51
|
Qian Y, Xiao D, Guo X, Chen H, Hao L, Ma X, Huang G, Ma D, Wang H. Hypomethylation and decreased expression of BRG1 in the myocardium of patients with congenital heart disease. Birth Defects Res 2017. [PMID: 28646505 DOI: 10.1002/bdr2.1053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND BRG1, an ATPase subunit of the SWItch/Sucrose Non-Fermentable complex, is tightly associated with cardiac development. However, little is known about the association between the pathogenesis of CHD and BRG1. METHODS The methylation of a BRG1 promoter and a novel CpG island in the second intron was analyzed in the myocardium of congenital heart disease (CHD) patients (n = 24) and normal controls (n = 11) using pyrosequencing and the MassARRAY platform. BRG1 expression was sketched in the normal fetal and postnatal heart using real-time PCR. BRG1 mRNA and protein expression was detected by means of real-time PCR and immunohistochemistry. The expression of GATA4 was analyzed with real-time PCR. RESULTS The CpG shore in the second intron of BRG1 was hypomethylated in the myocardium of patients (p < 0.05). BRG1 showed a high level of expression in the normal fetal heart in the second trimester (p < 0.01). Compared with that of the normal subjects, BRG1 expression was decreased by 70% in the myocardium of patients (n = 92; p < 0.05). Of note, the expression of GATA4 was significantly correlated with BRG1 expression (r = 0.7475; p = 0.0082) in the myocardium, and it was also decreased by 70% in these patients (n = 92; p < 0.05). CONCLUSION These results suggested that the early high expression of BRG1 in fetal hearts maintained normal cardiac development and that the abnormal hypomethylation and decreased expression of BRG1 in human hearts probably affect the expression of GATA4, which affects the pathogenesis of CHD. Birth Defects Research 109:1183-1195, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanyan Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, China.,Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, China
| | - Huijun Wang
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, China
| |
Collapse
|
52
|
Willis MS, Holley DW, Wang Z, Chen X, Quintana M, Jensen BC, Tannu M, Parker J, Jeyaraj D, Jain MK, Wolfram JA, Lee HG, Bultman SJ. BRG1 and BRM function antagonistically with c-MYC in adult cardiomyocytes to regulate conduction and contractility. J Mol Cell Cardiol 2017; 105:99-109. [PMID: 28232072 DOI: 10.1016/j.yjmcc.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE The contractile dysfunction that underlies heart failure involves perturbations in multiple biological processes ranging from metabolism to electrophysiology. Yet the epigenetic mechanisms that are altered in this disease state have not been elucidated. SWI/SNF chromatin-remodeling complexes are plausible candidates based on mouse knockout studies demonstrating a combined requirement for the BRG1 and BRM catalytic subunits in adult cardiomyocytes. Brg1/Brm double mutants exhibit metabolic and mitochondrial defects and are not viable although their cause of death has not been ascertained. OBJECTIVE To determine the cause of death of Brg1/Brm double-mutant mice, to test the hypothesis that BRG1 and BRM are required for cardiac contractility, and to identify relevant downstream target genes. METHODS AND RESULTS A tamoxifen-inducible gene-targeting strategy utilizing αMHC-Cre-ERT was implemented to delete both SWI/SNF catalytic subunits in adult cardiomyocytes. Brg1/Brm double-mutant mice were monitored by echocardiography and electrocardiography, and they underwent rapidly progressive ventricular dysfunction including conduction defects and arrhythmias that culminated in heart failure and death within 3weeks. Mechanistically, BRG1/BRM repressed c-Myc expression, and enforced expression of a DOX-inducible c-MYC trangene in mouse cardiomyocytes phenocopied the ventricular conduction defects observed in Brg1/Brm double mutants. BRG1/BRM and c-MYC had opposite effects on the expression of cardiac conduction genes, and the directionality was consistent with their respective loss- and gain-of-function phenotypes. To support the clinical relevance of this mechanism, BRG1/BRM occupancy was diminished at the same target genes in human heart failure cases compared to controls, and this correlated with increased c-MYC expression and decreased CX43 and SCN5A expression. CONCLUSION BRG1/BRM and c-MYC have an antagonistic relationship regulating the expression of cardiac conduction genes that maintain contractility, which is reminiscent of their antagonistic roles as a tumor suppressor and oncogene in cancer.
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Darcy Wood Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhongjing Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xin Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, PR China
| | - Megan Quintana
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Manasi Tannu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, PR China
| | - Joel Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darwin Jeyaraj
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Harrington Heart & Vascular Institute, Cleveland, OH 44106, USA
| | - Mukesh K Jain
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Harrington Heart & Vascular Institute, Cleveland, OH 44106, USA
| | - Julie A Wolfram
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
53
|
Souslova T, Mirédin K, Millar AM, Albert PR. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression. Mol Neurobiol 2016; 54:8263-8277. [PMID: 27914010 DOI: 10.1007/s12035-016-0306-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Abstract
Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal development.
Collapse
Affiliation(s)
- Tatiana Souslova
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Kim Mirédin
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Anne M Millar
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
54
|
Zaghlool A, Halvardson J, Zhao JJ, Etemadikhah M, Kalushkova A, Konska K, Jernberg-Wiklund H, Thuresson AC, Feuk L. A Role for the Chromatin-Remodeling Factor BAZ1A in Neurodevelopment. Hum Mutat 2016; 37:964-75. [PMID: 27328812 PMCID: PMC6681169 DOI: 10.1002/humu.23034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
Chromatin‐remodeling factors are required for a wide range of cellular and biological processes including development and cognition, mainly by regulating gene expression. As these functions would predict, deregulation of chromatin‐remodeling factors causes various disease syndromes, including neurodevelopmental disorders. Recent reports have linked mutations in several genes coding for chromatin‐remodeling factors to intellectual disability (ID). Here, we used exome sequencing and identified a nonsynonymous de novo mutation in BAZ1A (NM_182648.2:c.4043T > G, p.Phe1348Cys), encoding the ATP‐utilizing chromatin assembly and remodeling factor 1 (ACF1), in a patient with unexplained ID. ACF1 has been previously reported to bind to the promoter of the vitamin D receptor (VDR)‐regulated genes and suppress their expression. Our results show that the patient displays decreased binding of ACF1 to the promoter of the VDR‐regulated gene CYP24A1. Using RNA sequencing, we find that the mutation affects the expression of genes involved in several pathways including vitamin D metabolism, Wnt signaling and synaptic formation. RNA sequencing of BAZ1A knockdown cells and Baz1a knockout mice revealed that BAZ1A carry out distinctive functions in different tissues. We also demonstrate that BAZ1A depletion influence the expression of genes important for nervous system development and function. Our data point to an important role for BAZ1A in neurodevelopment, and highlight a possible link for BAZ1A to ID.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Jin J Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Mitra Etemadikhah
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Antonia Kalushkova
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Katarzyna Konska
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Helena Jernberg-Wiklund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Ann-Charlotte Thuresson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
55
|
Abstract
Rhabdoid tumor is a rare, highly aggressive malignancy that primarily affects infants and young children. These tumors typically arise in the brain and kidney, although extrarenal, non-central nervous system tumors in almost all soft-tissue sites have been described. SMARCB1 is a member of the SWI/SNF chromatin-remodeling complex and functions as a tumor suppressor in the vast majority of rhabdoid tumors. Patients with germline mutations or deletions affecting SMARCB1 are predisposed to the development of rhabdoid tumors, as well as the genetic disorder schwannomatosis. The current hypothesis is that rhabdoid tumors are driven by epigenetic dysregulation, as opposed to the alteration of a specific biologic pathway. The strategies for novel therapeutic approaches based on what is currently known about rhabdoid tumor biology are presented.
Collapse
Affiliation(s)
- James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacquelyn J Roth
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn A Biegel
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles; Keck School of Medicine, University of Southern California, Los Angeles, Ca
| |
Collapse
|
56
|
Zarate YA, Bhoj E, Kaylor J, Li D, Tsurusaki Y, Miyake N, Matsumoto N, Phadke S, Escobar L, Irani A, Hakonarson H, Schrier Vergano SA. SMARCE1, a rare cause of Coffin-Siris Syndrome: Clinical description of three additional cases. Am J Med Genet A 2016; 170:1967-73. [PMID: 27264197 PMCID: PMC5870868 DOI: 10.1002/ajmg.a.37722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/21/2016] [Indexed: 11/06/2022]
Abstract
Coffin-Siris syndrome (CSS, MIM 135900), is a well-described, multiple congenital anomaly syndrome characterized by coarse facial features, hypertrichosis, sparse scalp hair, and hypo/aplastic digital nails and phalanges, typically of the 5th digits. Mutations in the BAF (SWI/SNF)-complex subunits (SMARCA4, SMARCE1, SMARCB1, SMARCA2, ARID1B, and ARID1A) have been shown to cause not only CSS, but also related disorders including Nicolaides-Baraitser (MIM 601358) syndrome and ARID1B-intellectual disability syndrome (MIM 614562). At least 200 individuals with CSS have been found to have a mutation in the BAF pathway. However, to date, only three individuals with CSS have been reported to have pathogenic variants in SMARCE1. We report here three additional individuals with clinical features consistent with CSS and alterations in SMARCE1, one of which is novel. The probands all exhibited dysmorphic facial features, moderate developmental and cognitive delay, poor growth, and hypoplastic digital nails/phalanges, including digits not typically affected in the other genes associated with CSS. Two of the three probands had a variety of different organ system anomalies, including cardiac disease, genitourinary abnormalities, feeding difficulties, and vision abnormalities. The 3rd proband has not had further investigative studies. Although an increasing number of individuals are being diagnosed with disorders in the BAF pathway, SMARCE1 is the least common of these genes. This report doubles the number of probands with these mutations, and allows for better phenotypic information of this rare syndrome. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elizabeth Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julie Kaylor
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shubha Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Science, Lucknow, India
| | - Luis Escobar
- Medical Genetics and Neurodevelopmental Pediatrics, St. Vincent's Peyton Manning Children's Hospital, Indianapolis, Indiana
| | - Afifa Irani
- Medical Genetics and Neurodevelopmental Pediatrics, St. Vincent's Peyton Manning Children's Hospital, Indianapolis, Indiana
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia
| |
Collapse
|
57
|
Lomelí H, Castillo-Robles J. The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatin-remodeling complex. FEBS Lett 2016; 590:1555-69. [PMID: 27149204 DOI: 10.1002/1873-3468.12201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Mammalian SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes. BAF57 is a subunit of the BAF complexes; it is encoded only in higher eukaryotes and is present in all mammalian assemblies. Its main structural feature is a high-mobility group domain, the DNA-binding properties of which suggest that BAF57 may play topological roles as the BAF complex enters or exits the nucleosome. BAF57 displays specific interactions with a number of proteins outside the BAF complex. Through these interactions, it can accomplish specific functions. In the embryo, BAF57 is responsible for the silencing of the CD4 gene during T-cell differentiation, and during the repression of neuronal genes in non-neuronal cells, BAF57 interacts with the transcriptional corepressor, Co-REST, and facilitates repression. Extensive work has demonstrated a specific role of BAF57 in regulating the interactions between BAF and nuclear hormone receptors. Despite its involvement in oncogenic pathways, new generation sequencing studies do not support a prominent role for BAF57 in the initiation of cancer. On the other hand, evidence has emerged to support a role for BAF57 as a metastasis factor, a prognosis marker and a therapeutic target. In humans, BAF57 is associated with disease, as mutations in this gene predispose to important congenital disorders, including menigioma disease or the Coffin-Siris syndrome. In this article, we present an exhaustive analysis of the BAF57 molecular and biochemical properties, cellular functions, loss-of-function phenotypes in living organisms and pathological manifestations in cases of human mutations.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge Castillo-Robles
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
58
|
Abstract
With the impressive advancement in high-throughput 'omics' technologies over the past two decades, epigenetic mechanisms have emerged as the regulatory interface between the genome and environmental factors. These mechanisms include DNA methylation, histone modifications, ATP-dependent chromatin remodeling and RNA-based mechanisms. Their highly interdependent and coordinated action modulates the chromatin structure controlling access of the transcription machinery and thereby regulating expression of target genes. Given the rather limited proliferative capability of human cardiomyocytes, epigenetic regulation appears to play a particularly important role in the myocardium. The highly dynamic nature of the epigenome allows the heart to adapt to environmental challenges and to respond quickly and properly to cardiac stress. It is now becoming evident that histone-modifying and chromatin-remodeling enzymes as well as numerous non-coding RNAs play critical roles in cardiac development and function, while their dysregulation contributes to the onset and development of pathological cardiac remodeling culminating in HF. This review focuses on up-to-date knowledge about the epigenetic mechanisms and highlights their emerging role in the healthy and failing heart. Uncovering the determinants of epigenetic regulation holds great promise to accelerate the development of successful new diagnostic and therapeutic strategies in human cardiac disease.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA,
| | | |
Collapse
|
59
|
Chandler RL, Magnuson T. The SWI/SNF BAF-A complex is essential for neural crest development. Dev Biol 2016; 411:15-24. [PMID: 26806701 DOI: 10.1016/j.ydbio.2016.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, monoallelic loss of ARID1A in NCCs led to craniofacial defects in adult mice, including shortened snouts and low set ears, and these defects were more pronounced following homozygous loss of ARID1A, with the ventral cranial bones being greatly reduced in size. Early NCC specification and expression of the BRG1 NCC target gene, PLEXINA2, occurred normally in the absence of ARID1A. Nonetheless, mutant embryos displayed incomplete conotruncal septation of the cardiac outflow tract and defects in the posterior pharyngeal arteries, culminating in persistent truncus arteriosus and agenesis of the ductus arteriosus. Consistent with this, migrating cardiac NCCs underwent apoptosis within the circumpharyngeal ridge. Our data support the notion that multiple, distinct chromatin remodeling complexes govern genetically separable events in NCC development and highlight a potential pathogenic role for NCCs in the human BAF complex disorder, Coffin-Siris Syndrome.
Collapse
Affiliation(s)
- Ronald L Chandler
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
60
|
Lalli MA, Jang J, Park JHC, Wang Y, Guzman E, Zhou H, Audouard M, Bridges D, Tovar KR, Papuc SM, Tutulan-Cunita AC, Huang Y, Budisteanu M, Arghir A, Kosik KS. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet 2016; 25:1294-306. [PMID: 26755828 DOI: 10.1093/hmg/ddw010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a genomic deletion of ∼28 genes that results in a cognitive and behavioral profile marked by overall intellectual impairment with relative strength in expressive language and hypersocial behavior. Advancements in protocols for neuron differentiation from induced pluripotent stem cells allowed us to elucidate the molecular circuitry underpinning the ontogeny of WS. In patient-derived stem cells and neurons, we determined the expression profile of the Williams-Beuren syndrome critical region-deleted genes and the genome-wide transcriptional consequences of the hemizygous genomic microdeletion at chromosome 7q11.23. Derived neurons displayed disease-relevant hallmarks and indicated novel aberrant pathways in WS neurons including over-activated Wnt signaling accompanying an incomplete neurogenic commitment. We show that haploinsufficiency of the ATP-dependent chromatin remodeler, BAZ1B, which is deleted in WS, significantly contributes to this differentiation defect. Chromatin-immunoprecipitation (ChIP-seq) revealed BAZ1B target gene functions are enriched for neurogenesis, neuron differentiation and disease-relevant phenotypes. BAZ1B haploinsufficiency caused widespread gene expression changes in neural progenitor cells, and together with BAZ1B ChIP-seq target genes, explained 42% of the transcriptional dysregulation in WS neurons. BAZ1B contributes to regulating the balance between neural precursor self-renewal and differentiation and the differentiation defect caused by BAZ1B haploinsufficiency can be rescued by mitigating over-active Wnt signaling in neural stem cells. Altogether, these results reveal a pivotal role for BAZ1B in neurodevelopment and implicate its haploinsufficiency as a likely contributor to the neurological phenotypes in WS.
Collapse
Affiliation(s)
- Matthew A Lalli
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program
| | - Jiwon Jang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Joo-Hye C Park
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Yidi Wang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Elmer Guzman
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Hongjun Zhou
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Morgane Audouard
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Daniel Bridges
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, Department of Physics, University of California, Santa Barbara, CA, USA
| | - Kenneth R Tovar
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Sorina M Papuc
- Victor Babes National Institute of Pathology, Clinical Cytogenetics, Bucharest, Romania
| | | | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA and
| | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Clinical Cytogenetics, Bucharest, Romania, Alexandru Obregia Clinical Hospital of Psychiatry, Neuropediatric Pathology, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Clinical Cytogenetics, Bucharest, Romania
| | - Kenneth S Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program,
| |
Collapse
|
61
|
van Bon BW, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, Kleefstra T, Willemsen MH, Kumar R, Bosco P, Fichera M, Li D, Amaral D, Cristofoli F, Peeters H, Haan E, Romano C, Mefford HC, Scheffer I, Gecz J, de Vries BB, Eichler EE. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry 2016; 21:126-32. [PMID: 25707398 PMCID: PMC4547916 DOI: 10.1038/mp.2015.5] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) maps to the Down syndrome critical region; copy number increase of this gene is thought to have a major role in the neurocognitive deficits associated with Trisomy 21. Truncation of DYRK1A in patients with developmental delay (DD) and autism spectrum disorder (ASD) suggests a different pathology associated with loss-of-function mutations. To understand the phenotypic spectrum associated with DYRK1A mutations, we resequenced the gene in 7162 ASD/DD patients (2446 previously reported) and 2169 unaffected siblings and performed a detailed phenotypic assessment on nine patients. Comparison of our data and published cases with 8696 controls identified a significant enrichment of DYRK1A truncating mutations (P=0.00851) and an excess of de novo mutations (P=2.53 × 10(-10)) among ASD/intellectual disability (ID) patients. Phenotypic comparison of all novel (n=5) and recontacted (n=3) cases with previous case reports, including larger CNV and translocation events (n=7), identified a syndromal disorder among the 15 patients. It was characterized by ID, ASD, microcephaly, intrauterine growth retardation, febrile seizures in infancy, impaired speech, stereotypic behavior, hypertonia and a specific facial gestalt. We conclude that mutations in DYRK1A define a syndromic form of ASD and ID with neurodevelopmental defects consistent with murine and Drosophila knockout models.
Collapse
Affiliation(s)
- Bregje W.M. van Bon
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael Bernier
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Cherie Green
- Florey Institute, University of Melbourne, Austin Health and Royal Children’s Hospital, Melbourne 3010, Australia
| | - Jennifer Gerdts
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Kali Witherspoon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein H. Willemsen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Raman Kumar
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
| | - Paolo Bosco
- I.R.C.C.S. Associazione Oasi Maria Santissima, Troina 94018, Italy
| | - Marco Fichera
- I.R.C.C.S. Associazione Oasi Maria Santissima, Troina 94018, Italy
- Medical Genetics, University of Catania, Catania 95123, Italy
| | - Deana Li
- Representing the Autism Phenome Project, MIND Institute, University of California-Davis, Sacramento, CA 95817, USA
| | - David Amaral
- Representing the Autism Phenome Project, MIND Institute, University of California-Davis, Sacramento, CA 95817, USA
| | - Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven 3000, Belgium
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven 3000, Belgium
- Leuven Autism Research (LAuRes), Leuven 3000, Belgium
| | - Eric Haan
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Clinical Genetics Service, SA Pathology, Adelaide, Australia
| | - Corrado Romano
- I.R.C.C.S. Associazione Oasi Maria Santissima, Troina 94018, Italy
| | - Heather C. Mefford
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Ingrid Scheffer
- Florey Institute, University of Melbourne, Austin Health and Royal Children’s Hospital, Melbourne 3010, Australia
| | - Jozef Gecz
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Clinical Genetics Service, SA Pathology, Adelaide, Australia
- Robinson Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Bert B.A. de Vries
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
62
|
Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB, Muehlbauer MJ, Willis MS. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics 2015; 11:1287-1301. [PMID: 26392817 PMCID: PMC4574504 DOI: 10.1007/s11306-015-0786-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between Brg1/Brm double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Ranjan Banerjee
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Darcy Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Carolyn Hillhouse
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Monte S. Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
63
|
Córdova-Fletes C, Domínguez MG, Delint-Ramirez I, Martínez-Rodríguez HG, Rivas-Estilla AM, Barros-Núñez P, Ortiz-López R, Neira VA. A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations. Neurogenetics 2015; 16:287-98. [PMID: 26163108 DOI: 10.1007/s10048-015-0452-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
We report a girl with intellectual disability (ID), neuropsychiatric alterations, and a de novo balanced t(10;19)(q22.3;q13.33) translocation. After chromosome sorting, fine mapping of breakpoints by array painting disclosed disruptions of the zinc finger, MIZ-type containing 1 (ZMIZ1) (on chr10) and proline-rich 12 (PRR12) (on chr19) genes. cDNA analyses revealed that the translocation resulted in gene fusions. The resulting hybrid transcripts predict mRNA decay or, if translated, formation of truncated proteins, both due to frameshifts that introduced premature stop codons. Though other molecular mechanisms may be operating, these results suggest that haploinsufficiency of one or both genes accounts for the patient's phenotype. ZMIZ1 is highly expressed in the brain, and its protein product appears to interact with neuron-specific chromatin remodeling complex (nBAF) and activator protein 1 (AP-1) complexes which play a role regulating the activity of genes essential for normal synapse and dendrite growth/behavior. Strikingly, the patient's phenotype overlaps with phenotypes caused by mutations in SMARCA4 (BRG1), an nBAF subunit presumably interacting with ZMIZ1 in brain cells as suggested by our results of coimmunoprecipitation in the mouse brain. PRR12 is also expressed in the brain, and its protein product possesses domains and residues thought to be related in formation of large protein complexes and chromatin remodeling. Our observation from E15 mouse brain cells that a Prr12 isoform was confined to nucleus suggests a role as a transcription nuclear cofactor likely involved in neuronal development. Moreover, a pilot transcriptome analysis from t(10;19) lymphoblastoid cell line suggests dysregulation of genes linked to neurodevelopment processes/neuronal communication (e.g., NRCAM) most likely induced by altered PRR12. This case represents the first constitutional balanced translocation disrupting and fusing both genes and provides clues for the potential function and effects of these in the central nervous system.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México.
| | - Ma Guadalupe Domínguez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, 44340, México
| | - Ilse Delint-Ramirez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Herminia G Martínez-Rodríguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Ana María Rivas-Estilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Patricio Barros-Núñez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, 44340, México
| | - Rocío Ortiz-López
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Vivian Alejandra Neira
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, 44340, México
| |
Collapse
|
64
|
Nasipak BT, Padilla-Benavides T, Green KM, Leszyk JD, Mao W, Konda S, Sif S, Shaffer SA, Ohkawa Y, Imbalzano AN. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun 2015; 6:7441. [PMID: 26081415 PMCID: PMC4530624 DOI: 10.1038/ncomms8441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium signaling is important for differentiation-dependent gene expression, but is also involved in other cellular functions. Therefore mechanisms must exist to distinguish calcium signaling relevant to differentiation. Calcineurin is a calcium-regulated phosphatase that is required for myogenic gene expression and skeletal muscle differentiation. Here, we demonstrate that inhibition of calcineurin blocks chromatin remodeling and that the Brg1 ATPase of the SWI/SNF chromatin remodeling enzyme, which is required for the activation of myogenic gene expression, is a calcineurin substrate. Furthermore, we identify the calcium-regulated classical protein kinase C beta (PKCβ) as a repressor of myogenesis and as the enzyme that opposes calcineurin function. Replacement of endogenous Brg1 with a phosphomimetic mutant in primary myoblasts inhibits myogenesis, while replacement with a non-phosphorylatable mutant allows myogenesis despite inhibition of calcineurin signaling, demonstrating the functionality of calcineurin/PKC modified residues. Thus the Brg1 chromatin remodeling enzyme integrates two antagonistic calcium-dependent signaling pathways that control myogenic differentiation.
Collapse
Affiliation(s)
- Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Karin M Green
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - John D Leszyk
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Wenjie Mao
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Silvana Konda
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Saïd Sif
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Yasuyuki Ohkawa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.,Department Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi Fukuoka 812-8582, Japan
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| |
Collapse
|
65
|
Mari F, Marozza A, Mencarelli MA, Lo Rizzo C, Fallerini C, Dosa L, Di Marco C, Carignani G, Baldassarri M, Cianci P, Vivarelli R, Vascotto M, Grosso S, Rubegni P, Caffarelli C, Pretegiani E, Fimiani M, Garavelli L, Cristofoli F, Vermeesch JR, Nuti R, Dotti MT, Balestri P, Hayek J, Selicorni A, Renieri A. Coffin-Siris and Nicolaides-Baraitser syndromes are a common well recognizable cause of intellectual disability. Brain Dev 2015; 37:527-36. [PMID: 25249037 DOI: 10.1016/j.braindev.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nicolaides-Baraitser and Coffin-Siris syndromes are emerging conditions with overlapping clinical features including intellectual disability and typical somatic characteristics, especially sparse hair, low frontal hairline, large mouth with thick and everted lips, and hands and feet anomalies. Since 2012, mutations in genes encoding six proteins of the BAF complex were identified in both conditions. METHODS AND RESULTS We have clinically evaluated a cohort of 1161 patients with intellectual disability from three different Italian centers. A strong clinical suspicion of either Nicolaides-Baraitser syndrome or Coffin-Siris syndrome was proposed in 11 cases who were then molecularly confirmed: 8 having de novo missense mutations in SMARCA2, two frame-shift mutations in ARID1B and one missense mutation in SMARCB1. Given the high frequency of the condition we set up a one-step deep sequencing test for all 6 genes of the BAF complex. CONCLUSIONS These results prove that the frequency of these conditions may be as high as the most common syndromes with intellectual deficit (about 1%). Clinical geneticists should be well aware of this group of disorders in the clinical setting when ascertaining patients with intellectual deficit, the specific facial features being the major diagnostic handle. Finally, this work adds information on the clinical differences of the two conditions and presents a fast and sensitive test for the molecular diagnosis.
Collapse
Affiliation(s)
- Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| | - Annabella Marozza
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Lo Rizzo
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Laura Dosa
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Chiara Di Marco
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giulia Carignani
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Paola Cianci
- Pediatric Department at Monza Brianza per il Bambino e la sua Mamma (MBBM) Foundation, Pediatric Genetic Unit, San Gerardo Hospital, Monza, Italy
| | | | | | | | - Pietro Rubegni
- Dept of Clinical Medicine and Immunological Science, Dermatology Section, University of Siena, Siena, Italy
| | - Carla Caffarelli
- Dept of Internal Medicine, Endocrine-Metabolic Science and Biochemistry, University of Siena, Italy
| | - Elena Pretegiani
- Medical, Surgical and Neurological Sciences, Neurodegenerative Disease Unit, University of Siena, Siena, Italy
| | - Michele Fimiani
- Dept of Clinical Medicine and Immunological Science, Dermatology Section, University of Siena, Siena, Italy
| | - Livia Garavelli
- Clinical Genetics Unit, Obstetric and Paediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale S Maria Nuova, Reggio Emilia, Italy
| | - Francesca Cristofoli
- Center for Human Genetics, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Ranuccio Nuti
- Dept of Internal Medicine, Endocrine-Metabolic Science and Biochemistry, University of Siena, Italy
| | - Maria Teresa Dotti
- Medical, Surgical and Neurological Sciences, Neurodegenerative Disease Unit, University of Siena, Siena, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | - Angelo Selicorni
- Pediatric Department at Monza Brianza per il Bambino e la sua Mamma (MBBM) Foundation, Pediatric Genetic Unit, San Gerardo Hospital, Monza, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
66
|
Vals MA, Õiglane-Shlik E, Nõukas M, Shor R, Peet A, Kals M, Kivistik PA, Metspalu A, Õunap K. Coffin-Siris Syndrome with obesity, macrocephaly, hepatomegaly and hyperinsulinism caused by a mutation in the ARID1B gene. Eur J Hum Genet 2014; 22:1327-9. [PMID: 24569609 PMCID: PMC4200437 DOI: 10.1038/ejhg.2014.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Coffin-Siris Syndrome (CSS, MIM 135900) is a rare genetic disorder, and mutations in ARID1B were recently shown to cause CSS. In this study, we report a novel ARID1B mutation identified by whole-exome sequencing in a patient with clinical features of CSS. We identified a novel heterozygous frameshift mutation c.1584delG in exon 2 of ARID1B (NM_020732.3) predicting a premature stop codon p.(Leu528Phefs*65). Sanger sequencing confirmed the c.1584delG mutation as a de novo in the proband and that it was not present either in her parents, half-sister or half-brother. Clinically, the patient presented with extreme obesity, macrocephaly, hepatomegaly, hyperinsulinism and polycystic ovarian syndrome (PCOS), which have previously not been described in CSS patients. We suggest that obesity, macrocephaly, hepatomegaly and/or PCOS may be added to the list of clinical features of ARID1B mutations, but further clinical reports are required to make a definite conclusion.
Collapse
Affiliation(s)
- Mari-Anne Vals
- Department of Paediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- United Laboratories, Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Eve Õiglane-Shlik
- Department of Paediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Margit Nõukas
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Riina Shor
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Aleksandr Peet
- Department of Paediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mart Kals
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Paediatrics, University of Tartu, Tartu, Estonia
- United Laboratories, Department of Genetics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
67
|
Bosse KR, Shukla AR, Pawel B, Chikwava KR, Santi M, Tooke L, Castagna K, Biegel JA, Bagatell R. Malignant rhabdoid tumor of the bladder and ganglioglioma in a 14 year-old male with a germline 22q11.2 deletion. Cancer Genet 2014; 207:415-9. [PMID: 25018128 PMCID: PMC7412592 DOI: 10.1016/j.cancergen.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are rare pediatric malignancies characterized by clinically aggressive lesions that typically show loss of SMARCB1 expression. We herein describe a case of a malignant rhabdoid tumor of the bladder in a 14-year-old male with an autism spectrum disorder and a de novo 3 Mb germline deletion in chromosome band 22q11.2 that included the SMARCB1 gene. The malignancy developed in the setting of chronic hematuria (>2 years) following the occurrence of two other lesions: a central nervous system ganglioglioma and an intraoral dermoid cyst. MRTs of the bladder are exceedingly rare, and this patient is the oldest child reported with this tumor to date. This case adds to the growing body of literature regarding the recently described, phenotypically diverse, distal 22q11.2 syndrome. Furthermore, this is the first reported case in which an MRT of the bladder appears to have developed from a pre-existing bladder lesion. Finally, this case further supports a rhabdoid tumorigenesis model in which heterozygous loss of SMARCB1 predisposes to initial tumor formation with intact SMARCB1 expression, with subsequent inactivation of the other SMARCB1 allele, which results in transformation into more malignant lesions.
Collapse
Affiliation(s)
- Kristopher R Bosse
- Division of Oncology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Aseem R Shukla
- Division of Urology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bruce Pawel
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kudakwashe R Chikwava
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mariarita Santi
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Laura Tooke
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine Castagna
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jaclyn A Biegel
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Rochelle Bagatell
- Division of Oncology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
68
|
Nemani L, Barik R, Patnaik AN, Mishra RC, Rao AM, Kapur P. Coffin-Siris syndrome with the rarest constellation of congenital cardiac defects: A case report with review of literature. Ann Pediatr Cardiol 2014; 7:221-6. [PMID: 25298701 PMCID: PMC4189243 DOI: 10.4103/0974-2069.140859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report a case of type-A Coffin-Siris syndrome (CSS) with a unique constellation of congenital heart defects. A 17-year-old Indian boy was referred to our hospital for central cyanosis with features of right heart failure. The cardiac abnormalities included biventricular outflow tract obstruction, small atrial septal defect (ASD), subaortic ventricular septal defect, drainage of left superior venacava to left atrial appendage, and aortic arch anomaly. Patient underwent successful right ventricular infundibular resection, subaortic membrane resection, closure of atrial and ventricular septal defect, rerouting left superior vena cava to left pulmonary artery and aortic valve replacement.
Collapse
Affiliation(s)
- Lalita Nemani
- Department of Cardiology, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| | - Ramachandra Barik
- Department of Cardiology, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| | - Amar Narayana Patnaik
- Department of Cardiology, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| | - Ramesh C Mishra
- Department of Cardiothoracic Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| | - Amaresh M Rao
- Department of Cardiothoracic Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| | - Pragati Kapur
- Department of Cardiothoracic Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
69
|
Kosho T, Okamoto N. Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:262-75. [PMID: 25168959 DOI: 10.1002/ajmg.c.31407] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coffin-Siris syndrome (CSS) is a rare congenital malformation syndrome, recently found to be caused by mutations in several genes encoding components of the BAF complex. To date, 109 patients have been reported with their mutations: SMARCB1 (12%), SMARCA4 (11%), SMARCE1 (2%), ARID1A (7%), ARID1B (65%), and PHF6 (2%). We review genotype-phenotype correlation of all previously reported patients with mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A through reassessment of their clinical and molecular findings. Cardinal features of CSS included variable degrees of intellectual disability (ID) predominantly affecting speech, sucking/feeding difficulty, and craniofacial (thick eyebrows, long eyelashes), digital (hypoplastic 5th fingers or toes, hypoplastic 5th fingernails or toenails), and other characteristics (hypertrichosis). In addition, patients with SMARCB1 mutations had severe neurodevelopmental deficits including severe ID, seizures, CNS structural abnormalities, and no expressive words as well as scoliosis. Especially, those with a recurrent mutation "p.Lys364del" represented strikingly similar phenotypes including characteristic facial coarseness. Patients with SMARCA4 mutations had less coarse craniofacial appearances and behavioral abnormalities. Patients with SMARCE1 mutations had a wide spectrum of manifestations from severe to moderate ID. Patients with ARID1A also had a wide spectrum of manifestations from severe ID and serous internal complications that could result in early death to mild ID. Mutations in SMARCB1, SMARCA4, and SMARCE1 are expected to exert dominant-negative or gain-of-function effects, whereas those in ARID1A are expected to exert loss-of-function effects.
Collapse
|
70
|
Vergano SS, Deardorff MA. Clinical features, diagnostic criteria, and management of Coffin-Siris syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:252-6. [PMID: 25169447 DOI: 10.1002/ajmg.c.31411] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coffin-Siris syndrome (OMIM#135900) is a multiple congenital anomaly syndrome classically characterized by hypo- or aplasia of the fifth digit nails or phalanges, as well as coarse facial features, sparse scalp hair, and moderate to severe cognitive and/or developmental delay. The recent identification of molecular etiologies has served to effectively characterize a large set of patients who have been described with Coffin-Siris between the time of its initial description and the present. However, despite recent advances, a number of patients who traditionally fit the diagnosis have yet to have identified causes. This could be due to patients who lie outside the defined phenotype, or alternatively, to additional as yet unidentified genes which may play roles. Here we outline the range of clinical features described in the broader diagnostic category, review the continuing phenotypic challenges and note those subsets of patients for whom molecular causes have yet to be clarified. Finally, we discuss recommendations for clinical management of these individuals.
Collapse
|
71
|
Sousa SB, Hennekam RC. Phenotype and genotype in Nicolaides-Baraitser syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:302-14. [PMID: 25169058 DOI: 10.1002/ajmg.c.31409] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nicolaides-Baraitser syndrome (NCBRS) is an intellectual disability (ID)/multiple congenital anomalies syndrome caused by non-truncating mutations in the ATPase region of SMARCA2, which codes for one of the two alternative catalytic subunits of the BAF chromatin remodeling complex. We analyzed 61 molecularly confirmed cases, including all previously reported patients (n = 47) and 14 additional unpublished individuals. NCBRS is clinically and genetically homogeneous. The cardinal features (ID, short stature, microcephaly, typical face, sparse hair, brachydactyly, prominent interphalangeal joints, behavioral problems and seizures), are almost universally present. There is variability however, as ID can range from severe to mild, and sparse hair may be present only in certain age groups. There may be a correlation between the severity of the ID and presence of seizures, absent speech, short stature and microcephaly. SMARCA2 mutations causing NCBRS are likely to act through a dominant-negative effect. There may be some genotype-phenotype correlations (mutations at domain VI with severe ID and seizures; mutations affecting residues Pro883, Leu946, and Ala1201 with mild phenotypes) but numbers are still too small to draw definitive conclusions.
Collapse
|
72
|
Kosho T, Miyake N, Carey JC. Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:241-51. [PMID: 25169878 DOI: 10.1002/ajmg.c.31415] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This issue of Seminars in Medical Genetics, American Journal of Medical Genetics Part C investigates the human diseases caused by mutations in the BAF complex (also known as the mammalian SWI/SNF complex) genes, particularly focusing on Coffin-Siris syndrome (CSS). CSS is a rare congenital malformation syndrome characterized by developmental delay or intellectual disability (ID), coarse facial appearance, feeding difficulties, frequent infections, and hypoplasia/aplasia of the fifth fingernails and fifth distal phalanges. In 2012, 42 years after the first description of CSS in 1970, five causative genes (SMARCB1, SMARCE1, SMARCA4, ARID1A, ARID1B), all encoding components of the BAF complex, were identified as being responsible for CSS through whole exome sequencing and pathway-based genetic screening. The identification of two additional causative genes (PHF6, SOX11) followed. Mutations in another BAF complex gene (SMARCA2) and (TBC1D24) were found to cause clinically similar conditions with ID, Nicolaides-Baraitser syndrome and DOORS syndrome, respectively. Also, ADNP was found to be mutated in an autism/ID syndrome. Furthermore, there is growing evidences for germline or somatic mutations in the BAF complex genes to be causal for cancer/cancer predisposition syndromes. These discoveries have highlighted the role of the BAF complex in the human development and cancer formation. The biology of BAF is very complicated and much remains unknown. Ongoing research is required to reveal the whole picture of the BAF complex in human development, and will lead to the development of new targeted therapies for related disorders in the future.
Collapse
|
73
|
Vandeweyer G, Helsmoortel C, Van Dijck A, Vulto-van Silfhout AT, Coe BP, Bernier R, Gerdts J, Rooms L, van den Ende J, Bakshi M, Wilson M, Nordgren A, Hendon LG, Abdulrahman OA, Romano C, de Vries BBA, Kleefstra T, Eichler EE, Van der Aa N, Kooy RF. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:315-26. [PMID: 25169753 DOI: 10.1002/ajmg.c.31413] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in ADNP were recently identified as a frequent cause of syndromic autism, characterized by deficits in social communication and interaction and restricted, repetitive behavioral patterns. Based on its functional domains, ADNP is a presumed transcription factor. The gene interacts closely with the SWI/SNF complex by direct and experimentally verified binding of its C-terminus to three of its core components. A detailed and systematic clinical assessment of the symptoms observed in our patients allows a detailed comparison with the symptoms observed in other SWI/SNF disorders. While the mutational mechanism of the first 10 patients identified suggested a gain of function mechanism, an 11th patient reported here is predicted haploinsufficient. The latter observation may raise hope for therapy, as addition of NAP, a neuroprotective octapeptide named after the first three amino acids of the sequence NAPVSPIQ, has been reported by others to ameliorate some of the cognitive abnormalities observed in a knockout mouse model. It is concluded that detailed clinical and molecular studies on larger cohorts of patients are necessary to establish a better insight in the genotype phenotype correlation and in the mutational mechanism.
Collapse
|
74
|
Miyake N, Tsurusaki Y, Matsumoto N. Numerous BAF complex genes are mutated in Coffin-Siris syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:257-61. [PMID: 25081545 DOI: 10.1002/ajmg.c.31406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Coffin-Siris syndrome (CSS; OMIM#135900) is a rare congenital anomaly syndrome characterized by intellectual disability, coarse face, hypertrichosis, and absence/hypoplasia of the fifth digits' nails. As the majority of patients are sporadic, an autosomal dominant inheritance model has been postulated. Recently, whole exome sequencing (WES) emerged as a comprehensive analytical method for rare variants. We applied WES on five CSS patients and found two de novo mutations in SMARCB1. SMARCB1 was completely sequenced in 23 CSS patients and the mutations were found in two more patients. As SMARCB1 encodes a subunit of the BAF complex functioning as a chromatin remodeling factor, mutations in 15 other subunit genes may cause CSS and thus were analyzed in 23 CSS patients. We identified heterozygous mutations in either of six genes (SMARCA4, SMARCB1, SMARCA2, SMARCE1, ARID1A, and ARID1B) in 20 out of 23 CSS patients. The patient with a SMARCA2 mutation was re-evaluated and identified as having Nicolaides-Baraitser syndrome (OMIM#601358), which is similar to but different from CSS. Additionally, 49 more CSS patients were analyzed as a second cohort. Together with the first cohort, 37 out of 71 (22 plus 49) patients were found to have a mutation in either one of five BAF complex genes. Furthermore, two CSS patients were reported to have a PHF6 abnormality, which can also cause Borjeson-Forssman-Lehmann syndrome (OMIM#301900), an X-linked intellectual disability syndrome with epilepsy and endocrine abnormalities. The current list of mutated genes in CSS is far from being complete and analysis of more patients is required.
Collapse
|
75
|
Tsurusaki Y, Koshimizu E, Ohashi H, Phadke S, Kou I, Shiina M, Suzuki T, Okamoto N, Imamura S, Yamashita M, Watanabe S, Yoshiura KI, Kodera H, Miyatake S, Nakashima M, Saitsu H, Ogata K, Ikegawa S, Miyake N, Matsumoto N. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat Commun 2014; 5:4011. [PMID: 24886874 DOI: 10.1038/ncomms5011] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/30/2014] [Indexed: 11/09/2022] Open
Abstract
Coffin-Siris syndrome (CSS) is a congenital disorder characterized by growth deficiency, intellectual disability, microcephaly, characteristic facial features and hypoplastic nails of the fifth fingers and/or toes. We previously identified mutations in five genes encoding subunits of the BAF complex, in 55% of CSS patients. Here we perform whole-exome sequencing in additional CSS patients, identifying de novo SOX11 mutations in two patients with a mild CSS phenotype. sox11a/b knockdown in zebrafish causes brain abnormalities, potentially explaining the brain phenotype of CSS. SOX11 is the downstream transcriptional factor of the PAX6-BAF complex, highlighting the importance of the BAF complex and SOX11 transcriptional network in brain development.
Collapse
Affiliation(s)
- Yoshinori Tsurusaki
- 1] Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan [2]
| | - Eriko Koshimizu
- 1] Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan [2]
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, 2100 Magome, Iwatsuki 339-8551, Japan
| | - Shubha Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Rd, Lucknow 226014, India
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toshifumi Suzuki
- 1] Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan [2] Department of Obstetrics and Gynecology, Juntendo University, Hongo 3-1-3, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi 594-1101, Japan
| | - Shintaro Imamura
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan
| | - Michiaki Yamashita
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan
| | - Satoshi Watanabe
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hirofumi Kodera
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
76
|
Lin M, Zhao D, Hrabovsky A, Pedrosa E, Zheng D, Lachman HM. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One 2014; 9:e94968. [PMID: 24736721 PMCID: PMC3988108 DOI: 10.1371/journal.pone.0094968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/21/2014] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs), although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| |
Collapse
|
77
|
Tzeng M, du Souich C, Cheung HWH, Boerkoel CF. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation. Am J Med Genet A 2014; 164A:1808-14. [PMID: 24700502 DOI: 10.1002/ajmg.a.36533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/19/2014] [Indexed: 01/10/2023]
Abstract
Coffin-Siris Syndrome (CSS) is an intellectual disability disorder caused by mutation of components of the SWI/SNF chromatin-remodeling complex. We describe the evolution of the phenotypic features for a male patient with CSS from birth to age 7 years and 9 months and by review of reported CSS patients, we expand the phenotype to include neonatal and infantile hypertonia and upper airway obstruction. The propositus had a novel de novo heterozygous missense mutation in exon 17 of SMARCA4 (NM_001128849.1:c.2434C>T (NP_001122321.1:p.Leu812Phe)). This is the first reported mutation within motif Ia of the SMARCA4 SNF2 domain. In summary, SMARCA4-associated CSS is a pleiotropic disorder in which the pathognomic clinical features evolve and for which the few reported individuals do not demonstrate a clear genotype-phenotype correlation.
Collapse
Affiliation(s)
- Michael Tzeng
- NIH Undiagnosed Diseases Program, Common Fund, NIH Office of the Director and NHGRI, Bethesda, Maryland
| | | | | | | |
Collapse
|
78
|
Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 2014; 46:438-43. [DOI: 10.1038/ng.2931] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
|
79
|
Bevilacqua A, Willis MS, Bultman SJ. SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease. Cardiovasc Pathol 2014; 23:85-91. [PMID: 24183004 PMCID: PMC3946279 DOI: 10.1016/j.carpath.2013.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Our understanding of congenital heart defects has been recently advanced by whole exome sequencing projects, which have identified de novo mutations in many genes encoding epigenetic regulators. Notably, multiple subunits of switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes have been identified as strong candidates underlying these defects because they physically and functionally interact with cardiogenic transcription factors critical to cardiac development, such as TBX5, GATA-4, and NKX2-5. While these studies indicate a critical role of SWI/SNF complexes in cardiac development and congenital heart disease, many exciting new discoveries have identified their critical role in the adult heart in both physiological and pathological conditions involving multiple cell types in the heart, including cardiomyocytes, vascular endothelial cells, pericytes, and neural crest cells. This review summarizes the role of SWI/SNF chromatin-remodeling complexes in cardiac development, congenital heart disease, cardiac hypertrophy, and vascular endothelial cell survival. Although the clinical relevance of SWI/SNF mutations has traditionally been focused primarily on their role in tumor suppression, these recent studies illustrate their critical role in the heart whereby they regulate cell proliferation, differentiation, and apoptosis of cardiac derived cell lines.
Collapse
Affiliation(s)
- Ariana Bevilacqua
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
80
|
Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, Schuurs-Hoeijmakers JHM, Marcelis CL, Willemsen MH, Vissers LELM, Yntema HG, Bakshi M, Wilson M, Witherspoon KT, Malmgren H, Nordgren A, Annerén G, Fichera M, Bosco P, Romano C, de Vries BBA, Kleefstra T, Kooy RF, Eichler EE, Van der Aa N. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 2014; 46:380-4. [PMID: 24531329 PMCID: PMC3990853 DOI: 10.1038/ng.2899] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Despite a high heritability, a genetic diagnosis can only be established in a minority of patients with autism spectrum disorder (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities1. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, such as the Rett and Fragile X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next generation sequencing, for the large majority of cases no molecular diagnosis can be established 2-7. Here, we report 10 patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD genes known to date.
Collapse
Affiliation(s)
| | - Anneke T Vulto-van Silfhout
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2]
| | - Bradley P Coe
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA. [3]
| | - Geert Vandeweyer
- 1] Department of Medical Genetics, University of Antwerp, Antwerp, Belgium. [2] Biomedical informatics research center Antwerpen (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Edegem, Belgium
| | - Liesbeth Rooms
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlo L Marcelis
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madhura Bakshi
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Kali T Witherspoon
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Helena Malmgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Annerén
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Marco Fichera
- 1] Unit of Neurology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy. [2] Medical Genetics, University of Catania, Catania, Italy
| | - Paolo Bosco
- Laboratory of Cytogenetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Bert B A de Vries
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Nathalie Van der Aa
- 1] Department of Medical Genetics, University of Antwerp, Antwerp, Belgium. [2] University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
81
|
Schoeps A, Rudolph A, Seibold P, Dunning AM, Milne RL, Bojesen SE, Swerdlow A, Andrulis I, Brenner H, Behrens S, Orr N, Jones M, Ashworth A, Li J, Cramp H, Connley D, Czene K, Darabi H, Chanock SJ, Lissowska J, Figueroa JD, Knight J, Glendon G, Mulligan AM, Dumont M, Severi G, Baglietto L, Olson J, Vachon C, Purrington K, Moisse M, Neven P, Wildiers H, Spurdle A, Kosma VM, Kataja V, Hartikainen JM, Hamann U, Ko YD, Dieffenbach AK, Arndt V, Stegmaier C, Malats N, Arias Perez J, Benítez J, Flyger H, Nordestgaard BG, Truong T, Cordina-Duverger E, Menegaux F, Silva IDS, Fletcher O, Johnson N, Häberle L, Beckmann MW, Ekici AB, Braaf L, Atsma F, van den Broek AJ, Makalic E, Schmidt DF, Southey MC, Cox A, Simard J, Giles GG, Lambrechts D, Mannermaa A, Brauch H, Guénel P, Peto J, Fasching PA, Hopper J, Flesch-Janys D, Couch F, Chenevix-Trench G, Pharoah PDP, Garcia-Closas M, Schmidt MK, Hall P, Easton DF, Chang-Claude J. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions. Genet Epidemiol 2014; 38:84-93. [PMID: 24248812 PMCID: PMC3995140 DOI: 10.1002/gepi.21771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/06/2022]
Abstract
Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(-07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m(2) (OR = 1.26, 95% CI 1.15-1.38) but not in women with a BMI of 30 kg/m(2) or higher (OR = 0.89, 95% CI 0.72-1.11, P for interaction = 3.2 × 10(-05)). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci.
Collapse
Affiliation(s)
- Anja Schoeps
- Department of Cancer Epidemiology, German Cancer Research
Center (DKFZ), Heidelberg, Germany
- Institute of Public Health, University of Heidelberg,
Heidelberg, Germany
| | - Anja Rudolph
- Department of Cancer Epidemiology, German Cancer Research
Center (DKFZ), Heidelberg, Germany
| | - Petra Seibold
- Department of Cancer Epidemiology, German Cancer Research
Center (DKFZ), Heidelberg, Germany
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Cambridge,
United Kingdom
| | - Roger L. Milne
- Genetic and Molecular Epidemiology Group, Spanish National
Cancer Research Centre (CNIO), Madrid, Spain
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev Hospital,
Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev Hospital,
Copenhagen University Hospital, Herlev, Denmark
| | - Anthony Swerdlow
- Department of Genetics and Epidemiology, Institute of
Cancer Research, Sutton, United Kingdom
| | - Irene Andrulis
- Department of Molecular Genetics, Lunenfeld-Tanenbaum
Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research,
German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Sabine Behrens
- Department of Cancer Epidemiology, German Cancer Research
Center (DKFZ), Heidelberg, Germany
| | - Nicholas Orr
- Department of Breast Cancer Research, Institute of Cancer
Research, London, United Kingdom
| | - Michael Jones
- Copenhagen General Population Study, Herlev Hospital,
Copenhagen University Hospital, Herlev, Denmark
| | - Alan Ashworth
- Department of Human Genetics, Genome Institute of
Singapore, Singapore, Singapore
| | - Jingmei Li
- Department of Human Genetics, Genome Institute of
Singapore, Singapore, Singapore
| | - Helen Cramp
- Department of Oncology, Institute for Cancer Studies,
University of Sheffield, Sheffield, United Kingdom
| | - Dan Connley
- Department of Oncology, Institute for Cancer Studies,
University of Sheffield, Sheffield, United Kingdom
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm, Sweden
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National
Cancer Institute, Rockville, Maryland, United States of America
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M.
Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw,
Poland
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National
Cancer Institute, Rockville, Maryland, United States of America
| | - Julia Knight
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai
Hospital, Toronto, Canada
- Prosserman Centre for Health Research, Toronto,
Canada
| | - Gord Glendon
- Prosserman Centre for Health Research, Toronto,
Canada
| | - Anna M. Mulligan
- Laboratory Medicine Program, University Health Network,
Toronto, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier
Universitaire de Québec Research Center, Laval University, Québec,
Canada
- Department of Molecular Medicine, Faculty of Medicine,
Quebec, Canada
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria,
Melbourne, Australia
| | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council Victoria,
Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and
Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Janet Olson
- Department of Health Sciences Research, Mayo Clinic,
Minnesota, United States of America
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic,
Minnesota, United States of America
| | - Kristen Purrington
- Department of Health Sciences Research, Mayo Clinic,
Minnesota, United States of America
| | - Matthieu Moisse
- Vesalius Research Center (VRC), VIB, Flanders,
Belgium
- Laboratory of Translational Genetics, Department of
Oncology, University of Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Multidisciplinary Breast Cancer, University
Hospital Gasthuisberg, Leuven, Belgium
| | - Hans Wildiers
- Department of Multidisciplinary Breast Cancer, University
Hospital Gasthuisberg, Leuven, Belgium
| | - Amanda Spurdle
- Department of Molecular Cancer Epidemiology, Queensland
Institute of Medical Research, Brisbane Australia
| | | | - Vesa Kataja
- Pathology Department, University of Kuopio, Kuopio,
Finland
| | | | - Ute Hamann
- Division of Molecular Genetics of Breast Cancer, German
Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken
Bonn GmbH, Johanniter Krankenhaus, Bonn, Germany
| | - Aida K. Dieffenbach
- Division of Clinical Epidemiology and Aging Research,
German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research,
German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National
Cancer Research Centre (CNIO), Madrid, Spain
| | - JoséI. Arias Perez
- Servicio de Cirugía General y Especialidades,
Hospital Monte Naranco, Oviedo, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Reserach
Centre (CNIO), Madrid, Spain
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen
University Hospital, Herlev, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital,
Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev Hospital,
Copenhagen University Hospital, Herlev, Denmark
| | - Théresè Truong
- Unité Mixte de Recherche Scientifique (UMRS) 1018,
University Paris-Sud, Villejuif, France
- INSERM (National Institute of Health and Medical
Research), CESP (Center for Research in Epidemiology and Population Health), U1018,
Environmental Epidemiology of Cancer, Villejuif, France
| | - Emilie Cordina-Duverger
- Unité Mixte de Recherche Scientifique (UMRS) 1018,
University Paris-Sud, Villejuif, France
- INSERM (National Institute of Health and Medical
Research), CESP (Center for Research in Epidemiology and Population Health), U1018,
Environmental Epidemiology of Cancer, Villejuif, France
| | - Florence Menegaux
- Unité Mixte de Recherche Scientifique (UMRS) 1018,
University Paris-Sud, Villejuif, France
- INSERM (National Institute of Health and Medical
Research), CESP (Center for Research in Epidemiology and Population Health), U1018,
Environmental Epidemiology of Cancer, Villejuif, France
| | - Isabel dos Santos Silva
- Department of Non-Communicable Disease Epidemiology,
London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, Institute of
Cancer Research, London, United Kingdom
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, Institute of
Cancer Research, London, United Kingdom
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, University
Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University
Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander
University Erlangen-Nuremberg, Erlangen, Germany
| | - Linde Braaf
- Division of Molecular Pathology, Netherlands Cancer
Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology,
Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Femke Atsma
- Department of Donor Studies, Sanquin Nijmegen, Nijmegen,
The Netherlands
| | - Alexandra J. van den Broek
- Division of Psychosocial Research and Epidemiology,
Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Enes Makalic
- Department of Analytic Epidemiology, University of
Melbourne, Melbourne, Australia
| | - Daniel F. Schmidt
- Centre for Molecular, Environmental, Genetic, and
Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | | | - Angela Cox
- Department of Oncology, Institute for Cancer Studies,
University of Sheffield, Sheffield, United Kingdom
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier
Universitaire de Québec Research Center, Laval University, Québec,
Canada
- Department of Molecular Medicine, Faculty of Medicine,
Quebec, Canada
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria,
Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and
Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Flanders,
Belgium
- Laboratory of Translational Genetics, Department of
Oncology, University of Leuven, Leuven, Belgium
| | - Arto Mannermaa
- Department of Pathology and Forensic Medicine, Kuopio
University Hospital, University of Kuopio, Kuopio, Finland
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical
Pharamcology, Stuttgart, Germany
| | - Pascal Guénel
- Unité Mixte de Recherche Scientifique (UMRS) 1018,
University Paris-Sud, Villejuif, France
- INSERM (National Institute of Health and Medical
Research), CESP (Center for Research in Epidemiology and Population Health), U1018,
Environmental Epidemiology of Cancer, Villejuif, France
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology,
London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University
Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
- Department of Medicine, David Geffen School of Medicine,
University of California, Los Angeles, United States
| | - John Hopper
- Centre for Molecular, Environmental, Genetic, and
Analytic Epidemiology, University of Melbourne, Victoria, Australia
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer
Registry, University Clinic Hamburg-Eppendorf, Hamburg, Germany
- Institute for Medical Biometrics and Epidemiology,
University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus Couch
- Department of Experimental Pathology, Mayo Clinic,
Rochester, Minnesota, United States of America
| | - Georgia Chenevix-Trench
- Department of Molecular Cancer Epidemiology, Queensland
Institute of Medical Research, Brisbane Australia
| | - Paul D. P. Pharoah
- Department of Oncology and Public Health and Primary
Care, University of Cambridge, Cambridge, United Kingdom
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, Breakthrough
Breast Cancer Research Centre, Institute of Cancer Research, London, United
Kingdom
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, Netherlands Cancer
Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology,
Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm, Sweden
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University
of Cambridge, Cambridge, United Kingdom
| | - Jenny Chang-Claude
- Correspondence to: Jenny Chang-Claude, Department
of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer
Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
82
|
Au PB, Argiropoulos B, Parboosingh JS, Micheil Innes A. Refinement of the critical region of 1q41q42 microdeletion syndrome identifiesFBXO28as a candidate causative gene for intellectual disability and seizures. Am J Med Genet A 2013; 164A:441-8. [DOI: 10.1002/ajmg.a.36320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/06/2013] [Indexed: 12/21/2022]
Affiliation(s)
- P.Y. Billie Au
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
| | - Bob Argiropoulos
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| | - Jillian S. Parboosingh
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| | - A. Micheil Innes
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
83
|
Wieczorek D, Bögershausen N, Beleggia F, Steiner-Haldenstätt S, Pohl E, Li Y, Milz E, Martin M, Thiele H, Altmüller J, Alanay Y, Kayserili H, Klein-Hitpass L, Böhringer S, Wollstein A, Albrecht B, Boduroglu K, Caliebe A, Chrzanowska K, Cogulu O, Cristofoli F, Czeschik JC, Devriendt K, Dotti MT, Elcioglu N, Gener B, Goecke TO, Krajewska-Walasek M, Guillén-Navarro E, Hayek J, Houge G, Kilic E, Simsek-Kiper PÖ, López-González V, Kuechler A, Lyonnet S, Mari F, Marozza A, Mathieu Dramard M, Mikat B, Morin G, Morice-Picard F, Ozkinay F, Rauch A, Renieri A, Tinschert S, Utine GE, Vilain C, Vivarelli R, Zweier C, Nürnberg P, Rahmann S, Vermeesch J, Lüdecke HJ, Zeschnigk M, Wollnik B. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet 2013; 22:5121-35. [PMID: 23906836 DOI: 10.1093/hmg/ddt366] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.
Collapse
|