51
|
Lisiecka MZ. Characteristic features of food allergy to legumes: From epidemiology to prevention. Hum Immunol 2024; 85:111179. [PMID: 39566437 DOI: 10.1016/j.humimm.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION The study aims to investigate the main characteristics of food allergies to legumes (peanuts, chickpeas, soybeans, lentils, beans, and peas). MATERIALS AND METHODS A search was conducted for relevant information in the ResearchGate, PubMed, Scopus, Google Scholar, and Web of Science databases, presented for 2011-2024. RESULTS The study determined that about 30 % of the world's population has allergic diseases. Of them, 10 % were diagnosed with food allergies. In Poland, the prevalence of this pathology is about 5 %. The epidemiology of food allergies to peanuts is 2-5 %. The prevalence of sensitisation to lentils is 5-7 %; to beans - 7.5 %; to soybeans - 9-10.4 %; to peas - 9.5 % and to chickpeas - 8.5 %. At the same time, no food allergies to soy have been detected in adults in Poland. Peanuts are the most allergenic food among those described in this study, as they have a high risk of sensitisation to nuts and legumes (soybeans, lupins, peas, chickpeas, lentils). The clinical picture of a legume allergy is characterised by hives, itching, sneezing, redness, lacrimation, nausea, vomiting, wheezing, angioedema, and anaphylactic shock. For the diagnosis of food allergy to legumes, an oral test, prick test, determination of the level of allergen-specific immunoglobulin E (IgE), and basophil activation test are used. Emergency care is provided using an epinephrine solution at a dosage of 1 mg/ml intramuscularly. Immunotherapy with allergens is used to treat delayed-type hypersensitivity reactions. To prevent legume allergy, physical, chemical, and biological methods of treatment and individual nutrition are used. CONCLUSIONS The study concluded that food allergy to legumes is a common pathology that contributes to the development of severe complications and requires detailed study.
Collapse
Affiliation(s)
- Maria Zofia Lisiecka
- Department of Allergology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland.
| |
Collapse
|
52
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
53
|
Mak LY, Boettler T, Gill US. HBV Biomarkers and Their Role in Guiding Treatment Decisions. Semin Liver Dis 2024; 44:474-491. [PMID: 39442530 DOI: 10.1055/a-2448-4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over 300 million individuals worldwide are chronically infected with hepatitis B virus and at risk for progressive liver disease. Due to the lack of a therapy that reliably achieves viral elimination and the variability of liver disease progression, treatment decisions are guided by the degree of liver disease and viral biomarkers as the viral life-cycle is well characterized and largely conserved between individuals. In contrast, the immunological landscape is much more heterogeneous and diverse and the measurement of its components is less well standardized. Due to the lack of a universal and easily measurable set of biomarkers, clinical practice guidelines remain controversial, aiming for a balance between simplifying treatment decisions by reducing biomarker requirements and using all available biomarkers to avoid overtreatment of patients with low risk for disease progression. While approved therapies such as nucleos(t)ide analogs improve patient outcomes, the inability to achieve a complete cure highlights the need for novel therapies. Since no treatment candidate has demonstrated universal efficacy, biomarkers will remain important for treatment stratification. Here, we summarize the current knowledge on virological and immunological biomarkers with a specific focus on how they might be beneficial in guiding treatment decisions in chronic hepatitis B.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
54
|
Ali SA, Datusalia AK. Berberine attenuates ECM accumulation and the progression of acute liver failure through inhibition of NLRP3 inflammasome signalling. Toxicol Appl Pharmacol 2024; 492:117129. [PMID: 39428072 DOI: 10.1016/j.taap.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-β1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-β1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1β, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1β signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India.
| |
Collapse
|
55
|
Hoffmann C, Krasemann S, Wurr S, Hartmann K, Adam E, Bockholt S, Müller J, Günther S, Oestereich L. Lassa virus persistence with high viral titers following experimental infection in its natural reservoir host, Mastomys natalensis. Nat Commun 2024; 15:9319. [PMID: 39472431 PMCID: PMC11522386 DOI: 10.1038/s41467-024-53616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Lassa virus (LASV) outbreaks in West Africa pose a significant public health threat. We investigated the infection phenotype and transmission (horizontal and vertical) of LASV strain Ba366 in its natural host, Mastomys natalensis. Here we analyze viral RNA levels in body fluids, virus titers in organs and antibody presence in blood. In adults and 2-week-old animals, LASV causes transient infections with subsequent seroconversion. However, mice younger than two weeks exhibit persistent infections lasting up to 16 months despite antibody presence. LASV can be detected in various body fluids, organs, and cell types, primarily in lung, kidney, and gonadal epithelial cells. Despite the systemic virus presence, no pathological alterations in organs are observed. Infected animals efficiently transmit the virus throughout their lives. Our findings underscore the crucial role of persistently infected individuals, particularly infected females and their progeny, in LASV dissemination within the host population.
Collapse
Affiliation(s)
- Chris Hoffmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisa Adam
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jonas Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
56
|
Pérez SE, Gooz M, Maldonado EN. Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections. Cells 2024; 13:1789. [PMID: 39513896 PMCID: PMC11545457 DOI: 10.3390/cells13211789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate immune response. Here, we describe the different mechanisms involved in virus-mitochondria interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial function through modulation of the activity of the electron transport chain, the generation of reactive oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view of how viruses modulate mitochondrial function to maintain their replicative capabilities.
Collapse
Affiliation(s)
- Sandra E. Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil CC7000, Buenos Aires, Argentina;
| | - Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
57
|
Lu Y, Liu J, Tang W, Zhang H. NLRP3 inflammasome inhibition decreases Schistosomiasis japonica-induced granulomatous inflammation and fibrosis in BALB/c mice. Infect Immun 2024; 92:e0005524. [PMID: 39158264 PMCID: PMC11475658 DOI: 10.1128/iai.00055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024] Open
Abstract
To research the role of the NLRP3 inflammasome in Schistosoma japonicum-induced granuloma formation and liver fibrosis. In in vivo tests, BALB/c mice were used. shNLRP3 plasmid based on adeno-associated virus serotype 8 (AAV8-shNLRP3) was injected to block NLRP3 inflammasome via tail vein. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected to assess liver injury. H&E staining was used for routine histopathological assessment; Masson's trichrome staining was used to detect fibrous tissues and collagen fibers. Hepatic expression of NLRP3, procaspase-1, bioactive caspase-1, collagen-1, tissue inhibitor of metalloproteinases-1 (TIMP-1), and α-smooth muscle actin (α-SMA) were detected by western blot. Serum levels of IL-1β were detected by enzyme-linked immunosorbent assay (ELISA). The inflammatory cell infiltration and hepatic expression of IL-1β around the granuloma were detected by immunohistochemistry staining. Treatment of S. japonicum infected mice with AAV8-shNLRP3 significantly reduced the hepatic levels of bioactive caspase-1 and IL-1β, as well as circulating IL-1β concentrations, while reducing the amounts of myeloperoxidase (MPO) and F4/80 positive cells around the granuloma. Moreover, collagen deposition, TIMP-1, and α-SMA, which are markers of hepatic stellate cell (HSC) activation, were reduced around the liver granuloma. These findings highlight a therapeutic potential of AAV8-shNLRP3 in schistosomiasis cirrhosis.
Collapse
Affiliation(s)
- Yaqi Lu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangxian Tang
- Institute of Liver Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
58
|
Zhou P, Tao K, Zeng L, Zeng X, Wan Y, Xie G, Liu X, Zhang P. IRG1/Itaconate inhibits proliferation and promotes apoptosis of CD69 +CD103 +CD8 + tissue-resident memory T cells in autoimmune hepatitis by regulating the JAK3/STAT3/P53 signalling pathway. Apoptosis 2024; 29:1738-1756. [PMID: 38641760 DOI: 10.1007/s10495-024-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/pathology
- Hepatitis, Autoimmune/genetics
- Hepatitis, Autoimmune/drug therapy
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Janus Kinase 3/genetics
- Janus Kinase 3/metabolism
- Janus Kinase 3/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/immunology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
59
|
Rehermann B. Toward a better understanding of chronic hepatitis B virus infection. J Clin Invest 2024; 134:e185568. [PMID: 39352391 PMCID: PMC11444154 DOI: 10.1172/jci185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
|
60
|
Granito M, Alvarenga L, Ribeiro M, Carvalhosa P, Andrade T, Mesquita CT, Stockler-Pinto MB, Mafra D, Cardozo LF. Nattokinase as an adjuvant therapeutic strategy for non-communicable diseases: a review of fibrinolytic, antithrombotic, anti-inflammatory, and antioxidant effects. Expert Rev Cardiovasc Ther 2024; 22:565-574. [PMID: 39404094 DOI: 10.1080/14779072.2024.2416663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/10/2024] [Indexed: 11/10/2024]
Abstract
INTRODUCTION Nattokinase (NK) is the primary ingredient of natto, a traditional Asian food made from fermented soybean by Bacillus subtilis natto. Studies have shown that natto reduces the risk of cardiovascular disease (CVD) mortality due to its fibrinolytic and antithrombotic properties. A new field of studies also demonstrates that NK can mitigate molecular pathways related to inflammation and oxidative stress and can be considered an adjuvant strategy for use in many non-communicable diseases (NCDs). This paper is a narrative review of the literature. A search was conducted in PubMed and ScienceDirect up to July 2024. AREAS COVERED This review discusses the possible effects of NK on mitigating the common complications of NCDs, such as inflammation and oxidative stress. In addition, it provides an update on the most addressed areas related to NK's fibrinolytic and antithrombotic activities. EXPERT OPINION Due to the fibrinolytic and antithrombotic activity of nattokinase, and more recently added to the anti-inflammatory and antioxidant effects, this enzyme can be used as a new adjuvant therapeutic strategy to mitigate inflammation and oxidative stress in NCDs, including CVD.
Collapse
Affiliation(s)
- Mariana Granito
- Graduate Program in Nutricional Sciences, Estácio de Sá University (UNESA), Rio de Janeiro, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Priscila Carvalhosa
- Graduate Program in Nutricional Sciences, Estácio de Sá University (UNESA), Rio de Janeiro, Brazil
| | - Thaysi Andrade
- Graduate Program in Nutricional Sciences, Estácio de Sá University (UNESA), Rio de Janeiro, Brazil
| | - Claudio Tinoco Mesquita
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Santi T, Jo J, Harahap AR, Werdhani RA, Hadinegoro SRS, SahBandar IN, Prayitno A, Munasir Z, Vandenplas Y, Hegar B. The Improvement of Adaptive Immune Responses towards COVID-19 Following Diphtheria-Tetanus-Pertussis and SARS-CoV-2 Vaccinations in Indonesian Children: Exploring the Roles of Heterologous Immunity. Vaccines (Basel) 2024; 12:1032. [PMID: 39340062 PMCID: PMC11435621 DOI: 10.3390/vaccines12091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Routine childhood vaccination, e.g., for diphtheria, tetanus, and pertussis (DTP), might provide additional protection against SARS-CoV-2 infection. This concept of heterologous immunity was explored in healthy children receiving both DTP and inactivated SARS-CoV-2 vaccines. METHODS A cross-sectional study was performed on 154 healthy children aged 6-8 years old in Jakarta, Indonesia. Their vaccination status for the DTP (including a diphtheria-tetanus booster vaccine at 5 years old) and CoronaVac (from 6 years old) vaccines were recorded. Peripheral blood samples were collected from all participants, in which anti-diphtheria toxoid IgG and anti-SARS-CoV-2 S-RBD antibodies and T cell-derived IFN-γ were measured. RESULTS The study participants with complete DTP vaccination had significantly higher titers of anti-diphtheria toxoid IgG than the ones without (median = 0.9349 versus 0.2113 IU/mL; p < 0.0001). Upon stratification based on DTP and CoronaVac vaccination statuses, the participants with complete DTP and CoronaVac vaccinations had the highest titer of anti-SARS-CoV-2 S-RBD antibodies (median = 1196 U/mL) and the highest concentration of SARS-CoV-2-specific T cell-derived IFN-γ (median = 560.9 mIU/mL) among all the groups. CONCLUSIONS Healthy children aged 6-8 years old with complete DTP and CoronaVac vaccinations exhibited stronger SARS-CoV-2-specific T cell immune responses. This might suggest an additional benefit of routine childhood vaccination in generating protection against novel pathogens, presumably via heterologous immunity.
Collapse
Affiliation(s)
- Theresia Santi
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15811, Indonesia
| | - Alida Roswita Harahap
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Retno Asti Werdhani
- Department of Community Medicine, Cipto Mangunkkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Sri Rezeki S Hadinegoro
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ivo Novita SahBandar
- Department of Microbiology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan
| | - Ari Prayitno
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Zakiudin Munasir
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yvan Vandenplas
- Department of Pediatric, Universitair Ziekenhuis Brussel, 1090 Jette, Belgium
| | - Badriul Hegar
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
62
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
63
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
64
|
Namazova-Baranova L, Efendieva K, Levina J, Kalugina V. Food Allergy and Food Intolerance – New Developments. GLOBAL PEDIATRICS 2024; 9:100201. [DOI: 10.1016/j.gpeds.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
65
|
Cheng OJ, Lebish EJ, Jensen O, Jacenik D, Trivedi S, Cacioppo JG, Aubé J, Beswick EJ, Leung DT. Mucosal-associated invariant T cells modulate innate immune cells and inhibit colon cancer growth. Scand J Immunol 2024; 100:e13391. [PMID: 38773691 PMCID: PMC11315626 DOI: 10.1111/sji.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.
Collapse
Affiliation(s)
- Olivia J. Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Eric J. Lebish
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Owen Jensen
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jackson G. Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Daniel T. Leung
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
66
|
Chen S, Yao C, Tian N, Zhang C, Chen Y, Wang X, Jiang Y, Zhang T, Zeng T, Song Y. The interplay between persistent pathogen infections with tumor microenvironment and immunotherapy in cancer. Cancer Med 2024; 13:e70154. [PMID: 39240588 PMCID: PMC11378724 DOI: 10.1002/cam4.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic infections by pathogenic microorganisms play a significant role in cancer development, disrupting the body's immune system and microenvironment. This interference impairs the body's ability to eliminate these microorganisms promptly, allowing them to persist by evading immune defenses. AIMS This study aimed to explore how chronic pathogenic infections influence the immune microenvironment, impacting tumorigenesis, cancer progression, and treatment strategies. Additionally, it seeks to investigate the effects of these infections on specific immune checkpoints and identify potential targets for immunotherapy. METHODS We conducted searches, readings, and detailed analyses of key terms in databases like PubMed and Web of Science to evaluate the impact of chronic infections by pathogenic microorganisms on the immune microenvironment. RESULTS Our analysis demonstrates a significant association between persistent chronic infections by pathogenic microorganisms and tumorigenesis. Notable impacts on the immune microenvironment include changes in immune cell function and the regulation of immune checkpoints, offering insights into potential targets for cancer immunotherapy. DISCUSSION This study highlights the complex relationship between chronic infections and cancer development, presenting new opportunities for cancer immunotherapy by understanding their effects on the immune microenvironment. The influence of these infections on immune checkpoints emphasizes the crucial role of the immune system in cancer treatment. CONCLUSION Chronic infections by pathogenic microorganisms greatly affect the immune microenvironment, tumorigenesis, and cancer treatment. Unraveling the underlying mechanisms can unveil potential targets for immunotherapy, improving our comprehension of the immune response to cancer and potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Caihong Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, People's Republic of China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Xuting Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| |
Collapse
|
67
|
Fadlyana E, Rusmil K, Dwi Putra MG, Fulendry FP, Somantri NK, Putri AD, Sari RM, Puspita M, Dewi GP. Immunogenicity and Safety of SARS-CoV-2 Protein Subunit Recombinant Vaccine (IndoVac ®) as a Heterologous Booster Dose against COVID-19 in Indonesian Adolescents. Vaccines (Basel) 2024; 12:938. [PMID: 39204062 PMCID: PMC11360245 DOI: 10.3390/vaccines12080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Adolescents are vulnerable to Coronavirus disease 2019 (COVID-19) infections; thus, their antibodies should be maintained above the protective value. This study aimed to evaluate the immune response and safety to the SARS-CoV-2 protein subunit recombinant vaccine (IndoVac®) as a heterologous booster dose against COVID-19 in Indonesian adolescents. This open-label prospective intervention study enrolled 150 clinically healthy adolescents aged 12-17 years who had received complete primary doses of the CoronaVac® vaccine from Garuda Primary Care Centres in Bandung City. The result of immunogenicity was presented with a 95% confidence interval (CI) and analyzed with t-tests from 14 days and 3, 6, and 12 months. The neutralizing antibody geometric mean titers (GMTs) (IU/mL) at baseline and 14 days after booster dose were 303.26 and 2661.2, respectively. The geometric mean fold rises (GMFR) at 3, 6, and 12 months after booster dose were 6.67 (5.217-8.536), 3.87 (3.068-4.886), and 2.87 (2.232-3.685), respectively. Both the neutralizing antibody and IgG antibody were markedly higher in the adolescents than in the adults at every timepoint. The incidence rate of adverse effects (AEs) until 28 days after booster dose was 82.7%, with a higher number of local events reported. Most reported solicited AEs were local pain followed by myalgia with mild intensity. Unsolicited AEs varied with each of the incidence rates < 10%, mostly with mild intensity. Adverse events of special interest (AESI) were not observed. At the 12-month follow-up after the booster dose, four serious adverse events (SAEs) not related to investigational products and research procedures were noted. This study showed that IndoVac® has a favorable immunogenicity and safety profile as a booster in adolescents and that the antibody titer decreases over time.
Collapse
Affiliation(s)
- Eddy Fadlyana
- Clinical Research Unit, Growth and Development–Social Pediatrics Division, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, Indonesia; (K.R.); (M.G.D.P.); (F.P.F.); (A.D.P.)
| | - Kusnandi Rusmil
- Clinical Research Unit, Growth and Development–Social Pediatrics Division, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, Indonesia; (K.R.); (M.G.D.P.); (F.P.F.); (A.D.P.)
| | - Muhammad Gilang Dwi Putra
- Clinical Research Unit, Growth and Development–Social Pediatrics Division, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, Indonesia; (K.R.); (M.G.D.P.); (F.P.F.); (A.D.P.)
| | - Frizka Primadewi Fulendry
- Clinical Research Unit, Growth and Development–Social Pediatrics Division, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, Indonesia; (K.R.); (M.G.D.P.); (F.P.F.); (A.D.P.)
| | | | - Alvira Dwilestarie Putri
- Clinical Research Unit, Growth and Development–Social Pediatrics Division, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, Indonesia; (K.R.); (M.G.D.P.); (F.P.F.); (A.D.P.)
| | - Rini Mulia Sari
- Surveillance and Clinical Trial Division, PT Bio Farma, Bandung 40161, Indonesia; (R.M.S.); (M.P.); (G.P.D.)
| | - Mita Puspita
- Surveillance and Clinical Trial Division, PT Bio Farma, Bandung 40161, Indonesia; (R.M.S.); (M.P.); (G.P.D.)
| | - Gianita Puspita Dewi
- Surveillance and Clinical Trial Division, PT Bio Farma, Bandung 40161, Indonesia; (R.M.S.); (M.P.); (G.P.D.)
| |
Collapse
|
68
|
Peng J, Xie X, Fan T, Ma H, Li Y, Luo S, Yu M, Ding Y, Ma Y. Optimization of culture conditions for endophytic bacteria in mangrove plants and isolation and identification of bacteriocin. Front Pharmacol 2024; 15:1429423. [PMID: 39156104 PMCID: PMC11327053 DOI: 10.3389/fphar.2024.1429423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: The antibacterial protein PAG14 was extracted from a metabolite of Bacillus G14 isolated from mangrove plants. Methods: In this study, Pseudomonas aeruginosa, Pasteurell multocide, Enterobacter aerogenes, and Enterococcus faecalis were used as indicator bacteria to screen endophytes that exhibited antibacterial activity. The endophyte culture conditions were optimized to enhance productivity. Subsequently, the culture supernatant was salted using ammonium sulfate, followed by purification using dextran gel chromatography and ion exchange column techniques. Finally, the structures of antibacterial proteins were identified using mass spectrometry. Results and Discussion: The optimal culture conditions for Bacillus G14 were 2% mannitol, 0.5% fish peptone, 0.05% KH2PO4 + 0.05% K2HPO4 + 0.025% MnSO4·H2O. The antibacterial substances exhibited stability within the temperature range of 30-40°C and pH range of 5.0-7.0, while displaying sensitivity toward enzymes. The antibacterial activity decreased as the duration of UV irradiation increased. The antibacterial protein PAG14, isolated from the culture broth of Bacillus G14 through purification using dextran gel and ion-exchange columns, was identified as a class III bacteriocin using LC-MS/MS, similar to Lysozyme C. These findings serve as a theoretical foundation for the investigation and application of bacteriocins in food products.
Collapse
Affiliation(s)
- Jinju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingpeng Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Tingli Fan
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, China
| | - Haotian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shuaishuai Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Mengbo Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuexia Ding
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
69
|
Segbefia SP, Asandem DA, Pobee A, Asare B, Prah AD, Baba‐Adam R, Amponsah JA, Kyei‐Baafour E, van der Puije W, Osei F, Teye‐Adjei D, Agyemang S, Brenko T, Bentum‐Ennin L, Tetteh JKA, Bonney KJH, Sakyi SA, Amoah LE, Kusi KA. Expression patterns of immune checkpoint proteins and Plasmodium falciparum-induced cytokines in chronic hepatitis B virus-infected and uninfected individuals: A cross-sectional study. Health Sci Rep 2024; 7:e2280. [PMID: 39086506 PMCID: PMC11286663 DOI: 10.1002/hsr2.2280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Background and Aim Chronic hepatitis B virus (CHB) infection remains a major public health problem. The American Association for the Study of Liver Diseases (AASLD) 2018 Hepatitis B Guidelines provide that CHB individuals not requiring antiviral therapy yet are monitored to determine the need for antiviral therapy in the future; however, these tests do not include measurement of cytokines and immune cell characterization. This case-control study compared the cytokine and immune checkpoint protein expression profiles between CHB individuals not yet on antiviral treatment and hepatitis B virus (HBV)-negative individuals. Methods CD4 and CD8 T cells from CHB and HBV-negative individuals were characterized for immune checkpoint proteins programmed cell death-1 (PD1), T cell Immunoglobulin domain and mucin domain-containing protein 3 (TIM-3), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (CD152), and a memory marker CXCR3 (CD183) using flow cytometry. Malaria-induced cytokine expression levels were determined by stimulating their blood cells with Plasmodium falciparum 3D7 strain antigens (CSP, AMA-1, and TRAP) in whole blood assays, and cytokine levels were measured using a 13-plex Luminex kit. Results HBV-negative and CHB individuals had comparable levels of CD4+ and CD8+ T cells. However, a proportion of the CD4+ and CD8+ populations from both groups, which were CXCR3+, expressed PD-1 and CD152. The ability to produce cytokines in response to malaria antigen stimulation was not significantly different between the groups. Conclusion These findings support excluding CHB individuals from antiviral therapy at this stage of infection. However, CHB individuals require regular monitoring to determine the need for later antiviral treatment.
Collapse
Affiliation(s)
- Selorm P. Segbefia
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Molecular Medicine, School of Medicine and DentistryCollege of Health Sciences, KNUSTKumasiGhana
| | - Diana A. Asandem
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
- Department of Virology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Abigail Pobee
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Bright Asare
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Animal Biology and Conservation Science, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Ahu Diana Prah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Rawdat Baba‐Adam
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Jones Amo Amponsah
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Eric Kyei‐Baafour
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - William van der Puije
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Frank Osei
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Doreen Teye‐Adjei
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Seth Agyemang
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Theophilus Brenko
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Lutterodt Bentum‐Ennin
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - John K. A. Tetteh
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Kofi J. H. Bonney
- Department of Virology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and DentistryCollege of Health Sciences, KNUSTKumasiGhana
| | - Linda E. Amoah
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Kwadwo A. Kusi
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| |
Collapse
|
70
|
Amini A, Klenerman P, Provine NM. Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity. Curr Opin Virol 2024; 67:101412. [PMID: 38838550 PMCID: PMC11511680 DOI: 10.1016/j.coviro.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK; Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK.
| | - Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
71
|
Giannakopoulou E, Akrani I, Mpekoulis G, Frakolaki E, Dimitriou M, Myrianthopoulos V, Vassilaki N, Zoidis G. Novel Pyrazino[1,2- a]indole-1,3(2 H,4 H)-dione Derivatives Targeting the Replication of Flaviviridae Viruses: Structural and Mechanistic Insights. Viruses 2024; 16:1238. [PMID: 39205212 PMCID: PMC11360281 DOI: 10.3390/v16081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Infections with Flaviviridae viruses, such as hepatitis C (HCV), dengue (DENV), and yellow fever (YFV) viruses, are major public health problems worldwide. In the case of HCV, treatment is associated with drug resistance and high costs, while there is no clinically approved therapy for DENV and YFV. Consequently, there is still a need for new chemotherapies with alternative modes of action. We have previously identified novel 2-hydroxypyrazino[1,2-a]indole-1,3(2H,4H)-diones as metal-chelating inhibitors targeting HCV RNA replication. Here, by utilizing a structure-based approach, we rationally designed a second series of compounds by introducing various substituents at the indole core structure and at the imidic nitrogen, to improve specificity against the RNA-dependent RNA polymerase (RdRp). The resulting derivatives were evaluated for their potency against HCV genotype 1b, DENV2, and YFV-17D using stable replicon cell lines. The most favorable substitution was nitro at position 6 of the indole ring (compound 36), conferring EC50 1.6 μM against HCV 1b and 2.57 μΜ against HCV 1a, with a high selectivity index. Compound 52, carrying the acetohydroxamic acid functionality (-CH2CONHOH) on the imidic nitrogen, and compound 78, the methyl-substituted molecule at the position 4 indolediketopiperazine counterpart, were the most effective against DENV and YFV, respectively. Interestingly, compound 36 had a high genetic barrier to resistance and only one resistance mutation was detected, T181I in NS5B, suggesting that the compound target HCV RdRp is in accordance with our predicted model.
Collapse
Affiliation(s)
- Erofili Giannakopoulou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| | - Ifigeneia Akrani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| | - George Mpekoulis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Marios Dimitriou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Grigoris Zoidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| |
Collapse
|
72
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
73
|
Andreata F, Laura C, Ravà M, Krueger CC, Ficht X, Kawashima K, Beccaria CG, Moalli F, Partini B, Fumagalli V, Nosetto G, Di Lucia P, Montali I, Garcia-Manteiga JM, Bono EB, Giustini L, Perucchini C, Venzin V, Ranucci S, Inverso D, De Giovanni M, Genua M, Ostuni R, Lugli E, Isogawa M, Ferrari C, Boni C, Fisicaro P, Guidotti LG, Iannacone M. Therapeutic potential of co-signaling receptor modulation in hepatitis B. Cell 2024; 187:4078-4094.e21. [PMID: 38897196 PMCID: PMC11290321 DOI: 10.1016/j.cell.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.
Collapse
Affiliation(s)
- Francesco Andreata
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Laura
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Caroline C Krueger
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Keigo Kawashima
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristian G Beccaria
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bianca Partini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Nosetto
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - José M Garcia-Manteiga
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Venzin
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Renato Ostuni
- Vita-Salute San Raffaele University, Milan, Italy; San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Enrico Lugli
- IRCSS Humanitas Research Hospital, Rozzano, Italy
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
74
|
Benjamin-van Aalst O, Dupont C, van der Zee L, Garssen J, Knipping K. Goat Milk Allergy and a Potential Role for Goat Milk in Cow's Milk Allergy. Nutrients 2024; 16:2402. [PMID: 39125282 PMCID: PMC11314217 DOI: 10.3390/nu16152402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In many parts of the world, goat milk has been part of the human diet for millennia. Allergy to goat's milk, not associated with allergy to cow's milk, is a rare disorder, although some cases have been described. Goat milk proteins have substantial homology with cow's milk proteins and even show cross-reactivity; therefore, they are not advised as an alternative to cow's milk for infants with IgE-mediated cow's milk allergies. However, there are indications that, due to the composition of the goat milk proteins, goat milk proteins show lower allergenicity than cow's milk due to a lower αS1-casein content. For this reason, goat milk might be a better choice over cow's milk as a first source of protein when breastfeeding is not possible or after the breastfeeding period. Additionally, some studies show that goat milk could play a role in specific types of non-IgE-mediated cow milk allergy or even in the prevention of sensitization to cow's milk proteins. This review discusses a possible role of goat milk in non-IgE mediated allergy and the prevention or oral tolerance induction of milk allergy.
Collapse
Affiliation(s)
- Olga Benjamin-van Aalst
- Noordwest Hospital Group, 1815 JD Alkmaar, The Netherlands
- Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, 1091 AC Amsterdam, The Netherlands
| | - Christophe Dupont
- Ramsay Group, Pediatric Gastroenterology Department, Marcel Sembat Clinic, 75004 Paris, France
| | | | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Karen Knipping
- Ausnutria B.V., 8025 BM Zwolle, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
75
|
Duan M, Xiao H, Shi M, Xie Y, Zhao P, Li S, Chi X, Liu X, Zhuang H. Significant liver histological change is common in HBeAg-positive chronic hepatitis B with normal ALT. BMC Infect Dis 2024; 24:723. [PMID: 39044129 PMCID: PMC11264461 DOI: 10.1186/s12879-024-09617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND AND AIMS Numerous HBeAg-positive chronic hepatitis B (CHB) patients with persistently normal ALT have significant liver histopathology. It is imperative to identify true "immune tolerant" patients. We aimed to evaluate the liver histopathology features of HBeAg-positive CHB patients with normal ALT and the incidence of liver cirrhosis and HCC in CHB patients during follow-up. METHODS 179 HBeAg-positive CHB patients with normal ALT who performed liver biopsy from 2009 to 2018 were retrospectively analyzed. Liver necroinflammation ≥ G2 and/or liver fibrosis ≥ S2 was defined as significant liver histopathological change. RESULTS 57.5% patients were in the indeterminate phase with significant liver histological changes. The proportion of the patients with evident liver necroinflammation was higher in the high-normal ALT group (21-40U/L) when compared with the low-normal ALT group (≤ 20 U/L) (51.3% vs. 30.0%, p < 0.05), and patients aged ≥ 40 years had a higher proportion of significant fibrosis than those aged < 40 years (64.5% vs. 39.9%, p < 0.05). The percentages of patients with ≥ S2 and ≥ G2/S2 in the HBV DNA < 107 IU/mL group were higher than those in the HBV DNA ≥ 107 IU/mL group (72.7% vs. 40.1%, p < 0.01; 81.8% vs. 54.1%, p < 0.05). During follow-up, two of immune tolerant patients and four of indeterminate patients developed into cirrhosis, and one of immune tolerant patients and one of indeterminate patients developed into HCC, respectively. CONCLUSIONS HBeAg-positive CHB patients with high-normal ALT or HBV DNA < 107 IU/mL were tend to be indeterminate. Liver biopsy or noninvasive approaches are recommended to evaluate liver histopathology, and antiviral therapy is recommended for patients with significant liver histopathology.
Collapse
Affiliation(s)
- Menghui Duan
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- The Clinical Laboratory of Tianjin Chest Hospital, Tianjin, China
| | - Huanming Xiao
- Hepatology Department, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Meijie Shi
- Hepatology Department, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Yubao Xie
- Hepatology Department, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Pengtao Zhao
- Hepatology Department, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Sheng Li
- Hepatology Department, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Xiaoling Chi
- Hepatology Department, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong Province, 510120, China.
| | - Xueen Liu
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
76
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
77
|
Wang J, Lu H, Li Q. Hepatic macrophage niche: a bridge between HBV-mediated metabolic changes with intrahepatic inflammation. Front Immunol 2024; 15:1414594. [PMID: 39091506 PMCID: PMC11291371 DOI: 10.3389/fimmu.2024.1414594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatitis B Virus (HBV) is a stealthy and insidious pathogen capable of inducing chronic necro-inflammatory liver disease and hepatocellular carcinoma (HCC), resulting in over one million deaths worldwide per year. The traditional understanding of Chronic Hepatitis B (CHB) progression has focused on the complex interplay among ongoing virus replication, aberrant immune responses, and liver pathogenesis. However, the dynamic progression and crucial factors involved in the transition from HBV infection to immune activation and intrahepatic inflammation remain elusive. Recent insights have illuminated HBV's exploitation of the sodium taurocholate co-transporting polypeptide (NTCP) and manipulation of the cholesterol transport system shared between macrophages and hepatocytes for viral entry. These discoveries deepen our understanding of HBV as a virus that hijacks hepatocyte metabolism. Moreover, hepatic niche macrophages exhibit significant phenotypic and functional diversity, zonal characteristics, and play essential roles, either in maintaining liver homeostasis or contributing to the pathogenesis of chronic liver diseases. Therefore, we underscore recent revelations concerning the importance of hepatic niche macrophages in the context of viral hepatitis. This review particularly emphasizes the significant role of HBV-induced metabolic changes in hepatic macrophages as a key factor in the transition from viral infection to immune activation, ultimately culminating in liver inflammation. These metabolic alterations in hepatic macrophages offer promising targets for therapeutic interventions and serve as valuable early warning indicators, shedding light on the disease progression.
Collapse
Affiliation(s)
- Jun Wang
- The Third People’s Hospital of Shenzhen (National Clinical Research Center for Infectious Diseases) and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongzhou Lu
- The Third People’s Hospital of Shenzhen (National Clinical Research Center for Infectious Diseases) and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qian Li
- The Third People’s Hospital of Shenzhen (National Clinical Research Center for Infectious Diseases) and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
78
|
Lin X, Li Y, Wu Q, Lv Y, Zhu Y, Liu J, He L, Wang Z. Quality and Quantity of School Lunch in Nanjing: Based on Data from the Sunshine Restaurant Supervision Platform. Nutrients 2024; 16:2184. [PMID: 39064627 PMCID: PMC11280376 DOI: 10.3390/nu16142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
School lunch plays an important role in children's healthy growth. Previous investigations revealed many problems with school lunches, including unreasonable dietary structure and insufficient micronutrients. This study aimed to assess the dietary structure and nutritional quality of lunches in Nanjing primary and middle schools. A stratified cluster random sampling method was used to select 44 schools that supply lunch in 12 districts in Nanjing, with two primary and two middle schools in each district. Twenty-four primary and twenty middle schools were selected. The Mann-Whitney U test was used to explore the influencing factors. Findings revealed a serious shortage of milk and fruit in school lunches; supply of eggs, fish, shrimp, and shellfish was less than half of the recommended quantity; livestock and poultry supply exceeded the recommended level by over four times. Energy and nutrition intake were suboptimal. Provision of energy, carbohydrates, vitamins (A, B1, B2, and C), calcium, and iron in urban primary schools was significantly higher than that in non-urban primary schools. The same pattern of significantly higher nutrients was equally seen in urban middle schools compared with non-urban middle schools, indicating that food supply was affected by regional economies. Therefore, it is urgent to improve the quality of lunches, with a particular focus on those in non-urban areas.
Collapse
Affiliation(s)
- Xiaofang Lin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Yuanyuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Qiong Wu
- Nanjing Municipal Healthcare Institute for Primary and Secondary Schools, Nanjing 210002, China; (Q.W.); (Y.L.)
| | - Yizhou Lv
- Nanjing Municipal Healthcare Institute for Primary and Secondary Schools, Nanjing 210002, China; (Q.W.); (Y.L.)
| | - Yirong Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Jingwen Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Le He
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.L.); (Y.L.); (Y.Z.); (J.L.); (L.H.)
| |
Collapse
|
79
|
Figueiredo A, Auxtero MD, Santo M, Casimiro A, Costa IM. Risks of dairy derived excipients in medications for lactose intolerant and cow milk protein allergic patients. Sci Rep 2024; 14:15631. [PMID: 38972872 PMCID: PMC11228012 DOI: 10.1038/s41598-024-66380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
The use of lactose and cow milk protein (CMP) as potential allergens in pharmaceuticals and their ability to cause allergic reactions remains a significant concern in medicine. Lactose, a common pharmaceutical excipient due to its inert, inexpensive, and stable properties, is found in many prescription-only and over-the-counter medications. However, despite their widespread use, individuals with lactose intolerance (LI) or cow milk protein allergy (CMPA) may experience adverse reactions to these excipients. This study investigated the prevalence of lactose and other dairy-derived ingredients in pharmaceuticals marketed in Portugal. Using the Summary of Product Characteristics (SmPC) from the INFOMED database, various medications, including analgesics, antipyretics, non-steroidal anti-inflammatory drugs (NSAIDs), and antiasthmatics, were analyzed. Results showed a high prevalence of dairy-derived excipients, particularly in antiasthmatic drugs (62.6%) and NSAIDs (39%). Although CMP are not explicitly mentioned in SmPCs, the presence of lactose as an ingredient poses a risk of cross-contamination. The findings emphasize the need for healthcare professionals to be aware of potential allergens in medications and the importance of developing lactose-free alternatives to ensure the safety of patients with LI and CMPA. Further research is required to assess the safety and implications of lactose in medicines for these populations.
Collapse
Affiliation(s)
- Alexandra Figueiredo
- Instituto Universitário Egas Moniz (IUEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal.
- PharmSci Lab/ Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal.
| | - Maria Deolinda Auxtero
- Instituto Universitário Egas Moniz (IUEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
- PharmSci Lab/ Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
| | - Maria Santo
- Instituto Universitário Egas Moniz (IUEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
| | - Andreia Casimiro
- Instituto Universitário Egas Moniz (IUEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
- PharmSci Lab/ Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
| | - Isabel Margarida Costa
- Instituto Universitário Egas Moniz (IUEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
- PharmSci Lab/ Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário - Quinta da Granja, 2829-511, Monte de Caparica, Portugal
| |
Collapse
|
80
|
Liu M, Zhao T, Zhang J, Bu B, Zhang R, Xia X, Geng J. Estimating the key outcomes and hepatocellular carcinoma risk in patients in immune-tolerant phase of chronic hepatitis B virus infection: A systematic review and meta-analysis. Rev Med Virol 2024; 34:e2570. [PMID: 38964866 DOI: 10.1002/rmv.2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The question of whether patients in the immune-tolerant (IT) phase of chronic hepatitis B virus (HBV) infection should undergo antiviral therapy and determine the optimal regimen remains unclear. A comprehensive search of PubMed, Embase, MEDLINE, Cochrane Library, and Wanfang Data from inception to 5 December 2023, was conducted. Studies reporting on key outcomes such as HBV DNA undetectability, HBeAg loss or seroconversion, HBsAg loss or seroconversion, and hepatocellular carcinoma (HCC) incidence in patients in the IT phase of chronic HBV infection were included. In total, 23 studies were incorporated. Approximately 4% of patients in the IT phase achieved spontaneous HBeAg loss over 48 weeks of follow-up. Antiviral therapy demonstrated a favourable impact on HBV DNA negative conversion (Children: risk ratios [RR] = 6.83, 95% CI: 2.90-16.05; Adults: RR = 25.84, 95% CI: 6.47-103.31) and HBsAg loss rates (Children: RR = 9.49, 95% CI: 1.74-51.76; Adults: RR = 7.35, 95% CI: 1.41-38.27) for patients in the IT phase. Subgroup analysis revealed that in adult patients in the IT phase, interferon plus nucleos(t)ide analogues (NA)-treated patients exhibited a higher pooled rate of HBsAg loss or seroconversion than those treated with NA monotherapy (9% vs. 0%). Additionally, the pooled annual HCC incidence for patients in the IT phase was 3.03 cases per 1000 person-years (95% CI: 0.99-5.88). Adult patients in the IT phase had a significantly lower HCC incidence risk than HBeAg-positive indeterminate phase patients (RR = 0.46, 95% CI: 0.32-0.66), with no significant differences observed between IT and immune-active phases. Presently, there is insufficient evidence solely based on reducing the risk of HCC incidence, to recommend treating patients in the IT phase of chronic HBV infection. However, both adult and paediatric patients in the IT phase responded well to antiviral therapy, showing favourable rates of HBsAg loss or seroconversion.
Collapse
Affiliation(s)
- Min Liu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Taixue Zhao
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinyang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bing Bu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruyi Zhang
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
81
|
Fotros D, Noormohammadi M, Togha M, Ghorbani Z, Hekmatdoost A, Rafiee P, Torkan Z, Shirani P, Ansari H, Karami A, Khorsha F, Razeghi Jahromi S. Healthy eating index 2015 might be associated with migraine headaches: Results from a Case-Control study. Food Sci Nutr 2024; 12:5220-5230. [PMID: 39055195 PMCID: PMC11266926 DOI: 10.1002/fsn3.4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/03/2024] [Accepted: 04/02/2024] [Indexed: 07/27/2024] Open
Abstract
Migraine headaches are the most prevalent disabling primary headaches, affecting individuals at an active age. Dietary interventions are considered low-cost and practical approaches to migraine prophylaxis. Hence, the present study aimed to assess the association between adherence to the Healthy Eating Index 2015 (HEI-2015) and migraine headaches. The present case-control study was conducted on 476 newly diagnosed adults with migraine headaches, based on the International Classification of Headache Disorders 3rd edition (ICHDIII criteria(, and 512 healthy controls. Participants' dietary intakes were collected using a validated, 168-item semi-quantitative food frequency questionnaire (FFQ). The association between HEI-2015 and migraine headaches was assessed using logistic regression models. Although the trend was not statistically significant, being in the 4th quantile of the HEI-2015 was associated with about 50% lower odds of migraine headaches in both primary (adjusted for age and gender) (odds ratios (OR): 0.51, 95% confidence intervals (CI): 0.33, 0.78) and fully adjusted models (additionally adjusted for body mass index (BMI) and total calories) (adjusted OR: 0.50, 95%CI: 0.32, 0.77). Intriguingly, the odds of migraine headaches were significantly higher in those in the last quantile of "Total Fruits," which is equal to more than 237 g per 1000 kcal (aOR: 2.96, 95%CI: 1.99, 4.41) and "Whole Fruits," which is equal to more than 233 g per 1000 kcal (aOR: 2.90, 95%CI: 1.94, 4.31). Similarly, higher intakes of "Dairy," which is equal to more than 138 g per 1000 kcal (aOR: 2.66, 95%CI: 1.71, 4.14), and "Total Protein Foods," which is equal to more than 259 g per 1000 kcal (aOR: 2.41, 95%CI: 1.58, 3.70), were associated with higher odds of migraine headaches. The current study revealed an indirect association between HEI-2015 and its components, including "Greens and Beans," "Whole Grains," "Refined Grains," and "Added Sugars" and lower odds of migraine headaches.
Collapse
Affiliation(s)
- Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Morvarid Noormohammadi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Student Research Committee, Faculty of Public Health BranchIran University of Medical SciencesTehranIran
| | - Mansoureh Togha
- Headache Department, Iranian Centre of Neurological Research, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Zeinab Ghorbani
- Department of Clinical NutritionSchool of MedicineGuilan University of Medical SciencesRashtIran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Pegah Rafiee
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Headache Department, Iranian Centre of Neurological Research, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Zahra Torkan
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Headache Department, Iranian Centre of Neurological Research, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Pedram Shirani
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Headache Department, Iranian Centre of Neurological Research, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Hossein Ansari
- Department of NeurologyUniversity of California san Diego (UCSD)San DiegoCaliforniaUSA
| | - Ahmadreza Karami
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Headache Department, Iranian Centre of Neurological Research, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Faezeh Khorsha
- Headache Department, Iranian Centre of Neurological Research, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Multiple Sclerosis Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
82
|
Zhang M, Kong Y, Xu X, Sun Y, Jia J, You H. "Treat-all" Strategy for Patients with Chronic Hepatitis B Virus Infection in China: Are We There Yet? J Clin Transl Hepatol 2024; 12:589-593. [PMID: 38974957 PMCID: PMC11224901 DOI: 10.14218/jcth.2024.00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 07/09/2024] Open
Abstract
Chronic hepatitis B remains the primary cause of liver-related events in China. The World Health Organization set a goal to eliminate viral hepatitis as a public health threat by 2030. However, achieving this goal appears challenging due to the current low rates of diagnosis and treatment. The "Treat-all" strategy, which proposes treating all patients with detectable hepatitis B virus (HBV) DNA or even all patients with positive HBsAg, has been suggested to simplify anti-HBV treatment. In 2022, the Chinese Society of Hepatology and the Chinese Society of Infectious Diseases updated the guidelines for the prevention and treatment of chronic hepatitis B in China, expanding antiviral indications and simplifying the treatment algorithm. According to this latest guideline, nearly 95% of patients with detectable HBV DNA are eligible for antiviral treatment. This review aimed to provide a detailed interpretation of the treatment indications outlined in the Chinese Guidelines for the Prevention and Treatment of Chronic Hepatitis B (version 2022) and to identify gaps in achieving the "Treat-all" strategy in China.
Collapse
Affiliation(s)
- Mengyang Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Xiaoqian Xu
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| |
Collapse
|
83
|
Ito E, Yamasaki S. Regulation of MAIT cells through host-derived antigens. Front Immunol 2024; 15:1424987. [PMID: 38979423 PMCID: PMC11228242 DOI: 10.3389/fimmu.2024.1424987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
84
|
Pinontoan R, Purnomo JS, Avissa EB, Tanojo JP, Djuan M, Vidian V, Samantha A, Jo J, Steven E. In-vitro and in-silico analyses of the thrombolytic potential of green kiwifruit. Sci Rep 2024; 14:13799. [PMID: 38877048 PMCID: PMC11178772 DOI: 10.1038/s41598-024-64160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Cardiovascular diseases (CVDs), mainly caused by thrombosis complications, are the leading cause of mortality worldwide, making the development of alternative treatments highly desirable. In this study, the thrombolytic potential of green kiwifruit (Actinidia deliciosa cultivar Hayward) was assessed using in-vitro and in-silico approaches. The crude green kiwifruit extract demonstrated the ability to reduce blood clots significantly by 73.0 ± 1.12% (P < 0.01) within 6 h, with rapid degradation of Aα and Bβ fibrin chains followed by the γ chain in fibrinolytic assays. Molecular docking revealed six favorable conformations for the kiwifruit enzyme actinidin (ADHact) and fibrin chains, supported by spontaneous binding energies and distances. Moreover, molecular dynamics simulation confirmed the binding stability of the complexes of these conformations, as indicated by the stable binding affinity, high number of hydrogen bonds, and consistent distances between the catalytic residue Cys25 of ADHact and the peptide bond. The better overall binding affinity of ADHact to fibrin chains Aα and Bβ may contribute to their faster degradation, supporting the fibrinolytic results. In conclusion, this study demonstrated the thrombolytic potential of the green kiwifruit-derived enzyme and highlighted its potential role as a natural plant-based prophylactic and therapeutic agent for CVDs.
Collapse
Affiliation(s)
- Reinhard Pinontoan
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia.
| | | | - Elvina Bella Avissa
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Jessica Pricilla Tanojo
- Center of Excellence Applied Science Academy, Sekolah Pelita Harapan Lippo Village, Tangerang, 15810, Indonesia
| | - Moses Djuan
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Valerie Vidian
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Ariela Samantha
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Juandy Jo
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Lippo Karawaci, Tangerang, 15810, Indonesia
| | - Eden Steven
- Center of Excellence Applied Science Academy, Sekolah Pelita Harapan Lippo Village, Tangerang, 15810, Indonesia
- Emmerich Research Center, Jakarta, 14450, Indonesia
| |
Collapse
|
85
|
Garcia Moreno AS, Guicciardi ME, Wixom AQ, Jessen E, Yang J, Ilyas SI, Bianchi JK, Pinto e Vairo F, Lazaridis KN, Gores GJ. IL-17 signaling in primary sclerosing cholangitis patient-derived organoids. Hepatol Commun 2024; 8:e0454. [PMID: 38829197 PMCID: PMC11150034 DOI: 10.1097/hc9.0000000000000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.
Collapse
Affiliation(s)
- Ana S. Garcia Moreno
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria E. Guicciardi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Q. Wixom
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jackie K. Bianchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto e Vairo
- Center for Individualized Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
86
|
Sun B, Liang Z, Wang Y, Yu Y, Zhou X, Geng X, Li B. A 3D spheroid model of quadruple cell co-culture with improved liver functions for hepatotoxicity prediction. Toxicology 2024; 505:153829. [PMID: 38740170 DOI: 10.1016/j.tox.2024.153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.
Collapse
Affiliation(s)
- Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Zihe Liang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
87
|
Banerjee A, Das D, Mukherjee S, Maji BK. Comprehensive study of the interplay between immunological and metabolic factors in hepatic steatosis. Int Immunopharmacol 2024; 133:112091. [PMID: 38657500 DOI: 10.1016/j.intimp.2024.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The pathophysiology of hepatic steatosis is thoroughly reviewed in this comprehensive report, with particular attention to the complex interactions between inflammatory pathways, insulin resistance, lipid metabolism, metabolic dysregulation, and immunological responses in the liver including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). The study highlights the role of immune cell regulation in disease progression and explores the potential of immune cell-specific treatments for treating hepatic disorders. The development of liver disorders is significantly influenced by immune cells, including dendritic cells, T cells, and natural killer cells. Clinical investigations show that immune cell-specific treatments can effectively reduce liver fibrosis and inflammation. Future research should focus on finding new immunological targets for therapeutic interventions, as well as addressing the management challenges associated with NAFLD/NASH. Hepatic immune microorganisms also impact liver homeostasis and disorders. Improvements in immune cell regulation and liver transplantation methods give patients hope for better prognoses. Important phases include optimizing the selection of donors for malignancy of the liver, using machine perfusion for organ preservation, and fine-tuning immunosuppressive strategies. For focused treatments in hepatic steatosis, it is imperative to understand the intricate interactions between immune and metabolic variables. Understanding the liver's heterogeneous immune profile, encompassing a range of immune cell subpopulations, is crucial for formulating focused therapeutic interventions. To improve patient care and outcomes in hepatic illnesses, there is an urgent need for further research and innovation. Therefore, to effectively treat hepatic steatosis, it is important to enhance therapeutic techniques and maximize liver transplantation strategies.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| | - Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| |
Collapse
|
88
|
Zhang B, Chen P, Zhu J, Lu Y. The quantity, function and anti-tumor effect of Mucosal associated invariant T cells in patients with bladder cancer. Int Immunopharmacol 2024; 133:111892. [PMID: 38663315 DOI: 10.1016/j.intimp.2024.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Bladder cancer (BC), a prevalent malignancy in the urinary system, often poses challenges for effective treatment. Immunotherapy, harnessing the immune system, has exhibited promise in early-stage clinical trials. Mucosal associated invariant T (MAIT) cells, a subset of immune cells implicated in various diseases, including certain cancer, have yet to be explored in BC patients. We aimed to investigate the quantity, function, and anti-tumor effects of MAIT cells in BC patients. METHODS A total of 75 newly diagnosed BC patients and 183 healthy volunteers were included. Blood samples were collected and analyzed to evaluate the quantity and function of MAIT cells. Surgical resection provided BC tissues for further analysis, and the clinical features of BC tumors were collected and their relationship with MAIT cells was explored. RESULTS MAIT cells were identified in both healthy individuals and BC patients. The proportion of MAIT cells in the peripheral blood of BC patients did not significantly differ from that of healthy controls. However, the study revealed a correlation between the proportion of IFN-γ producing MAIT cells and tumor number and invasion in BC patients. Furthermore, MAIT cells exhibited cytotoxic effects on BC cells in vitro and in vivo. CONCLUSIONS This study sheds light on the role of MAIT cells in BC. While the quantity of MAIT cells showed no significant change in BC patients, their functional attributes and association with tumor characteristics suggest their potential as an immunotherapy target in BC treatment.
Collapse
Affiliation(s)
- Baodan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pengcheng Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Zhu
- Department of Psychiatry, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
89
|
Jiang C, Zhao G, Wang H, Zheng W, Zhang R, Wang L, Zheng Z. Comparative genomics analysis and transposon mutagenesis provides new insights into high menaquinone-7 biosynthetic potential of Bacillus subtilis natto. Gene 2024; 907:148264. [PMID: 38346457 DOI: 10.1016/j.gene.2024.148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This research combined Whole-Genome sequencing, intraspecific comparative genomics and transposon mutagenesis to investigate the menaquinone-7 (MK-7) synthesis potential in Bacillus subtilis natto. First, Whole-Genome sequencing showed that Bacillus subtilis natto BN-P15-11-1 contains one single circular chromosome in size of 3,982,436 bp with a GC content of 43.85 %, harboring 4,053 predicted coding genes. Next, the comparative genomics analysis among strain BN-P15-11-1 with model Bacillus subtilis 168 and four typical Bacillus subtilis natto strains proves that the closer evolutionary relationship Bacillus subtilis natto BN-P15-11-1 and Bacillus subtilis 168 both exhibit strong biosynthetic potential. To further dig for MK-7 biosynthesis latent capacity of BN-P15-11-1, we constructed a mutant library using transposons and a high throughput screening method using microplates. We obtained a YqgQ deficient high MK-7 yield strain F4 with a yield 3.02 times that of the parent strain. Experiments also showed that the high yield mutants had defects in different transcription and translation regulatory factor genes, indicating that regulatory factor defects may affect the biosynthesis and accumulation of MK-7 by altering the overall metabolic level. The findings of this study will provide more novel insights on the precise identification and rational utilization of the Bacillus subtilis subspecies for biosynthesis latent capacity.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Wenqian Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| |
Collapse
|
90
|
Weisbrod L, Capriotti L, Hofmann M, Spieler V, Dersch H, Voedisch B, Schmidt P, Knake S. FASTMAP-a flexible and scalable immunopeptidomics pipeline for HLA- and antigen-specific T-cell epitope mapping based on artificial antigen-presenting cells. Front Immunol 2024; 15:1386160. [PMID: 38779658 PMCID: PMC11109385 DOI: 10.3389/fimmu.2024.1386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.
Collapse
Affiliation(s)
- Luisa Weisbrod
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Luigi Capriotti
- Analytical Biochemistry, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Marco Hofmann
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Valerie Spieler
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Herbert Dersch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Bernd Voedisch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Peter Schmidt
- Protein Biochemistry, Bio21 Institute, CSL Limited, Parkville, VIC, Australia
| | - Susanne Knake
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
91
|
Lai X, OuYang W, Li S, Qiu J, Zhang H, Jiang T, Qin X, Tang L, Gu Y, Yao Z, Peng S. Predictive role of early treatment dynamics of HBV RNA and HBcrAg for HBeAg seroconversion in children with chronic hepatitis B. J Med Virol 2024; 96:e29670. [PMID: 38773810 DOI: 10.1002/jmv.29670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
This study aimed to assess the predictive capacity of emerging serological markers, serum HBV RNA and HBcrAg, for HBeAg seroconversion in children with HBeAg-positive chronic hepatitis B (CHB). Treatment-naïve HBeAg-positive CHB children who admitted to the Liver Disease Center of Hunan Children's Hospital between April 2021 and September 2022 and received treatment with the combined entecavir and interferon-alpha treatment were recruited. Serum HBV RNA and HBcrAg were measured at baseline and Weeks 12, 24, and 48 of treatment. Our study showed that serum HBV RNA (HR = 0.71, 95% CI: 0.56-0.91, p = 0.006), HBcrAg (HR = 0.60, 95% CI: 0.43-0.84, p = 0.003), and HBsAg (HR = 0.49, 95%CI: 0.36-0.69, p < 0.001) at Week 12 were independent predictors of HBeAg seroconversion. ROC curve analysis presented that serum HBV RNA decline value (ΔHBV RNA) at Week 36 and HBcrAg decline value (ΔHBcrAg) at Week 12 (AUC = 0.871, p = 0.003 and AUC = 0.810, p = 0.003, respectively) could effectively predict HBeAg seroconversion. Furthermore, the optimal critical values were determined and the children with ΔHBV RNA > 3.759 log10 copies/mL at Week 36 or ΔHBcrAg >0.350 log10 U/mL at Week 12 more likely to achieve HBeAg seroconversion. The serum HBV RNA and HBcrAg provide new insights into the treatment of CHB in children. Early assessment of serum HBV RNA and HBcrAg during treatment can assist clinical decision-making and optimize individualized therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lai
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
- The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, China
| | - Wenxian OuYang
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Shuangjie Li
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Jun Qiu
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Hui Zhang
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Tao Jiang
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Xiaomei Qin
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Lian Tang
- Liver Disease Center, Hunan Children's Hospital, Changsha, China
| | - Yingping Gu
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhenzhen Yao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Songxu Peng
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
92
|
Bengtsson B, Maucourant C, Sandberg JK, Björkström NK, Hagström H. Evaluation of mucosal-associated invariant T-cells as a potential biomarker to predict infection risk in liver cirrhosis. PLoS One 2024; 19:e0294695. [PMID: 38691552 PMCID: PMC11062522 DOI: 10.1371/journal.pone.0294695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND AND AIMS Infection is a serious complication in patients with cirrhosis. Mucosal-associated invariant T (MAIT) cells are involved in the immune defense against infections and known to be impaired in several chronic conditions, including cirrhosis. Here, we evaluated if MAIT cell levels in peripheral blood are associated with risk of bacterial infections in patients with cirrhosis. METHODS Patients with cirrhosis seen at the Karolinska University Hospital, Stockholm, Sweden, between 2016 and 2019 were included. Levels of MAIT cells in peripheral blood were determined using flow cytometry. Baseline and follow-up data after at least two years of follow-up were collected by chart review for the primary outcome (bacterial infection) and secondary outcomes (decompensation and death). Competing risk and Cox regression were performed. RESULTS We included 106 patients with cirrhosis. The median MAIT cells fraction in the circulation was 0.8% in cirrhosis compared to 6.1% in healthy controls. In contrast to our hypothesis, we found an association in the adjusted analysis between relatively preserved MAIT cell levels, and a slightly higher risk to develop bacterial infections (adjusted subdistribution hazard ratio (aSHR) 1.15 (95%CI = 1.01-1.31). However, MAIT cell levels were not associated with the risk of hepatic decompensation (aSHR 1.19 (95%CI = 0.91-1.56)) nor with death (adjusted hazard ratio 1.10 (95%CI = 0.97-1.22)). CONCLUSIONS Relatively preserved MAIT cell levels in blood of patients with cirrhosis were associated with a somewhat higher risk of bacterial infections. The clinical relevance of this might not be strong. MAIT cells might however be an interesting biomarker to explore in future studies.
Collapse
Affiliation(s)
- Bonnie Bengtsson
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
93
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 PMCID: PMC12045158 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J. Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
94
|
Zong Q, Zhang H, Liu F, Li J, Liu Q, Duan Z, Duan W, Ruan M, Zhang J, Liu Y, Zhou Q, Wang Q. Activation of the cGAS-STING pathway by viral dsDNA leading to M1 polarization of macrophages mediates antiviral activity against hepatitis B virus. Immunobiology 2024; 229:152810. [PMID: 38772101 DOI: 10.1016/j.imbio.2024.152810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND AIMS Activation of the cGAS-STING pathway induces the production of type I interferons, initiating the antiviral immune response, which contributes to the clearance of pathogens. Previous studies have shown that STING agonists promote hepatitis B virus (HBV) clearance; however, few studies have investigated the effect of activating the cGAS-STING pathway in macrophages on HBV. METHODS The polarization status of HBV particle-stimulated RAW264.7 macrophages was analyzed. After stimulation with HBV particles, the analysis focused on determining whether the DNA sensors in RAW264.7 macrophages recognized the viral double-stranded DNA (dsDNA) and evaluating the activation of the cGAS-STING pathway. Coculture of mouse macrophages and hepatocytes harboring HBV was used to study the antiviral activity of HBV-stimulated RAW264.7 macrophages. RESULTS After stimulation with HBV particles, HBV relaxed circular DNA (rcDNA) was detected in RAW264.7 macrophages, and the protein expression of phospho-STING, phospho-TBK1, and phospho-IRF3 in the STING pathway was increased, as shown by Western blot analysis, which revealed that M1 polarization of macrophages was caused by increased expression of CD86. RT-PCR analyses revealed elevated expression of M1 macrophage polarization-associated cytokines such as TNFα, IL-1β, iNOS, and IFNα/β. In the coculture experiment, both HBsAg and HBeAg expression levels were significantly decreased in AML12-HBV1.3 cells cocultured with the supernatants of HBV-stimulated RAW264.7 macrophages. CONCLUSION The results suggest that macrophages can endocytose HBV particles. Additionally, viral dsDNA can be recognized by DNA pattern recognition receptors, which in turn activate the cGAS-STING pathway, promoting the M1 polarization of macrophages, while no significant M2 polarization is observed. Macrophages stimulated with HBV particles exhibit enhanced antiviral activity against HBV.
Collapse
Affiliation(s)
- Qiyin Zong
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Zhang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Futing Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianfei Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi Duan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanlu Duan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengqi Ruan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Zhang
- Department of Geriatric Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Microbiology, School of Basic Medical, Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qin Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
95
|
Putera AM, Ramadhianty L. Factors Determining Course of IgE-Mediated Cow's Milk Allergy. Indian J Pediatr 2024; 91:514. [PMID: 37945983 DOI: 10.1007/s12098-023-04917-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Azwin Mengindra Putera
- Department of Child Health, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Lailita Ramadhianty
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
96
|
Sayaf K, Battistella S, Russo FP. NLRP3 Inflammasome in Acute and Chronic Liver Diseases. Int J Mol Sci 2024; 25:4537. [PMID: 38674122 PMCID: PMC11049922 DOI: 10.3390/ijms25084537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is an intracellular complex that upon external stimuli or contact with specific ligands, recruits other components, forming the NLRP3 inflammasome. The NLRP3 inflammasome mainly mediates pyroptosis, a highly inflammatory mode of regulated cell death, as well as IL-18 and IL-1β production. Acute and chronic liver diseases are characterized by a massive influx of pro-inflammatory stimuli enriched in reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs) that promote the assemblage and activation of the NLRP3 inflammasome. As the major cause of inflammatory cytokine storm, the NLRP3 inflammasome exacerbates liver diseases, even though it might exert protective effects in regards to hepatitis C and B virus infection (HCV and HBV). Here, we summarize the current knowledge concerning NLRP3 inflammasome function in both acute and chronic liver disease and in the post liver transplant setting, focusing on the molecular mechanisms involved in NLRP3 activity.
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
| | - Sara Battistella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35128 Padua, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35128 Padua, Italy
| |
Collapse
|
97
|
Sun L, Han S, Duan S, Mao L, Li F, Tu Z, Che H. Assessing and Comparing Potential Allergenicity of Two Partially Hydrolyzed Whey-Based Formulas for Infants: A Population-Based Study in China. Mol Nutr Food Res 2024:e2300909. [PMID: 38602246 DOI: 10.1002/mnfr.202300909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Indexed: 04/12/2024]
Abstract
SCOPE In cases where breast milk is unavailable or inadequate, hydrolyzed infant formula is recommended as the primary alternative. The aim of this study is to assess and compare the allergenicity of two partially hydrolyzed whey-based formulas (PHF-Ws) using serum samples from patients with cow's milk allergy (CMA). METHODS AND RESULTS LC-MS/MS technology is used to investigate the peptide distribution in both samples. The immunoreactivity of two PHF-Ws in 27 serum samples from 50 Chinese infants (02 years) with CMA is analyzed. The results demonstrate that even with a similar a degree of hydrolysis (DH), primary protein sources, peptides with molecular weights <5 kDa, and differences in the number of residual allergenic epitopes in the hydrolyzed peptide segments can lead to varying immune responses. CONCLUSION The two PHF-Ws have notably high intolerance rates, exceeding 10% among infants with CMA. Therefore, suggesting that PHF-Ws may not be suitable for infants and children with CMA in China.
Collapse
Affiliation(s)
- Lijuan Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Shiwen Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co., Ltd., Inner Mongolia Dairy Technology. Research Institute Co. Ltd., 8 Jinshan Road, Hohhot, Inner Mongolia, P. R. China
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Fang Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Inner Mongolia Dairy Technology. Research Institute Co. Ltd., 8 Jinshan Road, Hohhot, Inner Mongolia, P. R. China
| | - Zhenhua Tu
- China National Research Institute of Food & Fermentation Industries Co., Ltd., Building 6, Yard 24, Jiuxianqiao Middle Road, Chaoyang District, Beijing, P. R. China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
98
|
Tang J, Zhang J, Zhang G, Peng W, Ling N, Zhou Y, Xu H, Ren H, Chen M. Stat3 activation-triggered transcriptional networks govern the early stage of HBV-induced hepatic inflammation. mBio 2024; 15:e0306823. [PMID: 38440978 PMCID: PMC11005361 DOI: 10.1128/mbio.03068-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
The chronic carrier state of the hepatitis B virus (HBV) often leads to the development of liver inflammation as carriers age. However, the exact mechanisms that trigger this hepatic inflammation remain poorly defined. We analyzed the sequential processes during the onset of liver inflammation based on time-course transcriptome and transcriptional regulatory networks in an HBV transgenic (HBV-Tg) mice model and chronic HBV-infected (CHB) patients (data from GSE83148). The key transcriptional factor (TF) responsible for hepatic inflammation occurrence was identified and then validated both in HBV-Tg mice and liver specimens from young CHB patients. By time-course analysis, an early stage of hepatic inflammation was demonstrated in 3-month-old HBV-Tg mice: a marked upregulation of genes related to inflammation (Saa1/2, S100a8/9/11, or Il1β), innate immunity (Tlr2, Tlr7, or Tlr8), and cells chemotaxis (Ccr2, Cxcl1, Cxcl13, or Cxcl14). Within CHB samples, a unique early stage of inflammation activation was discriminated from immune tolerance and immune activation groups based on distinct gene expression patterns. Enhanced activation of TF Stat3 was strongly associated with increased inflammatory gene expression in this early stage of inflammation. Expression of phosphorylated Stat3 was higher in liver specimens from young CHB patients with relatively higher alanine aminotransferase levels. Specific inhibition of Stat3 activation significantly attenuated the degree of liver inflammation, the expression of inflammation-related genes, and the inflammatory monocytes and macrophages in 3-month-old HBV-Tg mice. Stat3 activation is essential for hepatic inflammation occurrence and is a novel indicator of early-stage immune activation in chronic HBV carriers. IMPORTANCE Until now, it remains a mystery that chronic hepatitis B virus (HBV)-infected patients in the "immune tolerance phase" will transition to the "immune activation phase" as they age. In this study, we reveal that Stat3 activation-triggered hepatic transcriptional alterations are distinctive characteristics of the early stage of immune/inflammation activation in chronic HBV infection. For the first time, we discover a mechanism that might trigger the transition from immune tolerance to immune activation in chronic HBV carriers.
Collapse
Affiliation(s)
- Jinglin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxuan Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Gaoli Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
99
|
Ou M, Zhang W, Zhang W, Guo J, Huang R, Wang J, Liu J, Xia J, Wu C, Zhu Y, Chen Y. Soluble Programmed Cell Death 1 Protein Is a Promising Biomarker to Predict Severe Liver Inflammation in Chronic Hepatitis B Patients. ACS OMEGA 2024; 9:16716-16724. [PMID: 38617617 PMCID: PMC11007827 DOI: 10.1021/acsomega.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Background and Aims: Liver inflammation is important in guiding the initiation of antiviral treatment and affects the progression of chronic hepatitis B(CHB). The soluble programmed cell death 1 protein (sPD-1) was upregulated in inflammatory and infectious diseases and correlated with disease severity. We aimed to investigate the correlation between serum sPD-1 levels and liver inflammation in CHB patients and their role in indicating liver inflammation. Methods: 241 CHB patients who underwent liver biopsy were enrolled. The correlation between sPD-1 levels and the degree of liver inflammation was analyzed. Univariate and multivariate logistic regression analyses were performed to analyze independent variables of severe liver inflammation. Binary logistic regression analysis was conducted to construct a predictive model for severe liver inflammation, and the receiver operating characteristic curve (ROC) was used to evaluate the diagnostic accuracy of the predictive model. Results: sPD-1 was highest in CHB patients with severe liver inflammation, which was higher than that in CHB patients with mild or moderate liver inflammation (P < 0.001). Besides, sPD-1 was weakly correlated with AST (r = 0.278, P < 0.001). Multivariable analysis showed that sPD-1 was an independent predictor of severe liver inflammation. The predictive model containing sPD-1 had areas under the ROC (AUROCs) of 0.917 and 0.921 in predicting severe liver inflammation in CHB patients and CHB patients with ALT ≤ 1× upper limit of normal (ULN), respectively. Conclusions: Serum sPD-1 level is associated with liver inflammation in CHB patients, and high levels of sPD-1 reflect severe liver inflammation. Serum sPD-1 is an independent predictor of severe liver inflammation and shows improved diagnostic accuracy when combined with other clinical indicators.
Collapse
Affiliation(s)
- Mingrong Ou
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital
Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Weiming Zhang
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wen Zhang
- Department
of Laboratory Medicine, Joint Institute of Nanjing Drum Tower Hospital
for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210008, China
| | | | - Rui Huang
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Jian Wang
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Jiacheng Liu
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Juan Xia
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Chao Wu
- Department
of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yijia Zhu
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital
Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Yuxin Chen
- Department
of Laboratory Medicine, Nanjing Drum Tower Hospital
Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
100
|
Bartley HE, Turner EKL, Ford TJ, Cherian S. Epidemiology and assessment of Hepatitis B positive children in Western Australia. J Paediatr Child Health 2024; 60:125-131. [PMID: 38655904 DOI: 10.1111/jpc.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
AIM To describe the characteristics of patients with chronic hepatitis B (CHB) presenting to a tertiary paediatric hospital in Perth, Western Australia. Review of implementation of previous follow-up recommendations for the cohort was also undertaken. METHOD A retrospective data analysis of all individuals aged between 0 and 17 years presenting to the tertiary children's hospital who were hepatitis B surface antigen (HBsAg) positive over 8 years (2013-2020). Demographic features, clinical progress and follow up are described, including proportion transferred to adult services. RESULTS Seventy-four patients were identified to have CHB; mean age at diagnosis 11 years; standard deviation 4 years; 41 (55%) male. Cultural and ethnolinguistic diversity was high; 74% (n = 55) were from refugee-like backgrounds. Many did not demonstrate English proficiency (23/40; 75%) and 7 (10%) Australian born including 4 patients who were Aboriginal. Most patients (58%) with CHB were in the hepatitis B e antigen-positive chronic infection phase with no intervention provided. Seventeen children had undergone liver ultrasonography and one underwent liver biopsy; none received antiviral treatment. Follow up was concerning; 28 (38%) had at least one clinic non-attendance, 24 (32%) lost to follow-up and interpreter utilisation was poorly documented. Thirty-nine (53%) were transferred to adult services with only 56% attending follow-up. CONCLUSION CHB burden is higher in those from culturally and ethnolinguistically diverse backgrounds. There is a significant loss to follow-up and suboptimal transfer to adult services. Improved recall, education and referral processes are necessary to overcome language, socioeconomic and cultural barriers. Although childhood complications are infrequent, longitudinal monitoring is crucial to prevent long-term complications and adult morbidity.
Collapse
Affiliation(s)
- Hannah Elizabeth Bartley
- Departments of General Paediatrics and Refugee Health Service, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Emma Kate Lefroy Turner
- Department of Gastroenterology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Timothy John Ford
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
- Discipline of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Sarah Cherian
- Departments of General Paediatrics and Refugee Health Service, Perth Children's Hospital, Perth, Western Australia, Australia
- Discipline of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre of Vaccines & Infectious Diseases, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Perth, Western Australia, Australia
| |
Collapse
|