51
|
O'Leary TP, Stover KR, Mantolino HM, Darvesh S, Brown RE. Intact olfactory memory in the 5xFAD mouse model of Alzheimer's disease from 3 to 15 months of age. Behav Brain Res 2020; 393:112731. [PMID: 32522622 DOI: 10.1016/j.bbr.2020.112731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes profound cognitive dysfunction. Deficits in olfactory memory occur in early stages of AD and may be useful in AD diagnosis. The 5xFAD mouse is a commonly used model of AD, as it develops neuropathology, cognitive and sensori-motor dysfunctions similar to those seen in AD. However, olfactory memory dysfunction has not been studied adequately or in detail in 5xFAD mice. Furthermore, despite sex differences in AD prevalence and symptom presentation, few studies using 5xFAD mice have examined sex differences in learning and memory. Therefore, we tested olfactory memory in male and female 5xFAD mice from 3 to 15 months of age using a conditioned odour preference task. Olfactory memory was not impaired in male or female 5xFAD mice at any age tested, nor were there any sex differences. Because early-onset impairments in very long-term (remote) memory have been reported in 5xFAD mice, we trained a group of mice at 3 months of age and tested olfactory memory 90 days later. Very long-term olfactory memory in 5xFAD mice was not impaired, nor was their ability to perform the discrimination task with new odourants. Examination of brains from 5xFAD mice confirmed extensive Aβ-plaque deposition spanning the olfactory memory system, including the olfactory bulb, hippocampus, amygdala and piriform cortex. Overall this study indicates that male and female 5xFAD mice do not develop olfactory memory deficits, despite extensive Aβ deposition within the olfactory-memory regions of the brain.
Collapse
Affiliation(s)
- T P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - K R Stover
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - H M Mantolino
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - S Darvesh
- Department of Medicine (Neurology) and Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - R E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
52
|
Weible AP, Stebritz AJ, Wehr M. 5XFAD mice show early-onset gap encoding deficits in the auditory cortex. Neurobiol Aging 2020; 94:101-110. [PMID: 32599514 DOI: 10.1016/j.neurobiolaging.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
Early detection will be crucial for effective treatment or prevention of Alzheimer's disease. The identification and validation of early, noninvasive biomarkers is therefore key to avoiding the most devastating aspects of Alzheimer's disease. Measures of central auditory processing such as gap detection have recently emerged as potential biomarkers in both human patients and the 5XFAD mouse model of Alzheimer's disease. Full validation of gap detection deficits as a biomarker will require detailed understanding of the underlying neuropathology, including which brain structures are involved and how the operation of neural circuits is affected. Here we show that 5XFAD mice exhibit gap detection deficits as early as 2 months of age, well before development of Alzheimer's disease-associated pathology. We then examined responses of neurons in the auditory cortex to gaps in white noise. Both gap responses and baseline firing rates were robustly and progressively degraded in 5XFAD mice compared to littermate controls. These impairments were first evident at 2-4 months of age in males, and 4-6 months in females. This demonstrates early-onset impairments to the central auditory system, which could be due to damage in the auditory cortex, upstream subcortical structures, or both.
Collapse
Affiliation(s)
- Aldis P Weible
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA
| | - Amanda J Stebritz
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA.
| |
Collapse
|
53
|
Kim DH, Kim HA, Han YS, Jeon WK, Han JS. Recognition memory impairments and amyloid-beta deposition of the retrosplenial cortex at the early stage of 5XFAD mice. Physiol Behav 2020; 222:112891. [PMID: 32442584 DOI: 10.1016/j.physbeh.2020.112891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/26/2020] [Accepted: 03/21/2020] [Indexed: 12/31/2022]
Abstract
Early diagnosis and treatment of AD are critical for delaying its progression. The present study, therefore, examined the cognitive status and neuropathological characteristics of 4-month-old 5X familial AD (5XFAD) transgenic (Tg) mice, as an early stage of AD animal model. The novel object recognition task was performed with retention tests at varying intervals (i.e., 10 min, 1 h, 4 h, and 24 h) to measure the retention capacity of recognition memory of 5XFAD mice. At the 4h retention interval, 5XFAD mice exhibited worse performances than non-Tg control mice. Therefore, using amyloid-beta (Aβ) 42- and 4G8-immunoreactive plaques, the accumulation of Aβ was examined in the gray and white matter of the system that was necessary for the retention of recognition memory, with a focus on the hippocampus and retrosplenial cortex. The expression of ionized calcium-binding adapter molecule-1 (Iba-1) was also examined to measure microglial activation. The immunohistological analysis of Aβ and Iba-1 revealed that the retrosplenial cortex was the most affected region in the brains of 4-month-old 5XFAD mice. These findings indicate that the cognitive and neuropathological characteristics of 4-month-old 5XFAD mice would provide a research platform for studying early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hye-A Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Seoul 05029, Republic of Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Daejeon 34054, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, The Republic of Korea.
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
54
|
Rochais C, Lecoutey C, Hamidouche K, Giannoni P, Gaven F, Cem E, Mignani S, Baranger K, Freret T, Bockaert J, Rivera S, Boulouard M, Dallemagne P, Claeysen S. Donecopride, a Swiss army knife with potential against Alzheimer's disease. Br J Pharmacol 2020; 177:1988-2005. [PMID: 31881553 DOI: 10.1111/bph.14964] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We recently identified donecopride as a pleiotropic compound able to inhibit AChE and to activate 5-HT4 receptors. Here, we have assessed the potential therapeutic effects of donecopride in treating Alzheimer's disease (AD). EXPERIMENTAL APPROACH We used two in vivo animal models of AD, transgenic 5XFAD mice and mice exposed to soluble amyloid-β peptides and, in vitro, primary cultures of rat hippocampal neurons. Pro-cognitive and anti-amnesic effects were evaluated with novel object recognition, Y-maze, and Morris water maze tests. Amyloid load in mouse brain was measured ex vivo and effects of soluble amyloid-β peptides on neuronal survival and neurite formation determined in vitro. KEY RESULTS In vivo, chronic (3 months) administration of donecopride displayed potent anti-amnesic properties in the two mouse models of AD, preserving learning capacities, including working and long-term spatial memories. These behavioural effects were accompanied by decreased amyloid aggregation in the brain of 5XFAD mice and, in cultures of rat hippocampal neurons, reduced tau hyperphosphorylation. In vitro, donecopride increased survival in neuronal cultures exposed to soluble amyloid-β peptides, improved the neurite network and provided neurotrophic benefits, expressed as the formation of new synapses. CONCLUSIONS AND IMPLICATIONS Donecopride acts like a Swiss army knife, exhibiting a range of sustainable symptomatic therapeutic effects and potential disease-modifying effects in models of AD. Clinical trials with this promising drug candidate will soon be undertaken to confirm its therapeutic potential in humans.
Collapse
Affiliation(s)
- Christophe Rochais
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Cédric Lecoutey
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Katia Hamidouche
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrizia Giannoni
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,Equipe Chrome, EA7352, Université de Nîmes, Nîmes, France
| | - Florence Gaven
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,CRBM, CNRS UMR5237, Montpellier, France
| | - Eleazere Cem
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Serge Mignani
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Thomas Freret
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Joël Bockaert
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Michel Boulouard
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrick Dallemagne
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | | |
Collapse
|
55
|
Hansson O, Svensson M, Gustavsson AM, Andersson E, Yang Y, Nägga K, Hållmarker U, James S, Deierborg T. Midlife physical activity is associated with lower incidence of vascular dementia but not Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:87. [PMID: 31630687 PMCID: PMC6802179 DOI: 10.1186/s13195-019-0538-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/10/2019] [Indexed: 12/05/2022]
Abstract
Background Physical activity might reduce the risk of developing dementia. However, it is still unclear whether the protective effect differs depending on the subtype of dementia. We aimed to investigate if midlife physical activity affects the development of vascular dementia (VaD) and Alzheimer’s disease (AD) differently in two large study populations with different designs. Methods Using a prospective observational design, we studied whether long-distance skiers of the Swedish Vasaloppet (n = 197,685) exhibited reduced incidence of VaD or AD compared to matched individuals from the general population (n = 197,684) during 21 years of follow-up (median 10, interquartile range (IQR) 5–15 years). Next, we studied the association between self-reported physical activity, stated twice 5 years apart, and incident VaD and AD in 20,639 participants in the Swedish population-based Malmo Diet and Cancer Study during 18 years of follow-up (median 15, IQR 14–17 years). Finally, we used a mouse model of AD and studied brain levels of amyloid-β, synaptic proteins, and cognitive function following 6 months of voluntary wheel running. Results Vasaloppet skiers (median age 36.0 years [IQR 29.0–46.0], 38% women) had lower incidence of all-cause dementia (adjusted hazard ratio (HR) 0.63, 95% CI 0.52–0.75) and VaD (adjusted HR 0.49, 95% CI 0.33–0.73), but not AD, compared to non-skiers. Further, faster skiers exhibited a reduced incidence of VaD (adjusted HR 0.38, 95% CI 0.16–0.95), but not AD or all-cause dementia compared to slower skiers. In the Malmo Diet and Cancer Study (median age 57.5 years [IQR 51.0–63.8], 60% women), higher physical activity was associated with reduced incidence of VaD (adjusted HR 0.65, 95% CI 0.49-0.87), but not AD nor all-cause dementia. These findings were also independent of APOE-ε4 genotype. In AD mice, voluntary running did not improve memory, amyloid-β, or synaptic proteins. Conclusions Our results indicate that physical activity in midlife is associated with lower incidence of VaD. Using three different study designs, we found no significant association between physical activity and subsequent development of AD.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. .,Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Martina Svensson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden
| | - Anna-Märta Gustavsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Emelie Andersson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Acute Internal Medicine and Geriatrics, Linköping University, Linköping, Sweden
| | - Ulf Hållmarker
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Stefan James
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
56
|
Baranger K, van Gijsel-Bonnello M, Stephan D, Carpentier W, Rivera S, Khrestchatisky M, Gharib B, De Reggi M, Benech P. Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model. Neurotherapeutics 2019; 16:1237-1254. [PMID: 31267473 PMCID: PMC6985318 DOI: 10.1007/s13311-019-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αβ deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αβ deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αβ processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aβ pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.
Collapse
Affiliation(s)
- Kevin Baranger
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Manuel van Gijsel-Bonnello
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
- Present Address: MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre and School of Life Science - Division of Cell Signalling and Immunology, Welcome Trust Building, University of Dundee, Dundee, DD1 5EH UK
| | - Delphine Stephan
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013 Paris, France
| | - Santiago Rivera
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | | | - Bouchra Gharib
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Max De Reggi
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Philippe Benech
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
57
|
García-González L, Pilat D, Baranger K, Rivera S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 2019; 11:244. [PMID: 31607898 PMCID: PMC6769103 DOI: 10.3389/fnagi.2019.00244] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer’s field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.
Collapse
Affiliation(s)
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
58
|
Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer's disease and other neurodegenerative disorders. Cell Mol Life Sci 2019; 76:3167-3191. [PMID: 31197405 PMCID: PMC11105182 DOI: 10.1007/s00018-019-03178-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies. The metzincin superfamily of metalloproteinases includes matrix metalloproteinases (MMP), a disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS). These multigenic and multifunctional proteinase families regulate the functions of an increasing number of signalling and scaffolding molecules involved in neuroinflammation, blood-brain barrier disruption, protein misfolding, synaptic dysfunction or neuronal death. Metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are therefore, at the crossroads of molecular and cellular mechanisms that support neurodegenerative processes, and emerge as potential new therapeutic targets. We provide an overview of current knowledge on the role and regulation of metalloproteinases and TIMPs in four major neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.
Collapse
Affiliation(s)
- Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| | | | | | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
59
|
Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakharenko SS, Green DR. LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer's Disease. Cell 2019; 178:536-551.e14. [PMID: 31257024 PMCID: PMC6689199 DOI: 10.1016/j.cell.2019.05.056] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
The expression of some proteins in the autophagy pathway declines with age, which may impact neurodegeneration in diseases, including Alzheimer's Disease. We have identified a novel non-canonical function of several autophagy proteins in the conjugation of LC3 to Rab5+, clathrin+ endosomes containing β-amyloid in a process of LC3-associated endocytosis (LANDO). We found that LANDO in microglia is a critical regulator of immune-mediated aggregate removal and microglial activation in a murine model of AD. Mice lacking LANDO but not canonical autophagy in the myeloid compartment or specifically in microglia have a robust increase in pro-inflammatory cytokine production in the hippocampus and increased levels of neurotoxic β-amyloid. This inflammation and β-amyloid deposition were associated with reactive microgliosis and tau hyperphosphorylation. LANDO-deficient AD mice displayed accelerated neurodegeneration, impaired neuronal signaling, and memory deficits. Our data support a protective role for LANDO in microglia in neurodegenerative pathologies resulting from β-amyloid deposition.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lacie Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
60
|
Gür E, Fertan E, Alkins K, Wong AA, Brown RE, Balcı F. Interval timing is disrupted in female 5xFAD mice: An indication of altered memory processes. J Neurosci Res 2019; 97:817-827. [PMID: 30973189 DOI: 10.1002/jnr.24418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Temporal information processing in the seconds-to-minutes range is disrupted in patients with Alzheimer's disease (AD). In this study, we investigated the timing behavior of the 5xFAD mouse model of AD in the peak interval (PI) procedure. Nine-month-old female mice were trained with sucrose solution reinforcement for their first response after a fixed-interval (FI) and tested in the inter-mixed non-reinforced PI trials that lasted longer than FI. Timing performance indices were estimated from steady-state timed anticipatory nose-poking responses in the PI trials. We found that the time of maximal reward expectancy (peak time) of the 5xFAD mice was significantly earlier than that of the wild-type (WT) controls with no differences in other indices of timing performance. These behavioral differences corroborate the findings of previous studies on the disruption of temporal associative memory abilities of 5xFAD mice and can be accounted for by the scalar timing theory based on altered long-term memory consolidation of temporal information in the 5xFAD mice. This is the first study to directly show an interval timing phenotype in a genetic mouse model of AD.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kindree Alkins
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
61
|
Park HJ, Jung IH, Kwon H, Yu J, Jo E, Kim H, Park SJ, Lee YC, Kim DH, Ryu JH. The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer's disease model mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:73-79. [PMID: 30605739 DOI: 10.1016/j.jep.2018.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) have long been treated as hypnotic agent for sleep disturbances in traditional Chinese and Korean medicine and many previous studies have focused on its effect in central nervous system. AIMS OF STUDY The present study aimed to provide evidence showing that the ethanol extract of Zizyphus jujuba var. spinosa seeds (EEZS), which may regulate plasmin activity, has the potential to serve as a therapeutic agent for AD. MATERIALS AND METHODS Synaptic function was determined by measuring long-term potentiation (LTP) in Shaffer-collateral pathway of the hippocampus. Protein levels of plasmin or plasminogen were examined using western blotting. Plasmin activity was measured using ELISA. Cognitive functions were measured using passive avoidance and object recognition tests in the 5XFAD mice. RESULTS Our in vitro analysis revealed that EEZS-treated hippocampal slices from 5XFAD mice, a mouse model of AD, showed significantly higher long-term potentiation levels than did vehicle-treated hippocampal slices from 5XFAD mice (P < 0.05). Additionally, EEZS significantly elevated the plasmin level and activity in the hippocampal slices from 5XFAD mice (P < 0.05). Co-treating the slices with EEZS and 6-aminocaproic acid, a plasmin inhibitor, blocked the ameliorating effects of EEZS on the synaptic deficits that were present in 5XFAD mice. Compatible with the in vitro study, the results of our in vivo investigation showed that administering EEZS orally to 5XFAD mice ameliorated their memory impairments. Orally administered EEZS also elevated the plasmin level and activity in the hippocampus of 5XFAD mice. CONCLUSIONS Collectively, our findings suggest that EEZS alleviates the AD-like symptoms in 5XFAD mice by regulating of plasmin activity and EEZS may be a suitable treatment for AD.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul, Republic of Korea.
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Jimin Yu
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Eunbi Jo
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Haneul Kim
- Daehwa Pharmaceutical Co., Ltd., Seongnam 13488, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Science, Kangwon National University, ChoonCheon, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
62
|
Park H, Kang S, Nam E, Suh YH, Chang KA. The Protective Effects of PSM-04 Against Beta Amyloid-Induced Neurotoxicity in Primary Cortical Neurons and an Animal Model of Alzheimer's Disease. Front Pharmacol 2019; 10:2. [PMID: 30733674 PMCID: PMC6353859 DOI: 10.3389/fphar.2019.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
Polygala tenuifolia Willdenow is a herb known for its therapeutic effects in insomnia, depression, disorientation, and memory impairment. In Alzheimer's disease (AD) animal model, there has been no report on the effects of memory and cognitive impairment. PSM-04, an extract from the root of P. tenuifolia Willdenow, was developed with improved bioabsorption. The present study aimed to investigate the neuroprotective effects of PSM-04 on AD and reveal the possible molecular mechanism. The neuroprotective effect of PSM-04 in primary cortical neurons treated with L-glutamate, oligomeric Aβ, or H2O2. PSM-04 exhibited significant neuroprotective effects against neurotoxicity induced by L-glutamate or oligomeric Aβ was studied. PSM-04 exhibited significant neuroprotective effects against neurotoxicity induced by L-glutamate or oligomeric Aβ. Oxidative stress induced by ROS was monitored using the DCF-DA assay, and apoptosis was assessed using the TUNEL assay in primary cortical neurons treated with H2O2 or oligomeric Aβ. PSM-04 also decreased oxidative stress induced by H2O2 and apoptotic cell death induced by oligomeric Aβ. We evaluated the therapeutic effect of PSM-04 in 5xFAD (Tg) mice, an animal model for AD. PSM-04 was orally administered to 4-month-old 5xFAD mice for 2 months. To confirm the degree of cognitive impairment, a novel object recognition task was performed. The treatment with PSM-04 significantly alleviated cognitive impairments in Tg mice. In addition, amyloid plaques and gliosis decreased significantly in the brains of PSM-04-administered Tg mice compared with Tg-vehicle mice. Furthermore, the administration of PSM-04 increased the superoxide dismutase-2 (SOD-2) protein level in hippocampal brain tissues. Our results indicated that PSM-04 showed therapeutic effects by alleviating cognitive impairment and decreasing amyloid plaque deposition in Tg mice. Therefore, PSM-04 was considered as a potential pharmacological agent for neuroprotective effects in neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, South Korea
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Shinwoo Kang
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Pharmacology, Gachon University of Medicine and Science, Incheon, South Korea
| | - Eunjoo Nam
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Pharmacology, Gachon University of Medicine and Science, Incheon, South Korea
| | - Yoo-Hun Suh
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, South Korea
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Pharmacology, Gachon University of Medicine and Science, Incheon, South Korea
| |
Collapse
|
63
|
Creighton SD, Mendell AL, Palmer D, Kalisch BE, MacLusky NJ, Prado VF, Prado MAM, Winters BD. Dissociable cognitive impairments in two strains of transgenic Alzheimer's disease mice revealed by a battery of object-based tests. Sci Rep 2019; 9:57. [PMID: 30635592 PMCID: PMC6329782 DOI: 10.1038/s41598-018-37312-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Object recognition tasks detect cognitive deficits in transgenic Alzheimer's disease (AD) mouse models. Object recognition, however, is not a unitary process, and there are many uncharacterized facets of object processing with relevance to AD. We therefore systematically evaluated object processing in 5xFAD and 3xTG AD mice to clarify the nature of object recognition-related deficits. Twelve-month-old male and female 5xFAD and 3xTG mice were assessed on tasks for object identity recognition, spatial recognition, and multisensory object perception. Memory and multisensory perceptual impairments were observed, with interesting dissociations between transgenic AD strains and sex that paralleled neuropathological changes. Overreliance on the widespread "object recognition" task threatens to slow discovery of potentially significant and clinically relevant behavioural effects related to this multifaceted cognitive function. The current results support the use of carefully designed object-based test batteries to clarify the relationship between "object recognition" impairments and specific aspects of AD pathology in rodent models.
Collapse
Affiliation(s)
- Samantha D Creighton
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Ari L Mendell
- Department of Biomedical Sciences and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Daniel Palmer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Vania F Prado
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
64
|
Okamoto M, Gray JD, Larson CS, Kazim SF, Soya H, McEwen BS, Pereira AC. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer's disease. Transl Psychiatry 2018; 8:153. [PMID: 30108205 PMCID: PMC6092426 DOI: 10.1038/s41398-018-0201-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) represents a major healthcare burden with no effective treatment. The glutamate modulator, riluzole, was shown to reverse many AD-related gene expression changes and improve cognition in aged rats. However, riluzole's effect on amyloid beta (Aβ) pathology, a major histopathological hallmark of AD, remains unclear. 5XFAD transgenic mice, which harbor amyloid β precursor protein (APP) and presenilin mutations and exhibit early Aβ accumulation, were treated with riluzole from 1 to 6 months of age. Riluzole significantly enhanced cognition and reduced Aβ42, Aβ40, Aβ oligomers levels, and Aβ plaque load in 5XFAD mice. RNA-Sequencing showed that riluzole reversed many gene expression changes observed in the hippocampus of 5XFAD mice, predominantly in expression of canonical gene markers for microglia, specifically disease-associated microglia (DAM), as well as neurons and astrocytes. Central to the cognitive improvements observed, riluzole reversed alterations in NMDA receptor subunits gene expression, which are essential for learning and memory. These data demonstrate that riluzole exerts a disease modifying effect in an Aβ mouse model of early-onset familial AD.
Collapse
Affiliation(s)
- Masahiro Okamoto
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Jason D Gray
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Chloe S Larson
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Syed Faraz Kazim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
65
|
MK-0677, a Ghrelin Agonist, Alleviates Amyloid Beta-Related Pathology in 5XFAD Mice, an Animal Model of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19061800. [PMID: 29912176 PMCID: PMC6032329 DOI: 10.3390/ijms19061800] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and neuronal death. The primary pathogenic cause is believed to be the accumulation of pathogenic amyloid beta (Aβ) assemblies in the brain. Ghrelin, which is a peptide hormone predominantly secreted from the stomach, is an endogenous ligand for the growth hormone secretagogue-receptor type 1a (GHS-R1a). MK-0677 is a ghrelin agonist that potently stimulates the GHS-R1a ghrelin receptor. Interestingly, previous studies have shown that ghrelin improves cognitive impairments and attenuates neuronal death and neuroinflammation in several neurological disorders. However, it is unknown whether MK-0677 can affect Aβ accumulation or Aβ-mediated pathology in the brains of patients with AD. Therefore, we examined the effects of MK-0677 administration on AD-related pathology in 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD. MK-0677 was intraperitoneally administered to three-month-old 5XFAD mice. To visualize Aβ accumulation, neuroinflammation, and neurodegeneration, thioflavin-S staining and immunostaining with antibodies against Aβ (4G8), ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), neuronal nuclear antigen (NeuN), and synaptophysin were conducted in the neocortex of 5XFAD and wild-type mice, and to evaluate changes of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) levels, immunostaining with antibody against pCREB was performed in dentate gyrus of the hippocampus of 5XFAD and wild-type mice. The histological analyses indicated that MK-0677-treated 5XFAD mice showed reduced Aβ deposition, gliosis, and neuronal and synaptic loss in the deep cortical layers, and inhibited the decrement of pCREB levels in dentate gyrus of the hippocampus compared to vehicle-treated 5XFAD mice. Our results showed that activation of the ghrelin receptor with MK-0677 inhibited the Aβ burden, neuroinflammation, and neurodegeneration, which suggested that MK-0677 might have potential as a treatment of the early phase of AD.
Collapse
|
66
|
Ferreira E, Bignoux MJ, Otgaar TC, Tagliatti N, Jovanovic K, Letsolo BT, Weiss SFT. LRP/LR specific antibody IgG1-iS18 impedes neurodegeneration in Alzheimer's disease mice. Oncotarget 2018; 9:27059-27073. [PMID: 29930750 PMCID: PMC6007457 DOI: 10.18632/oncotarget.25473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/08/2018] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta (Aβ) plaque and neurofibrillary tangle formation. We have shown in vitro, that knock-down and blockade of the 37 kDa/67 kDa Laminin Receptor (LRP/LR) resulted in reduced Aβ induced cytotoxicity and Aβ accumulation. In order to test the effect of blocking LRP/LR on Aβ formation and AD associated symptoms, AD transgenic mice received the anti-LRP/LR specific antibody, IgG1-iS18 through intranasal administration. We show that this treatment resulted in an improvement in memory, and decreased Aβ plaque formation. Moreover, a significant decrease in Aβ42 protein expression with a concomitant increase in amyloid precursor protein (APP) and telomerase reverse transcriptase (mTERT) levels was observed. These data recommend IgG1-iS18 as a potentially powerful therapeutic antibody for AD treatment.
Collapse
Affiliation(s)
- Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Nicolas Tagliatti
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Katarina Jovanovic
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Present address: UCL Institute of Ophthalmology, London, UK
| | - Boitelo T Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
67
|
Mazi AR, Arzuman AS, Gurel B, Sahin B, Tuzuner MB, Ozansoy M, Baykal AT. Neonatal Neurodegeneration in Alzheimer's Disease Transgenic Mouse Model. J Alzheimers Dis Rep 2018; 2:79-91. [PMID: 30480251 PMCID: PMC6159732 DOI: 10.3233/adr-170049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disorder characterized by a variety of molecular pathologies causing cortical dementia with a prominent memory deficit. Formation of the pathology, which begins decades before the diagnosis of the disease, is highly correlated with the clinical symptoms. Several proteomics studies were performed using animal models to monitor the alterations of the brain tissue proteome at different stages of AD. However, proteome changes in the brain regions of newborn transgenic mouse model have not been investigated yet. To this end, we analyzed protein expression alterations in cortex, hippocampus and cerebellum of transgenic mice carrying five familial AD mutations (5XFAD) at neonatal day-1. Our results indicate a remarkable difference in protein expression profile of newborn 5XFAD brain with region specific variations. Additionally, the proteins, which show similar expression alteration pattern in postmortem human AD brains, were determined. Bioinformatics analysis showed that the molecular alterations were mostly related to the cell morphology, cellular assembly and organization, and neuroinflammation. Moreover, morphological analysis revealed that there is an increase in neurite number of 5XFAD mouse neurons in vitro. We suggest that, molecular alterations in the AD brain exist even at birth, and perhaps the disease is silenced until older ages when the brain becomes vulnerable.
Collapse
Affiliation(s)
- Aise Rumeysa Mazi
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Institute of Health Science, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Aysegul Sumeyye Arzuman
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Institute of Health Science, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Busra Gurel
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Institute of Health Science, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed R&D Laboratory, Istanbul, Turkey
| | | | - Mehmet Ozansoy
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Acibadem Labmed R&D Laboratory, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
68
|
Melone MAB, Dato C, Paladino S, Coppola C, Trebini C, Giordana MT, Perrone L. Verapamil Inhibits Ser202/Thr205 Phosphorylation of Tau by Blocking TXNIP/ROS/p38 MAPK Pathway. Pharm Res 2018; 35:44. [PMID: 29404777 DOI: 10.1007/s11095-017-2276-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Oxidative stress is a hallmark of Alzheimer's Disease (AD) and promotes tau phosphorylation. Since Thioredoxin Interacting protein (TXNIP), the inhibitor of the anti-oxidant system of Thioredoxin, is up regulated in the hippocampus of AD patients, we investigated whether TXNIP plays a role in promoting tau phosphorylation and whether Verapamil, an inhibitor of TXNIP expression, prevents TXNIP downstream effects. METHODS We analyzed TXNIP expression and tau phosphorylation in the hippocampus of the 5xFAD mice in the absence and presence of a pharmacological treatment with Verapamil. Using SH-SY5Y cells, we verified the causative role of TXNIP in promoting tau phosphorylation at Ser202/Thr205, by inducing TXNIP silencing. RESULTS The amyloid beta peptide (Aβ1-42) leads to TXNIP over-expression in SH-SY5Y cells, which in turns induces oxidative stress and the activation of p38 MAPK, promoting tau phosphorylation at Ser202/Thr205. Silencing of TXNIP abolishes Aβ1-42-induced tau phosphorylation, p38 MAPK phosphorylation and subsequent tau phosphorylation. Verapamil prevents TXNIP expression as well as p38 MAPK and tau phosphorylation at Ser202/Thr205 in the hippocampus of the 5xFAD mice. CONCLUSIONS Our study unveil a novel pathway involved in AD progression that is inhibited by Verapamil, shedding new light on the understanding of the therapeutic potential of Verapamil in AD.
Collapse
Affiliation(s)
- Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Second Division of Neurology, Center for Rare Neurological e Neuromuscular Diseases and Interuniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| | - Clemente Dato
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Second Division of Neurology, Center for Rare Neurological e Neuromuscular Diseases and Interuniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| | - Simona Paladino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80100, Naples, Italy
| | - Cinzia Coppola
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Second Division of Neurology, Center for Rare Neurological e Neuromuscular Diseases and Interuniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| | - Claudia Trebini
- Department of Neuroscience, University Hospital San Giovanni Battista di Torino, 10126, Molinette, Italy
| | - Maria Teresa Giordana
- Department of Neuroscience, University Hospital San Giovanni Battista di Torino, 10126, Molinette, Italy
| | - Lorena Perrone
- Universite´Grenoble Alpes, Grenoble, France.
- DKFZ, Department of Functional and Structural Genomics, Heidelberg, Germany.
| |
Collapse
|
69
|
Baranger K, Giannoni P, Girard SD, Girot S, Gaven F, Stephan D, Migliorati M, Khrestchatisky M, Bockaert J, Marchetti-Gauthier E, Rivera S, Claeysen S, Roman FS. Chronic treatments with a 5-HT 4 receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xFAD mouse model of Alzheimer's disease. Neuropharmacology 2017; 126:128-141. [DOI: 10.1016/j.neuropharm.2017.08.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
|
70
|
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2017; 12:1160-1196. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.
Collapse
|
71
|
van Gijsel-Bonnello M, Baranger K, Benech P, Rivera S, Khrestchatisky M, de Reggi M, Gharib B. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer's disease: Alleviation by pantethine. PLoS One 2017; 12:e0175369. [PMID: 28410378 PMCID: PMC5391924 DOI: 10.1371/journal.pone.0175369] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play critical roles in central nervous system homeostasis and support of neuronal function. A better knowledge of their response may both help understand the pathophysiology of Alzheimer's disease (AD) and implement new therapeutic strategies. We used the 5xFAD transgenic mouse model of AD (Tg thereafter) to generate astrocyte cultures and investigate the impact of the genotype on metabolic changes and astrocytes activation. Metabolomic analysis showed that Tg astrocytes exhibited changes in the glycolytic pathway and tricarboxylic acid (TCA) cycle, compared to wild type (WT) cells. Tg astrocytes displayed also a prominent basal inflammatory status, with accentuated reactivity and increased expression of the inflammatory cytokine interleukin-1 beta (IL-1β). Compensatory mechanisms were activated in Tg astrocytes, including: i) the hexose monophosphate shunt with the consequent production of reducing species; ii) the induction of hypoxia inducible factor-1 alpha (HIF-1α), known to protect against amyloid-β (Aβ) toxicity. Such events were associated with the expression by Tg astrocytes of human isoforms of both amyloid precursor protein (APP) and presenilin-1 (PS1). Similar metabolic and inflammatory changes were induced in WT astrocytes by exogenous Aβ peptide. Pantethine, the vitamin B5 precursor, known to be neuroprotective and anti-inflammatory, alleviated the pathological pattern in Tg astrocytes as well as WT astrocytes treated with Aß. In conclusion, our data enlighten the dual pathogenic/protective role of astrocytes in AD pathology and the potential protective role of pantethine.
Collapse
Affiliation(s)
| | | | | | | | | | - Max de Reggi
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | |
Collapse
|
72
|
Ardestani PM, Evans AK, Yi B, Nguyen T, Coutellier L, Shamloo M. Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer's disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology 2017; 116:371-386. [PMID: 28089846 DOI: 10.1016/j.neuropharm.2017.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/25/2022]
Abstract
Degeneration of noradrenergic neurons occurs at an early stage of Alzheimer's Disease (AD). The noradrenergic system regulates arousal and learning and memory, and has been implicated in regulating neuroinflammation. Loss of noradrenergic tone may underlie AD progression at many levels. We have previously shown that acute administration of a partial agonist of the beta-1 adrenergic receptor (ADRB1), xamoterol, restores behavioral deficits in a mouse model of AD. The current studies examined the effects of chronic low dose xamoterol on neuroinflammation, pathology, and behavior in the pathologically aggressive 5XFAD transgenic mouse model of AD. In vitro experiments in cells expressing human beta adrenergic receptors demonstrate that xamoterol is highly selective for ADRB1 and functionally biased for the cAMP over the β-arrestin pathway. Data demonstrate ADRB1-mediated attenuation of TNF-α production with xamoterol in primary rat microglia culture following LPS challenge. Finally, two independent cohorts of 5XFAD and control mice were administered xamoterol from approximately 4.0-6.5 or 7.0-9.5 months, were tested in an array of behavioral tasks, and brains were examined for evidence of neuroinflammation, and amyloid beta and tau pathology. Xamoterol reduced mRNA expression of neuroinflammatory markers (Iba1, CD74, CD14 and TGFβ) and immunohistochemical evidence for microgliosis and astrogliosis. Xamoterol reduced amyloid beta and tau pathology as measured by regional immunohistochemistry. Behavioral deficits were not observed for 5XFAD mice. In conclusion, chronic administration of a selective, functionally biased, partial agonist of ADRB1 is effective in reducing neuroinflammation and amyloid beta and tau pathology in the 5XFAD model of AD.
Collapse
Affiliation(s)
- Pooneh Memar Ardestani
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, USA
| | - Andrew K Evans
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, USA
| | - Bitna Yi
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, USA
| | - Tiffany Nguyen
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, USA
| | - Laurence Coutellier
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, USA
| | - Mehrdad Shamloo
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304, USA.
| |
Collapse
|
73
|
Can MRI T 1 be used to detect early changes in 5xFAD Alzheimer's mouse brain? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:153-163. [PMID: 27785640 PMCID: PMC5364252 DOI: 10.1007/s10334-016-0593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 10/31/2022]
Abstract
OBJECTIVES In the present study, we have tested whether MRI T1 relaxation time is a sensitive marker to detect early stages of amyloidosis and gliosis in the young 5xFAD transgenic mouse, a well-established animal model for Alzheimer's disease. MATERIALS AND METHODS 5xFAD and wild-type mice were imaged in a 4.7 T Varian horizontal bore MRI system to generate T1 quantitative maps using the spin-echo multi-slice sequence. Following immunostaining for glial fibrillary acidic protein, Iba-1, and amyloid-β, T1 and area fraction of staining were quantified in the posterior parietal and primary somatosensory cortex and corpus callosum. RESULTS In comparison with age-matched wild-type mice, we observed first signs of amyloidosis in 2.5-month-old 5xFAD mice, and development of gliosis in 5-month-old 5xFAD mice. In contrast, MRI T1 relaxation times of young, i.e., 2.5- and 5-month-old, 5xFAD mice were not significantly different to those of age-matched wild-type controls. Furthermore, although disease progression was detectable by increased amyloid-β load in the brain of 5-month-old 5xFAD mice compared with 2.5-month-old 5xFAD mice, MRI T1 relaxation time did not change. CONCLUSIONS In summary, our data suggest that MRI T1 relaxation time is neither a sensitive measure of disease onset nor progression at early stages in the 5xFAD mouse transgenic mouse model.
Collapse
|
74
|
Translational Assays for Assessment of Cognition in Rodent Models of Alzheimer’s Disease and Dementia. J Mol Neurosci 2016; 60:371-382. [DOI: 10.1007/s12031-016-0837-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
|
75
|
Roddick KM, Roberts AD, Schellinck HM, Brown RE. Sex and Genotype Differences in Odor Detection in the 3×Tg-AD and 5XFAD Mouse Models of Alzheimer's Disease at 6 Months of Age. Chem Senses 2016; 41:433-40. [PMID: 26969629 DOI: 10.1093/chemse/bjw018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deficits in odor identification and detection are early symptoms of Alzheimer's disease (AD). Two transgenic mouse models of AD, the 5XFAD and the 3×Tg-AD mice and their wildtype controls, were assessed for olfactory detection with decreasing concentrations of ethyl acetate in a go no-go operant olfactometer task at 6 months of age. For both the 5XFAD and their B6SJLF1 wildtype littermates, females made fewer errors in detecting the ethyl acetate than males on all but the lowest odor concentrations. Female 5XFAD mice performed slightly better than their female wildtype littermates on the higher odor concentrations, though not at the lowest concentration. The 3×Tg-AD females showed decreased olfactory detection compared with their wildtype B6129S1 controls, whereas there was no difference in the males. Therefore, although the 5XFAD mice showed no olfactory detection deficits, female 3×Tg-AD mice had impaired olfactory detection at low odor concentrations but males did not. This difference in odor detection should be considered in studies of olfactory learning and memory, as differences in performance may be due to sensory rather than cognitive factors, though detection seems unimpaired at high odor concentrations.
Collapse
Affiliation(s)
- Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amelia D Roberts
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Heather M Schellinck
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
76
|
Baranger K, Marchalant Y, Bonnet AE, Crouzin N, Carrete A, Paumier JM, Py NA, Bernard A, Bauer C, Charrat E, Moschke K, Seiki M, Vignes M, Lichtenthaler SF, Checler F, Khrestchatisky M, Rivera S. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease. Cell Mol Life Sci 2016; 73:217-36. [PMID: 26202697 PMCID: PMC4700096 DOI: 10.1007/s00018-015-1992-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/22/2023]
Abstract
Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aβ) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1β (IL-1β) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, β- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aβ and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Kévin Baranger
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Yannick Marchalant
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
- Psychology Department, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Amandine E Bonnet
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Nadine Crouzin
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Alex Carrete
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | | | - Nathalie A Py
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Anne Bernard
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Charlotte Bauer
- Labex DistAlz, IPMC UMR 7275 CNRS-UNS, 06560, Valbonne, France
| | - Eliane Charrat
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
| | - Mothoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Michel Vignes
- UMR5247 IBMM CNRS University of Montpellier 1 and University of Montpellier 2, 34095, Montepellier, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | | | | | - Santiago Rivera
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France.
| |
Collapse
|
77
|
Girard SD, Escoffier G, Khrestchatisky M, Roman FS. The FVB/N mice: A well suited strain to study learning and memory processes using olfactory cues. Behav Brain Res 2015; 296:254-259. [PMID: 26365456 DOI: 10.1016/j.bbr.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 01/22/2023]
Abstract
The FVB/N mice are well suited to generate transgenic animals. These mice are also particularly sensitive to seizures and neurodegeneration induced by systemic administration of chemoconvulsants and are very useful to model epilepsy. However, previous studies report strong cognitive and visual impairments suggesting this background unsuitable for behavioral analysis. In this study, we assessed and compared learning abilities of FVB/N mice to the well characterized C57BL/6 strain using the olfactory tubing maze, a non-visual hippocampus-dependent task in which the mice were trained to learn odor-reward associations. Exploratory behavior and spontaneous locomotor activity were then compared using the open field test. We demonstrated that FVB/N mice were able to learn the task, reaching at the end of the test a high percentage of correct responses. Interestingly, the performance of the FVB/N mice was at least similar to that of the C57BL/6 mice. Moreover, in contrast to previous reports, the FVB/N mice displayed a spontaneous locomotor activity lower than C57BL/6 mice. Our study demonstrated that FVB/N mice are not cognitively impaired and that their learning and memory performance can be assessed when the task is based on olfaction rather than vision.
Collapse
Affiliation(s)
- Stéphane D Girard
- Aix Marseille Université, CNRS, NICN, UMR7259, 13344 Marseille, France.
| | - Guy Escoffier
- Aix Marseille Université, CNRS, NICN, UMR7259, 13344 Marseille, France.
| | | | - François S Roman
- Aix Marseille Université, CNRS, NICN, UMR7259, 13344 Marseille, France.
| |
Collapse
|
78
|
Daulatzai MA. Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer’s disease. J Neural Transm (Vienna) 2015; 122:1475-97. [DOI: 10.1007/s00702-015-1404-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022]
|
79
|
ID1201, the ethanolic extract of the fruit of Melia toosendan ameliorates impairments in spatial learning and reduces levels of amyloid beta in 5XFAD mice. Neurosci Lett 2014; 583:170-5. [PMID: 25281546 DOI: 10.1016/j.neulet.2014.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/08/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
A previous study has demonstrated the anti-amyloidogenic effects of the ethanolic extract of Meliae Fructus (ID1201) using cell lines with stably expressed human Swedish mutant APP695 and β-secretase 1, and 5Xfamilial AD (FAD) mice carrying five mutations. Here, we investigated the effects of ID1201 on cognitive impairment in 5XFAD mice. Daily administration of ID1201 was commenced at 3 months of age and continued for 3 months. Mice were serially trained in cued/response and place/spatial training tasks in the Morris water maze. After this training, testing for strategy preference was conducted. Non-transgenic control mice with vehicle treatment, vehicle-treated 5XFAD, and ID1201-treated 5XFAD mice showed equivalent performance in cued/response training. However, as training progressed to the subsequent place/spatial learning, vehicle-treated control and ID1201-treated 5XFAD mice differed significantly from vehicle-treated 5XFAD mice in measures of spatial learning (search error and adaptive spatial learning strategy). In the strategy preference test that followed, control mice preferred a place/spatial strategy relative to vehicle-treated 5XFAD mice, but differences between ID1201-treated 5XFAD mice and vehicle-treated 5XFAD mice were not significant. Additionally, ID1201 treatment reduced hippocampal levels of insoluble Aβ42 and increased cortical levels of soluble amyloid precursor protein α. These results indicate that ID1201 may possess potential as a therapeutic agent for Alzheimer's disease by decreasing Aβ deposits.
Collapse
|
80
|
Py NA, Bonnet AE, Bernard A, Marchalant Y, Charrat E, Checler F, Khrestchatisky M, Baranger K, Rivera S. Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer's disease: evidence for a pro-amyloidogenic role of MT1-MMP. Front Aging Neurosci 2014; 6:247. [PMID: 25278878 PMCID: PMC4166961 DOI: 10.3389/fnagi.2014.00247] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/02/2014] [Indexed: 12/03/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are pleiotropic endopeptidases involved in a variety of neurodegenerative/neuroinflammatory processes through their interactions with a large number of substrates. Among those, the amyloid precursor protein (APP) and the beta amyloid peptide (Aβ) are largely associated with the development of Alzheimer’s disease (AD). However, the regulation and potential contribution of MMPs to AD remains unclear. In this study, we investigated the evolution of the expression of MMP-2, MMP-9, and membrane-type 1-MMP (MT1-MMP) in the hippocampus at different stages of the pathology (asymptomatic, prodromal-like and symptomatic) in the 5xFAD transgenic mouse AD model. In parallel we also followed the expression of functionally associated factors. Overall, the expression of MMP-2, MMP-9, and MT1-MMP was upregulated concomitantly with the tissue inhibitor of MMPs-1 (TIMP-1) and several markers of inflammatory/glial response. The three MMPs exhibited age- and cell-dependent upregulation of their expression, with MMP-2 and MMP-9 being primarily located to astrocytes, and MT1-MMP to neurons. MMP-9 and MT1-MMP were also prominently present in amyloid plaques. The levels of active MT1-MMP were highly upregulated in membrane-enriched fractions of hippocampus at 6 months of age (symptomatic phase), when the levels of APP, its metabolites APP C-terminal fragments (CTFs), and Aβ trimers were the highest. Overexpression of MT1-MMP in HEK cells carrying the human APP Swedish mutation (HEKswe) strongly increased β-secretase derived C-terminal APP fragment (C99) and Aβ levels, whereas MMP-2 overexpression nearly abolished Aβ production without affecting C99. Our data consolidate the emerging idea of a regulatory interplay between MMPs and the APP/Aβ system, and demonstrate for the first time the pro-amyloidogenic features of MT1-MMP. Further investigation will be justified to evaluate this MMP as a novel potential therapeutic target in AD.
Collapse
Affiliation(s)
- Nathalie A Py
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Amandine E Bonnet
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Anne Bernard
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Yannick Marchalant
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Eliane Charrat
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | | | - Michel Khrestchatisky
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Kévin Baranger
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France ; Department of Neurology and Neuropsychology, APHM, CHU La Timone Marseille, France
| | - Santiago Rivera
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| |
Collapse
|
81
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|