51
|
Reinhard K, Li C, Do Q, Burke EG, Heynderickx S, Farrow K. A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife 2019; 8:e50697. [PMID: 31750831 PMCID: PMC6872211 DOI: 10.7554/elife.50697] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
Using sensory information to trigger different behaviors relies on circuits that pass through brain regions. The rules by which parallel inputs are routed to downstream targets are poorly understood. The superior colliculus mediates a set of innate behaviors, receiving input from >30 retinal ganglion cell types and projecting to behaviorally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in vivo and ex vivo electrophysiological recordings, we observed a projection-specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or the parabigeminal nucleus showed strongly biased sampling from four cell types each, while six others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings open the possibility that projection-specific sampling of retinal inputs forms a basis for the selective triggering of behaviors by the superior colliculus.
Collapse
Affiliation(s)
- Katja Reinhard
- Neuro-Electronics Research FlandersLeuvenBelgium
- VIBLeuvenBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Chen Li
- Neuro-Electronics Research FlandersLeuvenBelgium
- VIBLeuvenBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Quan Do
- Neuro-Electronics Research FlandersLeuvenBelgium
- Northeastern UniversityBostonUnited States
| | - Emily G Burke
- Neuro-Electronics Research FlandersLeuvenBelgium
- Northeastern UniversityBostonUnited States
| | | | - Karl Farrow
- Neuro-Electronics Research FlandersLeuvenBelgium
- VIBLeuvenBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
- IMECLeuvenBelgium
| |
Collapse
|
52
|
Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci Rep 2019; 9:17292. [PMID: 31754183 PMCID: PMC6872575 DOI: 10.1038/s41598-019-53380-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023] Open
Abstract
In three-dimensional light microscopy, the heterogeneity of the optical density in a specimen ultimately limits the achievable penetration depth and hence the three-dimensional resolution. The most direct approach to reduce aberrations, improve the contrast and achieve an optimal resolution is to minimise the impact of changes of the refractive index along an optical path. Many implementations of light sheet fluorescence microscopy operate with a large chamber filled with an aqueous immersion medium and a further inner container with the specimen embedded in a possibly entirely different non-aqueous medium. In order to minimise the impact of the latter on the optical quality of the images, we use multi-facetted cuvettes fabricated from vacuum-formed ultra-thin fluorocarbon (FEP) foils. The ultra-thin FEP-foil cuvettes have a wall thickness of about 10–12 µm. They are impermeable to liquids, but not to gases, inert, durable, mechanically stable and flexible. Importantly, the usually fragile specimen can remain in the same cuvette from seeding to fixation, clearing and observation, without the need to remove or remount it during any of these steps. We confirm the improved imaging performance of ultra-thin FEP-foil cuvettes with excellent quality images of whole organs such us mouse oocytes, of thick tissue sections from mouse brain and kidney as well as of dense pancreas and liver organoid clusters. Our ultra-thin FEP-foil cuvettes outperform many other sample-mounting techniques in terms of a full separation of the specimen from the immersion medium, compatibility with aqueous and organic clearing media, quick specimen mounting without hydrogel embedding and their applicability for multiple-view imaging and automated image segmentation. Additionally, we show that ultra-thin FEP foil cuvettes are suitable for seeding and growing organoids over a time period of at least ten days. The new cuvettes allow the fixation and staining of specimens inside the holder, preserving the delicate morphology of e.g. fragile, mono-layered three-dimensional organoids.
Collapse
|
53
|
Filiberti Z, Piazza R, Buzzaccaro S. Multiscale relaxation in aging colloidal gels: From localized plastic events to system-spanning quakes. Phys Rev E 2019; 100:042607. [PMID: 31770945 DOI: 10.1103/physreve.100.042607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 06/10/2023]
Abstract
Relaxation of internal stresses through a cascade of microscopic restructuring events is the hallmark of many materials, ranging from amorphous solids like glasses and gels to geological structures subjected to a persistent external load. By means of photon correlation imaging, a recently developed technique that blends the powers of scattering and imaging, we provide a spatially and temporally resolved survey of the restructuring and aging processes that spontaneously occur in physical gels originating from an arrested phase separation. We show that the temporal dynamics is characterized by an intermittent sequence of spatially localized "microquakes" that eventually lead to global rearrangements occurring at a rate that scales with the gel age. Notably, these dramatic upheavals of the gel structure are heralded by a progressive acceleration of the microscopic gel dynamics that originates from recognizable active spots and then spreads at a large but finite speed through the gel. Within the "slack" phase between two of these "macroquakes," the fluctuations of the degree of temporal correlation obey a non-Gaussian statistics described by a generalized logistic distribution. The evidence we obtained bear consistent analogies with the stress relaxation processes taking place in earthquake sequences and with the intermittent restructuring of plastic crystals at the microscale.
Collapse
Affiliation(s)
- Zeno Filiberti
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
54
|
Costantini I, Cicchi R, Silvestri L, Vanzi F, Pavone FS. In-vivo and ex-vivo optical clearing methods for biological tissues: review. BIOMEDICAL OPTICS EXPRESS 2019; 10:5251-5267. [PMID: 31646045 PMCID: PMC6788593 DOI: 10.1364/boe.10.005251] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 05/05/2023]
Abstract
Every optical imaging technique is limited in its penetration depth by scattering occurring in biological tissues. Possible solutions to overcome this problem consist of limiting the detrimental effects of scattering by reducing optical inhomogeneities within the sample. This can be achieved either by using physical methods (such as refractive index matching solutions) or by chemical methods (such as the removal of scatterers), based on tissue transformation protocols. This review provides an overview of the current state-of-the-art methods used for both ex-vivo and in-vivo optical clearing of biological tissues. We start with a brief history of the development of the most widespread clearing methods across the new millennium, then we describe the working principles of both physical and chemical methods. Clearing methods are then reviewed, pointing the attention of the reader on both physical and chemical methods, classified based on the tissue size and type for each specific application. A small section is reserved for methods that have already found in-vivo applications at the research level. Finally, a detailed discussion highlighting both the most relevant results achieved and the new ongoing developments in this field is reported in the last part, together with future perspectives for the clearing methodology.
Collapse
Affiliation(s)
- Irene Costantini
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Ludovico Silvestri
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
55
|
Automated Macro Approach to Quantify Synapse Density in 2D Confocal Images from Fixed Immunolabeled Neural Tissue Sections. Methods Mol Biol 2019. [PMID: 31432476 DOI: 10.1007/978-1-4939-9686-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
This chapter describes an ImageJ/Fiji automated macro approach to estimate synapse densities in 2D fluorescence confocal microscopy images. The main step-by-step imaging workflow is explained, including example macro language scripts that perform all steps automatically for multiple images. Such tool provides a straightforward method for exploratory synapse screenings where hundreds to thousands of images need to be analyzed in order to render significant statistical information. The method can be adapted to any particular set of images where fixed brain slices have been immunolabeled against validated presynaptic and postsynaptic markers.
Collapse
|
56
|
Costa EC, Silva DN, Moreira AF, Correia IJ. Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids. Biotechnol Bioeng 2019; 116:2742-2763. [PMID: 31282993 DOI: 10.1002/bit.27105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Spheroids have emerged as in vitro models that reproduce in a great extent the architectural microenvironment found in human tissues. However, the imaging of 3D cell cultures is highly challenging due to its high thickness, which results in a light-scattering phenomenon that limits light penetration. Therefore, several optical clearing methods, widely used in the imaging of animal tissues, have been recently explored to render spheroids with enhanced transparency. These methods are aimed to homogenize the microtissue refractive index (RI) and can be grouped into four different categories, namely (a) simple immersion in an aqueous solution with high RI; (b) delipidation and dehydration followed by RI matching; (c) delipidation and hyperhydration followed by RI matching; and (d) hydrogel embedding followed by delipidation and RI matching. In this review, the main optical clearing methods, their mechanism of action, advantages, and disadvantages are described. Furthermore, the practical examples of the optical clearing methods application for the imaging of 3D spheroids are highlighted.
Collapse
Affiliation(s)
- Elisabete C Costa
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Daniel N Silva
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - André F Moreira
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Ilídio J Correia
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal.,CIEPQF, Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
57
|
Miller SJ, Philips T, Kim N, Dastgheyb R, Chen Z, Hsieh YC, Daigle JG, Datta M, Chew J, Vidensky S, Pham JT, Hughes EG, Robinson MB, Sattler R, Tomer R, Suk JS, Bergles DE, Haughey N, Pletnikov M, Hanes J, Rothstein JD. Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin. Nat Neurosci 2019; 22:741-752. [PMID: 30936556 PMCID: PMC6551209 DOI: 10.1038/s41593-019-0366-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022]
Abstract
Despite expanding knowledge regarding the role of astroglia in regulating neuronal function, little is known about regional or functional subgroups of brain astroglia and how they may interact with neurons. We use an astroglia-specific promoter fragment in transgenic mice to identify an anatomically defined subset of adult gray matter astroglia. Using transcriptomic and histological analyses, we generate a combinatorial profile for the in vivo identification and characterization of this astroglia subpopulation. These astroglia are enriched in mouse cortical layer V; express distinct molecular markers, including Norrin and leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6), with corresponding layer-specific neuronal ligands; are found in the human cortex; and modulate neuronal activity. Astrocytic Norrin appears to regulate dendrites and spines; its loss, as occurring in Norrie disease, contributes to cortical dendritic spine loss. These studies provide evidence that human and rodent astroglia subtypes are regionally and functionally distinct, can regulate local neuronal dendrite and synaptic spine development, and contribute to disease.
Collapse
Affiliation(s)
- Sean J Miller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Philips
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raha Dastgheyb
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhuoxun Chen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi-Chun Hsieh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Gavin Daigle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malika Datta
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jeannie Chew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Vidensky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline T Pham
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan G Hughes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael B Robinson
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rita Sattler
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, and Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, and Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
58
|
Li R, Zhu M, Li J, Bienkowski MS, Foster NN, Xu H, Ard T, Bowman I, Zhou C, Veldman MB, Yang XW, Hintiryan H, Zhang J, Dong HW. Precise segmentation of densely interweaving neuron clusters using G-Cut. Nat Commun 2019; 10:1549. [PMID: 30948706 PMCID: PMC6449501 DOI: 10.1038/s41467-019-09515-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Characterizing the precise three-dimensional morphology and anatomical context of neurons is crucial for neuronal cell type classification and circuitry mapping. Recent advances in tissue clearing techniques and microscopy make it possible to obtain image stacks of intact, interweaving neuron clusters in brain tissues. As most current 3D neuronal morphology reconstruction methods are only applicable to single neurons, it remains challenging to reconstruct these clusters digitally. To advance the state of the art beyond these challenges, we propose a fast and robust method named G-Cut that is able to automatically segment individual neurons from an interweaving neuron cluster. Across various densely interconnected neuron clusters, G-Cut achieves significantly higher accuracies than other state-of-the-art algorithms. G-Cut is intended as a robust component in a high throughput informatics pipeline for large-scale brain mapping projects.
Collapse
Affiliation(s)
- Rui Li
- Fujian Key Laboratory of Brain-Inspired Computing Technique and Applications, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, 361005, China
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
- National Engineering Research Center for E-Learning, Central China Normal University, 430079, Wuhan, China
| | - Muye Zhu
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Junning Li
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
- Intuitive Surgical Inc., 1020 Kifer Road, Sunnyvale, CA, 94086, USA
| | - Michael S Bienkowski
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Nicholas N Foster
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Hanpeng Xu
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Tyler Ard
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Ian Bowman
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Changle Zhou
- Fujian Key Laboratory of Brain-Inspired Computing Technique and Applications, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, 361005, China
| | - Matthew B Veldman
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Houri Hintiryan
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA
| | - Junsong Zhang
- Fujian Key Laboratory of Brain-Inspired Computing Technique and Applications, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, 361005, China.
- National Engineering Research Center for E-Learning, Central China Normal University, 430079, Wuhan, China.
| | - Hong-Wei Dong
- Center for Integrative Connectomics, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA.
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, 90095, USA.
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
59
|
Tissue-Specific Optical Mapping Models of Swine Atria Informed by Optical Coherence Tomography. Biophys J 2019; 114:1477-1489. [PMID: 29590604 PMCID: PMC5883619 DOI: 10.1016/j.bpj.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.
Collapse
|
60
|
Tejedo MIA, Cervantes JCM, Roldán ASJ, Rodriguez M, Vega AG, Piazza V. 3,3'-thiodipropanol as a versatile refractive index-matching mounting medium for fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1136-1150. [PMID: 30891335 PMCID: PMC6420295 DOI: 10.1364/boe.10.001136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 05/25/2023]
Abstract
High resolution fluorescence microscopy requires optimization of the protocols for biological sample preparation. The optical and chemical characteristics of mounting media are among the things that could be modified to achieve optimal image formation. In our search for chemical substances that could perform as mounting media, 3,3'-thiodipropanol (TDP) emerged as a sulfide with potentially interesting characteristics. In this work, several tests of its performance as a mounting medium for fluorescence microscopy of biological samples were performed, including the labeling of filamentous actin with fluorescent phalloidins. The refractive index dispersion curve of pH-adjusted TDP was experimentally obtained in the visible range and compared to the dispersion curves of commercial and lab-made mounting media. The effects on the fluorescence of commonly used dyes were tested by using TDP as a solvent and measuring the relative fluorescence quantum yield of the dyes. By being able to mix TDP in any concentration with water and 2,2'-thiodiethanol (TDE), it was possible not only to fine-tune the refractive index of the resulting solution, but also to preserve the compatibility of TDP with the most popular and efficient fluorescent actin staining used in biological microscopy.
Collapse
Affiliation(s)
| | | | - Adrian Saul Jimenez Roldán
- Depto. de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, León, Mexico
| | - Mario Rodriguez
- Centro de Investigaciones en Óptica, Loma Del Bosque 115, León C.P. 37150, Mexico
| | - Arturo González Vega
- Depto. de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, León, Mexico
| | - Valeria Piazza
- Centro de Investigaciones en Óptica, Loma Del Bosque 115, León C.P. 37150, Mexico
| |
Collapse
|
61
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
62
|
Herrera-Zamora JM, Castro-Sánchez LA, Reyes-Mendez M, Aguilar-Martinez I, Osuna-López F, Moreno-Galindo EG, Navarro-Polanco RA, Aguilar-Roblero RA, Sánchez-Pastor E, Alamilla J. Development-Dependent Changes in the NR2 Subtype of the N-Methyl-D-Aspartate Receptor in the Suprachiasmatic Nucleus of the Rat. J Biol Rhythms 2019; 34:39-50. [DOI: 10.1177/0748730418824198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J. Manuel Herrera-Zamora
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
| | - Luis A. Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Universidad de Colima, Colima, Col, Mexico
| | - Miriam Reyes-Mendez
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
| | - Irving Aguilar-Martinez
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
| | - Fernando Osuna-López
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
| | - Eloy G. Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
| | | | - Raul A. Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México
| | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima, Col, Mexico
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Universidad de Colima, Colima, Col, Mexico
| |
Collapse
|
63
|
Thommen A, Werner S, Frank O, Philipp J, Knittelfelder O, Quek Y, Fahmy K, Shevchenko A, Friedrich BM, Jülicher F, Rink JC. Body size-dependent energy storage causes Kleiber's law scaling of the metabolic rate in planarians. eLife 2019; 8:e38187. [PMID: 30608231 PMCID: PMC6320072 DOI: 10.7554/elife.38187] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Kleiber's law, or the 3/4 -power law scaling of the metabolic rate with body mass, is considered one of the few quantitative laws in biology, yet its physiological basis remains unknown. Here, we report Kleiber's law scaling in the planarian Schmidtea mediterranea. Its reversible and life history-independent changes in adult body mass over 3 orders of magnitude reveal that Kleiber's law does not emerge from the size-dependent decrease in cellular metabolic rate, but from a size-dependent increase in mass per cell. Through a combination of experiment and theoretical analysis of the organismal energy balance, we further show that the mass allometry is caused by body size dependent energy storage. Our results reveal the physiological origins of Kleiber's law in planarians and have general implications for understanding a fundamental scaling law in biology.
Collapse
Affiliation(s)
- Albert Thommen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Steffen Werner
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- FOM Institute AMOLFAmsterdamThe Netherlands
| | - Olga Frank
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jenny Philipp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource EcologyDresdenGermany
| | | | - Yihui Quek
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Massachusetts Institute of TechnologyCambridgeUnited States
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource EcologyDresdenGermany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Benjamin M Friedrich
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
64
|
Hong SM, Noë M, Hruban CA, Thompson ED, Wood LD, Hruban RH. A "Clearer" View of Pancreatic Pathology: A Review of Tissue Clearing and Advanced Microscopy Techniques. Adv Anat Pathol 2019; 26:31-39. [PMID: 30256228 DOI: 10.1097/pap.0000000000000215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although pathologic lesions in the pancreas are 3-dimensional (3D) complex structures, we currently use thin 2D hematoxylin and eosin stained slides to study and diagnose pancreatic pathology. Two technologies, tissue clearing and advanced microscopy, have recently converged, and when used together they open the remarkable world of 3D anatomy and pathology to pathologists. Advances in tissue clearing and antibody penetration now make even dense fibrotic tissues amenable to clearing, and light sheet and confocal microscopies allow labeled cells deep within these cleared tissues to be visualized. Clearing techniques can be categorized as solvent-based or aqueous-based techniques, but both clearing methods consist of 4 fundamental steps, including pretreatment of specimens, permeabilization and/or removal of lipid, immunolabeling with antibody penetration, and clearing by refractive index matching. Specialized microscopes, including the light sheet microscope, the 2-photon microscope, and the confocal microscope, can then be used to visualize and evaluate the 3D histology. Both endocrine and exocrine pancreas pathology can then be visualized. The application of labeling and clearing to surgically resected human pancreatic parenchyma can provide detailed visualization of the complexities of normal pancreatic anatomy. It also can be used to characterize the 3D architecture of disease processes ranging from precursor lesions, such as pancreatic intraepithelial neoplasia lesions and intraductal papillary mucinous neoplasms, to infiltrating pancreatic ductal adenocarcinomas. The evaluation of 3D histopathology, including pathology of the pancreatic lesions, will provide new insights into lesions that previously were seen, and thought of, only in 2 dimensions.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Departments of Pathology
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Michaël Noë
- Departments of Pathology
- Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Carolyn A Hruban
- Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Laura D Wood
- Departments of Pathology
- Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Ralph H Hruban
- Departments of Pathology
- Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
65
|
Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. PLANT METHODS 2019; 15:22. [PMID: 30899319 PMCID: PMC6408805 DOI: 10.1186/s13007-019-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures. RESULTS Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays. CONCLUSIONS 3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins.
Collapse
Affiliation(s)
- T. Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - O. Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - M. Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Floková
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - R. Šnaurová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - J. Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - G. Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
66
|
Tardif C, Nadeau G, Labrecque S, Côté D, Lavoie-Cardinal F, De Koninck P. Fluorescence lifetime imaging nanoscopy for measuring Förster resonance energy transfer in cellular nanodomains. NEUROPHOTONICS 2019; 6:015002. [PMID: 30746389 PMCID: PMC6354015 DOI: 10.1117/1.nph.6.1.015002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/28/2018] [Indexed: 05/08/2023]
Abstract
Microscopy methods used to measure Förster resonance energy transfer (FRET) between fluorescently labeled proteins can provide information on protein interactions in cells. However, these methods are diffraction-limited, thus do not enable the resolution of the nanodomains in which such interactions occur in cells. To overcome this limitation, we assess FRET with an imaging system combining fluorescence lifetime imaging microscopy with stimulated emission depletion, termed fluorescence lifetime imaging nanoscopy (FLIN). The resulting FRET-FLIN approach utilizes immunolabeling of proteins in fixed cultured neurons. We demonstrate the capacity to discriminate nanoclusters of synaptic proteins exhibiting variable degrees of interactions with labeled binding partners inside dendritic spines of hippocampal neurons. This method enables the investigation of FRET within nanodomains of cells, approaching the scale of molecular signaling.
Collapse
Affiliation(s)
| | | | | | - Daniel Côté
- CERVO Brain Research Center, Québec (QC), Canada
- Université Laval, Département de physique, de génie physique et d’optique, Québec (QC), Canada
| | | | - Paul De Koninck
- CERVO Brain Research Center, Québec (QC), Canada
- Université Laval, Département de biochimie, de microbiologie et de bio-informatique, Québec (QC), Canada
- Address all correspondence to Paul De Koninck, E-mail:
| |
Collapse
|
67
|
Zalami D, Grimm O, Schacher FH, Gerken U, Köhler J. Non-invasive study of the three-dimensional structure of nanoporous triblock terpolymer membranes. SOFT MATTER 2018; 14:9750-9754. [PMID: 30507995 DOI: 10.1039/c8sm01870g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoporous media are of great importance for drug delivery or filtration. Typically the pore structure of such media is characterized using high-resolution techniques such as electron microscopy or atomic force microscopy. However, these techniques are restricted to the surface of the material and/or are highly invasive. In a proof-of-concept experiment we have employed three-dimensional single-particle orbit tracking for testing the three-dimensional pore structure of a liquid filled nanoporous polystyrene-block-polyisoprene-block-poly(N-isopropylacrylamide) (PS-b-PI-b-PNiPAAm) triblock terpolymer membrane. Using fluorescent tracers with a diameter of about 10% of the relevant void structures, the tracking experiments yielded results that were comparable to those obtained from reference experiments using environmental scanning electron microscopy (eSEM). This testifies that single-particle orbit tracking can serve as a useful non-invasive alternative for characterising the structure of nanoporous materials.
Collapse
Affiliation(s)
- Daniel Zalami
- Spectroscopy of soft Matter, University of Bayreuth, Universitätsstraße 30, 94557 Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
68
|
Pende M, Becker K, Wanis M, Saghafi S, Kaur R, Hahn C, Pende N, Foroughipour M, Hummel T, Dodt HU. High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nat Commun 2018; 9:4731. [PMID: 30413688 PMCID: PMC6226481 DOI: 10.1038/s41467-018-07192-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/13/2018] [Indexed: 11/21/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is an important experimental model to address central questions in neuroscience at an organismic level. However, imaging of neural circuits in intact fruit flies is limited due to structural properties of the cuticle. Here we present a novel approach combining tissue clearing, ultramicroscopy, and data analysis that enables the visualisation of neuronal networks with single-cell resolution from the larval stage up to the adult Drosophila. FlyClear, the signal preserving clearing technique we developed, stabilises tissue integrity and fluorescence signal intensity for over a month and efficiently removes the overall pigmentation. An aspheric ultramicroscope set-up utilising an improved light-sheet generator allows us to visualise long-range connections of peripheral sensory and central neurons in the visual and olfactory system. High-resolution 3D reconstructions with isotropic resolution from entire GFP-expressing flies are obtained by applying image fusion from orthogonal directions. This methodological integration of novel chemical, optical, and computational techniques allows a major advance in the analysis of global neural circuit organisation.
Collapse
Affiliation(s)
- Marko Pende
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria.
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | - Klaus Becker
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Martina Wanis
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Saiedeh Saghafi
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
| | - Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Christian Hahn
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Nika Pende
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Massih Foroughipour
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Hans-Ulrich Dodt
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria.
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
69
|
Kennedy T, Broadie K. Newly Identified Electrically Coupled Neurons Support Development of the Drosophila Giant Fiber Model Circuit. eNeuro 2018; 5:ENEURO.0346-18.2018. [PMID: 30627638 PMCID: PMC6325540 DOI: 10.1523/eneuro.0346-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
The Drosophila giant fiber (GF) escape circuit is an extensively studied model for neuron connectivity and function. Researchers have long taken advantage of the simple linear neuronal pathway, which begins at peripheral sensory modalities, travels through the central GF interneuron (GFI) to motor neurons, and terminates on wing/leg muscles. This circuit is more complex than it seems, however, as there exists a complex web of coupled neurons connected to the GFI that widely innervates the thoracic ganglion. Here, we define four new neuron clusters dye coupled to the central GFI, which we name GF coupled (GFC) 1-4. We identify new transgenic Gal4 drivers that express specifically in these neurons, and map both neuronal architecture and synaptic polarity. GFC1-4 share a central site of GFI connectivity, the inframedial bridge, where the neurons each form electrical synapses. Targeted apoptotic ablation of GFC1 reveals a key role for the proper development of the GF circuit, including the maintenance of GFI connectivity with upstream and downstream synaptic partners. GFC1 ablation frequently results in the loss of one GFI, which is always compensated for by contralateral innervation from a branch of the persisting GFI axon. Overall, this work reveals extensively coupled interconnectivity within the GF circuit, and the requirement of coupled neurons for circuit development. Identification of this large population of electrically coupled neurons in this classic model, and the ability to genetically manipulate these electrically synapsed neurons, expands the GF system capabilities for the nuanced, sophisticated circuit dissection necessary for deeper investigations into brain formation.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
70
|
Szczurek A, Contu F, Hoang A, Dobrucki J, Mai S. Aqueous mounting media increasing tissue translucence improve image quality in Structured Illumination Microscopy of thick biological specimen. Sci Rep 2018; 8:13971. [PMID: 30228281 PMCID: PMC6143540 DOI: 10.1038/s41598-018-32191-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Structured Illumination Microscopy (SIM) is a super-resolution microscopy method that has significantly advanced studies of cellular structures. It relies on projection of illumination patterns onto a fluorescently labelled biological sample. The information derived from the sample is then shifted to a detectable band, and in the process of image calculation in Fourier space the resolution is doubled. Refractive index homogeneity along the optical path is crucial to maintain a highly modulated illumination pattern necessary for high-quality SIM. This applies in particular to thick samples consisting of large cells and tissues. Surprisingly, sample mounting media for SIM have not undergone a significant evolution for almost a decade. Through identification and systematic evaluation of a number of non-hazardous, water-soluble chemical components of mounting media, we demonstrate an unprecedented improvement in SIM-image quality. Mounting solutions presented in this research are capable of reducing abundant light scattering which constitutes the limiting factor in 3D-SIM imaging of large Hodgkin's lymphoma and embryonic stem cells as well as 10 µm tissue sections. Moreover, we demonstrate usefulness of some of the media in single molecule localisation microscopy. The results presented here are of importance for standardisation of 3D-SIM data acquisition pipelines for an expanding community of users.
Collapse
Affiliation(s)
- Aleksander Szczurek
- University of Manitoba, Cancer Care Manitoba, Winnipeg, 675 McDermot Ave, R3E 0V9, Canada
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Gronostajowa 7, 30-387, Poland
| | - Fabio Contu
- University of Manitoba, Cancer Care Manitoba, Winnipeg, 675 McDermot Ave, R3E 0V9, Canada
- University of Cagliari, Unit of Biology and Genetics, Department of Biomedical Sciences, S. P. Monserrato, Sestu Km 0.700, Cagliari, 09042, Italy
| | - Agnieszka Hoang
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Gronostajowa 7, 30-387, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Gronostajowa 7, 30-387, Poland
| | - Sabine Mai
- University of Manitoba, Cancer Care Manitoba, Winnipeg, 675 McDermot Ave, R3E 0V9, Canada.
| |
Collapse
|
71
|
Intrinsic refractive index matched 3D dSTORM with two objectives: Comparison of detection techniques. Sci Rep 2018; 8:13343. [PMID: 30190491 PMCID: PMC6127109 DOI: 10.1038/s41598-018-31595-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
We have built a setup for 3D single molecule localisation microscopy (SMLM) where a very high resolution is achieved by, firstly, the use of two objectives instead of one and, secondly, minimizing optical aberrations by refractive index matching with a glycerol-water mixture as immersion medium in conjunction with glycerol-immersion objectives. Multiple optical paths of the microscope allow to switch between astigmatic and interferometric localisation along the optical axis, thus enabling a direct comparison of the performance of these localisation methods.
Collapse
|
72
|
Abstract
Multichannel imaging is used as a readout of relative localization of two or more components and is often the first step in investigating functional ensembles in cells. However, the localization volume of diffraction-limited light microscopy (approx. 200 nm by 500 nm) can accommodate hundred of proteins, calling for increased resolution for these types of analyses. Here, we present a protocol for 4-channel imaging using structured illumination microscopy (SIM), which increases resolution by a factor of two. We use adherent, fixed cells to identify the localization of adhesion proteins using immunofluorescence and fluorescent proteins. We discuss how labeling with the necessary brightness is achieved and how data has to be processed for colocalization analysis.
Collapse
|
73
|
Tröster P, Haseleu J, Petersen J, Drees O, Schmidtko A, Schwaller F, Lewin GR, Ter-Avetisyan G, Winter Y, Peters S, Feil S, Feil R, Rathjen FG, Schmidt H. The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord. Front Mol Neurosci 2018; 11:19. [PMID: 29472841 PMCID: PMC5809486 DOI: 10.3389/fnmol.2018.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI) controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre) that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli.
Collapse
Affiliation(s)
- Philip Tröster
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Julia Haseleu
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonas Petersen
- Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany.,Institute of Pharmacology and Toxicology, Zentrum für Biomedizinische Ausbildung und Forschung (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Oliver Drees
- Institute of Pharmacology and Toxicology, Zentrum für Biomedizinische Ausbildung und Forschung (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Achim Schmidtko
- Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany.,Institute of Pharmacology and Toxicology, Zentrum für Biomedizinische Ausbildung und Forschung (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Frederick Schwaller
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gohar Ter-Avetisyan
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Cognitive Neurobiology, Humboldt University of Berlin, Berlin, Germany
| | - Stefanie Peters
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hannes Schmidt
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
74
|
Mizutani H, Ono S, Ushiku T, Kudo Y, Ikemura M, Kageyama N, Yamamichi N, Fujishiro M, Someya T, Fukayama M, Koike K, Onodera H. Transparency-enhancing technology allows three-dimensional assessment of gastrointestinal mucosa: A porcine model. Pathol Int 2018; 68:102-108. [PMID: 29341375 DOI: 10.1111/pin.12627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Mitsuhiro Fujishiro
- Department of Gastroenterology
- Department of Endoscopy and Endoscopic Surgery; Graduate School of Medicine
| | - Takao Someya
- Department of Electrical and Electronic Engineering
- Photon Science Center
- Department of Applied Physics; The University of Tokyo; Hongo Bunkyo-ku Tokyo Japan
| | | | | | - Hiroshi Onodera
- Department of Electrical and Electronic Engineering
- Photon Science Center
| |
Collapse
|
75
|
Ando K, Laborde Q, Brion JP, Duyckaerts C. 3D imaging in the postmortem human brain with CLARITY and CUBIC. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:303-317. [PMID: 29496149 DOI: 10.1016/b978-0-444-63639-3.00021-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent innovations in tissue clearing and imaging technologies have enabled us to analyse biological systems directly in three-dimensions using thick samples. In this review, we discuss two of these recently reported tissue-clearing technologies (CLARITY and CUBIC) that are compatible with archival formalin-fixed human brain materials that have been fixed in formalin for a long period of time. We will discuss the pros and cons of these two technologies, examples of visualisation of Alzheimer neuropathological hallmarks and the exact protocols that we regularly use in the laboratory.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium; Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - Quentin Laborde
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
76
|
Ke MT, Imai T. Optical Clearing and Index Matching of Tissue Samples for High-resolution Fluorescence Imaging Using SeeDB2. Bio Protoc 2018; 8:e3046. [DOI: 10.21769/bioprotoc.3046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 11/02/2022] Open
|
77
|
Jensen KHR, Berg RW. Advances and perspectives in tissue clearing using CLARITY. J Chem Neuroanat 2017; 86:19-34. [DOI: 10.1016/j.jchemneu.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
|
78
|
Coutu DL, Kokkaliaris KD, Kunz L, Schroeder T. Multicolor quantitative confocal imaging cytometry. Nat Methods 2017; 15:39-46. [PMID: 29320487 DOI: 10.1038/nmeth.4503] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/04/2017] [Indexed: 11/09/2022]
Abstract
Multicolor 3D quantitative imaging of large tissue volumes is necessary to understand tissue development and organization as well as interactions between distinct cell types in situ. However, tissue imaging remains technically challenging, particularly imaging of bone and marrow. Here, we describe a pipeline to reproducibly generate high-dimensional quantitative data from bone and bone marrow that may be extended to any tissue. We generate thick bone sections from adult mouse femurs with preserved tissue microarchitecture and demonstrate eight-color imaging using confocal microscopy without linear unmixing. We introduce XiT, an open-access software for fast and easy data curation, exploration and quantification of large imaging data sets with single-cell resolution. We describe how XiT can be used to correct for potential artifacts in quantitative 3D imaging, and we use the pipeline to measure the spatial relationship between hematopoietic cells, bone matrix and marrow Schwann cells.
Collapse
Affiliation(s)
- Daniel L Coutu
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Leo Kunz
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
79
|
Abstract
Specific labeling of proteins and nucleic acids by immunofluorescence or in situ techniques is an important adjunct to microscopical analysis for cell biology. Labeling of nuclear structures in intact complex tissues is often hampered by problems of penetration of the macromolecular labeling reagents needed. Here we describe a method of labeling isolated plant nuclei that we have found to be a useful approach that can help to overcome these problems.
Collapse
|
80
|
Kennedy T, Broadie K. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J Neurosci 2017; 37:9844-9858. [PMID: 28887386 PMCID: PMC5637114 DOI: 10.1523/jneurosci.0723-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/29/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function.SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Department of Biological Sciences,
- Department of Cell and Developmental Biology, and
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
81
|
Capasso Palmiero U, Agostini A, Lattuada E, Gatti S, Singh J, Canova CT, Buzzaccaro S, Moscatelli D. Use of RAFT macro-surfmers for the synthesis of transparent aqueous colloids with tunable interactions. SOFT MATTER 2017; 13:6439-6449. [PMID: 28876353 DOI: 10.1039/c7sm01084b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a new method to produce fluorinated nanoparticles (NPs) based on ab initio reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization without the use of toxic surfactants. NP size, surface charge, and chemistry can be controlled via the adoption of different macromolecular transfer agents produced via RAFT polymerization of amphiphilic monomers. Thanks to this versatility, interparticle interactions can be easily tuned by changing solvent composition and temperature. In addition, the refractive index and density of the solvent can simultaneously match those of the NPs by adding sodium polytungstate, an organic salt widely used for density gradient centrifugation. These colloids may be used as model systems for the study of self-assembly and aggregation in aqueous media when optical methods are required.
Collapse
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry, Material Science, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Chen L, Li G, Li Y, Li Y, Zhu H, Tang L, French P, McGinty J, Ruan S. UbasM: An effective balanced optical clearing method for intact biomedical imaging. Sci Rep 2017; 7:12218. [PMID: 28939860 PMCID: PMC5610269 DOI: 10.1038/s41598-017-12484-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023] Open
Abstract
Optical clearing methods can facilitate deep optical imaging in biological tissue by reducing light scattering and this has enabled accurate three-dimensional signal visualization and quantification of complex biological structures. Unfortunately, existing optical clearing approaches present a compromise between maximizing clearing capability, the preservation of fluorescent protein emission and membrane integrity and the speed of sample processing – with the latter typically requiring weeks for cm scale tissue samples. To address this challenge, we present a new, convenient, aqueous optical clearing agent, termed UbasM: Urea-Based Amino-Sugar Mixture, that rapidly renders fixed tissue samples highly transparent and reliably preserves emission from fluorescent proteins and lipophilic dyes in membrane integrity preserved tissues. UbasM is simple, inexpensive, reproducible and compatible with all labeling methods that we have encountered. It can enable convenient, volumetric imaging of tissue up to the scale of whole adult mouse organs and should be useful for a wide range of light microscopy and tomography techniques applied to biomedical research, especially the study on organism-level systems biology at multiple levels.
Collapse
Affiliation(s)
- Lingling Chen
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
| | - Guiye Li
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yamin Li
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yingchao Li
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Haiou Zhu
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Li Tang
- Department of Medicine, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Paul French
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Shuangchen Ruan
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
| |
Collapse
|
83
|
Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci U S A 2017; 114:9337-9342. [PMID: 28814629 DOI: 10.1073/pnas.1619216114] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. STUDIES Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206+MHCII-(M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.
Collapse
|
84
|
Starunov VV, Voronezhskaya EE, Nezlin LP. Development of the nervous system in Platynereis dumerilii (Nereididae, Annelida). Front Zool 2017; 14:27. [PMID: 28559917 PMCID: PMC5445494 DOI: 10.1186/s12983-017-0211-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
Background The structure and development of the nervous system in Lophotrochozoa has long been recognized as one of the most important subjects for phylogenetic and evolutionary discussion. Many recent papers have presented comprehensive data on the structure and development of catecholaminergic, serotonergic and FMRFamidergic parts of the nervous system. However, relatively few papers contain detailed descriptions of the nervous system in Annelida, one of the largest taxa of Lophotrochozoa. The polychaete species Platynereis dumerilii has recently become one of the more popular model animals in evolutionary and developmental biology. The goal of the present study was to provide a detailed description of its neuronal development. The data obtained will contribute to a better understanding of the basic features of neuronal development in polychaetes. Results We have studied the development of the nervous system in P. dumerilii utilizing histo- and immunochemical labelling of catecholamines, serotonin, FMRFamide related peptides, and acetylated tubulin. The first neuron differentiates at the posterior extremity of the protrochophore, reacts to the antibodies against both serotonin and FMRFamide. Then its fibres run forwards along the ventral side. Soon, more neurons appear at the apical extreme, and their basal neurites form the basel structure of the developing brain (cerebral neuropil and circumesophageal connectives). Initial development of the nervous system starts in two rudiments: anterior and posterior. At the nectochaete stage, segmental ganglia start to differentiate in the anterior-to-posterior direction, and the first structures of the stomatogastric and peripheral nervous system appear. All connectives including the unpaired ventral cord develop from initially paired nerves. Conclusions We present a detailed description of Platynereis dumerilii neuronal development based on anti-acetylated tubulin, serotonin, and FMRFamide-like immunostaining as well as catecholamine histofluorescence. The development of the nervous system starts from peripheral pioneer neurons at both the posterior and anterior poles of the larva, and their neurites form a scaffold upon which the adult central nervous system develops. The anterior-to-posterior mode of the ventral ganglia development challenges the primary heteronomy concept. Comparison with the development of Mollusca reveals substantial similarities with early neuronal development in larval Solenogastres. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0211-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viktor V Starunov
- Department of Invertebrate Zoology, St-Petersburg State University, St-Petersburg, 199034 Russia.,Zoological Institute Rus, Acad. Sci, St-Petersburg, 199034 Russia
| | | | - Leonid P Nezlin
- Institute of Developmental Biology, Rus. Acad. Sci, Moscow, 119991 Russia
| |
Collapse
|
85
|
A simple and cost-effective setup for super-resolution localization microscopy. Sci Rep 2017; 7:1542. [PMID: 28484239 PMCID: PMC5431525 DOI: 10.1038/s41598-017-01606-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
Single molecule localization microscopy (SMLM) has become a powerful imaging tool for biomedical research, but it is mostly available in imaging facilities and a small number of laboratories due to its high cost. Here, we evaluate the possibility of replacing high-cost components on standard SMLM with appropriate low-cost alternatives and build a simple but high-performance super-resolution SMLM setup. Through numerical simulation and biological experiments, we demonstrate that our low-cost SMLM setup can yield similar localization precision and spatial resolution compared to the standard SMLM equipped with state-of-the-art components, but at a small fraction of their cost. Our low-cost SMLM setup can potentially serve as a routine laboratory microscope with high-performance super-resolution imaging capability.
Collapse
|
86
|
Jakobsson A, Ottosson M, Zalis MC, O'Carroll D, Johansson UE, Johansson F. Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1563-1573. [DOI: 10.1016/j.nano.2016.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/04/2016] [Accepted: 12/30/2016] [Indexed: 11/25/2022]
|
87
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
88
|
Affiliation(s)
- Hans Blom
- Royal Institute of Technology (KTH), Dept Applied Physics, SciLifeLab, 17165 Solna, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Albanova Univ Center, 10691 Stockholm, Sweden
| |
Collapse
|
89
|
High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis. Sci Rep 2017; 7:43012. [PMID: 28211501 PMCID: PMC5314416 DOI: 10.1038/srep43012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensional imaging of whole organs recently became an important challenge to better understand their architecture and allow cell enumeration. Several protocols have thus been developed to enhance sample transparency, a limiting step for imaging large biological samples. However, none of these methods has been applied to the zebrafish testis. We tested five clearing protocols to determine if some of them could be applied with only small modifications to the testis. We compared clearing efficiency at both macroscopic and microscopic levels. CUBIC and PACT were suitable for an efficient transparency, an optimal optical penetration, the GFP fluorescence preservation and avoiding meaningful tissue deformation. Finally, we succeeded in whole testis 3D capture at a cellular resolution with both CUBIC and PACT, which will be valuable in a standard workflow to investigate the 3D architecture of the testis and its cellular content. This paves the way for further development of high content phenotyping studies in several fields including development, genetic or toxicology.
Collapse
|
90
|
Yu T, Qi Y, Zhu J, Xu J, Gong H, Luo Q, Zhu D. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue. Sci Rep 2017; 7:38848. [PMID: 28139694 PMCID: PMC5282525 DOI: 10.1038/srep38848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42-47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yisong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
91
|
Slane D, Bürgel P, Bayer M. Staining and Clearing of Arabidopsis Reproductive Tissue for Imaging of Fluorescent Proteins. Methods Mol Biol 2017; 1669:87-94. [PMID: 28936652 DOI: 10.1007/978-1-4939-7286-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Imaging of fluorescent proteins in whole-mount tissue is a powerful tool to understand growth and developmental processes, not only in plants. With the advent of genetically encoded fluorescent reporters, which specifically label reproductive cells in Arabidopsis, deep tissue imaging has become increasingly important for the study of plant reproduction. To penetrate the surrounding layers of maternal tissue, however, the tissue has to be cleared by homogenizing the refractive index of the sample, often leading to inactivation of fluorescent proteins. 2,2'-thiodiethanol (TDE) has recently been introduced as a clearing agent that allows the imaging of fluorescent proteins in a cleared plant tissue. Here, we describe a simple protocol that combines TDE-based tissue clearing with cell wall staining to outline cells that enable deep tissue imaging in reproductive structures of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tuebingen, Germany
| | - Patrick Bürgel
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tuebingen, Germany
| | - Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tuebingen, Germany.
| |
Collapse
|
92
|
Abstract
Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.
Collapse
Affiliation(s)
- Alison F Pendle
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Peter J Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
93
|
Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function. Methods Mol Biol 2017; 1538:155-167. [PMID: 27943190 PMCID: PMC5479421 DOI: 10.1007/978-1-4939-6688-2_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.
Collapse
|
94
|
Abstract
Visualization of the intact embryo sac within the ovular/gynoecial tissues and clear identification of cell types can be logistically difficult and subject to interpretation. Cellular marker technologies have been available for the embryo sac, but have typically labeled only one cell type in a particular line. Here, we describe techniques for simultaneous labeling each cell type in the embryo sac and visualization methods for such in Arabidopsis, soybean, maize, and sorghum.
Collapse
|
95
|
Schubert V. Super-resolution Microscopy - Applications in Plant Cell Research. FRONTIERS IN PLANT SCIENCE 2017; 8:531. [PMID: 28450874 PMCID: PMC5390026 DOI: 10.3389/fpls.2017.00531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 05/10/2023]
Abstract
Most of the present knowledge about cell organization and function is based on molecular and genetic methods as well as cytological investigations. While electron microscopy allows identifying cell substructures until a resolution of ∼1 nm, the resolution of fluorescence microscopy is restricted to ∼200 nm due to the diffraction limit of light. However, the advantage of this technique is the possibility to identify and co-localize specifically labeled structures and molecules. The recently developed super-resolution microscopy techniques, such as Structured Illumination Microscopy, Photoactivated Localization Microscopy, Stochastic Optical Reconstruction Microscopy, and Stimulated Emission Depletion microscopy allow analyzing structures and molecules beyond the diffraction limit of light. Recently, there is an increasing application of these techniques in cell biology. This review evaluates and summarizes especially the data achieved until now in analyzing the organization and function of plant cells, chromosomes and interphase nuclei using super-resolution techniques.
Collapse
|
96
|
Gáspár I, Sysoev V, Komissarov A, Ephrussi A. An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 2016; 36:319-333. [PMID: 28028052 PMCID: PMC5286366 DOI: 10.15252/embj.201696038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires recruitment and precise regulation of motor proteins to form transport‐competent mRNPs. We show that the posterior‐targeting kinesin‐1 is loaded upon nuclear export of oskar mRNPs, prior to their dynein‐dependent transport from the nurse cells into the oocyte. We demonstrate that kinesin‐1 recruitment requires the DmTropomyosin1‐I/C isoform, an atypical RNA‐binding tropomyosin that binds directly to dimerizing oskar 3′UTRs. Finally, we show that a small but dynamically changing subset of oskar mRNPs gets loaded with inactive kinesin‐1 and that the motor is activated during mid‐oogenesis by the functionalized spliced oskar RNA localization element. This inefficient, dynamic recruitment of Khc decoupled from cargo‐dependent motor activation constitutes an optimized, coordinated mechanism of mRNP transport, by minimizing interference with other cargo‐transport processes and between the cargo‐associated dynein and kinesin‐1.
Collapse
Affiliation(s)
- Imre Gáspár
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vasiliy Sysoev
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Artem Komissarov
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
97
|
Yamagata N, Hiroi M, Kondo S, Abe A, Tanimoto H. Suppression of Dopamine Neurons Mediates Reward. PLoS Biol 2016; 14:e1002586. [PMID: 27997541 PMCID: PMC5172549 DOI: 10.1371/journal.pbio.1002586] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
Massive activation of dopamine neurons is critical for natural reward and drug abuse. In contrast, the significance of their spontaneous activity remains elusive. In Drosophila melanogaster, depolarization of the protocerebral anterior medial (PAM) cluster dopamine neurons en masse signals reward to the mushroom body (MB) and drives appetitive memory. Focusing on the functional heterogeneity of PAM cluster neurons, we identified that a single class of PAM neurons, PAM-γ3, mediates sugar reward by suppressing their own activity. PAM-γ3 is selectively required for appetitive olfactory learning, while activation of these neurons in turn induces aversive memory. Ongoing activity of PAM-γ3 gets suppressed upon sugar ingestion. Strikingly, transient inactivation of basal PAM-γ3 activity can substitute for reward and induces appetitive memory. Furthermore, we identified the satiety-signaling neuropeptide Allatostatin A (AstA) as a key mediator that conveys inhibitory input onto PAM-γ3. Our results suggest the significance of basal dopamine release in reward signaling and reveal a circuit mechanism for negative regulation. Dopamine neurons in the midbrain of mammals fire action potentials in response to rewarding stimuli, while punitive stimuli or omission of reward suppress their activity. Different signs in the activity of dopamine neurons thus can encode appetitive and aversive values; however, how these bidirectional activities directly relate to behavior has yet to be elucidated. In fruit flies Drosophila, en masse activation of dopaminergic neurons in the protocerebral anterior medial (PAM) cluster has been shown to signal reward. Here, we demonstrate that a specific sub-class of these dopaminergic neurons, called PAM-γ3, mediates both aversive and appetitive reinforcement through activation and suppression of their activity, respectively. Notably, transient inactivation of the basal activity of PAM-γ3 neurons substitutes for reward and induces appetitive memory formation. Interestingly, we found that Allatostatin A, a neuropeptide that signals satiety, conveys inhibitory input onto PAM-γ3 neurons. Our results highlight the bidirectional activity of defined dopaminergic neurons, which underlies encoding of behaviorally relevant appetitive and aversive values. Transient suppression of a specific subset of dopamine neurons signals reward in the fruit fly Drosophila, suggesting that basal dopamine activity underlies behaviorally relevant valence coding.
Collapse
Affiliation(s)
- Nobuhiro Yamagata
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
- * E-mail: (NY); (HT)
| | - Makoto Hiroi
- The University of Tokyo, Institute of Molecular and Cellular Biosciences, Tokyo, Japan
| | - Shu Kondo
- National Institute of Genetics, Mishima, Japan
| | - Ayako Abe
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hiromu Tanimoto
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
- * E-mail: (NY); (HT)
| |
Collapse
|
98
|
Lam F, Cladière D, Guillaume C, Wassmann K, Bolte S. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope. Methods 2016; 115:17-27. [PMID: 27826080 DOI: 10.1016/j.ymeth.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022] Open
Abstract
In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample.
Collapse
Affiliation(s)
- France Lam
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France
| | - Damien Cladière
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratory of Developmental Biology - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France
| | - Cyndélia Guillaume
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratory of Developmental Biology - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France
| | - Susanne Bolte
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France.
| |
Collapse
|
99
|
Hirai Y, Hirano Y, Matsuda A, Hiraoka Y, Honda T, Tomonaga K. Borna Disease Virus Assembles Porous Cage-like Viral Factories in the Nucleus. J Biol Chem 2016; 291:25789-25798. [PMID: 27803166 DOI: 10.1074/jbc.m116.746396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Animal-derived RNA viruses frequently generate viral factories in infected cells. However, the details of how RNA viruses build such intracellular structures are poorly understood. In this study, we examined the structure and formation of the viral factories, called viral speckle of transcripts (vSPOTs), that are produced in the nuclei of host cells by Borna disease virus (BDV). Super-resolution microscopic analysis showed that BDV assembled vSPOTs as intranuclear cage-like structures with 59-180-nm pores. The viral nucleoprotein formed the exoskeletons of vSPOTs, whereas the other viral proteins appeared to be mainly localized within these structures. In addition, stochastic optical reconstruction microscopy revealed that filamentous structures resembling viral ribonucleoprotein complexes (RNPs) appeared to protrude from the outer surfaces of the vSPOTs. We also found that vSPOTs disintegrated into RNPs concurrently with the breakdown of the nuclear envelope during mitosis. These observations demonstrated that BDV generates viral replication factories whose shape and formation are regulated, suggesting the mechanism of the integrity of RNA virus persistent infection in the nucleus.
Collapse
Affiliation(s)
- Yuya Hirai
- From the Department of Biology, Osaka Dental University, Hirakata 573-1121.,the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT)
| | - Yasuhiro Hirano
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and
| | - Atsushi Matsuda
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and.,the Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and.,the Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tomoyuki Honda
- the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT)
| | - Keizo Tomonaga
- the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), .,Departments of Molecular Virology, Graduate School of Medicine, and.,Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507
| |
Collapse
|
100
|
Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu Rev Cell Dev Biol 2016; 32:713-741. [DOI: 10.1146/annurev-cellbio-111315-125001] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuki Tainaka
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shimpei I. Kubota
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatzya Murakami
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka 565-0871, Japan;
| |
Collapse
|