51
|
Duclos V, Iep A, Gomez L, Goldfarb L, Besson FL. PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology. Int J Mol Sci 2021; 22:4159. [PMID: 33923839 PMCID: PMC8073681 DOI: 10.3390/ijms22084159] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
PET/CT molecular imaging has been imposed in clinical oncological practice over the past 20 years, driven by its two well-grounded foundations: quantification and radiolabeled molecular probe vectorization. From basic visual interpretation to more sophisticated full kinetic modeling, PET technology provides a unique opportunity to characterize various biological processes with different levels of analysis. In clinical practice, many efforts have been made during the last two decades to standardize image analyses at the international level, but advanced metrics are still under use in practice. In parallel, the integration of PET imaging with radionuclide therapy, also known as radiolabeled theranostics, has paved the way towards highly sensitive radionuclide-based precision medicine, with major breakthroughs emerging in neuroendocrine tumors and prostate cancer. PET imaging of tumor immunity and beyond is also emerging, emphasizing the unique capabilities of PET molecular imaging to constantly adapt to emerging oncological challenges. However, these new horizons face the growing complexity of multidimensional data. In the era of precision medicine, statistical and computer sciences are currently revolutionizing image-based decision making, paving the way for more holistic cancer molecular imaging analyses at the whole-body level.
Collapse
Affiliation(s)
- Valentin Duclos
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Alex Iep
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Lucas Goldfarb
- Service Hospitalier Frédéric Joliot-CEA, 91401 Orsay, France;
| | - Florent L. Besson
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
- Université Paris Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
- School of Medicine, Université Paris Saclay, 94720 Le Kremlin-Bicêtre, France
| |
Collapse
|
52
|
Gupta T, Manjali JJ, Kannan S, Purandare N, Rangarajan V. Diagnostic Performance of Pretreatment 18F-Fluorodeoxyglucose Positron Emission Tomography With or Without Computed Tomography in Patients With Primary Central Nervous System Lymphoma: Updated Systematic Review and Diagnostic Test Accuracy Meta-analyses. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:497-507. [PMID: 33947632 DOI: 10.1016/j.clml.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 02/01/2023]
Abstract
This review aimed to assess diagnostic performance of 18F-flouro-deoxy-glucose positron emission tomography (FDG-PET) with or without computed tomography (CT) scan in primary central nervous system lymphoma (PCNSL). Eligible studies reporting diagnostic accuracy of pretreatment FDG-PET(CT) scan in immunocompetent adults with PCNSL were identified through systematic literature search. Data on diagnostic performance from individual studies was summarized in a 2 × 2 table classifying patients as true positives, true negatives, false positives, and false negatives using histopathologic diagnosis as reference standard. Random-effects model was used to calculate weighted-mean pooled sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic odds ratio with 95% confidence intervals (95% CI). Twenty-nine primary studies involving 967 patients were included. Weighted-mean pooled sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic odds ratio was 87% (95% CI, 83%-90%), 85% (95% CI, 81%-88%), 84% (95% CI, 81%-88%), 87% (95% CI, 84%-90%), and 29.78 (95% CI, 18.34-48.35), respectively, demonstrating acceptably high diagnostic accuracy of pretreatment FDG-PET(CT) scan in immunocompetent patients with PCNSL.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - Jifmi Jose Manjali
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sadhana Kannan
- Department of Clinical Research Secretariat, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nilendu Purandare
- Department of Nuclear Medicine & Molecular Imaging, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine & Molecular Imaging, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
53
|
Suárez-García S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Kim J, Kang S, Lee K, Ho Jung J, Kim G, Keong Lim H, Choi Y, Lee S, Yun M. Effect of Scan Time on Neuro 18F-Fluorodeoxyglucose Positron Emission Tomography Image Generated Using Deep Learning. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to generate the PET images with high signal-to-noise ratio (SNR) acquired for typical scan durations (H-PET) from short scan time PET images with low SNR (L-PET) using deep learning and to evaluate the effect of scan time on the quality of predicted PET
image. A convolutional neural network (CNN) with a concatenated connection and residual learning framework was implemented. PET data from 27 patients were acquired for 900 s, starting 60 minutes after the intravenous administration of FDG using a commercial PET/CT scanner. To investigate the
effect of scan time on the quality of the predicted H-PETs, 10 s, 30 s, 60 s, and 120 s PET data were generated by sorting the 900 s LMF data into the LMF data acquired for each scan time. Twenty-three of the 27 patient images were used for training of the proposed CNN and the remaining four
patient images were used for test of the CNN. The predicted H-PETs generated by the CNN were compared to ground-truth H-PETs, L-PETs, and filtered L-PETs processed with four commonly used denoising algorithms. The peak signal-to-noise ratios (PSNRs), normalized root mean square errors (NRMSEs),
and average regionof- interest (ROI) differences as a function of scan time were calculated. The quality of the predicted H-PETs generated by the CNN was superior to that of the L-PETs and filtered L-PETs. Lower NRMSEs and higher PSNRs were also obtained from predicted H-PETs compared to the
L-PETs and filtered L-PETs. ROI differences in the predicted H-PETs were smaller than those of the L-PETs. The quality of the predicted H-PETs gradually improved with increasing scan times. The lowest NRMSEs, highest PSNRs, and smallest ROI differences were obtained using the predicted H-PETs
for 120 s. Various performance test results for the proposed CNN indicate that it is possible to generate H-PETs from neuro FDG L-PETs using the proposed CNN method, which might allow reductions in both scan time and injection dose.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Sungsik Kang
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Konsu Lee
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Jin Ho Jung
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Garam Kim
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Hyun Keong Lim
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Yong Choi
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Sangwon Lee
- Departments of Nuclear Medicine, Severance Hospital, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Mijin Yun
- Departments of Nuclear Medicine, Severance Hospital, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
55
|
von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. [Chemical exchange saturation transfer (CEST) : Magnetic resonance imaging in diagnostic oncology]. Radiologe 2021; 61:43-51. [PMID: 33337509 DOI: 10.1007/s00117-020-00786-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential. METHODS This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date. RESULTS AND CONCLUSION CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention. KEY POINTS CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.
Collapse
Affiliation(s)
- N von Knebel Doeberitz
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - S Maksimovic
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - L Loi
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - D Paech
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
56
|
Nakashima K, Iikuni S, Okada Y, Watanabe H, Shimizu Y, Nakamoto Y, Ono M. Synthesis and evaluation of 68Ga-labeled imidazothiadiazole sulfonamide derivatives for PET imaging of carbonic anhydrase-IX. Nucl Med Biol 2021; 93:46-53. [PMID: 33316738 DOI: 10.1016/j.nucmedbio.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Carbonic anhydrase-IX (CA-IX) is markedly overexpressed in many types of solid tumors promoting tumorigenicity and tumor growth. We synthesized novel 68Ga-labeled imidazothiadiazole sulfonamide (IS) derivatives ([68Ga]Ga-DO3A-IS1 and [68Ga]Ga-DO2A-IS2), and evaluated their utility as positron emission tomography (PET) probes targeting CA-IX. METHODS [67/68Ga]Ga-DO3A-IS1 and [67/68Ga]Ga-DO2A-IS2 were synthesized from corresponding precursors by ligand substitution reaction in acetate buffer. Cell binding assays were performed using HT-29 cells, which highly express CA-IX, and MDA-MB-231 cells, which show lower-level expression of CA-IX, and a biodistribution assay with model mice bearing the HT-29 or MDA-MB-231 tumor was performed. [68Ga]Ga-DO3A-IS1 was further evaluated by PET/CT. RESULTS To evaluate their fundamental properties, [67Ga]Ga-DO3A-IS1 and [67Ga]Ga-DO2A-IS2 were synthesized by conjugation with 67Ga, which has a much longer decay half-life and can be utilized more easily than 68Ga. [67/68Ga]Ga-DO3A-IS1 and [67/68Ga]Ga-DO2A-IS2 were prepared from corresponding precursors with preferable yield and purity. [67Ga]Ga-DO3A-IS1 and [67Ga]Ga-DO2A-IS2 showed significantly greater binding to HT-29 cells than MDA-MB-231 cells in vitro and the binding of [67Ga]Ga-DO2A-IS2 to HT-29 cells was much greater than that of [67Ga]Ga-DO3A-IS1, suggesting multivalent interactions. [67Ga]Ga-DO3A-IS1 and [67Ga]Ga-DO2A-IS2 showed significant selectivity for the HT-29 tumor in vivo, while tumor uptake of [67Ga]Ga-DO3A-IS1 was greater than that of [67Ga]Ga-DO2A-IS2. PET/CT of [68Ga]Ga-DO3A-IS1 showed selectivity for the HT-29 tumor, although [68Ga]Ga-DO3A-IS1 could not be used to visualize the HT-29 tumor clearly because of its strong background signals. CONCLUSION These results indicate that 68Ga-labeled IS derivatives may be useful 68Ga-PET probes targeting CA-IX with further structural modifications.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Okada
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
57
|
Chen YJ, Lin CW, Peng YJ, Huang CW, Chien YS, Huang TH, Liao PX, Yang WY, Wang MH, Mersmann HJ, Wu SC, Chuang TY, Lin YY, Kuo WH, Ding ST. Overexpression of Adiponectin Receptor 1 Inhibits Brown and Beige Adipose Tissue Activity in Mice. Int J Mol Sci 2021; 22:ijms22020906. [PMID: 33477525 PMCID: PMC7831094 DOI: 10.3390/ijms22020906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing “healthy obese” by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.
Collapse
MESH Headings
- Adipocytes, Beige/metabolism
- Adipose Tissue, Beige/diagnostic imaging
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Brown/diagnostic imaging
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/diagnostic imaging
- Adipose Tissue, White/metabolism
- Animals
- Energy Metabolism/genetics
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/metabolism
- Mitochondria/genetics
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Positron-Emission Tomography
- Receptors, Adiponectin/genetics
- Thermogenesis/genetics
- Uncoupling Protein 1/genetics
Collapse
Affiliation(s)
- Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| | - Chiao-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Yi-Shan Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Tzu-Hsuan Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Pei-Xin Liao
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Wen-Yuan Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Mei-Hui Wang
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan;
| | - Harry J. Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Tai-Yuan Chuang
- Department of Athletics, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| |
Collapse
|
58
|
The Intratumoral Heterogeneity of Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:149-160. [PMID: 34014541 DOI: 10.1007/978-3-030-65768-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world, causing over half a million deaths a year in the USA alone. Despite recent advances made in the field of cancer biology and the therapies that have been developed [1, 2], it is clear that more advances are necessary for us to classify cancer as curable. The logical question that arises is simple: Why, despite all the technologies and medical innovations of our time, has a complete cure eluded us? This chapter sheds light on one of cancer's most impactful attributes: its heterogeneity and, more specifically, the intratumoral heterogeneity of cancer metabolism. Simply put, what makes cancer one of the deadliest diseases is its ability to change and adapt. Cancer cells' rapid evolution, coupled with their irrepressible ability to divide, gives most of them the advantage over our immune systems. In this chapter, we delve into the complexities of this adaptability and the vital role that metabolism plays in the rise and progression of this heterogeneity.
Collapse
|
59
|
de Leijer JF, Metman MJH, van der Hoorn A, Brouwers AH, Kruijff S, van Hemel BM, Links TP, Westerlaan HE. Focal Thyroid Incidentalomas on 18F-FDG PET/CT: A Systematic Review and Meta-Analysis on Prevalence, Risk of Malignancy and Inconclusive Fine Needle Aspiration. Front Endocrinol (Lausanne) 2021; 12:723394. [PMID: 34744999 PMCID: PMC8564374 DOI: 10.3389/fendo.2021.723394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The rising demand for 18F-fluorodeoxyglucose positron emission tomography with computed tomography (18F-FDG PET/CT) has led to an increase of thyroid incidentalomas. Current guidelines are restricted in giving options to tailor diagnostics and to suit the individual patient. OBJECTIVES We aimed at exploring the extent of potential overdiagnostics by performing a systematic review and meta-analysis of the literature on the prevalence, the risk of malignancy (ROM) and the risk of inconclusive FNAC (ROIF) of focal thyroid incidentalomas (FTI) on 18F-FDG PET/CT. DATA SOURCES A literature search in MEDLINE, Embase and Web of Science was performed to identify relevant studies. STUDY SELECTION Studies providing information on the prevalence and/or ROM of FTI on 18F-FDG PET/CT in patients with no prior history of thyroid disease were selected by two authors independently. Sixty-one studies met the inclusion criteria. DATA ANALYSIS A random effects meta-analysis on prevalence, ROM and ROIF with 95% confidence intervals (CIs) was performed. Heterogeneity and publication bias were tested. Risk of bias was assessed using the quality assessment of diagnostic accuracy studies (QUADAS-2) tool. DATA SYNTHESIS Fifty studies were suitable for prevalence analysis. In total, 12,943 FTI were identified in 640,616 patients. The pooled prevalence was 2.22% (95% CI = 1.90% - 2.54%, I2 = 99%). 5151 FTI had cyto- or histopathology results available. The pooled ROM was 30.8% (95% CI = 28.1% - 33.4%, I2 = 57%). 1308 (83%) of malignant nodules were papillary thyroid carcinoma (PTC). The pooled ROIF was 20.8% (95% CI = 13.7% - 27.9%, I2 = 92%). LIMITATIONS The main limitations were the low to moderate methodological quality of the studies and the moderate to high heterogeneity of the results. CONCLUSION FTI are a common finding on 18F-FDG PET/CTs. Nodules are malignant in approximately one third of the cases, with the majority being PTC. Cytology results are non-diagnostic or indeterminate in one fifth of FNACs. These findings reveal the potential risk of overdiagnostics of FTI and emphasize that the workup of FTI should be performed within the context of the patient's disease and that guidelines should adopt this patient tailored approach.
Collapse
Affiliation(s)
- J. F. de Leijer
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - M. J. H. Metman
- Department of Surgical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - A. van der Hoorn
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - A. H. Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - S. Kruijff
- Department of Surgical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - B. M. van Hemel
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - T. P. Links
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - H. E. Westerlaan
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: H. E. Westerlaan,
| |
Collapse
|
60
|
Viswanath V, Chitalia R, Pantel AR, Karp JS, Mankoff DA. Analysis of Four-Dimensional Data for Total Body PET Imaging. PET Clin 2021; 16:55-64. [PMID: 33218604 PMCID: PMC8722496 DOI: 10.1016/j.cpet.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The high sensitivity and total-body coverage of total-body PET scanners will be valuable for a number of clinical and research applications outlined in this article.
Collapse
Affiliation(s)
- Varsha Viswanath
- Department of Radiology, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Room 150, Philadelphia, PA 19103, USA.
| | - Rhea Chitalia
- Department of Radiology, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, Room D700, Philadelphia, PA 19103, USA
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Hospital of the University of Pennsylvania, 1 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, John Morgan Building, 3620 Hamilton Walk, Room 150, Philadelphia, PA 19103, USA
| | - David A Mankoff
- Department of Radiology, Abramson Cancer Center, University of Pennsylvania, Hospital of the University of Pennsylvania, 1 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| |
Collapse
|
61
|
Saxena P, Mahmood T, Dixit M, Gambhir S, Ahsan F. An Exposition of 11C and 18F Radiotracers Synthesis for PET Imaging. Curr Radiopharm 2020; 14:92-100. [PMID: 33261547 DOI: 10.2174/1874471013666201201095631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
The development of new radiolabeled Positron emission tomography tracers has been extensively utilized to access the increasing diversity in the research process and to facilitate the development in research methodology, clinical usage of drug discovery and patient care. Recent advances in radiochemistry, as well as the latest techniques in automated radio-synthesizer, have encouraged and challenged the radiochemists to produce the routinely developed radiotracers. Various radionuclides like 18F, 11C, 15O, 13N 99mTc, 131I, 124I and 64Cu are used for incorporating into different chemical scaffolds; among them, 18F and 11C tagged radiotracers are mostly explored such as 11C-Methionine, 11C-Choline, 18F-FDG, 18F-FLT, and 18F-FES. This review is focused on the development of radiochemistry routes to synthesize different radiotracers of 11C and 18F for clinical studies.
Collapse
Affiliation(s)
- Priya Saxena
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Tarique Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Manish Dixit
- Department of Nuclear Medicine, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sanjay Gambhir
- Department of Nuclear Medicine, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
62
|
Xia M, Li X, Diao Y, Du B, Li Y. Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Transl Oncol 2020; 14:100920. [PMID: 33137541 PMCID: PMC7644669 DOI: 10.1016/j.tranon.2020.100920] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023] Open
Abstract
The glutamine utilization of KRAS-mutant NSCLC is higher than that of KRAS wild-type. Targeted GLS1 and MEK inhibition enhance antitumor activity in vitro and in vivo. The therapeutic response can be well identified by 18F-FDG PET imaging. Dual inhibition of GLS1 and MEK induce redox and energetic stress. Dual inhibition of GLS1 and MEK suppress the phosphorylation of AKT.
Regulated by the tumor microenvironment, the metabolic network of the tumor is reprogrammed, driven by oncogenes and tumor suppressor genes. The metabolic phenotype of tumors of different driven-genes and different tissue types is extremely heterogeneous. KRAS-mutant non-small cell lung cancer (NSCLC) has glutamine dependence. In this study, we demonstrated that glutamine utilization of KRAS-mutant NSCLC was higher than that of KRAS wild-type. CB839, an efficient glutaminase inhibitor, synergized with the MEK inhibitor selumetinib to enhance antitumor activity in KRAS-mutant NSCLC cells and xenografts, and the therapeutic response could be well identified by 18F-FDG PET imaging. Combination therapy induced redox stress, manifesting as a decrease in mitochondrial membrane potential and an increase in ROS levels, and energetic stress manifesting as suppression of glycolysis and glutamine degradation. The phosphorylation of AKT was also suppressed. These effects combined to induce autophagy and thereby caused cancer cell death. Our results suggest that dual inhibition of the MEK-ERK pathway and glutamine metabolism activated by KRAS mutation may be an effective treatment strategy for KRAS-driven NSCLC.
Collapse
Affiliation(s)
- Meng Xia
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Yao Diao
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China.
| |
Collapse
|
63
|
Gillman JA, Pantel AR, Mankoff DA, Edmonds CE. Update on Quantitative Imaging for Predicting and Assessing Response in Oncology. Semin Nucl Med 2020; 50:505-517. [PMID: 33059820 PMCID: PMC9788668 DOI: 10.1053/j.semnuclmed.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging has revolutionized clinical oncology by imaging-specific facets of cancer biology. Through noninvasive measurements of tumor physiology, targeted radiotracers can serve as biomarkers for disease characterization, prognosis, response assessment, and predicting long-term response/survival. In turn, these imaging biomarkers can be utilized to tailor therapeutic regimens to tumor biology. In this article, we review biomarker applications for response assessment and predicting long-term outcomes. 18F-fluorodeoxyglucose (FDG), a measure of cellular glucose metabolism, is discussed in the context of lymphoma and breast and lung cancer. FDG has gained widespread clinical acceptance and has been integrated into the routine clinical care of several malignancies, most notably lymphoma. The novel radiotracers 16α-18F-fluoro-17β-estradiol and 18F-fluorothymidine are reviewed in application to the early prediction of response assessment of breast cancer. Through illustrative examples, we explore current and future applications of molecular imaging biomarkers in the advancement of precision medicine.
Collapse
Affiliation(s)
- Jennifer A Gillman
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David A Mankoff
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Christine E Edmonds
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
64
|
Park SY, Mosci C, Kumar M, Wardak M, Koglin N, Bullich S, Mueller A, Berndt M, Stephens AW, Chin FT, Gambhir SS, Mittra ES. Initial evaluation of (4S)-4-(3-[ 18F]fluoropropyl)-L-glutamate (FSPG) PET/CT imaging in patients with head and neck cancer, colorectal cancer, or non-Hodgkin lymphoma. EJNMMI Res 2020; 10:100. [PMID: 32857284 PMCID: PMC7455665 DOI: 10.1186/s13550-020-00678-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose (4S)-4-(3-[18F]Fluoropropyl)-l-glutamic acid ([18F]FSPG) measures system xC− transporter activity and shows promise for oncologic imaging. We present data on tumor uptake of this radiopharmaceutical in human subjects with head and neck cancer (HNC), colorectal cancer (CRC), and non-Hodgkin lymphoma (NHL). Methods A total of 15 subjects with HNC (n = 5), CRC (n = 5), or NHL (n = 5) were recruited (mean age 66.2 years, range 44–87 years). 301.4 ± 28.1 MBq (8.1 ± 0.8 mCi) of [18F]FSPG was given intravenously to each subject, and 3 PET/CT scans were obtained 0–2 h post-injection. All subjects also had a positive [18F]FDG PET/CT scan within 1 month prior to the [18F]FSPG PET scan. Semi-quantitative and visual comparisons of the [18F]FSPG and [18F]FDG scans were performed. Results [18F]FSPG showed strong uptake in all but one HNC subject. The lack of surrounding brain uptake facilitated tumor delineation in the HNC patients. [18F]FSPG also showed tumor uptake in all CRC subjects, but variable uptake in the NHL subjects. While the absolute [18F]FDG SUV values were comparable or higher than [18F]FSPG, the tumor-to-background SUV ratios were greater with [18F]FSPG than [18F]FDG. Conclusions [18F]FSPG PET/CT showed promising results across 15 subjects with 3 different cancer types. Concordant visualization was mostly observed between [18F]FSPG and [18F]FDG PET/CT images, with some inter- and intra-individual uptake variability potentially reflecting differences in tumor biology. The tumor-to-background ratios were greater with [18F]FSPG than [18F]FDG in the cancer types evaluated. Future studies based on larger numbers of subjects and those with a wider array of primary and recurrent or metastatic tumors are planned to further evaluate the utility of this novel tracer.
Collapse
Affiliation(s)
- Sonya Y Park
- Department of Radiology, Division of Nuclear Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Camila Mosci
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meena Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mirwais Wardak
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norman Koglin
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | | | - Andre Mueller
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Mathias Berndt
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Andrew W Stephens
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA.,Bio-X Program, Stanford University, Stanford, CA, USA
| | - Erik S Mittra
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Diagnostic Radiology, Division of Nuclear Medicine & Molecular Imaging, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L340, Portland, OR, 97239, USA.
| |
Collapse
|
65
|
FDG PET/CT and CT Findings of Renal Cell Carcinoma With Sarcomatoid Differentiation. AJR Am J Roentgenol 2020; 215:645-651. [PMID: 32755159 DOI: 10.2214/ajr.19.22467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE. The purpose of this article is to investigate the value of 18F-FDG PET/CT and enhanced CT in the diagnosis of renal cell carcinoma (RCC) with sarcomatoid differentiation and the differential diagnosis of clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS. Among patients with renal tumors confirmed by pathologic examination from September 2010 to August 2019, 29 patients with RCC with sarcomatoid differentiation and 82 patients with ccRCC who underwent FDG PET/CT, renal contrast-enhanced CT examination, or both, before surgery were studied. Features of the two groups on CT and PET/CT were retrospectively reviewed. RESULTS. The tumor size of RCC with sarcomatoid differentiation was larger than that of ccRCC (p = 0.0086). Cystic necrosis, peritumoral neovascularity, and metastasis were more common in RCC with sarcomatoid differentiation (p = 0.0052, p = 0.0008, p < 0.0001, respectively). The ratio of necrotic area to tumor diameter of RCC with sarcomatoid differentiation was statistically significantly larger than that of ccRCC (p = 0.0032). Three cases of RCC with sarcomatoid differentiation showed a large central necrotic area and dense intratu-moral neovascularity in the surrounding parenchyma, defined as the ring-of-fire sign, which was not found in ccRCC. The maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and peak standardized uptake value (SUVpeak) of RCC with sarcomatoid differentiation were statistically significantly higher than those for ccRCC (all p < 0.0001), and the SUVmax, SUVmean, and SUVpeak cutoff values of 5.4, 4.2, and 5.0, respectively, were helpful for discrimination. CONCLUSION. Imaging features including higher SUVmax, SUVmean, and SUVpeak; a larger ratio of necrotic area to tumor diameter; the presence of peritumoral neovascularity; and metastasis are more commonly associated with RCC with sarcomatoid differentiation than with ccRCC. The ring-of-fire sign and SUVmax, SUVmean, SUVpeak cutoff values of 5.4, 4.2, 5.0, respectively, may be helpful to indicate RCC with sarcomatoid differentiation.
Collapse
|
66
|
Sato A, Masui T, Yogo A, Uchida Y, Nakano K, Anazawa T, Nagai K, Takaori K, Nakamoto Y, Uemoto S. Usefulness of 18 F-FDG-PET/CT in the diagnosis and prediction of recurrence of pancreatic neuroendocrine neoplasms. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 27:414-420. [PMID: 32196985 DOI: 10.1002/jhbp.734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/09/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although 18 F-FDG-PET/CT is a widely used diagnostic tool for several malignancies, its efficacy in diagnosing pancreatic neuroendocrine tumors is reported to be controversial because of the short-term follow-up. METHODS We retrospectively compared demographics and pathological features between 18 F-FDG-positive and -negative diseases. Additionally, we evaluated whether the avidity of 18 F-FDG-PET/CT affected earlier recurrence after curative treatment of non-functioning tumors. The median duration of observation was 65.6 months. RESULTS Seventy-two patients were enrolled. 18 F-FDG-positive diseases were pathologically advanced and significantly associated with metastatic behavior. In a multivariate analysis, metastatic behavior and WHO tumor grade was independently associated with 18 F-FDG accumulation. Only 25% of functional tumors (4/16) and 8% of insulinomas (1/12) were 18 F-FDG-positive. In a Kaplan-Meier analysis in patients with non-functioning tumors (n = 56), 18 F-FDG-positivity was significantly correlated with poorer recurrence-free survival (RFS) but had no correlation with overall survival. In univariate analysis of factors associated with shorter RFS, male gender, prevalence of nodal metastasis, WHO tumor grade ≥G2, or 18 F-FDG-positive disease were significantly higher in patients with shorter RFS, whereas only 18 F-FDG-positivity was associated with shorter RFS in multivariate analyses. CONCLUSIONS The avidity of 18 F-FDG-PET/CT was associated with metastatic behavior of pancreatic neuroendocrine tumors and recurrence after treatment of non-functioning tumors.
Collapse
Affiliation(s)
- Asahi Sato
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan.,Department of Surgery, Shiga General Hospital, Moriyama, Japan
| | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Akitada Yogo
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Yuichiro Uchida
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Kenzo Nakano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Takayuki Anazawa
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Kazuyuki Nagai
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Kyoichi Takaori
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Division of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
67
|
Daly HC, Conroy E, Todor M, Wu D, Gallagher WM, O'Shea DF. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Am J Cancer Res 2020; 10:3064-3082. [PMID: 32194855 PMCID: PMC7053210 DOI: 10.7150/thno.42702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
A successful matching of a PEG group size with the EPR effect for an off-to-on responsive NIR-fluorophore conjugate has been accomplished which allows two distinct in vivo tumor imaging periods, the first being the switch on during the initial tumor uptake via enhanced permeability into the ROI (as background is suppressed) and a second, later, due to enhanced retention within the tumor. Methods: Software simulation (https://mihaitodor.github.io/particle_simulation/index.html), synthetic chemistry, with in vitro and in vivo imaging have been synergistically employed to identify an optimal PEG conjugate of a bio-responsive NIR-AZA fluorophore for in vivo tumor imaging. Results: A bio-responsive NIR-AZA fluorophore conjugated to a 10 kDa PEG group has shown excellent in vivo imaging performance with sustained high tumor to background ratios and peak tumor emission within 24 h. Analysis of fluorescence profiles over 7 days has provided evidence for the EPR effect playing a positive role. Conclusion: Preclinical results show that exploiting the EPR effect by utilizing an optimized PEG substituent on a bio-responsive fluorophore may offer a means for intraoperative tumor margin delineation. The off-to-on responsive nature of the fluorophore makes tumor imaging achievable without waiting for clearance from normal tissue.
Collapse
|
68
|
Ehrlich K, Parker HE, McNicholl DK, Reid P, Reynolds M, Bussiere V, Crawford G, Deighan A, Garrett A, Kufcsák A, Norberg DR, Spennati G, Steele G, Szoor-McElhinney H, Jimenez M. Demonstrating the Use of Optical Fibres in Biomedical Sensing: A Collaborative Approach for Engagement and Education. SENSORS (BASEL, SWITZERLAND) 2020; 20:E402. [PMID: 31936827 PMCID: PMC7014119 DOI: 10.3390/s20020402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022]
Abstract
This paper demonstrates how research at the intersection of physics, engineering, biology and medicine can be presented in an interactive and educational way to a non-scientific audience. Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can be used to engage with the public. Respiratory diseases are significant contributors to avoidable morbidity and mortality and have a growing social and economic impact. With the aim of improving lung disease understanding, new techniques in fibre-based optical endomicroscopy have been recently developed. Here, we present a novel engagement activity that resembles a bench-to-bedside pathway. The activity comprises an inexpensive educational tool (<$70) adapted from a clinical optical endomicroscopy system and tutorials that cover state-of-the-art research. The activity was co-created by high school science teachers and researchers in a collaborative way that can be implemented into any engagement development process.
Collapse
Affiliation(s)
- Katjana Ehrlich
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Helen E. Parker
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Duncan K. McNicholl
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Science, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Peter Reid
- College of Science and Engineering Engagement Team, King’s Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK; (P.R.); (M.R.)
| | - Mark Reynolds
- College of Science and Engineering Engagement Team, King’s Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK; (P.R.); (M.R.)
| | - Vincent Bussiere
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| | | | | | - Alice Garrett
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| | - András Kufcsák
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Dominic R. Norberg
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Giulia Spennati
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| | - Gregor Steele
- Scottish Schools Education Research Centre (SSERC), Dunfermline KY11 8UU, UK;
| | - Helen Szoor-McElhinney
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Melanie Jimenez
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| |
Collapse
|
69
|
Song TA, Chowdhury SR, Yang F, Dutta J. Super-Resolution PET Imaging Using Convolutional Neural Networks. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 6:518-528. [PMID: 32055649 PMCID: PMC7017584 DOI: 10.1109/tci.2020.2964229] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Positron emission tomography (PET) suffers from severe resolution limitations which reduce its quantitative accuracy. In this paper, we present a super-resolution (SR) imaging technique for PET based on convolutional neural networks (CNNs). To facilitate the resolution recovery process, we incorporate high-resolution (HR) anatomical information based on magnetic resonance (MR) imaging. We introduce the spatial location information of the input image patches as additional CNN inputs to accommodate the spatially-variant nature of the blur kernels in PET. We compared the performance of shallow (3-layer) and very deep (20-layer) CNNs with various combinations of the following inputs: low-resolution (LR) PET, radial locations, axial locations, and HR MR. To validate the CNN architectures, we performed both realistic simulation studies using the BrainWeb digital phantom and clinical studies using neuroimaging datasets. For both simulation and clinical studies, the LR PET images were based on the Siemens HR+ scanner. Two different scenarios were examined in simulation: one where the target HR image is the ground-truth phantom image and another where the target HR image is based on the Siemens HRRT scanner - a high-resolution dedicated brain PET scanner. The latter scenario was also examined using clinical neuroimaging datasets. A number of factors affected relative performance of the different CNN designs examined, including network depth, target image quality, and the resemblance between the target and anatomical images. In general, however, all deep CNNs outperformed classical penalized deconvolution and partial volume correction techniques by large margins both qualitatively (e.g., edge and contrast recovery) and quantitatively (as indicated by three metrics: peak signal-to-noise-ratio, structural similarity index, and contrast-to-noise ratio).
Collapse
Affiliation(s)
- Tzu-An Song
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| | - Samadrita Roy Chowdhury
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| | - Fan Yang
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| |
Collapse
|
70
|
Gnesin S, Kieffer C, Zeimpekis K, Papazyan JP, Guignard R, Prior JO, Verdun FR, Lima TVM. Phantom-based image quality assessment of clinical 18F-FDG protocols in digital PET/CT and comparison to conventional PMT-based PET/CT. EJNMMI Phys 2020; 7:1. [PMID: 31907664 PMCID: PMC6944719 DOI: 10.1186/s40658-019-0269-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We assessed and compared image quality obtained with clinical 18F-FDG whole-body oncologic PET protocols used in three different, state-of-the-art digital PET/CT and two conventional PMT-based PET/CT devices. Our goal was to evaluate an improved trade-off between administered activity (patient dose exposure/signal-to-noise ratio) and acquisition time (patient comfort) while preserving diagnostic information achievable with the recently introduced digital detector technology compared to previous analogue PET technology. METHODS We performed list-mode (LM) PET acquisitions using a NEMA/IEC NU2 phantom, with activity concentrations of 5 kBq/mL and 25 kBq/mL for the background (9.5 L) and sphere inserts, respectively. For each device, reconstructions were obtained varying the image statistics (10, 30, 60, 90, 120, 180, and 300 s from LM data) and the number of iterations (range 1 to 10) in addition to the employed local clinical protocol setup. We measured for each reconstructed dataset: the quantitative cross-calibration, the image noise on the uniform background assessed by the coefficient of variation (COV), and the recovery coefficients (RCs) evaluated in the hot spheres. Additionally, we compared the characteristic time-activity-product (TAP) that is the product of scan time per bed position × mass-activity administered (in min·MBq/kg) across datasets. RESULTS Good system cross-calibration was obtained for all tested datasets with < 6% deviation from the expected value was observed. For all clinical protocol settings, image noise was compatible with clinical interpretation (COV < 15%). Digital PET showed an improved background signal-to-noise ratio as compared to conventional PMT-based PET. RCs were comparable between digital and PMT-based PET datasets. Compared to PMT-based PET, digital systems provided comparable image quality with lower TAP (from ~ 40% less and up to 70% less). CONCLUSIONS This study compared the achievable clinical image quality in three state-of-the-art digital PET/CT devices (from different vendors) as well as in two conventional PMT-based PET. Reported results show that a comparable image quality is achievable with a TAP reduction of ~ 40% in digital PET. This could lead to a significant reduction of the administered mass-activity and/or scan time with direct benefits in terms of dose exposure and patient comfort.
Collapse
Affiliation(s)
- Silvano Gnesin
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christine Kieffer
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Jean-Pierre Papazyan
- Radiology and Medicine Nuclear Department, Genolier Clinique, Genolier, Switzerland
| | - Renaud Guignard
- Department of Nuclear Medicine, La Tour Medical Group, Meyrin, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, University of Lausanne, Bugnon 46, Lausanne, Switzerland.
| | - Francis R Verdun
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thiago V M Lima
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Radiation Protection Group, Aarau Cantonal Hospital, Aarau, Switzerland
| |
Collapse
|
71
|
Structural Imaging and Target Visualization. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
72
|
Werner RA, Derlin T, Lapa C, Sheikbahaei S, Higuchi T, Giesel FL, Behr S, Drzezga A, Kimura H, Buck AK, Bengel FM, Pomper MG, Gorin MA, Rowe SP. 18F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics 2020; 10:1-16. [PMID: 31903102 PMCID: PMC6929634 DOI: 10.7150/thno.37894] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted PET imaging for prostate cancer with 68Ga-labeled compounds has rapidly become adopted as part of routine clinical care in many parts of the world. However, recent years have witnessed the start of a shift from 68Ga- to 18F-labeled PSMA-targeted compounds. The latter imaging agents have several key advantages, which may lay the groundwork for an even more widespread adoption into the clinic. First, facilitated delivery from distant suppliers expands the availability of PET radiopharmaceuticals in smaller hospitals operating a PET center but lacking the patient volume to justify an onsite 68Ge/68Ga generator. Thus, such an approach meets the increasing demand for PSMA-targeted PET imaging in areas with lower population density and may even lead to cost-savings compared to in-house production. Moreover, 18F-labeled radiotracers have a higher positron yield and lower positron energy, which in turn decreases image noise, improves contrast resolution, and maximizes the likelihood of detecting subtle lesions. In addition, the longer half-life of 110 min allows for improved delayed imaging protocols and flexibility in study design, which may further increase diagnostic accuracy. Moreover, such compounds can be distributed to sites which are not allowed to produce radiotracers on-site due to regulatory issues or to centers without access to a cyclotron. In light of these advantageous characteristics, 18F-labeled PSMA-targeted PET radiotracers may play an important role in both optimizing this transformative imaging modality and making it widely available. We have aimed to provide a concise overview of emerging 18F-labeled PSMA-targeted radiotracers undergoing active clinical development. Given the wide array of available radiotracers, comparative studies are needed to firmly establish the role of the available 18F-labeled compounds in the field of molecular PCa imaging, preferably in different clinical scenarios.
Collapse
Affiliation(s)
- Rudolf A. Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Sara Sheikbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A. Gorin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
73
|
Borgatti A, Dickerson EB, Lawrence J. Emerging therapeutic approaches for canine sarcomas: Pushing the boundaries beyond the conventional. Vet Comp Oncol 2019; 18:9-24. [PMID: 31749286 DOI: 10.1111/vco.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Sarcomas represent a group of genomically chaotic, highly heterogenous tumours of mesenchymal origin with variable mutational load. Conventional therapy with surgery and radiation therapy is effective for managing small, low-grade sarcomas and remains the standard therapeutic approach. For advanced, high-grade, recurrent, or metastatic sarcomas, systemic chemotherapy provides minimal benefit, therefore, there is a drive to develop novel approaches. The discovery of "Coley's toxins" in the 19th century, and their use to stimulate the immune system supported the application of unconventional therapies for the treatment of sarcomas. While promising, this initial work was abandoned and treatment paradigm and disease course of sarcomas was largely unchanged for several decades. Exciting new therapies are currently changing treatment algorithms for advanced carcinomas and melanomas, and similar approaches are being applied to advance the field of sarcoma research. Recent discoveries in subtype-specific cancer biology and the identification of distinct molecular targets have led to the development of promising targeted strategies with remarkable potential to change the landscape of sarcoma therapy in dogs. The purpose of this review article is to describe the current standard of care and limitations as well as emerging approaches for sarcoma therapy that span many of the most active paradigms in oncologic research, including immunotherapies, checkpoint inhibitors, and drugs capable of cellular metabolic reprogramming.
Collapse
Affiliation(s)
- Antonella Borgatti
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota
| | - Erin B Dickerson
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Lawrence
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
74
|
Abstract
Purpose: We proposed and developed a new microstrip transmission line radiofrequency (RF) coil for a positron emission tomography (PET) insert for MRI, which has low electrical interactions with PET shield boxes. We performed imaging experiments using a single-channel and a four-channel proposed RF coils for proof-of-concept. Methods: A conventional microstrip coil consists of a microstrip conductor, a ground conductor, and a dielectric between the two conductors. We proposed a microstrip coil for the PET insert that replaced the conventional single-layer ground conductor with the RF shield of the PET insert. A dielectric material, which could otherwise attenuate gamma photons radiated from the PET imaging tracer, was not used. As proof-of-concept, we compared conventional and the proposed single-channel coils. To study multichannel performance, we further developed a four-channel proposed RF coil. Since the MRI system had a single-channel transmission port, an interfacing four-way RF power division circuit was designed. The coils were implemented as both RF transmitters and receivers in a cylindrical frame of diameter 150 mm. Coil bench performances were tested with a network analyzer (Rohde & Schwarz, Germany), and a homogeneous phantom study was conducted for gradient echo imaging and RF field (B1) mapping in a 3T clinical MRI system (Verio, Siemens, Erlangen, Germany). Results: For all coils, the power reflection coefficient was below −30 dB, and the transmission coefficients in the four-channel configuration were near or below −20 dB. The comparative single-channel coil study showed good similarity between the conventional and proposed coils. The gradient echo image of the four-channel coil showed expected flashing image intensity near the coils and no phase distortion was visible. Transmit B1 field map resembled the image performance. Conclusion: The proposed PET-microstrip coil performed similarly to the conventional microstrip transmission line coil and is promising for the development of a compact coil-PET system capable of simultaneous PET/MRI analysis with an existing MRI system.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Takayuki Obata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| |
Collapse
|
75
|
PET/CT-guided biopsy with respiratory motion correction. Int J Comput Assist Radiol Surg 2019; 14:2187-2198. [PMID: 31512193 DOI: 10.1007/s11548-019-02047-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Given the ability of positron emission tomography (PET) imaging to localize malignancies in heterogeneous tumors and tumors that lack an X-ray computed tomography (CT) correlate, combined PET/CT-guided biopsy may improve the diagnostic yield of biopsies. However, PET and CT images are naturally susceptible to problems due to respiratory motion, leading to imprecise tumor localization and shape distortion. To facilitate PET/CT-guided needle biopsy, we developed and investigated the feasibility of a workflow that allows to bring PET image guidance into interventional CT suite while accounting for respiratory motion. METHODS The performance of PET/CT respiratory motion correction using registered and summed phases method was evaluated through computer simulations using the mathematical 4D extended cardiac-torso phantom, with motion simulated from real respiratory traces. The performance of PET/CT-guided biopsy procedure was evaluated through operation on a physical anthropomorphic phantom. Vials containing radiolabeled 18F-fluorodeoxyglucose were placed within the physical phantom thorax as biopsy targets. We measured the average distance between target center and the simulated biopsy location among multiple trials to evaluate the biopsy localization accuracy. RESULTS The computer simulation results showed that the RASP method generated PET images with a significantly reduced noise of 0.10 ± 0.01 standardized uptake value (SUV) as compared to an end-of-expiration image noise of 0.34 ± 0.04 SUV. The respiratory motion increased the apparent liver lesion size from 5.4 ± 1.1 to 35.3 ± 3.0 cc. The RASP algorithm reduced this to 15.7 ± 3.7 cc. The distances between the centroids for the static image lesion and two moving lesions in the liver and lung, when reconstructed with the RASP algorithm, were 0.83 ± 0.72 mm and 0.42 ± 0.72 mm. For the ungated imaging, these values increased to 3.48 ± 1.45 mm and 2.5 ± 0.12 mm, respectively. For the ungated imaging, this increased to 1.99 ± 1.72 mm. In addition, the lesion activity estimation (e.g., SUV) was accurate and constant for images reconstructed using the RASP algorithm, whereas large activity bias and variations (± 50%) were observed for lesions in the ungated images. The physical phantom studies demonstrated a biopsy needle localization error of 2.9 ± 0.9 mm from CT. Combined with the localization errors due to respiration for the PET images from simulations, the overall estimated lesion localization error would be 3.08 mm for PET-guided biopsies images using RASP and 3.64 mm when using ungated PET images. In other words, RASP reduced the localization error by approximately 0.6 mm. The combined error analysis showed that replacing the standard end-of-expiration images with the proposed RASP method in PET/CT-guided biopsy workflow yields comparable lesion localization accuracy and reduced image noise. CONCLUSION The RASP method can produce PET images with reduced noise, attenuation artifacts and respiratory motion, resulting in more accurate lesion localization. Testing the PET/CT-guided biopsy workflow using computer simulation and physical phantoms with respiratory motion, we demonstrated that guided biopsy procedure with the RASP method can benefit from improved PET image quality due to noise reduction, without compromising the accuracy of lesion localization.
Collapse
|
76
|
Katabathina VS, Menias CO, Khanna L, Murphy L, Dasyam AK, Lubner MG, Prasad SR. Hereditary Gastrointestinal Cancer Syndromes: Role of Imaging in Screening, Diagnosis, and Management. Radiographics 2019; 39:1280-1301. [DOI: 10.1148/rg.2019180185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
77
|
Sánchez D, Romero L, López S, Campuzano M, Ortega R, Morales A, Guadarrama M, Cesarman-Maus G, García-Pérez O, Lizano M. 18F-FDG-PET/CT in Canine Mammary Gland Tumors. Front Vet Sci 2019; 6:280. [PMID: 31508434 PMCID: PMC6718568 DOI: 10.3389/fvets.2019.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022] Open
Abstract
Medical imaging techniques play a central role in clinical oncology, helping to obtain important information about the extent of disease, and plan treatment. Advanced imaging modalities such as Positron Emission Tomography-Computed Tomography (PET/CT), may help in the whole-body staging in a single procedure, although the lesions should be carefully interpreted. PET/CT is becoming commonly used in canine cancer patients, but there is still limited information available on specific tumors such as mammary cancer. We evaluated the utility of fluorine-18 fluorodeoxyglucose (18F-FDG)-PET/CT to detect malignant lesions in eight female dogs with naturally occurring mammary tumors. A whole-body scan was performed prior to surgery, and mammary and non-mammary lesions detected either on PET/CT or during pre-surgical physical exam were resected when possible and submitted for histopathological examination. Multiple mammary lesions involving different mammary glands were detected in 5/8 dogs, for a total of 23 lesions; there were 11 non-mammary-located lesions in 6/8 dogs, three of these were lung or lymph node metastasis. A total of 34 lesions were analyzed: 22 malignant (19 mammary tumors and three metastatic lesions), and 12 benign (four mammary lesions and eight of non-mammary tissues). Glucose uptake by maximum standardized uptake value (SUVmax) was analyzed and correlated with tumor size, and benign vs. malignant pathology. We found that the minimum tumor size needed to distinguish malignant lesions according to the SUVmax was 1.5 cm; benign and malignant lesions <1.5 cm did not differ in glucose uptake (mean SUVmax = 1.1). In addition, a SUVmax value >2 was 100% sensitive for malignancy. Combining these data, lesions >1.5 cm with a SUVmax >2 had a positive predictive value of 100%. Finally, we did not find an association between SUVmax and histologic subtype or grade, which may be present in a larger sample. Thus, 18F-FDG PET/CT is useful for distinguishing malignant from benign lesion but further imaging of dogs with diverse tumors, should establish characteristic SUV value cutoffs for detecting primary and metastatic disease, and distinguishing them from benign lesions.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genòmica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Laura Romero
- Departmento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio López
- Departamento de Medicina Nuclear e Imagen Molecular, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Margarita Campuzano
- Departamento de Medicina Nuclear e Imagen Molecular, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rocio Ortega
- Departamento de Cirugía y Anestesia, Waldorf Pet Hospital, Mexico City, Mexico
| | - Alfonso Morales
- Departamento de Cirugía y Anestesia, Hospital Kiin, Mexico City, Mexico
| | - Marina Guadarrama
- Departmento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Osvaldo García-Pérez
- Departamento de Medicina Nuclear e Imagen Molecular, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genòmica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
78
|
Arnon-Sheleg E, Israel O, Keidar Z. PET/CT Imaging in Soft Tissue Infection and Inflammation-An Update. Semin Nucl Med 2019; 50:35-49. [PMID: 31843060 DOI: 10.1053/j.semnuclmed.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear medicine procedures, including Ga-67 and labeled leucocyte SPECT/CT as well as PET/CT using 18F-FDG and recently Ga-68 tracers, have found extensive applications in the assessment of infectious and inflammatory processes in general and in soft tissues in particular. Recent published data focus on summarizing the available imaging information with the purpose of providing the referring clinicians with optimized evidence based results. Guidelines and/or recommendations of clinical societies have incorporated nuclear medicine tests (using both labeled leucocytes and FDG) in their suggested work-up for evaluation of infective endocarditis and in certain patients with suspected vascular graft infections. Joint guidelines of the European and American nuclear medicine societies include fever of unknown origin, sarcoidosis, and vasculitis among the major clinical indications that will benefit from nuclear medicine procedures, specifically from FDG PET/CT. Limitations and pitfalls for the use of radiotracers in assessment of infection and inflammation can be related to patient conditions (eg, diabetes mellitus), or to the biodistribution of a specific radiopharmaceutical. Limited presently available data on the use of functional and/or metabolic monitoring of response to infectious and inflammatory processes to treatment and with respect to the effect of drugs such as antibiotics and glucocorticoids on the imaging patterns of these patients need further confirmation.
Collapse
Affiliation(s)
- Elite Arnon-Sheleg
- Department of Nuclear Medicine, Galilee Medical Center, Naharia, Israel; Department of Diagnostic Radiology, Galilee Medical Center, Naharia, Israel.
| | - Ora Israel
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
79
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
80
|
Mirus M, Tokalov SV, Abramyuk A, Heinold J, Prochnow V, Zöphel K, Kotzerke J, Abolmaali N. Noninvasive assessment and quantification of tumor vascularization using [18F]FDG-PET/CT and CE-CT in a tumor model with modifiable angiogenesis-an animal experimental prospective cohort study. EJNMMI Res 2019; 9:55. [PMID: 31227938 PMCID: PMC6588673 DOI: 10.1186/s13550-019-0502-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background This study investigated the noninvasive assessment of tumor vascularization with clinical F-18-fluorodeoxyglucose positron emission tomography/computed tomography and contrast-enhanced computed tomography ([18F]FDG-PET/CT and CE-CT) in experimental human xenograft tumors with modifiable vascularization and compared results to histology. Tumor xenografts with modifiable vascularization were established in 71 athymic nude rats by subcutaneous transplantation of human non-small-cell lung cancer (NSCLC) cells. Four different groups were transplanted with two different tumor cell lines (either A549 or H1299) alone or tumors co-transplanted with rat glomerular endothelial (RGE) cells, the latter to increase vascularization. Tumors were assessed noninvasively by [18F]FDG PET/CT and contrast-enhanced CT (CE-CT) using clinical scanners. This was followed by histological examinations evaluating tumor vasculature (CD-31 and intravascular fluorescent beads). Results In both tumor lines (A549 and H1299), co-transplantation of RGE cells resulted in faster growth rates [maximal tumor diameter of 20 mm after 22 (± 1.2) as compared to 45 (± 1.8) days, p < 0.001], higher microvessel density (MVD) determined histologically after CD-31 staining [171.4 (± 18.9) as compared to 110.8 (± 11) vessels per mm2, p = 0.002], and higher perfusion as indicated by the number of beads [1.3 (± 0.1) as compared to 1.1 (± 0.04) beads per field of view, p = 0.001]. In [18F]FDG-PET/CT, co-transplanted tumors revealed significantly higher standardized uptake values [SUVmax, 2.8 (± 0.2) as compared to 1.1 (± 0.1), p < 0.001] and larger metabolic active volumes [2.4 (± 0.2) as compared to 0.4 (± 0.2) cm3, p < 0.001] than non-co-transplanted tumors. There were significant correlations for vascularization parameters derived from histology and [18F]FDG PET/CT [beads and SUVmax, r = 0.353, p = 0.005; CD-31 and SUVmax, r = 0.294, p = 0.036] as well as between CE-CT and [18F]FDG PET/CT [contrast enhancement and SUVmax, r = 0.63, p < 0.001; vital CT tumor volume and metabolic PET tumor volume, r = 0.919, p < 0.001]. Conclusions In this study, a human xenograft tumor model with modifiable vascularization implementable for imaging, pharmacological, and radiation therapy studies was successfully established. Both [18F]FDG-PET/CT and CE-CT are capable to detect parameters closely connected to the degree of tumor vascularization, thus they can help to evaluate vascularization in tumors noninvasively. [18F]FDG-PET may be considered for characterization of tumors beyond pure glucose metabolism and have much greater contribution to diagnostics in oncology.
Collapse
Affiliation(s)
- Martin Mirus
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Institution under Public Law of the Free State of Saxony, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sergey V Tokalov
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Andrij Abramyuk
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Neuroradiology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jessica Heinold
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Municipal Hospital Dresden-Neustadt, Department of Neurology, Industriestraße 40, 01129, Dresden, Germany
| | - Vincent Prochnow
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Clinic for Obstetrics and Gynaecology, Klinikum Chemnitz, Flemmingstraße 4, 09116, Chemnitz, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nasreddin Abolmaali
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,Department of Radiology, Municipal Hospital and Academic Teaching Hospital of the Technical University Dresden, Dresden-Friedrichstadt, Friedrichstraße 41, 01067, Dresden, Germany.
| |
Collapse
|
81
|
Meyer AR, Leroy A, Allaf ME, Rowe SP, Gorin MA. Incidentally Detected 18F-FDG-Avid Prostate Cancer Diagnosed Using a Novel Fusion Biopsy Platform. J Endourol Case Rep 2019; 5:68-70. [PMID: 32760804 DOI: 10.1089/cren.2019.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Localized prostate cancer rarely undergoes a shift in metabolism towards aerobic glycolysis, a process known as the Warburg Effect. Because of this, positron emission tomography (PET)/CT imaging using 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) is uncommonly used to evaluate patients with early-stage prostate cancer. However, men undergoing an 18F-FDG PET/CT for unrelated reasons will on occasion be found to have radiotracer uptake within the prostate gland. The appropriate work-up of these patients is poorly defined. Case Presentation: We present the case of a 61-year-old man with a history of tonsillar squamous cell carcinoma who was incidentally found on 18F-FDG PET/CT to have a hypermetabolic nodule within the prostate. The patient's prostate-specific antigen level was 2.1 ng/cc and digital rectal examination revealed no abnormalities. The patient underwent a targeted prostate biopsy of the lesion using the KOELIS Trinity biopsy platform, which uniquely allows for the real-time overlay of transrectal ultrasonography and PET/CT images. Targeted biopsy revealed Gleason score 4 + 3 = 7 (grade group 3) prostate cancer. Conclusion: Although the incidental detection of 18F-FDG uptake within the prostate is uncommon, more than half of all patients will be found to have prostate cancer. Based on this case and our review of the available medical literature, it is our belief that men with incidentally detected uptake of 18F-FDG within the prostate should undergo further evaluation with a prostate biopsy. This recommendation is supported by data suggesting that 18F-FDG-avid prostate cancer represents a more aggressive clinical phenotype.
Collapse
Affiliation(s)
- Alexa R Meyer
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Mohamad E Allaf
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven P Rowe
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Gorin
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
82
|
Gaude E, Nakhleh MK, Patassini S, Boschmans J, Allsworth M, Boyle B, van der Schee MP. Targeted breath analysis: exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J Breath Res 2019; 13:032001. [DOI: 10.1088/1752-7163/ab1789] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Evaluation of 5-[ 18F]fluoro-2'-deoxycytidine as a tumor imaging agent: A comparison of [ 18F]FdUrd, [ 18F]FLT and [ 18F]FDG. Appl Radiat Isot 2019; 148:152-159. [PMID: 30959352 DOI: 10.1016/j.apradiso.2019.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023]
Abstract
One of the hallmarks of cancer is increased cell proliferation. Measurements of cell proliferation by estimation of DNA synthesis with several radiolabeled nucleosides have been tested to assess tumor growth. Deoxycytidine can be phosphorylated by deoxycytidine kinase (dCK) and is incorporated into DNA. This study evaluated a radiofluorinated deoxycytidine analog, 5-[18F]fluoro-2'-deoxycytidine ([18F]FdCyd), as a proliferation probe and compared it with 5-[18F]fluoro-2'-deoxyuridine ([18F]FdUrd), 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), and [18F]fluorodeoxyglucose ([18F]FDG) in a tumor-bearing mouse model. [18F]FdCyd was synthesized from two precursors by direct electrophilic substitution. The serum stability and partition coefficient of [18F]FdCyd were evaluated in vitro. Positron emission topography (PET) imaging of Lewis lung carcinoma (LLC)-bearing mice with [18F]FdCyd, [18F]FdUrd, [18F]FLT, and [18F]FDG were evaluated. [18F]FdCyd was stable in mouse serum and normal saline for up to 4 h. With all radiotracers except [18F]FLT, PET can clearly delineate the tumor lesion. [18F]FdCyd and [18F]FdUrd showed high accumulation in the liver and kidney. The SUV and tumor-to-muscle (T/M) ratios derived from PET imaging of the radiotracers were [18F]FDG > [18F]FdCyd > [18F]FdUrd > [18F]FLT. Selective retention in tumors with a favorable tumor/muscle ratio makes [18F]FdCyd a protential candidate for further investigation as a proliferation imaging agent.
Collapse
|
84
|
Zhu C, Li M, Vincent T, Martin HL, Crouch BT, Martinez AF, Madonna MC, Palmer GM, Dewhirst MW, Ramanujam N. Simultaneous in vivo optical quantification of key metabolic and vascular endpoints reveals tumor metabolic diversity in murine breast tumor models. JOURNAL OF BIOPHOTONICS 2019; 12:e201800372. [PMID: 30565420 PMCID: PMC8744479 DOI: 10.1002/jbio.201800372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 05/24/2023]
Abstract
Therapeutically exploiting vascular and metabolic endpoints becomes critical to translational cancer studies because altered vascularity and deregulated metabolism are two important cancer hallmarks. The metabolic and vascular phenotypes of three sibling breast tumor lines with different metastatic potential are investigated in vivo with a newly developed quantitative spectroscopy system. All tumor lines have different metabolic and vascular characteristics compared to normal tissues, and there are strong positive correlations between metabolic (glucose uptake and mitochondrial membrane potential) and vascular (oxygen saturations and hemoglobin concentrations) parameters for metastatic (4T1) tumors but not for micrometastatic (4T07) and nonmetastatic (67NR) tumors. A longitudinal study shows that both vascular and metabolic endpoints of 4T1 tumors increased up to a specific tumor size threshold beyond which these parameters decreased. The synchronous changes between metabolic and vascular parameters, along with the strong positive correlations between these endpoints suggest that 4T1 tumors rely on strong oxidative phosphorylation in addition to glycolysis. This study illustrates the great potential of our optical technique to provide valuable dynamic information about the interplay between the metabolic and vascular status of tumors, with important implications for translational cancer investigations.
Collapse
Affiliation(s)
- Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Martin Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Thomas Vincent
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Office of Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Megan C Madonna
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
85
|
Santhanam P, Ladenson PW. Surveillance for Differentiated Thyroid Cancer Recurrence. Endocrinol Metab Clin North Am 2019; 48:239-252. [PMID: 30717906 DOI: 10.1016/j.ecl.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum thyroglobulin monitoring along with anatomic and functional imaging play key roles in the surveillance of patients with differentiated thyroid cancer after initial treatment. Among patients with a disease stage justifying thyroid remnant ablation or with suspected metastatic disease, radioiodine whole-body scans are essential in the months after surgery. For patients with low to moderate-risk cancers, ultrasonography of the neck (with measurement of serum thyroglobulin on thyroid hormone replacement) are the best initial diagnostic modalities, and are often the only tests required. In individuals suspected of having distant metastases, CT, MRI, and 18F-FDG PET can make important contributions in localizing residual disease and monitoring its progression and responses to therapy, provided they are used in the appropriate setting.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Metabolism and Diabetes, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Suite 3 B 73, Baltimore, MD 21224, USA.
| | - Paul W Ladenson
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA
| |
Collapse
|
86
|
Nautiyal A, Mondal T, Mukherjee A, Mitra D, Kaushik A, Goel HC, Goel A, Dey SK. Quantification of DNA damage in patients undergoing non-contrast and contrast enhanced whole body PET/CT investigations using comet assay and micronucleus assay. Int J Radiat Biol 2019; 95:710-719. [PMID: 30707050 DOI: 10.1080/09553002.2019.1577569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: To quantify DNA damage in patients undergoing non-contrast and contrast-enhanced 18F-FDG PET/CT whole body positron emission tomography/computed tomography (WB PET/CT) investigations using comet assay technique and micronucleus assay, and to study the effect of other baseline parameters of patients on DNA damage. Methodology: Eighty-four patients referred for 18F-FDG PET/CT investigation were included in the study of which 44 patients underwent contrast-enhanced WB PET/CT and 40 patients underwent non-contrast WB PET/CT investigations. The investigations were performed on Discovery 690 PET/CT. For contrast-enhanced investigation, Omnipaque300 was injected intravenously based on the patient body weight. Absorbed dose resulting from the intravenous administration of 18F-FDG was estimated using the ICRP 106 dose coefficients. Radiation dose from the acquisition of CT scans was estimated using CT dose index and dose-length product. Blood samples were collected from the patients for DNA damage analysis. Comet assay and MN assay was used to assess the DNA damage. The Differences in the comet TM (Tail Moment) and MNBC % in both groups were calculated. Result: The radiation dose received by the study population during 18F-FDG WB PET/CT examination was 27.03 ± 2.33 mSv. Comet TM and percentage frequency of MNBC % was 65.22 ± 35.42 and 18.55 ± 10.14, respectively in the patients injected with contrast and 42.49 ± 28.52 and 13.76 ± 7.52 for non-contrast group. Significant increase in DNA damage was observed in the contrast group as compared to non-contrast group. Significant association was observed between patient weight, contrast volume and TM and MNBC%. Baseline parameters of the patients did not show significant correlation with TM and MNBC%. Conclusion: The patients undergoing contrast-enhanced WB PET/CT investigations have demonstrated higher DNA damage. The DNA damage was also observed to be more in heavier patients. The other baseline parameters of patients like age, sex, CBG, serum creatinine did not show any correlation with DNA damage.
Collapse
Affiliation(s)
- Amit Nautiyal
- a Institute of Nuclear Medicine & Molecular Imaging , AMRI Hospitals , Kolkata , India
| | - Tanmoy Mondal
- b Department of Biotechnology , Maulana Abul Kalam Azad University of Technology , Kolkata , India
| | - Anirban Mukherjee
- a Institute of Nuclear Medicine & Molecular Imaging , AMRI Hospitals , Kolkata , India
| | - Deepanjan Mitra
- a Institute of Nuclear Medicine & Molecular Imaging , AMRI Hospitals , Kolkata , India
| | - Aruna Kaushik
- c Institute of Nuclear Medicine & Allied Sciences , Delhi , India
| | | | - Alpana Goel
- e Amity Institute of Nuclear Science & Technology, Amity University , Noida , India
| | - Subrata Kumar Dey
- b Department of Biotechnology , Maulana Abul Kalam Azad University of Technology , Kolkata , India
| |
Collapse
|
87
|
Zhang L, Yao X, Cao J, Hong H, Zhang A, Zhao R, Zhang Y, Zha Z, Liu Y, Qiao J, Zhu L, Kung HF. In Vivo Ester Hydrolysis as a New Approach in Development of Positron Emission Tomography Tracers for Imaging Hypoxia. Mol Pharm 2019; 16:1156-1166. [PMID: 30676751 DOI: 10.1021/acs.molpharmaceut.8b01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia is an important biochemical and physiological condition associated with uncontrolled growth of tumor. Measurement of hypoxia in tumor tissue may be useful in characterization of tumor progression and monitoring drug treatment. [18F]FMISO is the most widely employed radiotracer for imaging of hypoxic tissue with positron emission tomography (PET). However, it showed relatively low uptake in hypoxic tissues, which led to low target-to-background contrast in PET images. To overcome these shortcomings, two novel 2-fluoroproprioic acid esters, nitroimidazole derivatives 2-fluoropropionic acid 2-(2-nitro-imidazol-1-yl)-ethyl ester (FNPFT, [19F]5) and 2-fluoropropionic acid 2-(2-methyl-5-nitro-imidazol-1-yl)-ethyl ester (FMNPFT, [19F]8), were prepared and tested. Radiolabeling of [18F]5 and [18F]8 was accomplished in 45 min (radiochemical purity >95%, the decay-corrected radiochemical yield of [18F]5 was 11 ± 2%, and that of [18F]8 was 13 ± 2%, n = 5). In vitro cell uptake studies using EMT-6 tumor cells showed that both radiotracers [18F]5 and [18F]8 displayed significantly higher uptake in hypoxic cells than those under normoxic condition, while 2-[18F]fluoropropionic acid (2-[18F]FPA) displayed no difference. Biodistribution studies in mice bearing EMT-6 tumor showed that [18F]5, [18F]8, and 2-[18F]FPA displayed similar tumor and major organ uptakes. Tumor uptake values for all three agents were higher than those of [18F]FMISO, respectively ( P < 0.05). This is likely due to a rapid in vivo hydrolysis of [18F]5 and [18F]8 to their metabolite, 2-[18F]FPA. Micro PET imaging studies in the same EMT-6 implanted mice tumor model also demonstrated that both [18F]5 and [18F]8 displayed similar tumor uptake comparable to that of 2-[18F]FPA. In conclusion, two new fluorine-18 labeled nitroimidazole derivatives, [18F]5 and [18F]8, showed good tumor uptakes in mice bearing EMT-6 tumor. However, in vivo biodistribution results suggested that they were more likely reflect the predominance of in vivo produced metabolite, 2-[18F]FPA, which may not be related to tumor hypoxic condition.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Xinyue Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Jianhua Cao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Aili Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Ruiyue Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Zhihao Zha
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China.,Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19014 , United States
| | - Yajing Liu
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China.,Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China
| | - Hank F Kung
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China.,Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19014 , United States
| |
Collapse
|
88
|
Aminzadeh-Gohari S, Feichtinger RG, Kofler B. Energy Metabolism and Metabolic Targeting of Neuroblastoma. NEUROBLASTOMA 2019:113-132. [DOI: 10.1016/b978-0-12-812005-7.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
89
|
Caspersen KB, Giannoutsou N, Gerke O, Alavi A, Høilund-Carlsen PF, Hess S. Clinical value of 18F-FDG-PET/CT in suspected serious disease with special emphasis on occult cancer. Ann Nucl Med 2018; 33:184-192. [PMID: 30569441 DOI: 10.1007/s12149-018-01322-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Suspected serious disease (SSD) is a disease designation often given to patients with one or more non-specific symptoms of severe disease that could be due to cancer; the optimal diagnostic strategy is largely left to the clinician's discretion. Being a sensitive non-invasive whole-body imaging modality 18F-FDG-PET/CT may have a potential role in this cancer-prevalent group of patients to confirm or refute suspected malignancy. We aimed to investigate the diagnostic value of 18F-FDG-PET/CT in SSD using long-term follow-up as reference. METHODS We retrospectively studied results obtained in all SSD patients referred for 18F-FDG-PET/CT at a single institution in 2010-2011 retrieving the following clinical data in all patients: journal entries, examinations, and evaluations made from 6 months before the scan and until the latest recorded entry. A true positive PET scan was a positive scan with a subsequently biopsy-confirmed diagnosis of cancer in the same target organ, whereas a false positive scan had no subsequent cancer diagnosis. A true negative PET scan was a negative scan without a cancer diagnosis during follow-up, whereas a false negative PET scan was one with a subsequently confirmed cancer diagnosis. RESULTS Ninety-three patients, aged 67 years (range 25-89) were included and followed for up to 7.3 years (median 6). Of these, 21 [22.6% (95% CI 15.3-32.1)] turned out to have cancer. With 18F-FDG-PET/CT, the sensitivity was 81.0% (95% CI 60.0-92.3), specificity 76.4% (95% CI 65.4-84.7), positive predictive value 50% (95% CI 34.1-65.9), and negative predictive value 93.2% (95% CI 83.8-97.3). Five patients with negative scans were subsequently diagnosed with cancer. CONCLUSION Cancer prevalence is substantial among patients with SSD. 18F-FDG-PET/CT is a promising option in this setting, in particular because a high negative predictive value equals a low incidence of cancer during follow-up. Further studies are needed to establish the role of 18F-FDG-PET/CT in SSD.
Collapse
Affiliation(s)
- Kamilla Bredlund Caspersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, Hospital of Southwest Jutland, Finsensgade 35, 6700, Esbjerg, Denmark. .,Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
90
|
Zaal EA, Berkers CR. The Influence of Metabolism on Drug Response in Cancer. Front Oncol 2018; 8:500. [PMID: 30456204 PMCID: PMC6230982 DOI: 10.3389/fonc.2018.00500] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Resistance to therapeutic agents, either intrinsic or acquired, is currently a major problem in the treatment of cancers and occurs in virtually every type of anti-cancer therapy. Therefore, understanding how resistance can be prevented, targeted and predicted becomes increasingly important to improve cancer therapy. In the last decade, it has become apparent that alterations in cellular metabolism are a hallmark of cancer cells and that a rewired metabolism is essential for rapid tumor growth and proliferation. Recently, metabolic alterations have been shown to play a role in the sensitivity of cancer cells to widely-used first-line chemotherapeutics. This suggests that metabolic pathways are important mediators of resistance toward anticancer agents. In this review, we highlight the metabolic alterations associated with resistance toward different anticancer agents and discuss how metabolism may be exploited to overcome drug resistance to classical chemotherapy.
Collapse
Affiliation(s)
- Esther A. Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Celia R. Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
91
|
Nie K, Zhang YX, Nie W, Zhu L, Chen YN, Xiao YX, Liu SY, Yu H. Prognostic value of metabolic tumour volume and total lesion glycolysis measured by 18F-fluorodeoxyglucose positron emission tomography/computed tomography in small cell lung cancer: A systematic review and meta-analysis. J Med Imaging Radiat Oncol 2018; 63:84-93. [PMID: 30230710 DOI: 10.1111/1754-9485.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/17/2018] [Indexed: 01/26/2023]
Abstract
The aim of this study was to evaluate the prognostic value of metabolic tumour volume (MTV) and total lesion glycolysis (TLG) for small cell lung cancer (SCLC). MEDLINE, EMBASE and Cochrane Library databases were systematically searched. The pooled hazard ratio (HR) was used to measure the influence of MTV and TLG on survival. The subgroup analysis according to VALSG stage and the measured extent of MTV was performed. Patients with high MTV values experienced a significantly poorer prognosis with a HR of 2.42 (95% CI 1.46-4.03) for overall survival (OS) and a HR of 2.78 (95% CI 1.39-5.53) for progression-free survival (PFS) from the random effect model, and the pooled HR from the fixed effect model was 2.10 (95% CI 1.77-2.50) for OS and 2.27 (95% CI 1.83-2.81) for PFS. Patients with high TLG experienced a poorer prognosis with a HR of 1.61 (95% CI: 1.24-2.07) for OS from the random effect model, and the pooled HR from the fixed effect model was 1.64 (95% CI 1.37-1.96). Heterogeneity among studies was high for MTV in both OS and PFS meta-analyses (I2 = 87% and 88% respectively). After removing one outlier study the heterogeneity was substantially reduced (I2 = 0%) and the pooled HR for the effect of MTV on OS was 1.80 (1.51-2.16, P < 0.00001), and on PFS it was 1.86 (1.49-2.33, P < 0.00001), using either the fixed or random effects model. High MTV is associated with a significantly poorer prognosis OS and PFS, and high TLG is associated with a significantly poorer prognosis regarding OS for SCLC.
Collapse
Affiliation(s)
- Kai Nie
- Department of Imaging and Nuclear Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Xuan Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Wei Nie
- Department of Respiration, Shanghai Chest Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lin Zhu
- Department of Imaging and Nuclear Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi-Nan Chen
- Department of Radiology, Shanghai Chest Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yong-Xin Xiao
- Department of Imaging and Nuclear Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shi-Yuan Liu
- Department of Imaging and Nuclear Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong Yu
- Department of Imaging and Nuclear Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Radiology, Oriental Hospital Affiliated Tongji University, Shanghai, China
| |
Collapse
|
92
|
Parameters Influencing PET Imaging Features: A Phantom Study with Irregular and Heterogeneous Synthetic Lesions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5324517. [PMID: 30275800 PMCID: PMC6151367 DOI: 10.1155/2018/5324517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 02/03/2023]
Abstract
Aim To evaluate reproducibility and stability of radiomic features as effects of the use of different volume segmentation methods and reconstruction settings. The potential of radiomics in really capturing the presence of heterogeneous tumor uptake and irregular shape was also investigated. Materials and Methods An anthropomorphic phantom miming real clinical situations including synthetic lesions with irregular shape and nonuniform radiotracer uptake was used. 18F-FDG PET/CT measurements of the phantom were performed including 38 lesions of different shape, size, lesion-to-background ratio, and radiotracer uptake distribution. Different reconstruction parameters and segmentation methods were considered. COVs were calculated to quantify feature variations over the different reconstruction settings. Friedman test was applied to the values of the radiomic features obtained for the considered segmentation approaches. Two sets of test-retest measurement were acquired and the pairwise intraclass correlation coefficient was calculated. Fifty-eight morphological and statistical features were extracted from the segmented lesion volumes. A Mann–Whitney test was used to evaluate significant differences among each feature when calculated from heterogeneous versus homogeneous uptake. The significance of each radiomic feature in terms of capturing heterogeneity was evaluated also by testing correlation with gold standard indexes of heterogeneity and sphericity. Results The choice of the segmentation method has a strong impact on the stability of radiomic features (less than 20% can be considered stable features). Reconstruction affects the estimate of radiomic features (only 26% are stable). Thirty-one radiomic features (53%) resulted to be reproducible, 11 of them are able to discriminate heterogeneity. Among these, we found a subset of 3 radiomic features strongly correlated with GS heterogeneity index that can be suggested as good features for retrospective evaluations.
Collapse
|
93
|
Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging Cancer Metabolism: Underlying Biology and Emerging Strategies. J Nucl Med 2018; 59:1340-1349. [PMID: 30042161 PMCID: PMC6126440 DOI: 10.2967/jnumed.117.199869] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulated cellular metabolism is a characteristic feature of malignancy that has been exploited for both imaging and targeted therapy. With regard to imaging, deranged glucose metabolism has been leveraged using 18F-FDG PET. Metabolic imaging with 18F-FDG, however, probes only the early steps of glycolysis; the complexities of metabolism beyond these early steps in this single pathway are not directly captured. New imaging technologies-both PET with novel radiotracers and MR-based methods-provide unique opportunities to investigate other aspects of cellular metabolism and expand the metabolic imaging armamentarium. This review will discuss the underlying biology of metabolic dysregulation in cancer, focusing on glucose, glutamine, and acetate metabolism. Novel imaging strategies will be discussed within this biologic framework, highlighting particular strengths and limitations of each technique. Emphasis is placed on the role that combining modalities will play in enabling multiparametric imaging to fully characterize tumor biology to better inform treatment.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Ackerman
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Seung-Cheol Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Terence P Gade
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
94
|
Akram MSH, Levin CS, Obata T, Hirumi G, Yamaya T. Geometry optimization of electrically floating PET inserts for improved RF penetration for a 3 T MRI system. Med Phys 2018; 45:4627-4641. [PMID: 30118140 DOI: 10.1002/mp.13132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE An electrically floating radio frequency (RF) shielded PET insert with individual PET detectors shielded by separate Faraday cages enables the MRI built-in body RF coil to be used at least as an RF transmitter, in which the RF field penetrates the imaging region inside the PET ring through the narrow gaps between the shielded PET detector modules. Because the shielded PET ring blocks more than 90% of the imaging region for the transmit field from the body RF coil, it is very challenging to obtain the required RF field inside a full-ring floating PET insert. In this study, experiments were performed on the dependence of RF penetrability on different geometric aspects of the shielded PET modules and PET rings to optimize the design parameters to obtain the required RF field inside the PET ring. METHODS We developed several prototype cylindrical full-ring PET inserts using completely enclosed empty RF shield boxes (considered as dummy PET modules). Considering the RF shield box, we conducted studies for different axial lengths (240 and 120 mm) and heights (30 and 45 mm) of the shield boxes. On the other hand, considering the PET ring geometry, we also performed studies on three different categories of PET rings: a long-ring insert (longer than the MRI phantom), a short-ring insert (shorter than the MRI phantom), and a two-ring insert that combined two short-rings. In each ring category, two different inter-shield box gaps (1 and 3 mm) were considered. In the case of the two-ring insert, three different ring-gaps (5, 10, and 20 mm) were studied. In total, 21 PET inserts were studied with an inner diameter (i.d.) of 210 mm. To study the effect of ring diameter, another long-ring insert was studied for the 270 mm i.d. Experiments were conducted for the transmit RF (B1 ) fields and signal-to-noise ratios of spin-echo and gradient-echo images using a homogeneous phantom in a 700 mm bore-diameter 3 T clinical MRI system. RF pulse amplitudes generated automatically by the MRI system were recorded for comparison. RESULTS A PET insert with a 3 mm inter-box gap was found to perform the best, at a level which is acceptable for PET imaging. In the case of an insert of multiple short-rings instead of one long-ring insert, the 5 and 10 mm ring-gaps provided higher RF field penetration. Increasing the inter-box gap improved the RF field penetration, whereas a ring-gap that was too wide concentrated the field near the ring-gap region. Relatively reduced RF power was required for wider inter-box gap or ring-gap or larger shield box height. Moreover, the rectangular shield box outperformed the trapezoidal shield box. On the other hand, when we changed the inner or outer diameter of the PET ring by keeping the same transaxial width of the shield boxes, we did not see any noticeable variation. CONCLUSIONS Our study results provide comprehensive guidance on the geometrical design aspects of RF-penetrable PET inserts for efficient RF penetration inside the PET ring. By choosing proper geometric design parameters, we could get the RF field that was similar to the MRI-only case.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Craig S Levin
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5128, USA
| | - Takayuki Obata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Genki Hirumi
- Artificial System Science, Graduate School of Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
95
|
Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurg Rev 2018; 42:639-647. [DOI: 10.1007/s10143-018-1007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
96
|
Matsumura K, Zouda M, Wada Y, Yamashita F, Hashida M, Watanabe Y, Mukai H. Urokinase injection-triggered clearance enhancement of a 4-arm PEG-conjugated 64Cu-bombesin analog tetramer: A novel approach for the improvement of PET imaging contrast. Int J Pharm 2018; 545:206-214. [DOI: 10.1016/j.ijpharm.2018.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
|
97
|
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int J Radiat Oncol Biol Phys 2018; 102:1117-1142. [PMID: 30064704 DOI: 10.1016/j.ijrobp.2018.05.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
Radiomics is a recent area of research in precision medicine and is based on the extraction of a large variety of features from medical images. In the field of radiation oncology, comprehensive image analysis is crucial to personalization of treatments. A better characterization of local heterogeneity and the shape of the tumor, depicting individual cancer aggressiveness, could guide dose planning and suggest volumes in which a higher dose is needed for better tumor control. In addition, noninvasive imaging features that could predict treatment outcome from baseline scans could help the radiation oncologist to determine the best treatment strategies and to stratify patients as at low risk or high risk of recurrence. Nuclear medicine molecular imaging reflects information regarding biological processes in the tumor thanks to a wide range of radiotracers. Many studies involving 18F-fluorodeoxyglucose positron emission tomography suggest an added value of radiomics compared with the use of conventional PET metrics such as standardized uptake value for both tumor diagnosis and prediction of recurrence or treatment outcome. However, these promising results should not hide technical difficulties that still currently prevent the approach from being widely studied or clinically used. These difficulties mostly pertain to the variability of the imaging features as a function of the acquisition device and protocol, the robustness of the models with respect to that variability, and the interpretation of the radiomic models. Addressing the impact of the variability in acquisition and reconstruction protocols is needed, as is harmonizing the radiomic feature calculation methods, to ensure the reproducibility of studies in a multicenter context and their implementation in a clinical workflow. In this review, we explain the potential impact of positron emission tomography radiomics for radiation therapy and underline the various aspects that need to be carefully addressed to make the most of this promising approach.
Collapse
|
98
|
Park SB, Park JM, Moon SH, Cho YS, Sun JM, Kim BT, Lee KH. Role of 18F-FDG PET/CT in patients without known primary malignancy with skeletal lesions suspicious for cancer metastasis. PLoS One 2018; 13:e0196808. [PMID: 29746513 PMCID: PMC5945029 DOI: 10.1371/journal.pone.0196808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/28/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND When subjects without a known malignancy present with suspicious skeletal lesions, differential diagnosis and primary cancer identification is important. Here, we investigated the role of FDG PET/CT in this clinical situation. METHODS We enrolled 103 patients with no known malignancies who were referred for FDG PET/CT because of bone lesions that were suspicious for cancer metastasis. Each extra-skeletal FDG lesion was categorized as consistent with primary cancer or with metastasis based on the distribution and pattern of all abnormal lesions in the individual. RESULTS Final diagnosis revealed that bone lesions represented cancer metastasis in 75 patients (72.8%). In the remaining 28 patients (27.2%), they were from other causes including multiple myeloma or lymphoma, malignant primary bone tumor, and benign bone disease. PET/CT indicated a primary cancer in 70 patients (68.0%). This was the correct primary site in 46 cases and the incorrect site in 13 cases (including 6 cases with cancer of unknown primary, CUP). In the remaining 11 cases, the bone lesions were due to other causes. PET/CT did not indicate a primary cancer in 33 patients (32.0%). Of these cases, 17 did not have a primary cancer, 8 had CUP, and 8 had primary cancers that were missed. Thus, PET/CT had a sensitivity of 61.3% and specificity of 60.7% for primary cancer identification in the entire population. Excluding patients with CUP, PET/CT sensitivity was 75.4%. PET/CT also provided information useful for recognizing multiple myeloma and benign bone disease as the cause of the skeletal lesions. CONCLUSIONS In patients without known malignancies with suspected skeletal cancer metastasis, FDG PET/CT can help identify the primary cancer and provide useful information for differential diagnosis.
Collapse
Affiliation(s)
- Soo Bin Park
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jung Mi Park
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi, Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
99
|
Pretz JL, Blake MA, Killoran JH, Mamon HJ, Wo JY, Zhu AX, Hong TS. Pilot study on the impact of F18-labeled thymidine PET/CT on gross tumor volume identification and definition for pancreatic cancer. Pract Radiat Oncol 2018; 8:179-184. [DOI: 10.1016/j.prro.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
|
100
|
Suchacki KJ, Cawthorn WP. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:41-49. [PMID: 29888168 PMCID: PMC5976678 DOI: 10.1007/s40610-018-0096-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. RECENT FINDINGS Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. SUMMARY We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.
Collapse
Affiliation(s)
- Karla J. Suchacki
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ UK
| | - William P. Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ UK
| |
Collapse
|