51
|
Zammit MD, Betthauser TJ, McVea AK, Laymon CM, Tudorascu DL, Johnson SC, Hartley SL, Converse AK, Minhas DS, Zaman SH, Ances BM, Stone CK, Mathis CA, Cohen AD, Klunk WE, Handen BL, Christian BT. Characterizing the emergence of amyloid and tau burden in Down syndrome. Alzheimers Dement 2024; 20:388-398. [PMID: 37641577 PMCID: PMC10843570 DOI: 10.1002/alz.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Almost all individuals with Down syndrome (DS) will develop neuropathological features of Alzheimer's disease (AD). Understanding AD biomarker trajectories is necessary for DS-specific clinical interventions and interpretation of drug-related changes in the disease trajectory. METHODS A total of 177 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) underwent positron emission tomography (PET) and MR imaging. Amyloid-beta (Aβ) trajectories were modeled to provide individual-level estimates of Aβ-positive (A+) chronicity, which were compared against longitudinal tau change. RESULTS Elevated tau was observed in all NFT regions following A+ and longitudinal tau increased with respect to A+ chronicity. Tau increases in NFT regions I-III was observed 0-2.5 years following A+. Nearly all A+ individuals had tau increases in the medial temporal lobe. DISCUSSION These findings highlight the rapid accumulation of amyloid and early onset of tau relative to amyloid in DS and provide a strategy for temporally characterizing AD neuropathology progression that is specific to the DS population and independent of chronological age. HIGHLIGHTS Longitudinal amyloid trajectories reveal rapid Aβ accumulation in Down syndrome NFT stage tau was strongly associated with A+ chronicity Early longitudinal tau increases were observed 2.5-5 years after reaching A.
Collapse
Affiliation(s)
| | - Tobey J. Betthauser
- University of Wisconsin‐Madison Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Andrew K. McVea
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
| | - Charles M. Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana L. Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sterling C. Johnson
- University of Wisconsin‐Madison Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sigan L. Hartley
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
| | | | - Davneet S. Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid H. Zaman
- Cambridge Intellectual Disability Research GroupUniversity of CambridgeCambridgeUK
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Charles K. Stone
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chester A. Mathis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T. Christian
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | |
Collapse
|
52
|
Hartley SL, Handen B, Tudorascu D, Lee L, Cohen A, Schworer EK, Peven JC, Zammit M, Klunk W, Laymon C, Minhas D, Luo W, Zaman S, Ances B, Preboske G, Christian BT. AT(N) biomarker profiles and Alzheimer's disease symptomology in Down syndrome. Alzheimers Dement 2024; 20:366-375. [PMID: 37641428 PMCID: PMC10840615 DOI: 10.1002/alz.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Down syndrome (DS) is a genetic cause of early-onset Alzheimer's disease (AD). The National Institute on Aging-Alzheimer's Association AT(N) Research Framework is a staging model for AD biomarkers but has not been assessed in DS. METHOD Data are from the Alzheimer's Biomarker Consortium-Down Syndrome. Positron emission tomography (PET) amyloid beta (Aβ; 15 mCi of [11 C]Pittsburgh compound B) and tau (10 mCi of [18 F]AV-1451) were used to classify amyloid (A) -/+ and tau (T) +/-. Hippocampal volume classified neurodegeneration (N) -/+. The modified Cued Recall Test assessed episodic memory. RESULTS Analyses included 162 adults with DS (aged M = 38.84 years, standard deviation = 8.41). Overall, 69.8% of participants were classified as A-/T-/(N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. Participants deemed cognitively stable were most likely to be A-T-(N)- and A+T-(N)-. Tau PET (T+) most closely aligning with memory impairment and AD clinical status. DISCUSSION Findings add to understanding of AT(N) biomarker profiles in DS. HIGHLIGHTS Overall, 69.8% of adults with Down syndrome (DS) aged 25 to 61 years were classified as amyloid (A)-/tau (T)-/neurodegeneration (N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. The AT(N) profiles were associated with clinical Alzheimer's disease (AD) status and with memory performance, with the presence of T+ aligned with AD clinical symptomology. Findings inform models for predicting the transition to the prodromal stage of AD in DS.
Collapse
Affiliation(s)
- Sigan L. Hartley
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- School of Human EcologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Laisze Lee
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Jamie C. Peven
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Matthew Zammit
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Davneet Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Weiquan Luo
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid Zaman
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Beau Ances
- Department of NeurologyWashington University at St. LouisSt. Louis, MissouriUSA
| | | | - Bradley T. Christian
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | | |
Collapse
|
53
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|
54
|
Tenorio M, Arango PS, Aparicio A. BENDI: Improving Cognitive Assessments in Toddlers and Children with Down Syndrome Using Stealth Assessment. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1923. [PMID: 38136125 PMCID: PMC10741548 DOI: 10.3390/children10121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Cognitive assessment is a fundamental step in diagnosing intellectual and developmental disabilities, designing interventions, and evaluating their impact. However, developed and developing countries have different access to tools designed for these purposes. Our goal was to develop a battery for cognitive assessment mediated by digital technology that allows the exploration of cognitive domains (inhibitory control, attention, motor ability, and context memory) in children with Down Syndrome (DS) in Chile. Four tasks, based on established experimental paradigms modified to provide a game-like experience, were tested in 68 children with DS from 20 months to 12 years of age. We present evidence of reliability based on internal consistency and split-half analyses, with results ranging from adequate to excellent. Regarding validity, factorial and correlational analyses show evidence consistent with what was theoretically expected of internal structure, convergence, and divergence with other measures. Expected age trajectories were observed as well. Our data offer evidence that supports the use of tasks based on touch-screen devices for cognitive assessment in the population with DS. The tasks also have a low cultural load, so they could be validated and used in other contexts without the need for an adaptation process.
Collapse
Affiliation(s)
| | | | - Andrés Aparicio
- Millennium Institute for Care Research (MICARE), Santiago 8370146, Chile;
| |
Collapse
|
55
|
Abstract
This Viewpoint explains the genetic association between Alzheimer disease and Down syndrome and the negative impact of excluding people with Down syndrome from clinical trials on treatment for Alzheimer disease.
Collapse
Affiliation(s)
- Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego
| | - Juan Fortea
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Catalan Foundation for Down Syndrome, Barcelona, Spain
| |
Collapse
|
56
|
McGlinchey E, Iulita MF, Fortea J. Compounded inequality: racial disparity and Down syndrome. Lancet Public Health 2023; 8:e836. [PMID: 37898515 DOI: 10.1016/s2468-2667(23)00213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Eimear McGlinchey
- Trinity Centre for Ageing and Intellectual Disability, Trinity College Dublin, Dublin D02PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, University of California San Francisco, San Francisco, CA, USA.
| | - M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Altoida, Washington DC, USA
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| |
Collapse
|
57
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
58
|
Rozalem Aranha M, Iulita MF, Montal V, Pegueroles J, Bejanin A, Vaqué-Alcázar L, Grothe MJ, Carmona-Iragui M, Videla L, Benejam B, Arranz J, Padilla C, Valldeneu S, Barroeta I, Altuna M, Fernández S, Ribas L, Valle-Tamayo N, Alcolea D, González-Ortiz S, Bargalló N, Zetterberg H, Blennow K, Blesa R, Wisniewski T, Busciglio J, Cuello AC, Lleó A, Fortea J. Basal forebrain atrophy along the Alzheimer's disease continuum in adults with Down syndrome. Alzheimers Dement 2023; 19:4817-4827. [PMID: 37021589 DOI: 10.1002/alz.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.
Collapse
Affiliation(s)
- Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lídia Vaqué-Alcázar
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michel J Grothe
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sílvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laia Ribas
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Natalia Valle-Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sofía González-Ortiz
- Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Núria Bargalló
- Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Henrik Zetterberg
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, China, Hong Kong
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry and Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jorge Busciglio
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, California, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology, Oxford University, Oxford, UK
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| |
Collapse
|
59
|
Videla L, Benejam B, Carmona-Iragui M, Barroeta I, Fernández S, Arranz J, Azzahchi SE, Altuna M, Padilla C, Valldeneu S, Pegueroles J, Montal V, Aranha MR, Vaqué-Alcázar L, Iulita MF, Alcolea D, Bejanin A, Videla S, Blesa R, Lleó A, Fortea J. Cross-sectional versus longitudinal cognitive assessments for the diagnosis of symptomatic Alzheimer's disease in adults with Down syndrome. Alzheimers Dement 2023; 19:3916-3925. [PMID: 37038748 DOI: 10.1002/alz.13073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Down syndrome (DS) is a genetic form of Alzheimer's disease (AD). However, clinical diagnosis is difficult, and experts emphasize the need for detecting intra-individual cognitive decline. OBJECTIVE To compare the performance of baseline and longitudinal neuropsychological assessments for the diagnosis of symptomatic AD in DS. METHODS Longitudinal cohort study of adults with DS. Individuals were classified as asymptomatic, prodromal AD, or AD dementia. We performed receiver operating characteristic curve analyses to compare baseline and longitudinal changes of CAMCOG-DS and mCRT. RESULTS We included 562 adults with DS. Baseline assessments showed good to excellent diagnostic performance for AD dementia (AUCs between 0.82 and 0.99) and prodromal AD, higher than the 1-year intra-individual cognitive decline (area under the ROC curve between 0.59 and 0.79 for AD dementia, lower for prodromal AD). Longer follow-ups increased the diagnostic performance of the intra-individual cognitive decline. DISCUSSION Baseline cognitive assessment outperforms the 1-year intra-individual cognitive decline in adults with DS.
Collapse
Affiliation(s)
- Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Bessy Benejam
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sumia Elbachiri Azzahchi
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- CITA-alzheimer foundation, Donostia-San Sebsatián, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Víctor Montal
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastià Videla
- Clinical Research Support Unit-[HUB-IDIBELL], Clinical Pharmacology Department, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
60
|
Rubenstein E, Michals A, Wang N, Scott A, Tewolde S, Levine AA, Tripodis Y, Skotko BG. Medicaid Enrollment and Service Use Among Adults With Down Syndrome. JAMA HEALTH FORUM 2023; 4:e232320. [PMID: 37566429 PMCID: PMC10422190 DOI: 10.1001/jamahealthforum.2023.2320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/01/2023] [Indexed: 08/12/2023] Open
Abstract
Importance Down syndrome is the leading genetic cause of intellectual disability and automatically qualifies individuals for Social Security Insurance. Therefore, Medicaid is the major health insurance provider for a population at high risk for dementia, obesity, and premature mortality. Despite the importance of Medicaid for adults with Down syndrome, little is known about how this population uses Medicaid. Objective To describe enrollment in, health care use in, and cost to Medicaid for adults with Down syndrome compared with adults with intellectual disability and a random sample of adults enrolled in Medicaid. Design, Setting, and Participants In this cohort study, the data are from a claims cohort of adults aged 18 years or older enrolled in Medicaid at any point between January 1, 2011, and December 31, 2019. Participants were enrollees with 1 or more inpatient claim or 2 or more other claims with an International Classification of Diseases, Ninth Revision code or an International Statistical Classification of Diseases and Related Health Problems, Tenth Revision code for Down syndrome or intellectual disability as well as a random sample of those without developmental disability. Analyses were conducted from June 2022 to February 2023. Main Outcomes and Measures Data were linked across 2 data reporting systems. Main outcomes were enrollee demographic characteristics, enrollment characteristics, cost, and service use. Results This cohort study included 123 024 individuals with Down syndrome (820 273 person-years of coverage; mean [SD] age, 35 [14.7] years; median age, 33 years [IQR, 21-48 years]; 51.6% men; 14.1% Black individuals; 16.7% Hispanic individuals; and 74.6% White individuals), 1 182 246 individuals with intellectual disability (mean [SD] age, 37.1 [16.8] years; median age, 33 years [IQR, 22-50 years]; 56.5% men; 22.0% Black individuals; 11.7% Hispanic individuals; and 69.5% White individuals), and 3 176 371 individuals with no developmental disabilities (mean [SD] age, 38 [18.6] years; median age, 33 years [IQR, 21-52 years]; 43.8% men; 23.7% Black individuals; 20.7% Hispanic individuals; and 61.3% White individuals). Median enrollment in Medicaid for a person with Down syndrome was 8.0 years (IQR, 5.0-9.0 years; mean [SD], 6.6 [2.6] years). Costs were higher for the Down syndrome group (median, $26 278 per person-year [IQR, $11 145-$55 928 per person-year]) relative to the group with no developmental disabilities (median, $6173 per person-year [IQR, $868-$58 390 per person-year]). Asian, Black, Hispanic, Native American, and Pacific Islander adults with Down syndrome had fewer costs and claims per person-year compared with White adults with Down syndrome. Conclusion and Relevance This cohort study of individuals with Down syndrome enrolled in Medicaid found consistent enrollment and high use of health care in a population with high health care needs. Results were similar comparing individuals with Down syndrome and those with intellectual disability, with both groups differing from a sample of Medicaid enrollees with no developmental disabilities. Medicaid data are a useful tool for understanding the health and well-being of individuals with Down syndrome.
Collapse
Affiliation(s)
- Eric Rubenstein
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Amy Michals
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Na Wang
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Ashley Scott
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Salina Tewolde
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - A. Alex Levine
- Department of Health Policy Law and Management, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Brian G. Skotko
- Down Syndrome Program, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
61
|
Mao C, Xu J, Rasmussen L, Li Y, Adekkanattu P, Pacheco J, Bonakdarpour B, Vassar R, Shen L, Jiang G, Wang F, Pathak J, Luo Y. AD-BERT: Using pre-trained language model to predict the progression from mild cognitive impairment to Alzheimer's disease. J Biomed Inform 2023; 144:104442. [PMID: 37429512 PMCID: PMC11131134 DOI: 10.1016/j.jbi.2023.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). METHODS We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000 and 2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting into sections, and then pre-trained a BERT model for AD (named AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. All sections of a patient were embedded into a vector representation by AD-BERT and then combined by global MaxPooling and a fully connected network to compute the probability of MCI-to-AD progression. For validation, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. RESULTS Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.849 and F1 score of 0.440 on NMEDW dataset, and AUC of 0.883 and F1 score of 0.680 on WCM dataset. CONCLUSION The use of EHRs for AD-related research is promising, and AD-BERT shows superior predictive performance in modeling MCI-to-AD progression prediction. Our study demonstrates the utility of pre-trained language models and clinical notes in predicting MCI-to-AD progression, which could have important implications for improving early detection and intervention for AD.
Collapse
Affiliation(s)
- Chengsheng Mao
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States; Weill Cornell Medicine, New York, NY, United States
| | - Luke Rasmussen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yikuan Li
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Jennifer Pacheco
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Borna Bonakdarpour
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Fei Wang
- Weill Cornell Medicine, New York, NY, United States
| | | | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
62
|
Overk C, Fiorini E, Babolin C, Vukicevic M, Morici C, Madani R, Eligert V, Kosco-Vilbois M, Roberts A, Becker A, Pfeifer A, Mobley WC. Modeling Alzheimer's disease related phenotypes in the Ts65Dn mouse: impact of age on Aβ, Tau, pTau, NfL, and behavior. Front Neurosci 2023; 17:1202208. [PMID: 37449271 PMCID: PMC10336548 DOI: 10.3389/fnins.2023.1202208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction People with DS are highly predisposed to Alzheimer's disease (AD) and demonstrate very similar clinical and pathological features. Ts65Dn mice are widely used and serve as the best-characterized animal model of DS. Methods We undertook studies to characterize age-related changes for AD-relevant markers linked to Aβ, Tau, and phospho-Tau, axonal structure, inflammation, and behavior. Results We found age related changes in both Ts65Dn and 2N mice. Relative to 2N mice, Ts65Dn mice showed consistent increases in Aβ40, insoluble phospho-Tau, and neurofilament light protein. These changes were correlated with deficits in learning and memory. Discussion These data have implications for planning future experiments aimed at preventing disease-related phenotypes and biomarkers. Interventions should be planned to address specific manifestations using treatments and treatment durations adequate to engage targets to prevent the emergence of phenotypes.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | | | | | | | | | - Amanda Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Ann Becker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | | | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
63
|
de Sousa AA, Rigby Dames BA, Graff EC, Mohamedelhassan R, Vassilopoulos T, Charvet CJ. Going beyond established model systems of Alzheimer's disease: companion animals provide novel insights into the neurobiology of aging. Commun Biol 2023; 6:655. [PMID: 37344566 PMCID: PMC10284893 DOI: 10.1038/s42003-023-05034-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Brier A Rigby Dames
- Department of Psychology, University of Bath, Bath, UK
- Department of Computer Science, University of Bath, Bath, UK
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rania Mohamedelhassan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
64
|
Enfermedad de Alzheimer y síndrome de Down. Semergen 2023; 49:101872. [DOI: 10.1016/j.semerg.2022.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
|
65
|
Teles E Silva AL, Yokota BY, Sertié AL, Zampieri BL. Generation of Urine-Derived Induced Pluripotent Stem Cells and Cerebral Organoids for Modeling Down Syndrome. Stem Cell Rev Rep 2023; 19:1116-1123. [PMID: 36652145 DOI: 10.1007/s12015-022-10497-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Down syndrome (DS, or trisomy 21, T21), is the most common genetic cause of intellectual disability. Alterations in the complex process of cerebral cortex development contribute to the neurological deficits in DS, although the underlying molecular and cellular mechanisms are not completely understood. Human cerebral organoids (COs) derived from three-dimensional (3D) cultures of induced pluripotent stem cells (iPSCs) provide a new avenue for gaining a better understanding of DS neuropathology. In this study, we aimed to generate iPSCs from individuals with DS (T21-iPSCs) and euploid controls using urine-derived cells, which can be easily and noninvasively obtained from most individuals, and examine their ability to differentiate into neurons and astrocytes grown in monolayer cultures, as well as into 3D COs. We employed nonintegrating episomal vectors to generate urine-derived iPSC lines, and a simple-to-use system to produce COs with forebrain identity. We observed that both T21 and control urine-derived iPSC lines successfully differentiate into neurons and astrocytes in monolayer, as well as into COs that recapitulate early features of human cortical development, including organization of neural progenitor zones, programmed differentiation of excitatory and inhibitory neurons, and upper-and deep-layer cortical neurons as well as astrocytes. Our findings demonstrate for the first time the suitability of using urine-derived iPSC lines to produce COs for modeling DS.
Collapse
|
66
|
Montoliu-Gaya L, Alcolea D, Ashton NJ, Pegueroles J, Levin J, Bosch B, Lantero-Rodriguez J, Carmona-Iragui M, Wagemann O, Balasa M, Kac PR, Barroeta I, Lladó A, Brum WS, Videla L, Gonzalez-Ortiz F, Benejam B, Arranz Martínez JJ, Karikari TK, Nübling G, Bejanin A, Benedet AL, Blesa R, Lleó A, Blennow K, Sánchez-Valle R, Zetterberg H, Fortea J. Plasma and cerebrospinal fluid glial fibrillary acidic protein levels in adults with Down syndrome: a longitudinal cohort study. EBioMedicine 2023; 90:104547. [PMID: 37002988 PMCID: PMC10070083 DOI: 10.1016/j.ebiom.2023.104547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) is a marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. METHODS We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universität, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. FINDINGS This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymptomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF Aβ changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its concentrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. INTERPRETATION Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials. FUNDING AC Immune, La Caixa Foundation, Instituto de Salud Carlos III, National Institute on Aging, Wellcome Trust, Jérôme Lejeune Foundation, Medical Research Council, Alzheimer's Association, National Institute for Health Research, EU Joint Programme-Neurodegenerative Disease Research, Alzheimer's Society, Deutsche Forschungsgemeinschaft, Stiftung für die Erforschung von Verhaltens, Fundación Tatiana Pérez de Guzmán el Bueno & European Union's Horizon 2020 und Umwelteinflüssen auf die menschliche Gesundheit.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Olivia Wagemann
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Przemyslaw Radoslaw Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Javier José Arranz Martínez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.
| |
Collapse
|
67
|
Iulita MF, Bejanin A, Vilaplana E, Carmona-Iragui M, Benejam B, Videla L, Barroeta I, Fernández S, Altuna M, Pegueroles J, Montal V, Valldeneu S, Giménez S, González-Ortiz S, Torres S, El Bounasri El Bennadi S, Padilla C, Rozalem Aranha M, Estellés T, Illán-Gala I, Belbin O, Valle-Tamayo N, Camacho V, Blessing E, Osorio RS, Videla S, Lehmann S, Holland AJ, Zetterberg H, Blennow K, Alcolea D, Clarimón J, Zaman SH, Blesa R, Lleó A, Fortea J. Association of biological sex with clinical outcomes and biomarkers of Alzheimer's disease in adults with Down syndrome. Brain Commun 2023; 5:fcad074. [PMID: 37056479 PMCID: PMC10088472 DOI: 10.1093/braincomms/fcad074] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/07/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-β 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-β 42/amyloid-β 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.
Collapse
Affiliation(s)
- M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Women’s Brain Project, Guntershausen 8357, Switzerland
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Eduard Vilaplana
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Bessy Benejam
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Silvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Sandra Giménez
- Multidisciplinary Sleep Unit, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | | | - Soraya Torres
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Shaimaa El Bounasri El Bennadi
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Concepcion Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Teresa Estellés
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Natalia Valle-Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Esther Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ricardo S Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sebastian Videla
- Clinical Research Support Unit, Bellvitge Biomedical Research Institute (IDIBELL), Department of Clinical Pharmacology, University of Barcelona, Barcelona 08908, Spain
| | - Sylvain Lehmann
- Institute for Neurosciences of Montpellier, Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, CHU de Montpellier, INSERM, Montpellier 34295, France
| | - Anthony J Holland
- Department of Psychiatry, Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Douglas House, Cambridge CB2 8AH, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Möndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 40530, Sweden
- UK Dementia Research Institute, University College London, London WC1E 6BT, United Kingdom
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 1512-1518, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Möndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 40530, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Jordi Clarimón
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Shahid H Zaman
- Department of Psychiatry, Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Douglas House, Cambridge CB2 8AH, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08025, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona 08029, Spain
| |
Collapse
|
68
|
Lessons from Down syndrome and autosomal dominant Alzheimer's disease. Lancet Neurol 2023; 22:5-6. [PMID: 36517171 DOI: 10.1016/s1474-4422(22)00437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022]
|
69
|
Boerwinkle AH, Gordon BA, Wisch J, Flores S, Henson RL, Butt OH, McKay N, Chen CD, Benzinger TLS, Fagan AM, Handen BL, Christian BT, Head E, Mapstone M, Rafii MS, O'Bryant S, Lai F, Rosas HD, Lee JH, Silverman W, Brickman AM, Chhatwal JP, Cruchaga C, Perrin RJ, Xiong C, Hassenstab J, McDade E, Bateman RJ, Ances BM. Comparison of amyloid burden in individuals with Down syndrome versus autosomal dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2023; 22:55-65. [PMID: 36517172 PMCID: PMC9979840 DOI: 10.1016/s1474-4422(22)00408-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Important insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people. METHODS In this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid β42 (Aβ42) to Aβ40 (Aβ42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aβ42/40 was evaluated. FINDINGS 192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aβ42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome. INTERPRETATION Despite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome. FUNDING The National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Anna H Boerwinkle
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Brian A Gordon
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Julie Wisch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Shaney Flores
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Rachel L Henson
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Omar H Butt
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Nicole McKay
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Charles D Chen
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Tammie L S Benzinger
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley T Christian
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sid O'Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph H Lee
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wayne Silverman
- Department of Pediatrics, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Adam M Brickman
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; G H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Carlos Cruchaga
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
70
|
Fleming V, Helsel BC, Ptomey LT, Rosas HD, Handen B, Laymon C, Christian BT, Head E, Mapstone M, Lai F, Krinsky-McHale S, Zaman S, Ances BM, Lee JH, Hartley SL. Weight Loss and Alzheimer's Disease in Down Syndrome. J Alzheimers Dis 2023; 91:1215-1227. [PMID: 36565120 PMCID: PMC9940268 DOI: 10.3233/jad-220865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Virtually all adults with Down syndrome (DS) develop Alzheimer's disease (AD) pathology, but research gaps remain in understanding early signs of AD in DS. OBJECTIVE The goal of the present study was to determine if unintentional weight loss is part of AD in DS. The specific aims were to: 1) examine relation between chronological age, weight, AD pathology, and AD-related cognitive decline were assessed in a large cohort of adults with DS, and 2) determine if baseline PET amyloid-β (Aβ) and tau PET status (-versus+) and/or decline in memory and mental status were associated with weight loss prior to AD progression. METHODS Analyses included 261 adults with DS. PET data were acquired using [11C] PiB for Aβ and [18F] AV-1451 for tau. Body mass index (BMI) was calculated from weight and height. Direct measures assessed dementia and memory. Clinical AD status was determined using a case consensus process. Percent weight decline across 16-20 months was assessed in a subset of participants (n = 77). RESULTS Polynomial regressions indicated an 0.23 kg/m2 decrease in BMI per year beginning at age 36.5 years, which occurs alongside the period during which Aβ and tau increase and memory and mental status decline. At a within-person level, elevated Aβ, decline in memory and mental status were associated with higher percent weight loss across 16-20 months. CONCLUSION Unintentional weight loss occurs alongside Aβ deposition and prior to onset of AD dementia, and thus may be a useful sign of AD in DS.
Collapse
Affiliation(s)
- Victoria Fleming
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, WI, USA
| | - Brian C. Helsel
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lauren T. Ptomey
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - H. Diana Rosas
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Florence Lai
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sharon Krinsky-McHale
- Department of Psychology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Shahid Zaman
- Department of Psychiatry, Clinical School, University of Cambridge, Cambridge, UK & Cambridgeshire and Peterborough Foundation NHS Trust, Cambridge, UK
| | - Beau M. Ances
- Department of Neurology, Washington University Saint Louis, St. Louis, MO, USA
| | - Joseph H. Lee
- Departments of Neurology and Epidemiology, Sergievsky Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sigan L. Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
71
|
Hartley SL, Fleming V, Schworer EK, Peven J, Handen BL, Krinsky-McHale S, Hom C, Lee L, Tudorascu DL, Laymon C, Minhas D, Luo W, Cohen A, Zaman S, Ances BM, Mapstone M, Head E, Lai F, Rosas HD, Klunk W, Christian B. Timing of Alzheimer's Disease by Intellectual Disability Level in Down Syndrome. J Alzheimers Dis 2023; 95:213-225. [PMID: 37482997 PMCID: PMC10578224 DOI: 10.3233/jad-230200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Trisomy 21 causes Down syndrome (DS) and is a recognized cause of early-onset Alzheimer's disease (AD). OBJECTIVE The current study sought to determine if premorbid intellectual disability level (ID) was associated with variability in age-trajectories of AD biomarkers and cognitive impairments. General linear mixed models compared the age-trajectory of the AD biomarkers PET Aβ and tau and cognitive decline across premorbid ID levels (mild, moderate, and severe/profound), in models controlling trisomy type, APOE status, biological sex, and site. METHODS Analyses involved adults with DS from the Alzheimer's Biomarkers Consortium-Down Syndrome. Participants completed measures of memory, mental status, and visuospatial ability. Premorbid ID level was based on IQ or mental age scores prior to dementia concerns. PET was acquired using [11C] PiB for Aβ, and [18F] AV-1451 for tau. RESULTS Cognitive data was available for 361 participants with a mean age of 45.22 (SD = 9.92) and PET biomarker data was available for 154 participants. There was not a significant effect of premorbid ID level by age on cognitive outcomes. There was not a significant effect of premorbid ID by age on PET Aβ or on tau PET. There was not a significant difference in age at time of study visit of those with mild cognitive impairment-DS or dementia by premorbid ID level. CONCLUSION Findings provide robust evidence of a similar time course in AD trajectory across premorbid ID levels, laying the groundwork for the inclusion of individuals with DS with a variety of IQ levels in clinical AD trials.
Collapse
Affiliation(s)
- Sigan L. Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Fleming
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Jamie Peven
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sharon Krinsky-McHale
- Department of Psychology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Christy Hom
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Laisze Lee
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weiquan Luo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annie Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shahid Zaman
- Cambridgeshire & Peterborough NHS Foundation Trust (CPFT), Elizabeth House, Fulbourn Hospital, Cambridge, UK
- Department of Psychiatry, Cambridge Intellectual & Developmental Disabilities Research Group (CIDDRG), University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Beau M. Ances
- Department of Neurology, Washington University St. Louis, St. Louis, MO, USA
| | - Mark Mapstone
- Clinical Neurology, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H. Diana Rosas
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Center for Neuro-imaging of Aging and Neurodegenerative Diseases, Charlestown, MA, USA
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - the Alzheimer Biomarker Consortium-Down Syndrome
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Cambridgeshire & Peterborough NHS Foundation Trust (CPFT), Elizabeth House, Fulbourn Hospital, Cambridge, UK
- Department of Psychiatry, Cambridge Intellectual & Developmental Disabilities Research Group (CIDDRG), University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Neurology, Washington University St. Louis, St. Louis, MO, USA
- Clinical Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Center for Neuro-imaging of Aging and Neurodegenerative Diseases, Charlestown, MA, USA
| |
Collapse
|
72
|
García O, Flores-Aguilar L. Astroglial and microglial pathology in Down syndrome: Focus on Alzheimer's disease. Front Cell Neurosci 2022; 16:987212. [PMID: 36212691 PMCID: PMC9533652 DOI: 10.3389/fncel.2022.987212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) arises from the triplication of human chromosome 21 and is considered the most common genetic cause of intellectual disability. Glial cells, specifically astroglia and microglia, display pathological alterations that might contribute to DS neuropathological alterations. Further, in middle adulthood, people with DS develop clinical symptoms associated with premature aging and Alzheimer's disease (AD). Overexpression of the amyloid precursor protein (APP) gene, encoded on chromosome 21, leads to increased amyloid-β (Aβ) levels and subsequent formation of Aβ plaques in the brains of individuals with DS. Amyloid-β deposition might contribute to astroglial and microglial reactivity, leading to neurotoxic effects and elevated secretion of inflammatory mediators. This review discusses evidence of astroglial and microglial alterations that might be associated with the AD continuum in DS.
Collapse
Affiliation(s)
- Octavio García
- Facultad de Psicología, Unidad de Investigación en Psicobiología y Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Octavio García
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
73
|
Wallesch CW. [Down Syndrome and Alzheimer Dementia]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:394-395. [PMID: 36103896 DOI: 10.1055/a-1895-6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Die Lebenserwartung von Menschen mit Down-Syndrom ist in den letzten Jahrzehnten
deutlich gestiegen und beträgt aktuell etwa 60 Jahre 1. In Deutschland leben etwa 50.000 Menschen mit
Trisomie 21. Da das Amyloid Precursor Protein Gen sich auf Chromosom 21 befindet,
haben Menschen mit Down-Syndrom ein hohes Risiko, an einer Alzheimer-Demenz zu
erkranken. In einer Längsschnittstudie waren 23% der
(überlebenden) Menschen mit Down-Syndrom mit 50 Jahren, 45% mit 55
Jahren und 88% mit 65 Jahren an Demenz erkrankt 2. Menschen mit Down Syndrom machen einen großen Teil
präseniler Alzheimer-Erkrankungen aus. Histologisch finden sich
Amyloidablagerungen bei praktisch allen Menschen mit Down-Syndrom ab dem 30.
Lebensjahr 3.
Collapse
|
74
|
Videla L, Benejam B, Pegueroles J, Carmona-Iragui M, Padilla C, Fernández S, Barroeta I, Altuna M, Valldeneu S, Garzón D, Ribas L, Montal V, Arranz Martínez J, Rozalem Aranha M, Alcolea D, Bejanin A, Iulita MF, Videla Cés S, Blesa R, Lleó A, Fortea J. Longitudinal Clinical and Cognitive Changes Along the Alzheimer Disease Continuum in Down Syndrome. JAMA Netw Open 2022; 5:e2225573. [PMID: 35930282 PMCID: PMC9356319 DOI: 10.1001/jamanetworkopen.2022.25573] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Alzheimer disease (AD) is the main medical problem in adults with Down syndrome (DS). However, the associations of age, intellectual disability (ID), and clinical status with progression and longitudinal cognitive decline have not been established. OBJECTIVE To examine clinical progression along the AD continuum and its related cognitive decline and to explore the presence of practice effects and floor effects with repeated assessments. DESIGN, SETTING, AND PARTICIPANTS This is a single-center cohort study of adults (aged >18 years) with DS with different ID levels and at least 6 months of follow-up between November 2012 and December 2021. The data are from a population-based health plan designed to screen for AD in adults with DS in Catalonia, Spain. Individuals were classified as being asymptomatic, having prodromal AD, or having AD dementia. EXPOSURES Neurological and neuropsychological assessments. MAIN OUTCOMES AND MEASURES The main outcome was clinical change along the AD continuum. Cognitive decline was measured by the Cambridge Cognitive Examination for Older Adults With Down Syndrome and the modified Cued Recall Test. RESULTS A total of 632 adults with DS (mean [SD] age, 42.6 [11.4] years; 292 women [46.2%]) with 2847 evaluations (mean [SD] follow-up, 28.8 [18.7] months) were assessed. At baseline, there were 436 asymptomatic individuals, 69 patients with prodromal AD, and 127 with AD dementia. After 5 years of follow-up, 17.1% (95% CI, 12.5%-21.5%) of asymptomatic individuals progressed to symptomatic AD in an age-dependent manner (0.6% [95% CI, 0%-1.8%] for age <40 years; 21.1% [95% CI, 8.0%-32.5%] for age 40-44 years; 41.4% [95% CI, 23.1%-55.3%] for age 45-49 years; 57.5% [95% CI, 38.2%-70.8%] for age ≥50 years; P < .001), and 94.1% (95% CI, 84.6%-98.0%) of patients with prodromal AD progressed to dementia with no age dependency. Cognitive decline in the older individuals was most common among those who progressed to symptomatic AD and symptomatic individuals themselves. Importantly, individuals with mild and moderate ID had no differences in longitudinal cognitive decline despite having different performance at baseline. This study also found practice and floor effects, which obscured the assessment of longitudinal cognitive decline. CONCLUSIONS AND RELEVANCE This study found an association between the development of symptomatic AD and a high risk of progressive cognitive decline among patients with DS. These results support the need for population health plans to screen for AD-related cognitive decline from the fourth decade of life and provide important longitudinal data to inform clinical trials in adults with DS to prevent AD.
Collapse
Affiliation(s)
- Laura Videla
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Bessy Benejam
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Carmona-Iragui
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diana Garzón
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Ribas
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Montal
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Arranz Martínez
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastià Videla Cés
- Clinical Research Support Unit, Bellvitge Biomedical Research Institute, Department of Clinical Pharmacology, University of Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|