51
|
Church JS, Milich LM, Lerch JK, Popovich PG, McTigue DM. E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 2017; 65:883-899. [PMID: 28251686 DOI: 10.1002/glia.23132] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin-induced demyelination. In vitro, E6020 induced TLR4-dependent cytokine expression (TNFα, IL1β, IL-6) and NF-κB signaling, albeit at ∼10-fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co-injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune-myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jamie S Church
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay M Milich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
52
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
53
|
Abstract
UNLABELLED White matter abnormalities in the CNS have been reported recently in various neurological and psychiatric disorders. Quantitation of non-Gaussianity for water diffusion by q-space diffusional MRI (QSI) renders biological diffusion barriers such as myelin sheaths; however, the time-consuming nature of this method hinders its clinical application. In the current study, we aimed to refine QSI protocols to enable their clinical application and to visualize myelin signals in a clinical setting. For this purpose, animal studies were first performed to optimize the acquisition protocol of a non-Gaussian QSI metric. The heat map of standardized kurtosis values derived from optimal QSI (myelin map) was then created. Histological validation of the myelin map was performed in myelin-deficient mice and in a nonhuman primate by monitoring its variation during demyelination and remyelination after chemical spinal cord injury. The results demonstrated that it was sensitive enough to depict dysmyelination, demyelination, and remyelination in animal models. Finally, its utility in clinical practice was assessed by a pilot clinical study in a selected group of patients with multiple sclerosis (MS). The human myelin map could be obtained within 10 min with a 3 T MR scanner. Use of the myelin map was practical for visualizing white matter and it sensitively detected reappearance of myelin signals after demyelination, possibly reflecting remyelination in MS patients. Our results together suggest that the myelin map, a kurtosis-related heat map obtainable with time-saving QSI, may be a novel and clinically useful means of visualizing myelin in the human CNS. SIGNIFICANCE STATEMENT Myelin abnormalities in the CNS have been gaining increasing attention in various neurological and psychiatric diseases. However, appropriate methods with which to monitor CNS myelin in daily clinical practice have been lacking. In the current study, we introduced a novel MRI modality that produces the "myelin map." The myelin map accurately depicted myelin status in mice and nonhuman primates and in a pilot clinical study of multiple sclerosis patients, suggesting that it is useful in detecting possibly remyelinated lesions. A myelin map of the human brain could be obtained in <10 min using a 3 T scanner and it therefore promises to be a powerful tool for researchers and clinicians examining myelin-related diseases.
Collapse
|
54
|
Ferrara G, Errede M, Girolamo F, Morando S, Ivaldi F, Panini N, Bendotti C, Perris R, Furlan R, Virgintino D, Kerlero de Rosbo N, Uccelli A. NG2, a common denominator for neuroinflammation, blood-brain barrier alteration, and oligodendrocyte precursor response in EAE, plays a role in dendritic cell activation. Acta Neuropathol 2016; 132:23-42. [PMID: 27026411 PMCID: PMC4911384 DOI: 10.1007/s00401-016-1563-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
In adult CNS, nerve/glial-antigen 2 (NG2) is expressed by oligodendrocyte progenitor cells (OPCs) and is an early marker of pericyte activation in pathological conditions. NG2 could, therefore, play a role in experimental autoimmune encephalomyelitis (EAE), a disease associated with increased blood–brain barrier (BBB) permeability, inflammatory infiltrates, and CNS damage. We induced EAE in NG2 knock-out (NG2KO) mice and used laser confocal microscopy immunofluorescence and morphometry to dissect the effect of NG2 KO on CNS pathology. NG2KO mice developed milder EAE than their wild-type (WT) counterparts, with less intense neuropathology associated with a significant improvement in BBB stability. In contrast to WT mice, OPC numbers did not change in NG2KO mice during EAE. Through FACS and confocal microscopy, we found that NG2 was also expressed by immune cells, including T cells, macrophages, and dendritic cells (DCs). Assessment of recall T cell responses to the encephalitogen by proliferation assays and ELISA showed that, while WT and NG2KO T cells proliferated equally to the encephalitogenic peptide MOG35-55, NG2KO T cells were skewed towards a Th2-type response. Because DCs could be responsible for this effect, we assessed their expression of IL-12 by PCR and intracellular FACS. IL-12-expressing CD11c+ cells were significantly decreased in MOG35-55-primed NG2KO lymph node cells. Importantly, in WT mice, the proportion of IL-12-expressing cells was significantly lower in CD11c+ NG2- cells than in CD11c+ NG2+ cells. To assess the relevance of NG2 at immune system and CNS levels, we induced EAE in bone-marrow chimeric mice, generated with WT recipients of NG2KO bone-marrow cells and vice versa. Regardless of their original phenotype, mice receiving NG2KO bone marrow developed milder EAE than those receiving WT bone marrow. Our data suggest that NG2 plays a role in EAE not only at CNS/BBB level, but also at immune response level, impacting on DC activation and thereby their stimulation of reactive T cells, through controlling IL-12 expression.
Collapse
|
55
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016; 4:71. [PMID: 27551677 PMCID: PMC4923166 DOI: 10.3389/fcell.2016.00071] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
56
|
Lipopolysaccharide Upregulates the Expression of CINC-3 and LIX in Primary NG2 Cells. Neurochem Res 2016; 41:1448-57. [PMID: 26842931 DOI: 10.1007/s11064-016-1856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/01/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Numerous NG2 cells, also called oligodendrocyte progenitor cells (OPCs), exist ubiquitously in the gray and white matter in the adult central nervous system (CNS). Although NG2 cells could become active by upregulation of NG2 expression and hypertrophy or extension of their processes under various neuropathological conditions, their actual role in the brain remains to be illustrated. In view of the fact that the synergy of cytokine and chemokine networks plays an important role in CNS inflammation and immunity, we have assumed that the NG2 cells might take part in brain inflammation and immunity by making a contribution to the pool of cytokines or chemokines. In the current study, NG2-expressing OPCs were prepared from cerebral hemispheres of postnatal day 0 or 1 Sprague-Dawley rats. Our results showed that NG2-expressing OPCs, verified by immunohistological staining of anti-NG2 antibody and anti-platelet-derived growth factor receptor alpha (PDGFRα) antibody, presented binding affinity to lipopolysaccharide (LPS), a commonly used stimulator in a neuroinflammatory model. Using cytokine antibody array, QPCR and ELISA, we have further shown that LPS could upregulate the expression of cytokine induced neutrophil chemoattractant-3 (CINC-3) and LPS induced CXC chemokine (LIX) in primary NG2-expressing OPCs, without the alteration in cell number of NG2-expressing OPCs. In addition, the cells bearing the receptor for these two cytokines included microglia and OPCs. Taken together, our results suggest that NG2-expressing OPCs could response to LPS and may take part in neuroinflammatory process, through secreting cytokines and chemokines to exert an effect on target cells (OPCs and microglia).
Collapse
|
57
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016. [PMID: 27551677 DOI: 10.3389/fcell.2016.00071.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
58
|
Bernardes D, Brambilla R, Bracchi-Ricard V, Karmally S, Dellarole A, Carvalho-Tavares J, Bethea JR. Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis. J Neurochem 2015; 136 Suppl 1:63-73. [PMID: 26364732 DOI: 10.1111/jnc.13354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022]
Abstract
Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.
Collapse
Affiliation(s)
- Danielle Bernardes
- Departamento de Fisiologia e Biofísica, Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.,The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberta Brambilla
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Valerie Bracchi-Ricard
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Biology, Drexel University, Philadelphia, Philadelphia, USA
| | - Shaffiat Karmally
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Anna Dellarole
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Juliana Carvalho-Tavares
- Departamento de Fisiologia e Biofísica, Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, Philadelphia, USA
| |
Collapse
|
59
|
Luo Y, Hu Q, Zhang Q, Hong S, Tang X, Cheng L, Jiang L. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res 2015; 1627:154-64. [PMID: 26433043 DOI: 10.1016/j.brainres.2015.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
Abstract
Recent reports have described damage to myelinated fibers in the central nervous system (CNS) in patients with temporal lobe epilepsy (TLE) and animal models. However, only limited data are available on the dynamic changes that occur in myelinated fibers, oligodendrocytes (which are myelin-forming cells), and oligodendrocyte precursor cells (OPCs), which are a reservoir of new oligodendrocytes, in the hippocampus throughout epileptogenesis. The current study was designed to examine this issue using a rat model of lithium-pilocarpine-induced epilepsy. Electroencephalography (EEG), immunofluorescence, and Western blot analysis showed that the loss of myelin and oligodendrocytes in the rat hippocampus began during the acute stage of epileptogenesis, and the severity of this loss increased throughout epileptogenesis. Accompanying this loss of myelin and oligodendrocytes, OPCs in the rat hippocampus became activated and their populations increased during several phases of epileptogenesis (the acute, latent and chronic phases). The transcription factors olig1 and olig2, which play crucial roles in regulating OPC proliferation, differentiation and remyelination, were up-regulated during the early phases (the acute and latent phases) followed by a sharp decline in their expression during the chronic and late chronic phases. This study is the first to confirm the loss of myelin and oligodendrocytes during lithium-pilocarpine-induced epileptogenesis accompanied by a transient increase in the number of OPCs. Prevention of the loss of myelin and oligodendrocytes may provide a novel treatment strategy for epilepsy.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qiao Hu
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qian Zhang
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Siqi Hong
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, PR China
| | - Xiaoju Tang
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Li Cheng
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Li Jiang
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, PR China.
| |
Collapse
|
60
|
Li N, Leung GKK. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235195. [PMID: 26491661 PMCID: PMC4600489 DOI: 10.1155/2015/235195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K. K. Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
61
|
Lineage, fate, and fate potential of NG2-glia. Brain Res 2015; 1638:116-128. [PMID: 26301825 DOI: 10.1016/j.brainres.2015.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/20/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
|
62
|
Abstract
Neonatal hypoxia-ischemia (H-I) is the leading cause of brain damage resulting from birth complications. Studies in neonatal rats have shown that H-I acutely expands the numbers of neural precursors (NPs) within the subventricular zone (SVZ). The aim of these studies was to establish which NPs expand after H-I and to determine how leukemia inhibitory factor (LIF) insufficiency affects their response. During recovery from H-I, the number of Ki67(+) cells in the medial SVZ of the injured hemisphere increased. Similarly, the number and size of primary neurospheres produced from the injured SVZ increased approximately twofold versus controls, and, upon differentiation, more than twice as many neurospheres from the damaged brain were tripotential, suggesting an increase in neural stem cells (NSCs). However, multimarker flow cytometry for CD133/LeX/NG2/CD140a combined with EdU incorporation revealed that NSC frequency diminished after H-I, whereas that of two multipotential progenitors and three unique glial-restricted precursors expanded, attributable to changes in their proliferation. By quantitative PCR, interleukin-6, LIF, and CNTF mRNA increased but with significantly different time courses, with LIF expression correlating best with NP expansion. Therefore, we evaluated the NP response to H-I in LIF-haplodeficient mice. Flow cytometry revealed that one subset of multipotential and bipotential intermediate progenitors did not increase after H-I, whereas another subset was amplified. Altogether, our studies demonstrate that neonatal H-I alters the composition of the SVZ and that LIF is a key regulator for a subset of intermediate progenitors that expand during acute recovery from neonatal H-I.
Collapse
|
63
|
Cui C, Noronha A, Warren KR, Koob GF, Sinha R, Thakkar M, Matochik J, Crews FT, Chandler LJ, Pfefferbaum A, Becker HC, Lovinger D, Everitt BJ, Egli M, Mandyam CD, Fein G, Potenza MN, Harris RA, Grant KA, Roberto M, Meyerhoff DJ, Sullivan EV. Brain pathways to recovery from alcohol dependence. Alcohol 2015; 49:435-52. [PMID: 26074423 PMCID: PMC4468789 DOI: 10.1016/j.alcohol.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022]
Abstract
This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Antonio Noronha
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenneth R Warren
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mahesh Thakkar
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - John Matochik
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Adolf Pfefferbaum
- Neuroscience Program, Center for Health Science, SRI International, Menlo Park, CA, USA
| | - Howard C Becker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - David Lovinger
- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark Egli
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - George Fein
- Neurobehavioral Research, Inc., Ala Moana Pacific Center, Honolulu, HI, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - Kathleen A Grant
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
64
|
Liu R, Zhang S, Yang H, Ju P, Xia Y, Shi Y, Lim TH, Lim AS, Liang F, Feng Z. Characterization and therapeutic evaluation of a Nestin+ CNP+ NG2+ cell population on mouse spinal cord injury. Exp Neurol 2015; 269:28-42. [DOI: 10.1016/j.expneurol.2015.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 11/29/2022]
|
65
|
Dimou L, Gallo V. NG2-glia and their functions in the central nervous system. Glia 2015; 63:1429-51. [PMID: 26010717 DOI: 10.1002/glia.22859] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
In the central nervous system, NG2-glia represent a neural cell population that is distinct from neurons, astrocytes, and oligodendrocytes. While in the past the main role ascribed to these cells was that of progenitors for oligodendrocytes, in the last years it has become more obvious that they have further functions in the brain. Here, we will discuss some of the most current and highly debated issues regarding NG2-glia: Do these cells represent a heterogeneous population? Can they give rise to different progenies, and does this change under pathological conditions? How do they respond to injury or pathology? What is the role of neurotransmitter signaling between neurons and NG2-glia? We will first give an overview on the developmental origin of NG2-glia, and then discuss whether their distinct properties in different brain regions are the result of environmental influences, or due to intrinsic differences. We will then review and discuss their in vitro differentiation potential and in vivo lineage under physiological and pathological conditions, together with their electrophysiological properties in distinct brain regions and at different developmental stages. Finally, we will focus on their potential to be used as therapeutic targets in demyelinating and neurodegenerative diseases. Therefore, this review article will highlight the importance of NG2-glia not only in the healthy, but also in the diseased brain.
Collapse
Affiliation(s)
- L Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, 80336, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, 85764, Germany
| | - V Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
66
|
Abstract
Adult progenitor cells proliferate in the acutely injured spinal cord and their progeny differentiate into new oligodendrocytes (OLs) that remyelinate spared axons. Whether this endogenous repair continues beyond the first week postinjury (wpi), however, is unknown. Identifying the duration of this response is essential for guiding therapies targeting improved recovery from spinal cord injury (SCI) by enhancing OL survival and/or remyelination. Here, we used two PDGFRα-reporter mouse lines and rats injected with a GFP-retrovirus to assess progenitor fate through 80 d after injury. Surprisingly, new OLs were generated as late as 3 months after injury and their processes ensheathed axons near and distal to the lesion, colocalized with MBP, and abutted Caspr+ profiles, suggesting newly formed myelin. Semithin sections confirmed stereotypical thin OL remyelination and few bare axons at 10 wpi, indicating that demyelination is relatively rare. Astrocytes in chronic tissue expressed the pro-OL differentiation and survival factors CNTF and FGF-2. In addition, pSTAT3+ NG2 cells were present through at least 5 wpi, revealing active signaling of the Jak/STAT pathway in these cells. The progenitor cell fate genes Sox11, Hes5, Id2, Id4, BMP2, and BMP4 were dynamically regulated for at least 4 wpi. Collectively, these data verify that the chronically injured spinal cord is highly dynamic. Endogenous repair, including oligodendrogenesis and remyelination, continues for several months after SCI, potentially in response to growth factors and/or transcription factor changes. Identifying and understanding spontaneous repair processes such as these is important so that beneficial plasticity is not inadvertently interrupted and effort is not exerted to needlessly duplicate ongoing spontaneous repair.
Collapse
|
67
|
Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. J Neurosci 2015; 35:1136-48. [PMID: 25609628 DOI: 10.1523/jneurosci.1797-14.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin.
Collapse
|
68
|
Sahel A, Ortiz FC, Kerninon C, Maldonado PP, Angulo MC, Nait-Oumesmar B. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination. Front Cell Neurosci 2015; 9:77. [PMID: 25852473 PMCID: PMC4362325 DOI: 10.3389/fncel.2015.00077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/21/2014] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders.
Collapse
Affiliation(s)
- Aurélia Sahel
- INSERM U1127, Institut du Cerveau et de la Moelle Epinière Paris, France ; Université Paris 6, Sorbonne Paris Cité, UMR-S1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France
| | - Fernando C Ortiz
- INSERM U1128 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - Christophe Kerninon
- INSERM U1127, Institut du Cerveau et de la Moelle Epinière Paris, France ; Université Paris 6, Sorbonne Paris Cité, UMR-S1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France
| | - Paloma P Maldonado
- INSERM U1128 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - María Cecilia Angulo
- INSERM U1128 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - Brahim Nait-Oumesmar
- INSERM U1127, Institut du Cerveau et de la Moelle Epinière Paris, France ; Université Paris 6, Sorbonne Paris Cité, UMR-S1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France
| |
Collapse
|
69
|
Huang S, Tang C, Sun S, Cao W, Qi W, Xu J, Huang J, Lu W, Liu Q, Gong B, Zhang Y, Jiang J. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury. Mol Neurobiol 2014; 52:1870-1881. [PMID: 25465241 DOI: 10.1007/s12035-014-9022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023]
Abstract
Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.
Collapse
Affiliation(s)
- Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| | - Wenfu Cao
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Wei Qi
- Chongqing Three Gorgers Central Hospital, No.165 Xin Cheng Road, Wanzhou District, Chongqing, 400000, China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Biao Gong
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Zhang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Jin Jiang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
70
|
Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 2014; 17:1518-27. [PMID: 25262495 PMCID: PMC4275302 DOI: 10.1038/nn.3815] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
Abstract
Oligodendrocytes in the mammalian brain are continuously generated from NG2 cells throughout postnatal life. However, it is unclear when the decision is made for NG2 cells to self-renew or differentiate into oligodendrocytes after cell division. Using a combination of in vivo and ex vivo imaging and fate analysis of proliferated NG2 cells in fixed tissue, we demonstrate that in the postnatal developing mouse brain, the majority of divided NG2 cells differentiate into oligodendrocytes during a critical age-specific temporal window of 3-8 d. Notably, within this time period, damage to myelin and oligodendrocytes accelerated oligodendrocyte differentiation from divided cells, and whisker removal decreased the survival of divided cells in the deprived somatosensory cortex. These findings indicate that during the critical temporal window of plasticity, the fate of divided NG2 cells is sensitive to modulation by external signals.
Collapse
Affiliation(s)
- Robert A. Hill
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Kiran D. Patel
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | | | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
- Connecticut Stem Cell Institute, University of Connecticut, Farmington, CT
| |
Collapse
|
71
|
Luessi F, Kuhlmann T, Zipp F. Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 2014; 14:1315-34. [DOI: 10.1586/14737175.2014.969241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
72
|
Abstract
Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.
Collapse
Affiliation(s)
- Gong Ju
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Wang
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yazhou Wang
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xianghui Zhao
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
73
|
Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 2014; 94:709-37. [PMID: 24987003 DOI: 10.1152/physrev.00036.2013] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diverse functions of glial cells prompt the question to which extent specific subtypes may be devoted to a specific function. We discuss this by reviewing one of the most recently discovered roles of glial cells, their function as neural stem cells (NSCs) and progenitor cells. First we give an overview of glial stem and progenitor cells during development; these are the radial glial cells that act as NSCs and other glial progenitors, highlighting the distinction between the lineage of cells in vivo and their potential when exposed to a different environment, e.g., in vitro. We then proceed to the adult stage and discuss the glial cells that continue to act as NSCs across vertebrates and others that are more lineage-restricted, such as the adult NG2-glia, the most frequent progenitor type in the adult mammalian brain, that remain within the oligodendrocyte lineage. Upon certain injury conditions, a distinct subset of quiescent astrocytes reactivates proliferation and a larger potential, clearly demonstrating the concept of heterogeneity with distinct subtypes of, e.g., astrocytes or NG2-glia performing rather different roles after brain injury. These new insights not only highlight the importance of glial cells for brain repair but also their great potential in various aspects of regeneration.
Collapse
Affiliation(s)
- Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
74
|
Stem cell therapy for glaucoma: science or snake oil? Surv Ophthalmol 2014; 60:93-105. [PMID: 25132498 DOI: 10.1016/j.survophthal.2014.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 01/15/2023]
Abstract
In recent years there has been substantial progress in developing stem cell treatments for glaucoma. As a downstream approach that targets the underlying susceptibility of retinal ganglion and trabecular meshwork cells, stem cell therapy has the potential to both replace lost, and protect damaged, cells by secreting neurotrophic factors. A variety of sources, including embryonic cells, adult cells derived from the central nervous system, and induced pluripotent stem cells show promise as therapeutic approaches. Even though safety concerns and ethical controversies have limited clinical implementation, some institutions have already commercialized stem cell therapy and are using direct-to-consumer advertising to attract patients with glaucoma. We review the progress of stem cell therapy and its current commercial availability.
Collapse
|
75
|
Nishiyama A, Suzuki R, Zhu X. NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci 2014; 8:133. [PMID: 25018689 PMCID: PMC4072963 DOI: 10.3389/fnins.2014.00133] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023] Open
Abstract
NG2 cells, also referred to as oligodendrocyte precursor cells (OPCs) or polydendrocytes, represent a major resident glial cell population that is distinct from mature astrocytes, oligodendrocytes, microglia, and neural stem cells and exist throughout the gray and white matter of the developing and mature central nervous system (CNS). While their most established fate is the oligodendrocyte, they retain lineage plasticity in an age- and region-specific manner. During development, they contribute to 36% of protoplasmic astrocytes in the ventral forebrain. Despite intense investigation on the neuronal fate of NG2 cells, there is no definitive evidence that they contribute substantially to the neuronal population. NG2 cells have attributes that suggest that they have functions other than to generate oligodendrocytes, but their exact role in the neural network remains unknown. Under pathological states, NG2 cells not only contribute to myelin repair, but they become activated in response to a wide variety of insults and could play a primary role in pathogenesis.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Ryusuke Suzuki
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Xiaoqin Zhu
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
76
|
Kuroiwa M, Watanabe M, Katoh H, Suyama K, Matsuyama D, Imai T, Mochida J. Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats. Eur J Neurosci 2014; 40:3120-7. [PMID: 24905230 DOI: 10.1111/ejn.12647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.
Collapse
Affiliation(s)
- Masahiro Kuroiwa
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W. Remyelination after spinal cord injury: Is it a target for repair? Prog Neurobiol 2014; 117:54-72. [DOI: 10.1016/j.pneurobio.2014.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
|
78
|
Watzlawik JO, Wootla B, Painter MM, Warrington AE, Rodriguez M. Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire. Expert Rev Neurother 2014; 13:1017-29. [PMID: 24053345 DOI: 10.1586/14737175.2013.835601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulins with germline sequences occur in invertebrates and vertebrates and are named naturally occurring autoantibodies (NAbs). NAbs may target foreign antigens, self- or altered self-components and are part of the normal immunoglobulin repertoire. Accumulating evidence indicates that naturally occurring antibodies can act as systemic surveillance molecules, which tag, damaged or stressed cells, invading pathogens and toxic cellular debris for elimination by the immune system. In addition to acting as detecting molecules, certain types of NAbs actively signal in different cell types with a broad range of responses from induction of apoptosis in cancer cells to stimulation of remyelination in glial cells. This review emphasizes functions and characteristics of NAbs with focus on remyelination-promoting mouse and human antibodies. Human remyelination-promoting NAbs are potential therapeutics to combat a wide spectrum of disease processes including demyelinating diseases like multiple sclerosis. We will highlight the identified glycosphingolipid (SL) antigens of polyreactive remyelination-promoting antibodies and their proposed mechanism(s) of action. The nature of the identified antigens suggests a lipid raft-based mechanism for remyelination-promoting antibodies with SLs as most essential raft components. However, accumulating evidence also suggests involvement of other antigens in stimulation of remyelination, which will be discussed in the text.
Collapse
Affiliation(s)
- Jens O Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic, College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
79
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
80
|
Kim A, Zamora-Martinez ER, Edwards S, Mandyam CD. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity. Brain Struct Funct 2014; 220:1705-20. [PMID: 24667898 PMCID: PMC4177030 DOI: 10.1007/s00429-014-0755-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased the expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S-phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level.
Collapse
Affiliation(s)
- Airee Kim
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, USA
| | - Chitra D. Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
81
|
Sahinkaya FR, Milich LM, McTigue DM. Changes in NG2 cells and oligodendrocytes in a new model of intraspinal hemorrhage. Exp Neurol 2014; 255:113-26. [PMID: 24631375 DOI: 10.1016/j.expneurol.2014.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) evokes rapid deleterious and reparative glial reactions. Understanding the triggers for these responses is necessary for designing strategies to maximize repair. This study examined lesion formation and glial responses to vascular disruption and hemorrhage, a prominent feature of acute SCI. The specific role of hemorrhage is difficult to evaluate in trauma-induced lesions, because mechanical injury initiates many downstream responses. To isolate vascular disruption from trauma-induced effects, we created a novel and reproducible model of collagenase-induced intraspinal hemorrhage (ISH) and compared glial reactions between unilateral ISH and a hemi-contusion injury. Similar to contusion injuries, ISH lesions caused loss of myelin and axons and became filled with iron-laden macrophages. We hypothesized that intraspinal hemorrhage would also initiate reparative cellular responses including NG2+ oligodendrocyte progenitor cell (OPC) proliferation and oligodendrocyte genesis. Indeed, ISH induced OPC proliferation within 1d post-injury (dpi), which continued throughout the first week and resulted in a sustained elevation of NG2+ OPCs. ISH also caused oligodendrocyte loss within 4h that was sustained through 3d post-ISH. However, oligodendrogenesis, as determined by bromo-deoxyuridine (BrdU) positive oligodendrocytes, restored oligodendrocyte numbers by 7dpi, revealing that proliferating OPCs differentiated into new oligodendrocytes after ISH. The signaling molecules pERK1/2 and pSTAT3 were robustly increased acutely after ISH, with pSTAT3 being expressed in a portion of OPCs, suggesting that activators of this signaling cascade may initiate OPC responses. Aside from subtle differences in timing of OPC responses, changes in ISH tissue closely mimicked those in hemi-contusion tissue. These results are important for elucidating the contribution of hemorrhage to lesion formation and endogenous cell-mediated repair, and will provide the foundation for future studies geared toward identifying the role of specific blood components on injury and repair mechanisms. This understanding may provide new clinical targets for SCI and other devastating conditions such as intracerebral hemorrhage.
Collapse
Affiliation(s)
- F Rezan Sahinkaya
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Studies Program, Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA
| | - Lindsay M Milich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
82
|
Rusielewicz T, Nam J, Damanakis E, John GR, Raine CS, Melendez-Vasquez CV. Accelerated repair of demyelinated CNS lesions in the absence of non-muscle myosin IIB. Glia 2014; 62:580-91. [PMID: 24470341 PMCID: PMC4135430 DOI: 10.1002/glia.22627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
The oligodendrocyte (OL), the myelinating cell of the central nervous system, undergoes dramatic changes in the organization of its cytoskeleton as it differentiates from a precursor (oligodendrocyte precursor cells) to a myelin-forming cell. These changes include an increase in its branching cell processes, a phenomenon necessary for OL to myelinate multiple axon segments. We have previously shown that levels and activity of non-muscle myosin II (NMII), a regulator of cytoskeletal contractility, decrease as a function of differentiation and that inhibition of NMII increases branching and myelination of OL in coculture with neurons. We have also found that mixed glial cell cultures derived from NMIIB knockout mice display an increase in mature myelin basic protein-expressing OL compared with wild-type cultures. We have now extended our studies to investigate the role of NMIIB ablation on myelin repair following focal demyelination by lysolecithin. To this end, we generated an oligodendrocyte-specific inducible knockout model using a Plp-driven promoter in combination with a temporally activated CRE-ER fusion protein. Our data indicate that conditional ablation of NMII in adult mouse brain, expedites lesion resolution and remyelination by Plp+ oligodendrocyte-lineage cells when compared with that observed in control brains. Taken together, these data validate the function of NMII as that of a negative regulator of OL myelination in vivo and provide a novel target for promoting myelin repair in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Tomasz Rusielewicz
- Department of Biological Sciences, Hunter College, New York, New York; The Graduate Center, Molecular Cellular and Developmental Biology, The City University of New York, New York
| | | | | | | | | | | |
Collapse
|
83
|
Franklin RJM, Gallo V. The translational biology of remyelination: past, present, and future. Glia 2014; 62:1905-15. [PMID: 24446279 DOI: 10.1002/glia.22622] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/07/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023]
Abstract
Amongst neurological diseases, multiple sclerosis (MS) presents an attractive target for regenerative medicine. This is because the primary pathology, the loss of myelin-forming oligodendrocytes, can be followed by a spontaneous and efficient regenerative process called remyelination. While cell transplantation approaches have been explored as a means of replacing lost oligodendrocytes, more recently therapeutic approaches that target the endogenous regenerative process have been favored. This is in large part due to our increasing understanding of (1) the cell types within the adult brain that are able to generate new oligodendrocytes, (2) the mechanisms and pathways by which this achieved, and (3) an emerging awareness of the reasons why remyelination efficiency eventually fails. Here we review some of these advances and also highlight areas where questions remain to be answered in both the biology and translational potential of this important regenerative process.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-MRC Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | | |
Collapse
|
84
|
Endoplasmic reticulum stress response in the rat contusive spinal cord injury model-susceptibility in specific cell types. Spinal Cord 2013; 52:9-16. [PMID: 24145689 DOI: 10.1038/sc.2013.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 08/29/2013] [Accepted: 09/11/2013] [Indexed: 12/26/2022]
Abstract
STUDY DESIGN Focus group study. OBJECTIVE To investigate cell-specific endoplasmic reticulum (ER) stress reactions in contusive spinal cord by evaluating the expression of the glucose-regulated protein 78 (GRP78) and C/EBP homologous transcription factor protein (CHOP) using immunohistochemical staining. SETTING Data were analysed at Tokai University School of Medicine in Japan. METHODS The authors generated rat spinal cord injury (SCI) models using an IH-Impactor (100 kdyne(LI), 200 kdyne (HI)). Rats were killed at 1, 3, 5, 7 and 14 days post operation (dpo). Spinal cord sections were prepared and the expression ratio of GRP78 and CHOP was evaluated in oligodendrocyte precursor cells (OPCs) (NG2+), oligodendrocytes (OLs) (APC+), neurons (NeuN+) and astrocytes (GFAP+) using double immunohistochemical staining. We examined an area 8 mm distal from SCI-epicenter. RESULTS Compared with the sham group, both injured groups had higher GRP78 expression ratio in contused spinal cord at 1 dpo. GRP78 expression ratio was highest in GFAP+ cells of both groups, and lowest in NG2+ cells. Although GRP78 was expressed strongly immediately after SCI in the both groups, increased CHOP expression was observed only in the HI group. The CHOP expression in NG2+ cells was significantly higher than that observed in GFAP+ cells at 5 dpo. CONCLUSION Although the ER stress response contributes to cell survival in the low-stress SCI conditions, the ER stress response induces an apoptotic cascade in high-stress SCI conditions. The ER response varies according to cell type, with the highest observed in astrocytes, and the lowest observed in oligodendrocyte precursor cells.
Collapse
|
85
|
Mobilization of progenitors in the subventricular zone to undergo oligodendrogenesis in the Theiler's virus model of multiple sclerosis: implications for remyelination at lesions sites. Exp Neurol 2013; 250:348-52. [PMID: 24148569 DOI: 10.1016/j.expneurol.2013.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022]
Abstract
Remyelination involves the generation of new myelin sheaths around axons, as occurs spontaneously in many multiple sclerosis (MS) lesions and other demyelinating diseases. When considering repairing a diseased brain, the adult mouse subventricular zone (SVZ) is of particular interest since the stem cells in this area can migrate and differentiate into the three major cell types in the central nervous system (CNS). In Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), we assessed the relative contribution of the SVZ to the remyelination in the corpus callosum at preclinical stages in this MS model. CNPase, MBP and Luxol Fast Blue staining revealed prominent demyelination 35days post-infection (dpi), concomitant with a strong staining in GFAP(+) type B astrocytes in the SVZ and the increased proliferation in this area. The migration of oligodendrocyte progenitors from the SVZ contributed to the remyelination observed at 60 dpi, evident through the number of APC(+)/BrdU(+) mature oligodendrocytes in the corpus callosum of infected animals. These data suggest that the inflammation induced by the Theiler's virus not only provokes strong preclinical demyelination but also, it is correlated with oligodendrocyte generation in the adult SVZ, cells that along with resident progenitor cells contribute to the prompt remyelination observed in the corpus callosum.
Collapse
|
86
|
Sypecka J, Sarnowska A. The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells. Mol Neurobiol 2013; 49:685-701. [PMID: 24085562 PMCID: PMC3950613 DOI: 10.1007/s12035-013-8549-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 01/13/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the focus of intense research for the purpose of cell replacement therapies in acquired or inherited neurodegenerative disorders, accompanied by ongoing hypo/demyelination. Recently, it has been postulated that these glia-committed cells exhibit certain properties of neural stem cells. Advances in stem cell biology have shown that their therapeutic effect could be attributed to their ability to secret numerous active compounds which modify the local microenvironment making it more susceptible to restorative processes. To verify this hypothesis, we set up an ex vivo co-culture system of OPCs isolated from neonatal rat brain with organotypic hippocampal slices (OHC) injured by oxygen-glucose deprivation (OGD). The presence of OPCs in such co-cultures resulted in a significant neuroprotective effect manifesting itself as a decrease in cell death rate and as an extension of newly formed cells in ischemically impaired hippocampal slices. A microarray analysis of broad spectrum of trophic factors and cytokines expressed by OPCs was performed for the purpose of finding the factor(s) contributing to the observed effect. Three of them—BDNF, IL-10 and SCF—were selected for the subsequent functional assays. Our data revealed that BDNF released by OPCs is the potent factor that stimulates cell proliferation and survival in OHC subjected to OGD injury. At the same time, it was observed that IL-10 attenuates inflammatory processes by promoting the formation of the cells associated with the immunological response. Those neuroprotective qualities of oligodendroglia-biased progenitors significantly contribute to anticipating a successful cell replacement therapy.
Collapse
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str.,, 02-106, Warsaw, Poland,
| | | |
Collapse
|
87
|
Fang F, Zhang H, Zhang Y, Xu H, Huang Q, Adilijiang A, Wang J, Zhang Z, Zhang D, Tan Q, He J, Kong L, Liu Y, Li XM. Antipsychotics promote the differentiation of oligodendrocyte progenitor cells by regulating oligodendrocyte lineage transcription factors 1 and 2. Life Sci 2013; 93:429-34. [DOI: 10.1016/j.lfs.2013.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 01/06/2023]
|
88
|
Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci 2013; 14:722-9. [DOI: 10.1038/nrn3550] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Moll NM, Hong E, Fauveau M, Naruse M, Kerninon C, Tepavcevic V, Klopstein A, Seilhean D, Chew LJ, Gallo V, Nait Oumesmar B. SOX17 is expressed in regenerating oligodendrocytes in experimental models of demyelination and in multiple sclerosis. Glia 2013; 61:1659-72. [PMID: 23918253 DOI: 10.1002/glia.22547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022]
Abstract
We have previously demonstrated that Sox17 expression is prominent at developmental stages corresponding to oligodendrocyte progenitor cell (OPC) cycle exit and onset of differentiation, and that Sox17 promotes initiation of OPC differentiation. In this study, we examined Sox17 expression and regulation under pathological conditions, particularly in two animal models of demyelination/remyelination and in post-mortem multiple sclerosis (MS) brain lesions. We found that the number of Sox17 expressing cells was significantly increased in lysolecithin (LPC)-induced lesions of the mouse spinal cord between 7 and 30 days post-injection, as compared with controls. Sox17 immunoreactivity was predominantly detected in Olig2(+) and CC1(+) oligodendrocytes and rarely in NG2(+) OPCs. The highest density of Sox17(+) oligodendrocytes was observed at 2 weeks after LPC injection, coinciding with OPC differentiation. Consistent with these findings, in cuprizone-treated mice, Sox17 expression was highest in newly generated and in maturing CC1(+) oligodendrocytes, but low in NG2(+) OPCs during the demyelination and remyelination phases. In MS tissue, Sox17 was primarily detected in actively demyelinating lesions and periplaque white matter. Sox17 immunoreactivity was co-localized with NOGO-A+ post-mitotic oligodendrocytes both in active MS lesions and periplaque white matter. Taken together, our data: (i) demonstrate that Sox17 expression is highest in newly generated oligodendrocytes under pathological conditions and could be used as a marker of oligodendrocyte regeneration, and (ii) are suggestive of Sox17 playing a critical role in oligodendrocyte differentiation and lesion repair.
Collapse
Affiliation(s)
- N M Moll
- Institut National de la Santé et de la Recherche Médicale U.975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Early proliferation does not prevent the loss of oligodendrocyte progenitor cells during the chronic phase of secondary degeneration in a CNS white matter tract. PLoS One 2013; 8:e65710. [PMID: 23776532 PMCID: PMC3679191 DOI: 10.1371/journal.pone.0065710] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Partial injury to the central nervous system (CNS) is exacerbated by additional loss of neurons and glia via toxic events known as secondary degeneration. Using partial transection of the rat optic nerve (ON) as a model, we have previously shown that myelin decompaction persists during secondary degeneration. Failure to repair myelin abnormalities during secondary degeneration may be attributed to insufficient OPC proliferation and/or differentiation to compensate for loss of oligodendrocyte lineage cells (oligodendroglia). Following partial ON transection, we found that sub-populations of oligodendroglia and other olig2+ glia were differentially influenced by injury. A high proportion of NG2+/olig2-, NG2+/olig2+ and CC1-/olig2+ cells proliferated (Ki67+) at 3 days, prior to the onset of death (TUNEL+) at 7 days, suggesting injury-related cues triggered proliferation rather than early loss of oligodendroglia. Despite this, a high proportion (20%) of the NG2+/olig2+ OPCs were TUNEL+ at 3 months, and numbers remained chronically lower, indicating that proliferation of these cells was insufficient to maintain population numbers. There was significant death of NG2+/olig2- and NG2-/olig2+ cells at 7 days, however population densities remained stable, suggesting proliferation was sufficient to sustain cell numbers. Relatively few TUNEL+/CC1+ cells were detected at 7 days, and no change in density indicated that mature CC1+ oligodendrocytes were resistant to secondary degeneration in vivo. Mature CC1+/olig2- oligodendrocyte density increased at 3 days, reflecting early oligogenesis, while the appearance of shortened myelin internodes at 3 months suggested remyelination. Taken together, chronic OPC decreases may contribute to the persistent myelin abnormalities and functional loss seen in ON during secondary degeneration.
Collapse
|
91
|
Coppi E, Maraula G, Fumagalli M, Failli P, Cellai L, Bonfanti E, Mazzoni L, Coppini R, Abbracchio MP, Pedata F, Pugliese AM. UDP-glucose enhances outward K(+) currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia 2013; 61:1155-71. [PMID: 23640798 DOI: 10.1002/glia.22506] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/13/2013] [Indexed: 01/30/2023]
Abstract
In the developing and mature central nervous system, NG2 expressing cells comprise a population of cycling oligodendrocyte progenitor cells (OPCs) that differentiate into mature, myelinating oligodendrocytes (OLGs). OPCs are also characterized by high motility and respond to injury by migrating into the lesioned area to support remyelination. K(+) currents in OPCs are developmentally regulated during differentiation. However, the mechanisms regulating these currents at different stages of oligodendrocyte lineage are poorly understood. Here we show that, in cultured primary OPCs, the purinergic G-protein coupled receptor GPR17, that has recently emerged as a key player in oligodendrogliogenesis, crucially regulates K(+) currents. Specifically, receptor stimulation by its agonist UDP-glucose enhances delayed rectifier K(+) currents without affecting transient K(+) conductances. This effect was observed in a subpopulation of OPCs and immature pre-OLGs whereas it was absent in mature OLGs, in line with GPR17 expression, that peaks at intermediate phases of oligodendrocyte differentiation and is thereafter downregulated to allow terminal maturation. The effect of UDP-glucose on K(+) currents is concentration-dependent, blocked by the GPR17 antagonists MRS2179 and cangrelor, and sensitive to the K(+) channel blocker tetraethyl-ammonium, which also inhibits oligodendrocyte maturation. We propose that stimulation of K(+) currents is responsible for GPR17-induced oligodendrocyte differentiation. Moreover, we demonstrate, for the first time, that GPR17 activation stimulates OPC migration, suggesting an important role for this receptor after brain injury. Our data indicate that modulation of GPR17 may represent a strategy to potentiate the post-traumatic response of OPCs under demyelinating conditions, such as multiple sclerosis, stroke, and brain trauma.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Divi Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Zuo H, Nishiyama A. Polydendrocytes in development and myelin repair. Neurosci Bull 2013; 29:165-76. [PMID: 23516142 DOI: 10.1007/s12264-013-1320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/30/2013] [Indexed: 11/30/2022] Open
Abstract
Polydendrocytes (NG2 cells) are a distinct type of glia that populate the developing and adult central nervous systems (CNS). In the adult CNS, they retain mitotic activity and represent the largest proliferating cell population. Genetic and epigenetic mechanisms regulate the fate of polydendrocytes, which give rise to both oligodendrocytes and astrocytes. In addition, polydendrocytes actively differentiate into myelin-forming oligodendrocytes in response to demyelination. This review summarizes the current knowledge regarding polydendrocyte development, which provides an important basis for understanding the mechanisms that lead to the remyelination of demyelinated lesions.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | |
Collapse
|
93
|
Watzlawik JO, Warrington AE, Rodriguez M. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PLoS One 2013; 8:e55149. [PMID: 23383310 PMCID: PMC3562326 DOI: 10.1371/journal.pone.0055149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022] Open
Abstract
Background Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair. Methods We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots. Results rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2. Conclusion Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Arthur E. Warrington
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
94
|
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating neurodegenerative disorder of the brain and spinal cord that causes significant disability in young adults. Although the precise aetiopathogenesis of MS remains unresolved, its pathological hallmarks include inflammation, demyelination, axonal injury (acute and chronic), astrogliosis and variable remyelination. Despite major recent advances in therapeutics for the early stage of the disease there are currently no disease modifying treatments for the progressive stage of disease, whose pathological substrate is axonal degeneration. This represents the great and unmet clinical need in MS. Against this background, human stem cells offer promise both to improve understanding of disease mechanism(s) through in-vitro modeling as well as potentially direct use to supplement and promote remyelination, an endogenous reparative process where entire myelin sheaths are restored to demyelinated axons. Conceptually, stem cells can act directly to myelinate axons or indirectly through different mechanisms to promote endogenous repair; importantly these two mechanisms of action are not mutually exclusive. We propose that discovery of novel methods to invoke or enhance remyelination in MS may be the most effective therapeutic strategy to limit axonal damage and instigate restoration of structure and function in this debilitating condition. Human stem cell derived neurons and glia, including patient specific cells derived through reprogramming, provide an unprecedented experimental system to model MS “in a dish” as well as enable high-throughput drug discovery. Finally, we speculate upon the potential role for stem cell based therapies in MS.
Collapse
|
95
|
Lomoio S, Necchi D, Scherini E. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging. Eur J Histochem 2012; 56:e27. [PMID: 23027343 PMCID: PMC3493973 DOI: 10.4081/ejh.2012.e27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 02/07/2023] Open
Abstract
We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2) immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging.
Collapse
Affiliation(s)
- S Lomoio
- Dipartimento di Biologia e Biotecnologie Lazzaro Spallanzani, Università di Pavia, via Ferrata 9, Pavia, Italy
| | | | | |
Collapse
|
96
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
97
|
Cho YK, Kim G, Park S, Sim JH, Won YJ, Hwang CH, Yoo JY, Hong HN. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture. Biochem Biophys Res Commun 2011; 417:753-9. [PMID: 22197819 DOI: 10.1016/j.bbrc.2011.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/26/2022]
Abstract
Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to a limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.
Collapse
Affiliation(s)
- Yun Kyung Cho
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Kimoto S, Okuda A, Toritsuka M, Yamauchi T, Makinodan M, Okuda H, Tatsumi K, Nakamura Y, Wanaka A, Kishimoto T. Olanzapine stimulates proliferation but inhibits differentiation in rat oligodendrocyte precursor cell cultures. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1950-6. [PMID: 21839137 DOI: 10.1016/j.pnpbp.2011.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 01/08/2023]
Abstract
In the developing brain, oligodendrocyte progenitor cells (OPCs) proliferate, migrate, and differentiate into mature oligodendrocytes (OLs) capable of myelinating axons. Recently, OPCs have been identified as an abundant and widespread population in the adult as well as in the developing animal. Current research indicates that these OPCs in the adult brain can proliferate and differentiate into myelinating OLs, albeit with different potentialities from those in developing animals. Multiple lines of evidence, from neuroimaging, postmortem, and genetic association studies, have implicated OL and myelin dysfunction in the pathogenesis of schizophrenia. If altered OL function is involved in pathogenesis, OPCs may thus respond to antipsychotic drugs during the recovery process. In the present study, we used primary OPC cultures from optic nerve of newborn Wistar rat pups to investigate the direct effects of haloperidol (HPD; a typical antipsychotic) and olanzapine (OLZ; an atypical antipsychotic) on the proliferation and differentiation of OPCs. Our results showed that 1) OLZ treatment significantly increased the number of viable OPCs when compared to HPD treatment at relatively high concentrations, 2) OLZ treatment suppressed the expression of myelin basic protein (MBP), and to a greater extent than HPD treatment, and 3) these pharmacological effects may be mediated via the ERK signaling pathway. Our findings suggest a glial mechanism for the antipsychotic action of OLZ, and a role for oligodendrocyte-lineage cells in the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF(+/-) mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate the roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone treatment, suggesting that the demyelinating lesion itself elicits a decrease in BDNF. To analyze the effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF(+/-) mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone treatment. In addition, BDNF(+/-) mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion by regulating the numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins.
Collapse
|
100
|
Kucharova K, Chang Y, Boor A, Yong VW, Stallcup WB. Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. J Neuroinflammation 2011; 8:158. [PMID: 22078261 PMCID: PMC3229456 DOI: 10.1186/1742-2094-8-158] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/13/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease in which blood-derived immune cells and activated microglia damage myelin in the central nervous system. While oligodendrocyte progenitor cells (OPCs) are essential for generating oligodendrocytes for myelin repair, other cell types also participate in the damage and repair processes. The NG2 proteoglycan is expressed by OPCs, pericytes, and macrophages/microglia. In this report we investigate the effects of NG2 on these cell types during spinal cord demyelination/remyelination. METHODS Demyelinated lesions were created by microinjecting 1% lysolecithin into the lumbar spinal cord. Following demyelination, NG2 expression patterns in wild type mice were studied via immunostaining. Immunolabeling was also used in wild type and NG2 null mice to compare the extent of myelin damage, the kinetics of myelin repair, and the respective responses of OPCs, pericytes, and macrophages/microglia. Cell proliferation was quantified by studies of BrdU incorporation, and cytokine expression levels were evaluated using qRT-PCR. RESULTS The initial volume of spinal cord demyelination in wild type mice is twice as large as in NG2 null mice. However, over the ensuing 5 weeks there is a 6-fold improvement in myelination in wild type mice, versus only a 2-fold improvement in NG2 null mice. NG2 ablation also results in reduced numbers of each of the three affected cell types. BrdU incorporation studies reveal that reduced cell proliferation is an important factor underlying NG2-dependent decreases in each of the three key cell populations. In addition, NG2 ablation reduces macrophage/microglial cell migration and shifts cytokine expression from a pro-inflammatory to anti-inflammatory phenotype. CONCLUSIONS Loss of NG2 expression leads to decreased proliferation of OPCs, pericytes, and macrophages/microglia, reducing the abundance of all three cell types in demyelinated spinal cord lesions. As a result of these NG2-dependent changes, the course of demyelination and remyelination in NG2 null mice differs from that seen in wild type mice, with both myelin damage and repair being reduced in the NG2 null mouse. These studies identify NG2 as an important factor in regulating myelin processing, suggesting that therapeutic targeting of the proteoglycan might offer a means of manipulating cell behavior in demyelinating diseases.
Collapse
|