the identified tools and the discrepancies between academia and industry in previous studies. This effort provides a valuable resource for researchers and practitioners seeking a deeper understanding of leveraging AI tools to minimize driver errors, avoid SCEs, and increase driving safety.
Collapse
Affiliation(s)
- Guangwei Yang
- Virginia Tech Transportation Institute, Blacksburg, VA 24061, USA
| | | | | | - Abhijit Sarkar
- Virginia Tech Transportation Institute, Blacksburg, VA 24061, USA
| |
Collapse
|
72
|
Hemati K, Hemati P, Rahimi Ghasabeh S, Dikafraz Shokooh GA. A Case Report on Pneumocephalus That Occurred Following an Epidural Ozone Injection During Percutaneous Lumbar Disc Decompression Surgery. Anesth Pain Med 2024; 14:e142519. [PMID: 39411376 PMCID: PMC11473994 DOI: 10.5812/aapm-142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 10/19/2024] Open
Abstract
Spinal decompression is a common procedure in spinal, neurosurgery, and orthopedic surgery. While there are a number of known complications associated with it, pneumocephalus (air in the brain) is generally not a recognized complication postoperatively. However, in rare cases, it can occur as a result of spinal decompression surgery. We describe a case of a 54-year-old female patient who developed pneumocephalus following percutaneous lumbar disc decompression surgery of the lumbar spine. The patient presented to the emergency department 3 hours after discharge with severe restlessness, cognitive impairment, nausea, vomiting, and lack of balance. During symptomatic treatment in the emergency department and 1 hour after taking oxygen, the patient's vital signs improved. Before discharge, a computed tomography (CT) scan was taken again, which showed the disappearance of radiological symptoms. The patient was discharged 12 hours after hospitalization with suitable clinical conditions. Obtaining urgent imaging tests (magnetic resonance imaging [MRI] or CT) at the cranial and spinal levels, along with an electroencephalogram, allows us to diagnose the problem and determine the appropriate course of treatment, whether pharmacological or surgical.
Collapse
Affiliation(s)
- Karim Hemati
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parnian Hemati
- Peoples’ Friendship University of Russia, Rudn University, Moscow, Russia
| | - Saeid Rahimi Ghasabeh
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Dikafraz Shokooh
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
74
|
Kürner K, Greuter L, Roethlisberger M, Brand Y, Frank S, Guzman R, Soleman J. Pediatric sellar teratoma - Case report and review of the literature. Childs Nerv Syst 2024; 40:1259-1270. [PMID: 38276973 DOI: 10.1007/s00381-024-06296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Intracranial teratoma represents a rare neoplasm, occurring predominantly during childhood. Characteristic symptoms depend on the location but are mainly hydrocephalus, visual disturbances, hypopituitarism, and diabetes insipidus. Initial diagnosis can be challenging due to similar radiological features in both teratomas and other lesions such as craniopharyngiomas. Gross total resection is recommended if feasible and associated with a good prognosis. CASE DESCRIPTION A 10-year-old girl presented with newly diagnosed growth retardation, fatigue, cephalgia and bilateral hemianopia. Further laboratory analysis confirmed central hypothyroidism and hypercortisolism. Cranial magnetic resonance imaging showed a cystic space-occupying lesion in the sellar and suprasellar compartment with compression of the optic chiasm without hydrocephalus present, suspicious of craniopharyngioma. Subsequently, an endonasal endoscopic transsphenoidal near-total tumor resection with decompression of the optic chiasm was performed. During postoperative recovery the patient developed transient diabetes insipidus, the bilateral hemianopia remained unchanged. The patient could be discharged in a stable condition, while hormone replacement for multiple pituitary hormone deficiency was required. Surprisingly, histopathology revealed conspicuous areas of skin with formation of hairs and squamous epithelia, compatible with a mature teratoma. CONCLUSIONS We present an extremely rare case of pediatric sellar teratoma originating from the pituitary gland and a review of literature focusing on the variation in presentation and treatment. Sellar teratomas are often mistaken for craniopharyngioma due to their similar radiographic appearances. However, the primary goal of treatment for both pathologies is to decompress eloquent surrounding structures such as the optic tract, and if applicable, resolution of hydrocephalus while avoiding damage to the pituitary stalk and especially the hypothalamic structures. If feasible, the aim of surgery should be gross total resection.
Collapse
Affiliation(s)
- Katja Kürner
- Department of Neurosurgery, University Hospital of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Ladina Greuter
- Department of Neurosurgery, University Hospital of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Michel Roethlisberger
- Department of Neurosurgery, University Hospital of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Yves Brand
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Otorhinolaryngology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Stephan Frank
- Department of Pathology, Division of Neuropathology, University Hospital of Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Division of Pediatric Neurosurgery, University Children's Hospital of Basel, Basel, Switzerland
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, Spitalstrasse 21, 4031, Basel, Switzerland.
- Faculty of Medicine, University of Basel, Basel, Switzerland.
- Division of Pediatric Neurosurgery, University Children's Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
75
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
76
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
77
|
Liang S, Tian X, Gao F, Man M, Wang Q, Li J, Li L, Yang Y. Prognostic significance of the stress hyperglycemia ratio and admission blood glucose in diabetic and nondiabetic patients with spontaneous intracerebral hemorrhage. Diabetol Metab Syndr 2024; 16:58. [PMID: 38438889 PMCID: PMC10910766 DOI: 10.1186/s13098-024-01293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The role of stress hyperglycemia ratio (SHR) on the prognosis of spontaneous intracerebral hemorrhage (ICH) in patients with different diabetic status has not been elucidated. This study aimed to evaluate the prognostic value of SHR and admission blood glucose (ABG) for the short- and long-term mortality in diabetic and nondiabetic populations with ICH. METHOD Participants with ICH were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC-IV). The primary outcome was all-cause 30-day and 1-year mortality. The association of SHR and ABG with the primary outcomes in diabetic and nondiabetic cohorts were assessed by Cox proportional hazard regression. RESULTS Overall, 1029 patients with a median age of 71.09 (IQR: 60.05-81.97) were included. Among them, 548 (53%) individuals were male, and 95 (19%) as well as 323 (31%) ones experienced the 30-day and 1-year mortality, respectively. After adjusting for confounding variables, individuals in quintile 5 of SHR had significantly higher risk of the 30-day and 1-year mortality than those in quintile 1 in the whole cohort (30-day mortality: HR 3.33, 95%CI 2.01-5.51; 1-year mortality: HR 2.09, 95% CI 1.46-3.00) and in nondiabetic patients (30-day mortality: HR 4.55, 95%CI 2.33-8.88; 1-year mortality: HR 3.06, 95%CI 1.93-4.86), but no significant difference was observed in diabetic patients. Similar results were observed for ABG as a categorical variable. As continuous variable, SHR was independently correlated with the 30-day and 1-year mortality in both of the diabetic and nondiabetic cohorts (30-day mortality: HR 2.63, 95%CI 1.50-4.60. 1-year mortality: HR 2.12, 95%CI 1.33-3.39), but this correlation was only observed in nondiabetic cohort for ABG (HR 1.00, 95%CI 0.99-1.01 for both of the 30-day and 1-year mortality). Moreover, compared with ABG, SHR can better improve the C-statistics of the original models regarding the 30-day and 1-year outcomes, especially in patients with diabetes (p < 0.001 in all models). CONCLUSION SHR might be a more useful and reliable marker than ABG for prognostic prediction and risk stratification in critically ill patients with ICH, especially in those with diabetes.
Collapse
Affiliation(s)
- Shengru Liang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Xiaoxi Tian
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Minghao Man
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Qi Wang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Jianwei Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Lihong Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Yang Yang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China.
| |
Collapse
|
78
|
Zhou S, Liu C, Wang J, Ye J, Lian Q, Gan L, Deng S, Xu T, Guo Y, Li W, Zhang Z, Yang GY, Tang Y. CCL5 mediated astrocyte-T cell interaction disrupts blood-brain barrier in mice after hemorrhagic stroke. J Cereb Blood Flow Metab 2024; 44:367-383. [PMID: 37974301 PMCID: PMC10870968 DOI: 10.1177/0271678x231214838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
The crosstalk between reactive astrocytes and infiltrated immune cells plays a critical role in maintaining blood-brain barrier (BBB) integrity. However, how astrocytes interact with immune cells and the effect of their interaction on BBB integrity after hemorrhagic stroke are still unclear. By performing RNA sequencing in astrocytes that were activated by interleukin-1α (IL-1α), tumor necrosis factor α (TNFα), and complement component 1q (C1q) treatment, we found CCL5 was among the top upregulated genes. Immunostaining and western blot results demonstrated that CCL5 was increased in mice brain after hemorrhagic stroke. Flow cytometry showed that knockout of astrocytic CCL5 reduced the infiltration of CD8+ but not CD4+ T and myeloid cells into the brain (p < 0.05). In addition, knockout CCL5 in astrocytes increased tight junction-related proteins ZO-1 and Occludin expression; reduced Evans blue leakage, perforin and granzyme B expression; improved neurobehavioral outcomes in hemorrhagic stroke mice (p < 0.05), while transplantation of CD8+ T cells reversed these protective effects. Moreover, co-culture of CD8+ T cells with bEnd.3 cells induced the apoptosis of bEnd.3 cells, which was rescued by inhibiting perforin. In conclusion, our study suggests that CCL5 mediated crosstalk between astrocytes and CD8+ T cells represents an important therapeutic target for protecting BBB in stroke.
Collapse
Affiliation(s)
- Shiyi Zhou
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ye
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyuan Lian
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Gan
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Deng
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tongtong Xu
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyan Guo
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanlu Li
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Golzari-Sorkheh M, Liyanage I, Reed MA, Weaver DF. Alzheimer's Disease and COVID-19 Pathogenic Overlap: Implications for Drug Repurposing. Can J Neurol Sci 2024; 51:161-172. [PMID: 36991574 DOI: 10.1017/cjn.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory disorders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as Alzheimer's disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19's rapid infectivity and pathology. However, the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analogous immunogenic destruction of their respective organ parenchyma. We hypothesize that these mechanistic similarities may extent to therapeutic targets, namely that it is conceivable an agent against AD's immunopathy may have efficacy against COVID-19 and vice versa. It is notable that while extensively investigated, no agent has yet demonstrated significant therapeutic efficacy against AD's cognitive and memory declines. Yet this very failure has driven the development of numerous agents with strong mechanistic potential and clinical characteristics. Having already approved for clinical trials, these agents may be an expedient starting point in the urgent search for an effective COVID-19 therapy. Herein, we review the overlapping Alzheimer's/ COVID-19 targets and theorize several initial platforms.
Collapse
Affiliation(s)
| | - Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
80
|
Avola R, Furnari AG, Graziano ACE, Russo A, Cardile V. Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:178. [PMID: 38397776 PMCID: PMC10886016 DOI: 10.3390/antiox13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroinflammation, a pivotal factor in the pathogenesis of various brain disorders, including neurodegenerative diseases, has become a focal point for therapeutic exploration. This review highlights neuroinflammatory mechanisms that hallmark neurodegenerative diseases and the potential benefits of essential oils in counteracting neuroinflammation and oxidative stress, thereby offering a novel strategy for managing and mitigating the impact of various brain disorders. Essential oils, derived from aromatic plants, have emerged as versatile compounds with a myriad of health benefits. Essential oils exhibit robust antioxidant activity, serving as scavengers of free radicals and contributing to cellular defense against oxidative stress. Furthermore, essential oils showcase anti-inflammatory properties, modulating immune responses and mitigating inflammatory processes implicated in various chronic diseases. The intricate mechanisms by which essential oils and phytomolecules exert their anti-inflammatory and antioxidant effects were explored, shedding light on their multifaceted properties. Notably, we discussed their ability to modulate diverse pathways crucial in maintaining oxidative homeostasis and suppressing inflammatory responses, and their capacity to rescue cognitive deficits observed in preclinical models of neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosanna Avola
- Faculty of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
| | | | | | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
81
|
Hainmueller T, Cazala A, Huang LW, Bartos M. Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat Commun 2024; 15:714. [PMID: 38267409 PMCID: PMC10808551 DOI: 10.1038/s41467-024-44882-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The hippocampus is the brain's center for episodic memories. Its subregions, the dentate gyrus and CA1-3, are differentially involved in memory encoding and recall. Hippocampal principal cells represent episodic features like movement, space, and context, but less is known about GABAergic interneurons. Here, we performed two-photon calcium imaging of parvalbumin- and somatostatin-expressing interneurons in the dentate gyrus and CA1-3 of male mice exploring virtual environments. Parvalbumin-interneurons increased activity with running-speed and reduced it in novel environments. Somatostatin-interneurons in CA1-3 behaved similar to parvalbumin-expressing cells, but their dentate gyrus counterparts increased activity during rest and in novel environments. Congruently, chemogenetic silencing of dentate parvalbumin-interneurons had prominent effects in familiar contexts, while silencing somatostatin-expressing cells increased similarity of granule cell representations between novel and familiar environments. Our data indicate unique roles for parvalbumin- and somatostatin-positive interneurons in the dentate gyrus that are distinct from those in CA1-3 and may support routing of novel information.
Collapse
Affiliation(s)
- Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| | - Aurore Cazala
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Li-Wen Huang
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
| |
Collapse
|
82
|
Cao Y, Yao X. Acute albumin administration as therapy for intracerebral hemorrhage: A literature review. Heliyon 2024; 10:e23946. [PMID: 38192834 PMCID: PMC10772721 DOI: 10.1016/j.heliyon.2023.e23946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality. Secondary brain injury after surviving the initial ictus leads to severe neurological deficits, and has emerged as an attractive therapeutic target. Human serum albumin (HSA), a pluripotent protein synthesized mainly in the liver, has shown remarkable efficacy by targeting secondary brain injury pathways in rodent models of ICH, while results from relevant clinical research on albumin therapy remain unclear. Preclinical studies have shown albumin-mediated neuroprotection may stem from its biological functions, including its major antioxidation activity, anti-inflammatory responses, and anti-apoptosis. HSA treatment provides neuroprotective and recovery enhancement effects via improving short and long-term neurologic function, maintaining blood-brain barrier (BBB) integrity and reducing neuronal oxidative stress and apoptosis. Retrospective clinical studies have shown that admission hypoalbuminemia is a prognostic factor for poor outcomes in patients with ICH. However, clinical trial was terminated due to poor enrollment and its potential adverse effects. This review provides an overview of the physiological properties of albumin, as well as its potential neuroprotective and prognostic value and the resulting clinical implications.
Collapse
Affiliation(s)
- Yirong Cao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
83
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
84
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
85
|
Shen Z, Yang X, Lan Y, Chen G. The Neuro-Inflammatory Microenvironment: An Important Regulator of Stem Cell Survival in Alzheimer's Disease. J Alzheimers Dis 2024; 98:741-754. [PMID: 38489182 DOI: 10.3233/jad-231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by progressive memory loss and cognitive impairment due to excessive accumulation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles. Although decades of research efforts have been put into developing disease-modifying therapies for AD, no "curative" drug has been identified. As a central player in neuro-inflammation, microglia play a key role inbrain homeostasis by phagocytosing debris and regulating the balance between neurotoxic and neuroprotective events. Typically, the neurotoxic phenotype of activated microglia is predominant in the impaired microenvironment of AD. Accordingly, transitioning the activity state of microglia from pro-inflammatory to anti-inflammatory can restore the disrupted homeostatic microenvironment. Recently, stem cell therapy holds great promise as a treatment for AD; however, the diminished survival of transplanted stem cells has resulted in a disappointing long-term outcome for this treatment. This article reviews the functional changes of microglia through the course of AD-associated homeostatic deterioration. We summarize the possible microglia-associated therapeutic targets including TREM2, IL-3Rα, CD22, C5aR1, CX3CR1, P2X7R, CD33, Nrf2, PPAR-γ, CSF1R, and NLRP3, each of which has been discussed in detail. The goal of this review is to put forth the notion that microglia could be targeted by either small molecules or biologics to make the brain microenvironment more amenable to stem cell implantation and propose a novel treatment strategy for future stem cell interventions in AD.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, China
| | - Yulong Lan
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
86
|
Zou D, Chen X, Chen S, Zhang P, Lu Y. Impact of Endoscopic Surgery Versus Robot CAS-R-2 Assisted with Stereotactic Drainage on Prognosis of Basal Ganglia Hypertensive Intracerebral Hemorrhage. World Neurosurg 2024; 181:e589-e596. [PMID: 37898270 DOI: 10.1016/j.wneu.2023.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVE To evaluate the impact of endoscopic surgery (ES) versus robot CAS-R-2 assisted with stereotactic drainage on prognosis of basal ganglia hypertensive intracerebral hemorrhage (HICH). METHODS This retrospective observational study included patients who underwent ES or robot CAS-R-2 assisted with stereotactic drainage for basal ganglia HICH in Shanghai Sixth People's Hospital between June 2017 and May 2022. The outcomes were 6-month mortality and modified Rankin Scale (mRS) score. RESULTS A total of 94 patients were included; 68 (age 51.26 ± 9.18 years, 17 women) of them underwent ES, while the other 26 (age 56.50 ± 12.91, 11 women) underwent robot CAS-R-2. The 6-month mortality rates were similar (P > 0.05) between the patients who underwent ES (6 of 68, 8.82%) and robot CAS-R-2 (2 of 26,7.69%), while the rate of good prognosis in the ES group was significantly higher compared with that in the robot CAS-R-2 group (P = 0.024). Univariate logistic analysis found that endoscopic surgery, age, and hematoma volume were associated with poor prognosis at 6 months. Multivariate logistic regression analysis showed that, after adjusted for the preoperative hematoma volume and age, endoscopy surgery (relative risk 0.21, 95% CI 0.06-0.68, P = 0.009) was associated with good prognosis at 6 months follow-up. CONCLUSIONS Compared with robot CAS-R-2 assisted with stereotactic drainage, ES might have higher rate of good prognosis at 6-month follow-up for basal ganglia HICH.
Collapse
Affiliation(s)
- Dongdong Zou
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuping Chen
- Intensive Care Unit, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Pengqi Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Youming Lu
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
87
|
Skryabin EG, Kicherova OA, Zotov PB. [Main clinical characteristics of pain in patients with lumbosacral transitional vertebrae]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:7-13. [PMID: 38884424 DOI: 10.17116/jnevro20241240517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Based on an analysis of modern medical literature, to study the main clinical characteristics of pain in patients with transitional lumbosacral vertebrae. MATERIAL AND METHODS A search was made for articles in the scientific electronic libraries CYBERLENINKA, eLIBRARY, Google Scholar, and the electronic database of biomedical publications PubMed. Sixty-eight scientific publications corresponded to the stated goal. RESULTS The review of literature shows that the localization of pain in patients with transitional vertebrae corresponds to the zone of pseudarthrosis between the enlarged transverse process of the LV vertebra and the wing of the sacrum. In most patients, the pain is deep, not superficial. Pain intensity ranges from 3.0 to 8.4, reaching an average of 6.0 on the visual analog scale. Pain can radiate to one of the buttocks and the lower limb. The intensity of pain in the leg at the same time, on average, reaches 5.4 points. The pain syndrome can last for months, the course of the disease acquires a sluggish, undulating character with periodic exacerbations. The causes of exacerbations of pain may be excessive loads on the spine, concomitant vertebrogenic diseases and spinal injuries, excess weight, and in women, a history of pregnancy. Pain management can be either conservative or surgical. The scope of conservative treatment consists of using acupuncture and taking non-steroidal anti-inflammatory drugs. The greatest therapeutic effect is achieved with local injection therapy of analgesics and glucocorticoids at the neoarticulation point. The effectiveness of the course of therapeutic blockades reaches a period from several months to a year. The arsenal of surgical techniques includes pseudoartrectomy, radiofrequency denervation, minimally invasive endoscopic surgery, and transpedicular fusion. In most patients, after surgical treatment, complete relief of pain is noted. CONCLUSION The review provides information on the predominant localization of pain in patients with transitional vertebrae, its nature, intensity, irradiation, duration, causes of exacerbation, as well as the effectiveness of the methods of conservative and surgical treatment.
Collapse
Affiliation(s)
| | | | - P B Zotov
- Tyumen State Medical University, Tyumen, Russia
| |
Collapse
|
88
|
Salaudeen MA, Allan S, Pinteaux E. Hypoxia and interleukin-1-primed mesenchymal stem/stromal cells as novel therapy for stroke. Hum Cell 2024; 37:154-166. [PMID: 37987924 PMCID: PMC10764391 DOI: 10.1007/s13577-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Promising preclinical stroke research has not yielded meaningful and significant success in clinical trials. This lack of success has prompted the need for refinement of preclinical studies with the intent to optimize the chances of clinical success. Regenerative medicine, especially using mesenchymal stem/stromal cells (MSCs), has gained popularity in the last decade for treating many disorders, including central nervous system (CNS), such as stroke. In addition to less stringent ethical constraints, the ample availability of MSCs also makes them an attractive alternative to totipotent and other pluripotent stem cells. The ability of MSCs to differentiate into neurons and other brain parenchymal and immune cells makes them a promising therapy for stroke. However, these cells also have some drawbacks that, if not addressed, will render MSCs unfit for treating ischaemic stroke. In this review, we highlighted the molecular and cellular changes that occur following an ischaemic stroke (IS) incidence and discussed the physiological properties of MSCs suitable for tackling these changes. We also went further to discuss the major drawbacks of utilizing MSCs in IS and how adequate priming using both hypoxia and interleukin-1 can optimize the beneficial properties of MSCs while eliminating these drawbacks.
Collapse
Affiliation(s)
- Maryam Adenike Salaudeen
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Stuart Allan
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK.
| |
Collapse
|
89
|
Lin JT, Morisaki M, Sampathkumar SA, Lau LC, Boche D, Khandaker GM, Sinclair LI. Neuroinflammation in comorbid depression in Alzheimer's disease: A pilot study using post-mortem brain tissue. NEUROSCIENCE APPLIED 2024; 3:None. [PMID: 39526037 PMCID: PMC11543635 DOI: 10.1016/j.nsa.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 11/16/2024]
Abstract
Comorbid depression and Alzheimer's disease (AD) is associated with poorer prognosis than either condition alone. Neuroinflammation has been implicated in the pathogenesis and progression of both depression and AD, but much of the existing research has been based on peripheral blood immune markers. Relatively little is known about the neuroinflammatory environment when these conditions occur simultaneously and using immune measures directly in the brain tissue. This pilot study aimed to examine brain inflammatory marker changes in AD cases comparing those with and without comorbid depression. Post-mortem brain tissue from AD cases with depression (n = 23) and AD cases with no history of psychiatric illness (n = 25) were analyzed for a range of inflammatory markers, including markers of microglial function (Iba1, P2RY12, CD64 and CD68 measured by immunohistochemistry); endothelial inflammatory markers (ICAM-1 and VCAM-1 measured by ELISA); and cytokine levels (IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α measured using Mesoscale Discovery Multiplex Assays). Brains of AD cases with comorbid depression, compared with AD alone, had increased IL-4 in the superior frontal gyrus and increased TNFα & IL-12p70 in the insula. Levels of all other inflammatory markers including markers of microglial function and endothelial inflammation were similar between the two groups. We found no consistent changes in cytokines between the two brain regions in individuals with comorbid depression in AD. Further work in larger cohorts is needed to understand brain region specificity of immune marker alterations and the relationship of these changes with pre-mortem clinical outcomes.
Collapse
Affiliation(s)
- Jordan T. Lin
- Dementia Research Group, University of Bristol, Bristol, UK
| | | | | | - Laurie C. Lau
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, University of Southampton, Southampton, UK
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | | |
Collapse
|
90
|
Ha JS, Sakhrekar R, Kim DH, Kim CW, Kulkarni S, Han HD. Use of Navigable Ablation Decompression Treatment (L-DISQ) for Contained Cervical Disc Herniation - Technical Note and Literature Review. J Orthop Case Rep 2024; 14:173-177. [PMID: 38292107 PMCID: PMC10823828 DOI: 10.13107/jocr.2024.v14.i01.4190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/18/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction A new navigable percutaneous disc decompressor (L'DISQ-C, U&I Co., Uijeongbu, Korea), introduced in 2012, is designed to allow direct access to herniated disc material. The L'DISQ device can be curved by rotating a control wheel, directed into disc herniation treats, and decompresses contained herniated discs with minimal collateral thermal damage. This study reports the case of contained central disc herniation in a 34-year-old male with a 2-year follow-up successfully treated with navigable ablation decompression treatment (L-DISQ). Case Report A 34-year-old man presented to the outpatient department with a 6-month history of neck pain and bilateral upper limb radiation. His neck pain had increased progressively. At the time of presentation, his neck pain visual analog scale score was 7/10, and his neck disability index score was 30. The magnetic resonance images showed a single fluid-containing lesion with a hyperintense zone at the C4-5 levels with central disc herniation. The patient was successfully treated with the navigable ablation decompression treatment (L-DISQ) procedure. Conclusion The navigable ablation decompression treatment (L-DISQ) is a valuable technique in treating contained cervical disc herniation with rapid pain relief and improvements in functional outcomes without any significant injury to surrounding structures. It is safe, precise, and effective in the treatment of symptomatic cervical disc herniations. Large, randomized, and multicenter trials are needed to explore the potential of the same technique further.
Collapse
Affiliation(s)
- Ji Soo Ha
- Department of Spine Surgery, Yonsei Okay Hospital, Seoul, South Korea
| | | | - Do-Hyoung Kim
- Department of Spine Surgery, Yonsei Okay Hospital, Seoul, South Korea
| | - Chang Wook Kim
- Department of Spine Surgery, Yonsei Okay Hospital, Seoul, South Korea
| | | | - Hee-Don Han
- Department of Spine Surgery, Yonsei Okay Hospital, Seoul, South Korea
| |
Collapse
|
91
|
Shang P, Zheng R, Wu K, Yuan C, Pan S. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr Neuropharmacol 2024; 22:2330-2352. [PMID: 38808718 PMCID: PMC11451312 DOI: 10.2174/1570159x22666240528160237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
92
|
Hou Y, Qin W, Yang S, Li Y, Yang L, Hu W. Diffusion-weighted Imaging Detection of Acute Ischemia Brain Lesions in Spontaneous Intracerebral Hemorrhage Associated with White Matter Hyperintensities, Enlarged Perivascular Spaces and Diabetes Mellitus. Curr Neurovasc Res 2024; 20:544-552. [PMID: 38288839 DOI: 10.2174/0115672026283323240108052711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Diffusion-weighted imaging (DWI) is commonly detected after spontaneous intracerebral hemorrhage (sICH) and is associated with poor functional outcomes. However, the etiology and significance of DWI lesions remain unclear. Thus, our study aimed to explore the prevalence and risk factors of acute ischemic lesions in sICH and discussed the possible mechanisms. METHODS We conducted a retrospective review of a consecutive cohort of 408 patients from June 2013 to October 2019 with sICH, who had brain computed tomography (CT) and magnetic resonance imaging (MRI) within 14 days of symptoms onset. Acute ischemic lesions were assessed on MRI using DWI lesions. We compared the clinical and imaging characteristics of patients with and without DWI lesions. The data were analyzed by univariate and multivariate logistic regression. RESULTS Among the enrolled 408 patients, the mean age was 56.8 ± 14.5 years, 68 (16.7%) of them had been diagnosed with diabetes mellitus (DM). DWI lesions were observed in 89 (21.8%) patients, and most of them had a history of lacunar infarctions, which were located in cortical or subcortical. In multivariate logistic regression analysis, DM (odds ratio (OR) 3.962, p <0.001), severe deep white matter hypertensities (DWMH) (OR 2.463, p =0.001) and severe centrum semiovale enlarged perivascular spaces (CSO-EPVS) (OR 2.679, p =0.001) were independently associated with the presence of DWI lesions. CONCLUSION In our cohort, we found DM, severe DWMH and severe CSO-EPVS were the independent risk factors in sICH patients with DWI lesions.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Qin
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuna Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yue Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
93
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
94
|
Chang GC, Nguyen TN, Qiu J, Li W, Zhao YG, Sun XH, Liu X, Zhao ZA, Liu L, Abdalkader M, Chen HS. Predicting symptomatic intracranial hemorrhage in anterior circulation stroke patients with contrast enhancement after thrombectomy: the CAGA score. J Neurointerv Surg 2023; 15:e356-e362. [PMID: 36627195 DOI: 10.1136/jnis-2022-019787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND The aim of the study was to establish a reliable scoring tool to identify the probability of symptomatic intracranial hemorrhage (sICH) in anterior circulation stroke patients with contrast enhancement (CE) on brain non-contrast CT (NCCT) after endovascular thrombectomy (EVT). METHODS We retrospectively reviewed consecutive patients with acute ischemic stroke (AIS) who had CE on NCCT immediately after EVT for anterior circulation large vessel occlusion (LVO). We used the Alberta stroke program early CT score (ASPECTS) scoring system to estimate the extent and location of CE. Multivariable logistic regression was performed to derive an sICH predictive score. The discrimination and calibration of this score were assessed using the area under the receiver operator characteristic curve, calibration curve, and decision curve analysis. RESULTS In this study, 194 of 322 (60.25%) anterior circulation AIS-LVO patients had CE on NCCT. After excluding 85 patients, 109 patients were enrolled in the final analysis. In multivariate regression analysis, age ≥70 years (adjusted OR (aOR) 9.23, 95% CI 2.43 to 34.97, P<0.05), atrial fibrillation (AF) (aOR 4.17, 95% CI 1.33 to 13.12, P<0.05), serum glucose ≥11.1 mmol/L (aOR 9.39, 95% CI 2.74 to 32.14, P<0.05), CE-ASPECTS <5 (aOR 3.95, 95% CI 1.30 to 12.04 P<0.05), and CE at the internal capsule (aOR 3.45, 95% CI 1.03 to 11.59, P<0.05) and M1 region (aOR 3.65, 95% CI 1.13 to 11.80, P<0.05) were associated with sICH. These variables were incorporated as the CE-age-glucose-AF (CAGA) score. The CAGA score demonstrated good discrimination and calibration in this cohort, as well as the fivefold cross validation. CONCLUSION The CAGA score reliably predicted sICH in patients with CE on NCCT after EVT treatment.
Collapse
Affiliation(s)
- Guo-Can Chang
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Thanh N Nguyen
- Neurology, Boston Medical Center, Boston, Massachusetts, USA
| | - Jing Qiu
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Wei Li
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Yong-Gang Zhao
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Xian-Hui Sun
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Xin Liu
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | - Liang Liu
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| | | | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
| |
Collapse
|
95
|
Brown NJ, Pennington Z, Shahin H, Nguyen OT, Pham MH. Techniques for restoring optimal spinal biomechanics to alleviate symptoms in Bertolotti syndrome: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23467. [PMID: 38109726 PMCID: PMC10732316 DOI: 10.3171/case23467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Lumbosacral transitional vertebrae (LSTVs) are congenital anomalies that occur in the spinal segments of L5-S1. These vertebrae result from sacralization of the lowermost lumbar segment or lumbarization of the uppermost sacral segment. When the lowest lumbar vertebra fuses or forms a false joint with the sacrum (pseudoarticulation), it can cause pain and manifest clinically as Bertolotti syndrome. OBSERVATIONS A 36-year-old female presented with severe right-sided low-back pain. Computed tomography was unremarkable except for a right-sided Castellvi type IIA LSTV. The pain proved refractory to physical therapy and lumbar epidural spinal injections, but targeted steroid and bupivacaine injection of the pseudoarticulation led to 2 weeks of complete pain relief. She subsequently underwent minimally invasive resection of the pseudoarticulation, with immediate improvement in her low-back pain. The patient continued to be pain free at the 3-year follow-up. LESSONS LSTVs alter the biomechanics of the lumbosacral spine, which can lead to medically refractory mechanical pain requiring surgical intervention. Select patients with Bertolotti syndrome can benefit from operative management, including resection, fusion, or decompression of the pathologic joint.
Collapse
Affiliation(s)
- Nolan J Brown
- 1Department of Neurological Surgery, University of California-Irvine, Orange, California
| | - Zach Pennington
- 2Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and
| | - Hania Shahin
- 1Department of Neurological Surgery, University of California-Irvine, Orange, California
| | - Oanh T Nguyen
- 1Department of Neurological Surgery, University of California-Irvine, Orange, California
| | - Martin H Pham
- 3Department of Neurosurgery, University of California-San Diego, La Jolla, California
| |
Collapse
|
96
|
Wong LJ, Lee BWL, Sng YJ, Poh L, Rajeev V, Selvaraji S, Drummond GR, Sobey CG, Arumugam TV, Fann DY. Inflammasome Activation Mediates Apoptotic and Pyroptotic Death in Astrocytes Under Ischemic Conditions. Neuromolecular Med 2023; 25:533-544. [PMID: 37646911 DOI: 10.1007/s12017-023-08753-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Inflammation is a hallmark mechanism of ischemic stroke-induced brain injury. Recent studies have shown that an intracellular multimeric protein complex known as an inflammasome is a key factor for inducing an inflammatory response, and apoptotic and pyroptotic cell death in ischemic stroke. Inflammasome assembly leads to the activation of pro-inflammatory caspases, and the maturation and secretion of pro-inflammatory cytokines IL-1β and IL-18. While the role of inflammasomes in ischemic stroke-induced neuronal death, and microglial activation and cell death have been established, little is known about the role of inflammasomes in astrocytes under ischemic conditions. In this study, we investigated the expression and activation of inflammasome components in protoplasmic and fibrous astrocytes under ischemic conditions. We found that both protoplasmic and fibrous astrocytes expressed a differential increase in inflammasome protein components, and that their activation promoted maturation of IL-1β and IL-18, and secretion of IL-1β, as well as initiating apoptotic and pyroptotic cell death. Pharmacological inhibition of caspase-1 decreased expression of cleaved caspase-1 and production of mature IL-1β, and protected against inflammasome-mediated apoptotic and pyroptotic cell death. Overall, this study provides novel insights into the role of inflammasome signaling in astrocytes under ischemic conditions.
Collapse
Affiliation(s)
- Lap Jack Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bernice Woon Li Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Jing Sng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research and Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research and Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Cardiovascular Biology and Disease Research and Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme (HLTRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
97
|
Sharma H, Reeta KH, Sharma U, Suri V, Singh S. AMPA receptor modulation through sequential treatment with perampanel and aniracetam mitigates post-stroke damage in experimental model of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3529-3545. [PMID: 37231168 DOI: 10.1007/s00210-023-02544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The present study evaluates the effect of modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) by inhibiting them in the acute phase and activating them in the sub-acute phase on post-stroke recovery in middle cerebral artery occlusion (MCAo) model of stroke in rats. After 90 min of MCAo, perampanel (an AMPAR antagonist, 1.5 mg/kg i.p) and aniracetam (an AMPA agonist, 50 mg/kg i.p.) were administered for different durations after MCAo. Later, after obtaining the best time point for the antagonist and the agonist treatment protocols, sequential treatment with perampanel and aniracetam were given, and the effect on neurological damage and post stroke recovery were assessed. Perampanel and aniracetam significantly protected MCAo-induced neurological damage and diminished the infarct percentage. Furthermore, treatment with these study drugs improved the motor coordination and grip strength. Sequential treatment with perampanel and aniracetam reduced the infarct percentage as assessed by MRI. Moreover, these compounds diminished the inflammation via reducing the levels of pro-inflammatory cytokines (TNF-α, IL-1β) and increasing the levels of anti-inflammatory cytokine (IL-10) along with reductions in GFAP expression. Moreover, the neuroprotective markers (BDNF and TrkB) were found to be significantly increased. Levels of apoptotic markers (Bax, cleaved-caspase-3; Bcl2 and TUNEL positive cells) and neuronal damage (MAP-2) were normalized with the AMPA antagonist and agonist treatment. Expressions of GluR1 and GluR2 subunits of AMPAR were significantly enhanced with sequential treatment. The present study thus showed that modulation of AMPAR improves neurobehavioral deficits and reduces the infarct percentage through anti-inflammatory, neuroprotective and anti-apoptotic effects.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Surender Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
98
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
99
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
100
|
Flanders AE, Geis JR. NextGen Neuroradiology AI. Radiology 2023; 309:e231426. [PMID: 37987667 DOI: 10.1148/radiol.231426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Affiliation(s)
- Adam E Flanders
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Suite 1080B Main Building, Philadelphia, PA 19107 (A.E.F.); and Department of Radiology, National Jewish Health, Denver, Colo (J.R.G.)
| | - J Raymond Geis
- From the Department of Radiology, Thomas Jefferson University, 132 S 10th St, Suite 1080B Main Building, Philadelphia, PA 19107 (A.E.F.); and Department of Radiology, National Jewish Health, Denver, Colo (J.R.G.)
| |
Collapse
|