51
|
Baboli M, Wang F, Dong Z, Dietrich J, Uhlmann EJ, Batchelor TT, Cahill DP, Andronesi OC. Absolute Metabolite Quantification in Individuals with Glioma and Healthy Individuals Using Whole-Brain Three-dimensional MR Spectroscopic and Echo-planar Time-resolved Imaging. Radiology 2024; 312:e232401. [PMID: 39315894 PMCID: PMC11449233 DOI: 10.1148/radiol.232401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND MR spectroscopic imaging (MRSI) can be used to quantify an extended brain metabolic profile but is confounded by changes in tissue water levels due to disease. PURPOSE To develop a fast absolute quantification method for metabolite concentrations combining whole-brain MRSI with echo-planar time-resolved imaging (EPTI) relaxometry in individuals with glioma and healthy individuals. MATERIALS AND METHODS In this prospective study performed from August 2022 to August 2023, using internal water as concentration reference, the MRSI-EPTI quantification method was compared with the conventional method using population-average literature relaxation values. Healthy participants and participants with mutant IDH1 gliomas underwent imaging at 3 T with a 32-channel coil. Real-time navigated adiabatic spiral three-dimensional MRSI scans were acquired in approximately 8 minutes and reconstructed with a super-resolution pipeline to obtain brain metabolic images at 2.4-mm isotropic resolution. High-spatial-resolution multiparametric EPTI was performed in 3 minutes, with 1-mm isotropic resolution, to correct the relaxation and proton density of the water reference signal. Bland-Altman analysis and the Wilcoxon signed rank test were used to compare absolute quantifications from the proposed and conventional methods. RESULTS Six healthy participants (four male; mean age, 37 years ± 11 [SD]) and nine participants with glioma (six male; mean age, 41 years ± 15; one with wild-type IDH1 and eight with mutant IDH1) were included. In healthy participants, there was good agreement (+4% bias) between metabolic concentrations derived using the two methods, with a CI of plus or minus 26%. In participants with glioma, there was large disagreement between the two methods (+39% bias) and a CI of plus or minus 55%. The proposed quantification method improved tumor contrast-to-noise ratio (median values) for total N-acetyl-aspartate (EPTI: 0.541 [95% CI: 0.217, 0.910]; conventional: 0.484 [95% CI: 0.199, 0.823]), total choline (EPTI: 1.053 [95% CI: 0.681, 1.713]; conventional: 0.940 [95% CI: 0.617, 1.295]), and total creatine (EPTI: 0.745 [95% CI: 0.628, 0.909]; conventional: 0.553 [95% CI: 0.444, 0.828]) (P = .03 for all). CONCLUSION The whole-brain MRSI-EPTI method provided fast absolute quantification of metabolic concentrations with individual-specific corrections at 2.4-mm isotropic resolution, yielding concentrations closer to the true value in disease than the conventional literature-based corrections. © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Mehran Baboli
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Fuyixue Wang
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Zijing Dong
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Jorg Dietrich
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Erik J Uhlmann
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Tracy T Batchelor
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Daniel P Cahill
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| | - Ovidiu C Andronesi
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Ste 2301, Charlestown, MA 02129 (M.B., F.W., Z.D., O.C.A.); Harvard Medical School, Boston, Mass (M.B., F.W., Z.D., J.D., E.J.U., T.T.B., D.P.C., O.C.A.); Department of Neurology, Papas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Mass (J.D.); Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Mass (E.J.U.); Department of Neurology, Brigham and Women's Hospital, Boston, Mass (T.T.B.); Dana Farber Cancer Institute, Boston, Mass (T.T.B.); and Department of Neurosurgery, Massachusetts General Hospital, Boston, Mass (D.P.C.)
| |
Collapse
|
52
|
Murali-Manohar S, Gudmundson AT, Hupfeld KE, Zöllner HJ, Hui SC, Song Y, Simicic D, Davies-Jenkins CW, Gong T, Wang G, Oeltzschner G, Edden RA. Metabolite T 1 relaxation times decrease across the adult lifespan. NMR IN BIOMEDICINE 2024; 37:e5152. [PMID: 38565525 PMCID: PMC11303093 DOI: 10.1002/nbm.5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/08/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Relaxation correction is an integral step in quantifying brain metabolite concentrations measured by in vivo magnetic resonance spectroscopy (MRS). While most quantification routines assume constant T1 relaxation across age, it is possible that aging alters T1 relaxation rates, as is seen for T2 relaxation. Here, we investigate the age dependence of metabolite T1 relaxation times at 3 T in both gray- and white-matter-rich voxels using publicly available metabolite and metabolite-nulled (single inversion recovery TI = 600 ms) spectra acquired at 3 T using Point RESolved Spectroscopy (PRESS) localization. Data were acquired from voxels in the posterior cingulate cortex (PCC) and centrum semiovale (CSO) in 102 healthy volunteers across 5 decades of life (aged 20-69 years). All spectra were analyzed in Osprey v.2.4.0. To estimate T1 relaxation times for total N-acetyl aspartate at 2.0 ppm (tNAA2.0) and total creatine at 3.0 ppm (tCr3.0), the ratio of modeled metabolite residual amplitudes in the metabolite-nulled spectrum to the full metabolite signal was calculated using the single-inversion-recovery signal equation. Correlations between T1 and subject age were evaluated. Spearman correlations revealed that estimated T1 relaxation times of tNAA2.0 (rs = -0.27; p < 0.006) and tCr3.0 (rs = -0.40; p < 0.001) decreased significantly with age in white-matter-rich CSO, and less steeply for tNAA2.0 (rs = -0.228; p = 0.005) and (not significantly for) tCr3.0 (rs = -0.13; p = 0.196) in graymatter-rich PCC. The analysis harnessed a large publicly available cross-sectional dataset to test an important hypothesis, that metabolite T1 relaxation times change with age. This preliminary study stresses the importance of further work to measure age-normed metabolite T1 relaxation times for accurate quantification of metabolite levels in studies of aging.
Collapse
Affiliation(s)
- Saipavitra Murali-Manohar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Aaron T. Gudmundson
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Kathleen E. Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Helge J. Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Steve C.N. Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Dunja Simicic
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Christopher W. Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Tao Gong
- Departments of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
- Departments of Radiology, Shandong Provincial Hospital, Shandong University, Shandong, China
| | - Guangbin Wang
- Departments of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
- Departments of Radiology, Shandong Provincial Hospital, Shandong University, Shandong, China
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Richard A.E. Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| |
Collapse
|
53
|
Hui SCN, Murali-Manohar S, Zöllner HJ, Hupfeld KE, Davies-Jenkins CW, Gudmundson AT, Song Y, Yedavalli V, Wisnowski JL, Gagoski B, Oeltzschner G, Edden RAE. Integrated Short-TE and Hadamard-edited Multi-Sequence (ISTHMUS) for advanced MRS. J Neurosci Methods 2024; 409:110206. [PMID: 38942238 PMCID: PMC11286357 DOI: 10.1016/j.jneumeth.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. METHODS ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based on the default white matter and gray matter T2 reference values in Osprey and 2) shorter WM and GM T2 values from recent literature. RESULTS No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. CONCLUSIONS ISTHMUS facilitated data acquisition and post-processing and reduced operator workload to eliminate potential human error.
Collapse
Affiliation(s)
- Steve C N Hui
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Saipavitra Murali-Manohar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aaron T Gudmundson
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
54
|
Kaur R, Greeley B, Ciok A, Mehta K, Tsai M, Robertson H, Debelic K, Zhang LX, Nelson T, Boulter T, Siu W, Nacul L, Song X. A Multimodal Magnetic Resonance Imaging Study on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Feasibility and Clinical Correlation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1370. [PMID: 39202651 PMCID: PMC11356663 DOI: 10.3390/medicina60081370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024]
Abstract
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a neurological disorder characterized by post-exertional malaise. Despite its clinical relevance, the disease mechanisms of ME/CFS are not fully understood. The previous studies targeting brain function or metabolites have been inconclusive in understanding ME/CFS complexity. We combined single-voxel magnetic resonance spectroscopy (SV-MRS) and functional magnetic resonance imaging (fMRI). Our objectives were to examine the feasibility of the multimodal MRI protocol, identify possible differences between ME/CFS and healthy controls (HCs), and relate MRI findings with clinical symptoms. Methods: We enrolled 18 female ME/CFS participants (mean age: 39.7 ± 12.0 years) and five HCs (mean age: 45.6 ± 14.5 years). SV-MRS spectra were acquired from three voxels of interest: the anterior cingulate gyrus (ACC), brainstem (BS), and left dorsolateral prefrontal cortex (L-DLPFC). Whole-brain fMRI used n-back task testing working memory and executive function. The feasibility was assessed as protocol completion rate and time. Group differences in brain metabolites and fMRI activation between ME/CFS and HCs were compared and correlated with behavioral and symptom severity measurements. Results: The completion rate was 100% regardless of participant group without causing immediate fatigue. ME/CFS appeared to show a higher N-Acetylaspartate in L-DLPFC compared to HCs (OR = 8.49, p = 0.040), correlating with poorer fatigue, pain, and sleep quality scores (p's = 0.001-0.015). An increase in brain activation involving the frontal lobe and the brainstem was observed in ME/CFS compared to HCs (Z > 3.4, p's < 0.010). Conclusions: The study demonstrates the feasibility of combining MRS and fMRI to capture neurochemical and neurophysiological features of ME/CFS in female participants. Further research with larger cohorts of more representative sampling and follow-ups is needed to validate these apparent differences between ME/CFS and HCs.
Collapse
Affiliation(s)
- Raminder Kaur
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Brian Greeley
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
| | - Alexander Ciok
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kashish Mehta
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Melody Tsai
- Women’s Health Research Institute, Vancouver, BC V6H 3N1, Canada
- Complex Chronic Diseases Program, BC Women’s Hospital, Vancouver, BC V6H 3N1, Canada;
| | | | - Kati Debelic
- ME/FM Society of BC, Vancouver, BC V6J 5M4, Canada
| | - Lan Xin Zhang
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
| | - Todd Nelson
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Travis Boulter
- Complex Chronic Diseases Program, BC Women’s Hospital, Vancouver, BC V6H 3N1, Canada;
- ME/FM Society of BC, Vancouver, BC V6J 5M4, Canada
| | - William Siu
- Medical Imaging, Royal Columbian Hospital, New Westminster, BC V3L 3W7, Canada;
| | - Luis Nacul
- Women’s Health Research Institute, Vancouver, BC V6H 3N1, Canada
- Complex Chronic Diseases Program, BC Women’s Hospital, Vancouver, BC V6H 3N1, Canada;
- Department of Family Practice, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xiaowei Song
- Research and Evaluation, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; (R.K.); (B.G.); (A.C.); (K.M.); (T.N.)
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
55
|
Pereira AC, Leonard A, Velthuis H, Wong NML, Ponteduro FM, Dimitrov M, Ellis CL, Kowalewski L, Lythgoe DJ, Rotaru DG, Edden RAE, Ivin G, Pretzsch CM, Daly E, Murphy DGM, McAlonan GM. Frontal and occipital brain glutathione levels are unchanged in autistic adults. PLoS One 2024; 19:e0308792. [PMID: 39146282 PMCID: PMC11326623 DOI: 10.1371/journal.pone.0308792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.
Collapse
Affiliation(s)
- Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal, Coimbra, Portugal
| | - Alison Leonard
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Diana-Georgina Rotaru
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, United Kingdom
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
56
|
Chen AM, Gajdošík M, Ahmed W, Ahn S, Babb JS, Blessing EM, Boutajangout A, de Leon MJ, Debure L, Gaggi N, Gajdošík M, George A, Ghuman M, Glodzik L, Harvey P, Juchem C, Marsh K, Peralta R, Rusinek H, Sheriff S, Vedvyas A, Wisniewski T, Zheng H, Osorio R, Kirov II. Retrospective analysis of Braak stage- and APOE4 allele-dependent associations between MR spectroscopy and markers of tau and neurodegeneration in cognitively unimpaired elderly. Neuroimage 2024; 297:120742. [PMID: 39029606 PMCID: PMC11404707 DOI: 10.1016/j.neuroimage.2024.120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
PURPOSE The pathological hallmarks of Alzheimer's disease (AD), amyloid, tau, and associated neurodegeneration, are present in the cortical gray matter (GM) years before symptom onset, and at significantly greater levels in carriers of the apolipoprotein E4 (APOE4) allele. Their respective biomarkers, A/T/N, have been found to correlate with aspects of brain biochemistry, measured with magnetic resonance spectroscopy (MRS), indicating a potential for MRS to augment the A/T/N framework for staging and prediction of AD. Unfortunately, the relationships between MRS and A/T/N biomarkers are unclear, largely due to a lack of studies examining them in the context of the spatial and temporal model of T/N progression. Advanced MRS acquisition and post-processing approaches have enabled us to address this knowledge gap and test the hypotheses, that glutamate-plus-glutamine (Glx) and N-acetyl-aspartate (NAA), metabolites reflecting synaptic and neuronal health, respectively, measured from regions on the Braak stage continuum, correlate with: (i) cerebrospinal fluid (CSF) p-tau181 level (T), and (ii) hippocampal volume or cortical thickness of parietal lobe GM (N). We hypothesized that these correlations will be moderated by Braak stage and APOE4 genotype. METHODS We conducted a retrospective imaging study of 34 cognitively unimpaired elderly individuals who received APOE4 genotyping and lumbar puncture from pre-existing prospective studies at the NYU Grossman School of Medicine between October 2014 and January 2019. Subjects returned for their imaging exam between April 2018 and February 2020. Metabolites were measured from the left hippocampus (Braak II) using a single-voxel semi-adiabatic localization by adiabatic selective refocusing sequence; and from the bilateral posterior cingulate cortex (PCC; Braak IV), bilateral precuneus (Braak V), and bilateral precentral gyrus (Braak VI) using a multi-voxel echo-planar spectroscopic imaging sequence. Pearson and Spearman correlations were used to examine the relationships between absolute levels of choline, creatine, myo-inositol, Glx, and NAA and CSF p-tau181, and between these metabolites and hippocampal volume or parietal cortical thicknesses. Covariates included age, sex, years of education, Fazekas score, and months between CSF collection and MRI exam. RESULTS There was a direct correlation between hippocampal Glx and CSF p-tau181 in APOE4 carriers (Pearson's r = 0.76, p = 0.02), but not after adjusting for covariates. In the entire cohort, there was a direct correlation between hippocampal NAA and hippocampal volume (Spearman's r = 0.55, p = 0.001), even after adjusting for age and Fazekas score (Spearman's r = 0.48, p = 0.006). This relationship was observed only in APOE4 carriers (Pearson's r = 0.66, p = 0.017), and was also retained after adjustment (Pearson's r = 0.76, p = 0.008; metabolite-by-carrier interaction p = 0.03). There were no findings in the PCC, nor in the negative control (late Braak stage) regions of the precuneus and precentral gyrus. CONCLUSIONS Our findings are in line with the spatially- and temporally-resolved Braak staging model of pathological severity in which the hippocampus is affected earlier than the PCC. The correlations, between MRS markers of synaptic and neuronal health and, respectively, T and N pathology, were found exclusively within APOE4 carriers, suggesting a connection with AD pathological change, rather than with normal aging. We therefore conclude that MRS has the potential to augment early A/T/N staging, with the hippocampus serving as a more sensitive MRS target compared to the PCC.
Collapse
Affiliation(s)
- Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Martin Gajdošík
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Wajiha Ahmed
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sinyeob Ahn
- Siemens Medical Solutions USA Inc., Malvern, PA, USA
| | - James S Babb
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA
| | - Allal Boutajangout
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Retired Director, Center for Brain Health, Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ludovic Debure
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Naomi Gaggi
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA
| | - Mia Gajdošík
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ajax George
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mobeena Ghuman
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Patrick Harvey
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Karyn Marsh
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alok Vedvyas
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Helena Zheng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ricardo Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA.
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA; Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
57
|
Noche JA, Vanderlip C, Wright S, Sordo L, Head E, Stark C. Myo-inositol and total NAA in the hippocampus are linked to CSF tau pathology in cognitively normal older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607353. [PMID: 39211099 PMCID: PMC11361118 DOI: 10.1101/2024.08.09.607353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Understanding relationships between in vivo neurometabolic changes and Alzheimer's disease (AD) pathology in the hippocampus, a region vulnerable to early changes in AD, will support early diagnosis. METHODS Two studies using 1 H-MRS examined concentrations of myo-inositol (MI), total creatine (tCr) and total NAA (tNAA) in the hippocampus. The first study compared hippocampal metabolite concentrations in healthy young and older adults and the second study assessed relationships between hippocampal metabolites and cerebrospinal fluid (CSF) measurements of Aβ42, phosphotau 181 (pTau181), and total tau (t-Tau) while adjusting for demographic covariates and spectral characteristics (linewidth, signal- to-noise ratio) in a separate group of older adults ranging from cognitively normal (CN) to AD-dementia. RESULTS Hippocampal MI, but not tCr or tNAA, was increased in cognitively normal older versus young adults. Within the second older adult group, MI and tNAA, but not tCr, were linked to increases in CSF pTau181 and t-Tau, but not Aβ42. DISCUSSION Tau deposition in cognitively normal individuals is associated with biochemical changes related to glial reactivity and neural integrity in the hippocampus.
Collapse
|
58
|
Hirata K, Matsuoka K, Tagai K, Endo H, Tatebe H, Ono M, Kokubo N, Kataoka Y, Oyama A, Shinotoh H, Takahata K, Obata T, Dehghani M, Near J, Kawamura K, Zhang MR, Shimada H, Shimizu H, Kakita A, Yokota T, Tokuda T, Higuchi M, Takado Y. In Vivo Assessment of Astrocyte Reactivity in Patients with Progressive Supranuclear Palsy. Ann Neurol 2024; 96:247-261. [PMID: 38771066 DOI: 10.1002/ana.26962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.
Collapse
Affiliation(s)
- Kosei Hirata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Asaka Oyama
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Neurology Clinic Chiba, Chiba, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for integrated human brain science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Tokuda
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
59
|
Pinilla-Fernández I, Ríos-León M, Deelchand DK, Garrido L, Torres-Llacsa M, García-García F, Vidorreta M, Ip IB, Bridge H, Taylor J, Barriga-Martín A. Chronic neuropathic pain components in whiplash-associated disorders correlate with metabolite concentrations in the anterior cingulate and dorsolateral prefrontal cortex: a consensus-driven MRS re-examination. Front Med (Lausanne) 2024; 11:1404939. [PMID: 39156690 PMCID: PMC11328873 DOI: 10.3389/fmed.2024.1404939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Whiplash injury (WHI) is characterised by a forced neck flexion/extension, which frequently occurs after motor vehicle collisions. Previous studies characterising differences in brain metabolite concentrations and correlations with neuropathic pain (NP) components with chronic whiplash-associated disorders (WAD) have been demonstrated in affective pain-processing areas such as the anterior cingulate cortex (ACC). However, the detection of a difference in metabolite concentrations within these cortical areas with chronic WAD pain has been elusive. In this study, single-voxel magnetic resonance spectroscopy (MRS), following the latest MRSinMRS consensus group guidelines, was performed in the anterior cingulate cortex (ACC), left dorsolateral prefrontal cortex (DLPFC), and occipital cortex (OCC) to quantify differences in metabolite concentrations in individuals with chronic WAD with or without neuropathic pain (NP) components. Materials and methods Healthy individuals (n = 29) and participants with chronic WAD (n = 29) were screened with the Douleur Neuropathique 4 Questionnaire (DN4) and divided into groups without (WAD-noNP, n = 15) or with NP components (WAD-NP, n = 14). Metabolites were quantified with LCModel following a single session in a 3 T MRI scanner within the ACC, DLPFC, and OCC. Results Participants with WAD-NP presented moderate pain intensity and interference compared with the WAD-noNP group. Single-voxel MRS analysis demonstrated a higher glutamate concentration in the ACC and lower total choline (tCho) in the DLPFC in the WAD-NP versus WAD-noNP group, with no intergroup metabolite difference detected in the OCC. Best fit and stepwise multiple regression revealed that the normalised ACC glutamate/total creatine (tCr) (p = 0.01), DLPFC n-acetyl-aspartate (NAA)/tCr (p = 0.001), and DLPFC tCho/tCr levels (p = 0.02) predicted NP components in the WAD-NP group (ACC r 2 = 0.26, α = 0.81; DLPFC r 2 = 0.62, α = 0.98). The normalised Glu/tCr concentration was higher in the healthy than the WAD-noNP group within the ACC (p < 0.05), but not in the DLPFC or OCC. Neither sex nor age affected key normalised metabolite concentrations related to WAD-NP components when compared to the WAD-noNP group. Discussion This study demonstrates that elevated glutamate concentrations within the ACC are related to chronic WAD-NP components, while higher NAA and lower tCho metabolite levels suggest a role for increased neuronal-glial signalling and cell membrane dysfunction in individuals with chronic WAD-NP components.
Collapse
Affiliation(s)
- Irene Pinilla-Fernández
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Ríos-León
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| | - Dinesh Kumar Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Leoncio Garrido
- Departamento de Química-Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Madrid, Spain
| | - Mabel Torres-Llacsa
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Servicio de Radiodiagnóstico, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Fernando García-García
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Servicio de Radiodiagnóstico, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - I. Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Harris Manchester College, University of Oxford, Oxford, United Kingdom
| | - Andrés Barriga-Martín
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Research Group in Spine Pathology, Orthopedic Surgery and Traumatology Unit, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Faculty of Medicine, University of Castilla La Mancha, Toledo, Spain
| |
Collapse
|
60
|
Maruyama S, Takeshima H. Generating Synthetic MR Spectroscopic Imaging Data with Generative Adversarial Networks to Train Machine Learning Models. Magn Reson Med Sci 2024:mp.2023-0125. [PMID: 39010240 DOI: 10.2463/mrms.mp.2023-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
PURPOSE To develop a new method to generate synthetic MR spectroscopic imaging (MRSI) data for training machine learning models. METHODS This study targeted routine MRI examination protocols with single voxel spectroscopy (SVS). A novel model derived from pix2pix generative adversarial networks was proposed to generate synthetic MRSI data using MRI and SVS data as inputs. T1- and T2-weighted, SVS, and reference MRSI data were acquired from healthy brains with clinically available sequences. The proposed model was trained to generate synthetic MRSI data. Quantitative evaluation involved the calculation of the mean squared error (MSE) against the reference and metabolite ratio value. The effect of the location of and the number of the SVS data on the quality of the synthetic MRSI data was investigated using the MSE. RESULTS The synthetic MRSI data generated from the proposed model were visually closer to the reference. The 95% confidence interval (CI) of the metabolite ratio value of synthetic MRSI data overlapped with the reference for seven of eight metabolite ratios. The MSEs tended to be lower in the same location than in different locations. The MSEs among groups of numbers of SVS data were not significantly different. CONCLUSION A new method was developed to generate MRSI data by integrating MRI and SVS data. Our method can potentially increase the volume of MRSI data training for other machine learning models by adding SVS acquisition to routine MRI examinations.
Collapse
Affiliation(s)
- Shuki Maruyama
- Imaging Modality Group, Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hidenori Takeshima
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Kawasaki, Kanagawa, Japan
| |
Collapse
|
61
|
Galldiks N, Kaufmann TJ, Vollmuth P, Lohmann P, Smits M, Veronesi MC, Langen KJ, Rudà R, Albert NL, Hattingen E, Law I, Hutterer M, Soffietti R, Vogelbaum MA, Wen PY, Weller M, Tonn JC. Challenges, limitations, and pitfalls of PET and advanced MRI in patients with brain tumors: A report of the PET/RANO group. Neuro Oncol 2024; 26:1181-1194. [PMID: 38466087 PMCID: PMC11226881 DOI: 10.1093/neuonc/noae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 03/12/2024] Open
Abstract
Brain tumor diagnostics have significantly evolved with the use of positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the Response Assessment in Neuro-Oncology (RANO) Group, the European Association of Neuro-oncology, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g. MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations, and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | | | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Marion Smits
- Department of Radiology and Nuclear Medicine and Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Michael C Veronesi
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilians-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Goethe University, Department of Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Markus Hutterer
- Department of Neurology with Acute Geriatrics, Saint John of God Hospital, Linz, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neurosurgery, Moffit Cancer Center, Tampa, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, and University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Joerg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
62
|
Pasanta D, White DJ, He JL, Ford TC, Puts NA. GABA and glutamate response to social processing: a functional MRS feasibility study. NMR IN BIOMEDICINE 2024; 37:e5092. [PMID: 38154459 DOI: 10.1002/nbm.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Several studies have suggested that atypical social processing in neurodevelopmental conditions (e.g. autism) is associated with differences in excitation and inhibition, through changes in the levels of glutamate and gamma-aminobutyric acid (GABA). While associations between baseline metabolite levels and behaviours can be insightful, assessing the neurometabolic response of GABA and glutamate during social processing may explain altered neurochemical function in more depth. Thus far, there have been no attempts to determine whether changes in metabolite levels are detectable using functional MRS (fMRS) during social processing in a control population. We performed Mescher-Garwood point resolved spectroscopy edited fMRS to measure the dynamic response of GABA and glutamate in the superior temporal sulcus (STS) and visual cortex (V1) while viewing social stimuli, using a design that allows for analysis in both block and event-related approaches. Sliding window analyses were used to investigate GABA and glutamate dynamics at higher temporal resolution. The changes of GABA and glutamate levels with social stimulus were largely non-significant. A small decrease in GABA levels was observed during social stimulus presentation in V1, but no change was observed in STS. Conversely, non-social stimulus elicited changes in both GABA and glutamate levels in both regions. Our findings suggest that the current experimental design primarily captures effects of visual stimulation, not social processing. Here, we discuss the feasibility of using fMRS analysis approaches to assess changes in metabolite response.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - David J White
- Centre for Human Psychopharmacology & Swinburne Neuroimaging, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Talitha C Ford
- Centre for Human Psychopharmacology & Swinburne Neuroimaging, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
- Cognitive Neuroscience Unit, Faculty of Health, Deakin University, Geelong, Australia
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
63
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
64
|
Hupfeld KE, Murali-Manohar S, Zöllner HJ, Song Y, Davies-Jenkins CW, Gudmundson AT, Simičić D, Simegn G, Carter EE, Hui SCN, Yedavalli V, Oeltzschner G, Porges EC, Edden RAE. Metabolite T 2 relaxation times decrease across the adult lifespan in a large multi-site cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599719. [PMID: 38979133 PMCID: PMC11230243 DOI: 10.1101/2024.06.19.599719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Purpose Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo magnetic resonance spectroscopy (MRS). However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi-site cohort. Methods We recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ years old (n=101 total). We collected PRESS data at 8 TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2. Results Older age was correlated with shorter T2 for tNAA, tCr3.0, tCr3.9, tCho, Glx, and tissue water in CSO and PCC; rs = -0.21 to -0.65, all p<0.05, FDR-corrected for multiple comparisons. These associations remained statistically significant when controlling for cortical atrophy. T2 values did not differ across the adult lifespan for mI. By region, T2 values were longer in the CSO for tNAA, tCr3.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. Conclusion These findings underscore the importance of considering metabolite T2 changes with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T2 values instead of relying on uniform default values.
Collapse
Affiliation(s)
- Kathleen E. Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Dunja Simičić
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gizeaddis Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Emily E. Carter
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Steve C. N. Hui
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Eric C. Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
65
|
Zeng H, Zhang Q, Liu L, Deng F, Han H, Meng F, Bai H. Correlation between abnormal cellular immune and changes of magnetic resonance spectroscopy in patients with Alzheimer's disease. Neurochem Int 2024; 176:105737. [PMID: 38599243 DOI: 10.1016/j.neuint.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Evidence from previous studies indicates that neuroinflammation contributes to the onset of Alzheimer's Disease (AD). Moreover, cellular dysfunction is induced by impaired signaling of neurotransmitters. This study aimed to explore the correlation between cellular immune dysfunction and neurotransmitter changes through cranial Magnetic Resonance Spectroscopy (MRS) in AD patients. METHODS Here, 32 AD, 40 Vascular Dementia (VD), and 35 Non-Dementia Elderly Control (NDE) cases were enrolled. Flow cytometry was performed to characterize lymphocyte subsets in plasma samples. The IL-1β and Caspase-1 levels were detected by ELISA. The NLRP3 expression level was measured by Western Blot (WB). The equivalence of N-acetylaspartate (NAA), Creatine (Cr), Choline (Cho), and Inositol (MI) in bilateral hippocampi of patients was examined by MRS. The association of NAA/Cr or MI/Cr ratios with the proportion of T lymphocyte subsets or NK cell subsets was determined through single-factor correlation analysis. RESULTS The proportion of T lymphocyte subsets was significantly lower in the AD group than in the NDE group (P < 0.01). On the other hand, the Caspase-1, NLRP3, and IL-1β protein expression levels were significantly higher in the AD group than in the other groups. Further analysis showed that the NAA/Cr ratio was lower in the AD group than in the NDE group. Additionally, a significant positive correlation was found between the NAA/Cr ratio and the MMSE score (r = 0.81, P < 0.01). Moreover, a significant positive correlation was observed between the NAA/Cr and T lymphocyte ratios. The NAA/Cr ratio was significantly negatively correlated with the proportion of NK cells in the blood (r = -0.83, P < 0.01). A significant negative correlation was also recorded between the MI/Cr and T cell ratios in blood samples. CONCLUSIONS Impaired cellular immune dysfunction in AD patients was significantly correlated with abnormal MRS. Neuroimmune dysfunction may contribute to the pathogenesis of AD and alter the metabolism of neurotransmitters such as aspartic acid and MI in the brains of AD patients. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hongmei Zeng
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, 558099, China; Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Lijie Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050004, China
| | - Feifei Deng
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, 558099, China
| | - Huabo Han
- Department of Radiology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, 558099, China
| | - Fuxue Meng
- Medical Laboratory Center, Third Affiliated Hospital of Guizhou Medical University, Duyun, 558099, China
| | - Hua Bai
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, 558099, China; Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Medical Laboratory Center, Third Affiliated Hospital of Guizhou Medical University, Duyun, 558099, China.
| |
Collapse
|
66
|
Öz G, Cocozza S, Henry PG, Lenglet C, Deistung A, Faber J, Schwarz AJ, Timmann D, Van Dijk KRA, Harding IH. MR Imaging in Ataxias: Consensus Recommendations by the Ataxia Global Initiative Working Group on MRI Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:931-945. [PMID: 37280482 PMCID: PMC11102392 DOI: 10.1007/s12311-023-01572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA.
| | - Sirio Cocozza
- UNINA Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples, Italy
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Andreas Deistung
- Department for Radiation Medicine, University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Koene R A Van Dijk
- Digital Sciences and Translational Imaging, Early Clinical Development, Pfizer, Inc., Cambridge, MA, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
67
|
Zhao T, Grist JT, Auer DP, Avula S, Bailey S, Davies NP, Grundy RG, Khan O, MacPherson L, Morgan PS, Pizer B, Rose HEL, Sun Y, Wilson M, Worthington L, Arvanitis TN, Peet AC. Noise suppression of proton magnetic resonance spectroscopy improves paediatric brain tumour classification. NMR IN BIOMEDICINE 2024; 37:e5129. [PMID: 38494431 DOI: 10.1002/nbm.5129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/07/2024] [Accepted: 02/03/2024] [Indexed: 03/19/2024]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is increasingly used for clinical brain tumour diagnosis, but suffers from limited spectral quality. This retrospective and comparative study aims at improving paediatric brain tumour classification by performing noise suppression on clinical 1H-MRS. Eighty-three/forty-two children with either an ependymoma (ages 4.6 ± 5.3/9.3 ± 5.4), a medulloblastoma (ages 6.9 ± 3.5/6.5 ± 4.4), or a pilocytic astrocytoma (8.0 ± 3.6/6.3 ± 5.0), recruited from four centres across England, were scanned with 1.5T/3T short-echo-time point-resolved spectroscopy. The acquired raw 1H-MRS was quantified by using Totally Automatic Robust Quantitation in NMR (TARQUIN), assessed by experienced spectroscopists, and processed with adaptive wavelet noise suppression (AWNS). Metabolite concentrations were extracted as features, selected based on multiclass receiver operating characteristics, and finally used for identifying brain tumour types with supervised machine learning. The minority class was oversampled through the synthetic minority oversampling technique for comparison purposes. Post-noise-suppression 1H-MRS showed significantly elevated signal-to-noise ratios (P < .05, Wilcoxon signed-rank test), stable full width at half-maximum (P > .05, Wilcoxon signed-rank test), and significantly higher classification accuracy (P < .05, Wilcoxon signed-rank test). Specifically, the cross-validated overall and balanced classification accuracies can be improved from 81% to 88% overall and 76% to 86% balanced for the 1.5T cohort, whilst for the 3T cohort they can be improved from 62% to 76% overall and 46% to 56%, by applying Naïve Bayes on the oversampled 1H-MRS. The study shows that fitting-based signal-to-noise ratios of clinical 1H-MRS can be significantly improved by using AWNS with insignificantly altered line width, and the post-noise-suppression 1H-MRS may have better diagnostic performance for paediatric brain tumours.
Collapse
Affiliation(s)
- Teddy Zhao
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Oncology, Birmingham Children's Hospital, Birmingham, UK
| | - James T Grist
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Dorothee P Auer
- Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Shivaram Avula
- Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Simon Bailey
- Paediatric Oncology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Nigel P Davies
- Imaging and Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Omar Khan
- Digital Healthcare, WMG, University of Warwick, Coventry, UK
| | | | - Paul S Morgan
- Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Medical Physics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Heather E L Rose
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Oncology, Birmingham Children's Hospital, Birmingham, UK
| | - Yu Sun
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Oncology, Birmingham Children's Hospital, Birmingham, UK
| | - Martin Wilson
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Lara Worthington
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Oncology, Birmingham Children's Hospital, Birmingham, UK
- RRPPS, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Theodoros N Arvanitis
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Oncology, Birmingham Children's Hospital, Birmingham, UK
- Digital Healthcare, WMG, University of Warwick, Coventry, UK
- Engineering, University of Birmingham, Birmingham, UK
| | - Andrew C Peet
- Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Oncology, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
68
|
Morelli M, Dudzikowska K, Deelchand DK, Quinn AJ, Mullins PG, Apps MAJ, Wilson M. Functional Magnetic Resonance Spectroscopy of Prolonged Motor Activation using Conventional and Spectral GLM Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594270. [PMID: 38798416 PMCID: PMC11118477 DOI: 10.1101/2024.05.15.594270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Functional MRS (fMRS) is a technique used to measure metabolic changes in response to increased neuronal activity, providing unique insights into neurotransmitter dynamics and neuroenergetics. In this study we investigate the response of lactate and glutamate levels in the motor cortex during a sustained motor task using conventional spectral fitting and explore the use of a novel analysis approach based on the application of linear modelling directly to the spectro-temporal fMRS data. Methods fMRS data were acquired at a field strength of 3 Tesla from 23 healthy participants using a short echo-time (28ms) semi-LASER sequence. The functional task involved rhythmic hand clenching over a duration of 8 minutes and standard MRS preprocessing steps, including frequency and phase alignment, were employed. Both conventional spectral fitting and direct linear modelling were applied, and results from participant-averaged spectra and metabolite-averaged individual analyses were compared. Results We observed a 20% increase in lactate in response to the motor task, consistent with findings at higher magnetic field strengths. However, statistical testing showed some variability between the two averaging schemes and fitting algorithms. While lactate changes were supported by the direct spectral modelling approach, smaller increases in glutamate (2%) were inconsistent. Exploratory spectral modelling identified a 4% decrease in aspartate, aligning with conventional fitting and observations from prolonged visual stimulation. Conclusion We demonstrate that lactate dynamics in response to a prolonged motor task are observed using short-echo time semi-LASER at 3 Tesla, and that direct linear modelling of fMRS data is a useful complement to conventional analysis. Future work includes mitigating spectral confounds, such as scalp lipid contamination and lineshape drift, and further validation of our novel direct linear modelling approach through experimental and simulated datasets.
Collapse
Affiliation(s)
- Maria Morelli
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Katarzyna Dudzikowska
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew J. Quinn
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | | | - Matthew A. J. Apps
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
69
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
70
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. The impact of spectral basis set composition on estimated levels of cingulate glutamate and its associations with different personality traits. BMC Psychiatry 2024; 24:320. [PMID: 38664663 PMCID: PMC11044602 DOI: 10.1186/s12888-024-05646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/28/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND 1H-MRS is increasingly used in basic and clinical research to explain brain function and alterations respectively. In psychosis research it is now one of the main tools to investigate imbalances in the glutamatergic system. Interestingly, however, the findings are extremely variable even within patients of similar disease states. One reason may be the variability in analysis strategies, despite suggestions for standardization. Therefore, our study aimed to investigate the extent to which the basis set configuration- which metabolites are included in the basis set used for analysis- would affect the spectral fit and estimated glutamate (Glu) concentrations in the anterior cingulate cortex (ACC), and whether any changes in levels of glutamate would be associated with psychotic-like experiences and autistic traits. METHODS To ensure comparability, we utilized five different exemplar basis sets, used in research, and two different analysis tools, r-based spant applying the ABfit method and Osprey using the LCModel. RESULTS Our findings revealed that the types of metabolites included in the basis set significantly affected the glutamate concentration. We observed that three basis sets led to more consistent results across different concentration types (i.e., absolute Glu in mol/kg, Glx (glutamate + glutamine), Glu/tCr), spectral fit and quality measurements. Interestingly, all three basis sets included phosphocreatine. Importantly, our findings also revealed that glutamate levels were differently associated with both schizotypal and autistic traits depending on basis set configuration and analysis tool, with the same three basis sets showing more consistent results. CONCLUSIONS Our study highlights that scientific results may be significantly altered depending on the choices of metabolites included in the basis set, and with that emphasizes the importance of carefully selecting the configuration of the basis set to ensure accurate and consistent results, when using MR spectroscopy. Overall, our study points out the need for standardized analysis pipelines and reporting.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
71
|
Zhou X, Yang Y, Zhu F, Chen X, Zhu Y, Gui T, Li Y, Xue Q. Neurometabolic and Brain Functional Alterations Associated with Cognitive Impairment in Patients with Myasthenia Gravis: A Combined 1H-MRS and fMRI Study. Neuroscience 2024; 544:12-27. [PMID: 38423165 DOI: 10.1016/j.neuroscience.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Whether patients with myasthenia gravis (MG) exhibit cognitive impairment is controversial. Also the underlying mechanisms are unknown. We aimed to investigate alterations in cognitive function, neurometabolite levels, and brain function in patients with MG and to explore the associations between abnormal regional brain functional activity, neurometabolite concentrations in the MPFC and left thalamus, and cognitive activity in patients with MG. Neuropsychological tests, proton magnetic resonance spectroscopy, and resting-state functional magnetic resonance imaging were performed on 41 patients with MG and 45 race-, sex-, age-, and education-matched healthy controls (HCs). The results suggest that MG is accompanied by cognitive decline, as indicated by global cognitive function, visual-spatial function, language, memory, abnormalities in regional brain functional activity, and neurometabolite alterations (including GABA, NAA, and Cho) in the medial prefrontal cortex (MPFC) and left thalamus. Cognitive impairment in patients with MG may be related to abnormal regional brain functional activity and changes in neurometabolites, and regional brain functional activity may be modulated by specific neurometabolites.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yang Yang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Feng Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiang Chen
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yunfei Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tiantian Gui
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yonggang Li
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
72
|
Hui SC, Murali-Manohar S, Zöllner HJ, Hupfeld KE, Davies-Jenkins CW, Gudmundson AT, Song Y, Yedavalli V, Wisnowski JL, Gagoski B, Oeltzschner G, Edden RA. Integrated Short-TE and Hadamard-edited Multi-Sequence (ISTHMUS) for Advanced MRS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580516. [PMID: 38659947 PMCID: PMC11042202 DOI: 10.1101/2024.02.15.580516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. Methods ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based the default white matter and gray matter T2 reference values in Osprey; 2) shorter WM and GM T2 values from recent literature; and 3) reduced CSF fractions. Results No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. Conclusions ISTHMUS facilitated and standardized acquisition and post-processing and reduced operator workload to eliminate potential human error.
Collapse
Affiliation(s)
- Steve C.N. Hui
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. USA
- Departments of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
- Departments of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
| | - Saipavitra Murali-Manohar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J. Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kathleen E. Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jessica L Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A.E. Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
73
|
Wilson NE, Elliott MA, Nanga RPR, Swago S, Witschey WR, Reddy R. Optimization of 1H MR spectroscopy methods for large volume acquisition of low concentration downfield resonances at 3T and 7T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305552. [PMID: 38645233 PMCID: PMC11030301 DOI: 10.1101/2024.04.09.24305552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Purpose This goal of this study was to optimize spectrally selective 1H MRS methods for large volume acquisition of low concentration metabolites with downfield resonances at 7T and 3T, with particular attention paid to detection of nicotinamide adenine dinucleotide (NAD+) and tryptophan. Methods Spectrally selective excitation was used to avoid magnetization transfer effects with water, and various sinc pulses were compared to a pure-phase E-BURP pulse. Localization using a single slice selective pulse was compared to voxel-based localization that used three orthogonal refocusing pulses, and low bandwidth refocusing pulses were used to take advantage of the chemical shift displacement of water. A technique for water sideband removal was added, and a method of coil channel combination for large volumes was introduced. Results Proposed methods were compared qualitatively to previously-reported techniques at 7T. Sinc pulses resulted in reduced water signal excitation and improved spectral quality, with a symmetric, low bandwidth-time product pulse performing best. Single slice localization allowed shorter TEs with large volumes, enhancing signal, while low bandwidth slice selective localization greatly reduced the observed water signal. Gradient cycling helped remove water sidebands, and frequency aligning and pruning individual channels narrowed spectral linewidths. High quality brain spectra of NAD+ and tryptophan are shown in four subjects at 3T. Conclusion Improved spectral quality with higher downfield signal, shorter TE, lower nuisance signal, reduced artifacts, and narrower peaks was realized at 7T. These methodological improvements allowed for previously unachievable detection of NAD+ and tryptophan in human brain at 3T in under five minutes.
Collapse
Affiliation(s)
- Neil E. Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Swago
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R. Witschey
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
74
|
Maximo JO, Briend F, Armstrong WP, Kraguljac NV, Lahti AC. Higher-order functional brain networks and anterior cingulate glutamate + glutamine (Glx) in antipsychotic-naïve first episode psychosis patients. Transl Psychiatry 2024; 14:183. [PMID: 38600117 PMCID: PMC11006887 DOI: 10.1038/s41398-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
75
|
Sun W, Xu D, Yang Y, Wen L, Yu H, Xing Y, Song X, Li H, Xu H. Improved Detection of Target Metabolites in Brain Tumors with Intermediate TE, High SNR, and High Bandwidth Spin-Echo Sequence at 5T. AJNR Am J Neuroradiol 2024; 45:461-467. [PMID: 38453417 PMCID: PMC11288575 DOI: 10.3174/ajnr.a8150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Due to high chemical shift displacement, challenges emerge at ultra-high fields when measuring metabolites using 1H-MRS. Our goal was to investigate how well the high SNR and high bandwidth spin-echo (HISE) technique perform at 5T for detecting target metabolites in brain tumors. MATERIALS AND METHODS Twenty-six subjects suspected of having brain tumors were enrolled. HISE and point-resolved spectroscopy (PRESS) single-voxel spectroscopy scans were collected with a 5T clinical scanner with an intermediate TE (TE = 144 ms). The main metabolites, including total NAA, Cr, and total Cho, were accessed and compared between HISE and PRESS using a paired Student t test, with full width at half maximum and SNR as covariates. The detection rate of specific metabolites, including lactate, alanine, and lipid, and subjective spectral quality were accessed and compared between HISE and PRESS. RESULTS Twenty-three pathologically confirmed brain tumors were included. Only the full width at half maximum for total NAA was significantly lower with HISE than with PRESS (P < .05). HISE showed a significantly higher SNR for total NAA, Cr, and total Cho compared with PRESS (P < .05). Lactate was detected in 21 of the 23 cases using HISE, but in only 4 cases using PRESS. HISE detected alanine in 8 of 9 meningiomas, whereas PRESS detected alanine in just 3 meningiomas. PRESS found lipid in more cases than HISE, while HISE outperformed PRESS in terms of subjective spectral quality. CONCLUSIONS HISE outperformed the clinical standard PRESS technique in detecting target metabolites of brain tumors at 5T, particularly lactate and alanine.
Collapse
Affiliation(s)
- Wenbo Sun
- From the Department of Radiology (W.S., H.L., H.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Dan Xu
- Department of Nuclear Medicine (D.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - YanXing Yang
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Linfei Wen
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Hanjiang Yu
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Yaowen Xing
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Xiaopeng Song
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Huan Li
- From the Department of Radiology (W.S., H.L., H.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Haibo Xu
- From the Department of Radiology (W.S., H.L., H.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
76
|
Hupfeld KE, Zöllner HJ, Hui SCN, Song Y, Murali-Manohar S, Yedavalli V, Oeltzschner G, Prisciandaro JJ, Edden RAE. Impact of acquisition and modeling parameters on the test-retest reproducibility of edited GABA. NMR IN BIOMEDICINE 2024; 37:e5076. [PMID: 38091628 PMCID: PMC10947947 DOI: 10.1002/nbm.5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023]
Abstract
Literature values vary widely for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA) measured with edited magnetic resonance spectroscopy (MRS). Reasons for this variation remain unclear. Here, we tested whether three acquisition parameters-(1) sequence complexity (two-experiment MEscher-GArwood Point RESolved Spectroscopy [MEGA-PRESS] vs. four-experiment Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy [HERMES]); (2) editing pulse duration (14 vs. 20 ms); and (3) scanner frequency drift (interleaved water referencing [IWR] turned ON vs. OFF)-and two linear combination modeling variations-(1) three different coedited macromolecule models (called "1to1GABA", "1to1GABAsoft", and "3to2MM" in the Osprey software package); and (2) 0.55- versus 0.4-ppm spline baseline knot spacing-affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (mean age: 30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 min. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). We identified the best test-retest reproducibility following postprocessing with a composite model of the 0.9- and 3-ppm macromolecules ("3to2MM"); this model performed particularly well for the HERMES data. Furthermore, sparser (0.55- compared with 0.4-ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. However, reproducibility did not consistently differ for MEGA-PRESS compared with HERMES, for 14- compared with 20-ms editing pulses, or for IWR-ON versus IWR-OFF. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies that focus on individual patient differences in GABA+ or changes following an intervention.
Collapse
Affiliation(s)
- Kathleen E Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
77
|
Ungan G, Pons-Escoda A, Ulinic D, Arús C, Ortega-Martorell S, Olier I, Vellido A, Majós C, Julià-Sapé M. Early pseudoprogression and progression lesions in glioblastoma patients are both metabolically heterogeneous. NMR IN BIOMEDICINE 2024; 37:e5095. [PMID: 38213096 DOI: 10.1002/nbm.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
The standard treatment in glioblastoma includes maximal safe resection followed by concomitant radiotherapy plus chemotherapy and adjuvant temozolomide. The first follow-up study to evaluate treatment response is performed 1 month after concomitant treatment, when contrast-enhancing regions may appear that can correspond to true progression or pseudoprogression. We retrospectively evaluated 31 consecutive patients at the first follow-up after concomitant treatment to check whether the metabolic pattern assessed with multivoxel MRS was predictive of treatment response 2 months later. We extracted the underlying metabolic patterns of the contrast-enhancing regions with a blind-source separation method and mapped them over the reference images. Pattern heterogeneity was calculated using entropy, and association between patterns and outcomes was measured with Cramér's V. We identified three distinct metabolic patterns-proliferative, necrotic, and responsive, which were associated with status 2 months later. Individually, 70% of the patients showed metabolically heterogeneous patterns in the contrast-enhancing regions. Metabolic heterogeneity was not related to the regions' size and only stable patients were less heterogeneous than the rest. Contrast-enhancing regions are also metabolically heterogeneous 1 month after concomitant treatment. This could explain the reported difficulty in finding robust pseudoprogression biomarkers.
Collapse
Affiliation(s)
- Gülnur Ungan
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Albert Pons-Escoda
- Grup de Neuro-oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Daniel Ulinic
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Alfredo Vellido
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- IDEAI-UPC Research Center, UPC BarcelonaTech, Barcelona, Spain
| | - Carles Majós
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Grup de Neuro-oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
78
|
Instrella R, Juchem C. Uncertainty propagation in absolute metabolite quantification for in vivo MRS of the human brain. Magn Reson Med 2024; 91:1284-1300. [PMID: 38029371 PMCID: PMC11062627 DOI: 10.1002/mrm.29903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Absolute spectral quantification is the standard method for deriving estimates of the concentration from metabolite signals measured using in vivo proton MRS (1 H-MRS). This method is often reported with minimum variance estimators, specifically the Cramér-Rao lower bound (CRLB) of the metabolite signal amplitude's scaling factor from linear combination modeling. This value serves as a proxy for SD and is commonly reported in MRS experiments. Characterizing the uncertainty of absolute quantification, however, depends on more than simply the CRLB. The uncertainties of metabolite-specific (T1m , T2m ), reference-specific (T1ref , T2ref ), and sequence-specific (TR , TE ) parameters are generally ignored, potentially leading to an overestimation of precision. In this study, the propagation of uncertainty is used to derive a comprehensive estimate of the overall precision of concentrations from an internal reference. METHODS The propagated uncertainty is calculated using analytical derivations and Monte Carlo simulations and subsequently analyzed across a set of commonly measured metabolites and macromolecules. The effect of measurement error from experimentally obtained quantification parameters is estimated using published uncertainties and CRLBs from in vivo 1 H-MRS literature. RESULTS The additive effect of propagated measurement uncertainty from applied quantification correction factors can result in up to a fourfold increase in the concentration estimate's coefficient of variation compared to the CRLB alone. A case study analysis reveals similar multifold increases across both metabolites and macromolecules. CONCLUSION The precision of absolute metabolite concentrations derived from 1 H-MRS experiments is systematically overestimated if the uncertainties of commonly applied corrections are neglected as sources of error.
Collapse
Affiliation(s)
- Ronald Instrella
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
- Department of Radiology, Columbia University Irving Medical
Center, New York, NY, USA
| |
Collapse
|
79
|
Simicic D, Zöllner HJ, Davies-Jenkins CW, Hupfeld KE, Edden RAE, Oeltzschner G. Model-based frequency-and-phase correction of 1H MRS data with 2D linear-combination modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586804. [PMID: 38585798 PMCID: PMC10996641 DOI: 10.1101/2024.03.26.586804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Purpose Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. Methods We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. Results 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR. Conclusion Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.
Collapse
Affiliation(s)
- Dunja Simicic
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
80
|
Wang MY, Zöllner HJ, Yücel MA, Specht K. Editorial: Variability and reproducibility of brain imaging. Front Psychol 2024; 15:1386948. [PMID: 38544520 PMCID: PMC10965770 DOI: 10.3389/fpsyg.2024.1386948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Affiliation(s)
- Meng-Yun Wang
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Helge J. Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Meryem A. Yücel
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Education, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
81
|
Ligneul C, Najac C, Döring A, Beaulieu C, Branzoli F, Clarke WT, Cudalbu C, Genovese G, Jbabdi S, Jelescu I, Karampinos D, Kreis R, Lundell H, Marjańska M, Möller HE, Mosso J, Mougel E, Posse S, Ruschke S, Simsek K, Szczepankiewicz F, Tal A, Tax C, Oeltzschner G, Palombo M, Ronen I, Valette J. Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling. Magn Reson Med 2024; 91:860-885. [PMID: 37946584 DOI: 10.1002/mrm.29877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.
Collapse
Affiliation(s)
- Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André Döring
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Christian Beaulieu
- Departments of Biomedical Engineering and Radiology, University of Alberta, Alberta, Edmonton, Canada
| | - Francesca Branzoli
- Paris Brain Institute-ICM, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager anf Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- LIFMET, EPFL, Lausanne, Switzerland
| | - Eloïse Mougel
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoires des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Stefan Posse
- Department of Neurology, University of New Mexico School of Medicine, New Mexico, Albuquerque, USA
- Department of Physics and Astronomy, University of New Mexico School of Medicine, New Mexico, Albuquerque, USA
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Kadir Simsek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | | | - Assaf Tal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, Israel
| | - Chantal Tax
- University Medical Center Utrecht, Utrecht, The Netherlands
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland, Baltimore, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Maryland, Baltimore, USA
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Julien Valette
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoires des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| |
Collapse
|
82
|
Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, Tabuenca ZG, Arichi T, Edden RAE, Chai X, Puts NA. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex 2024; 34:bhae046. [PMID: 38430105 PMCID: PMC10908220 DOI: 10.1093/cercor/bhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| | - Hannah Hwa
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Benjamin Hopwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ross Lawrence
- Division of Cognitive Neurology, Department of Neurology, Johns Hopkins University, 1629 Thames Street Suite 350, Baltimore, MD 21231, United States
| | - Zeus G Tabuenca
- Department of Statistical Methods, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, 1st Floor, South Wing, St Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, United States
- F.M. Kirby Research Centre for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, United States
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, QC H3A2B4, Canada
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
83
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NA, Mostofsky SH, Edden RA. Brain glutathione and GABA+ levels in autistic children. Autism Res 2024; 17:512-528. [PMID: 38279628 PMCID: PMC10963146 DOI: 10.1002/aur.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A. Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A.J. Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A.E. Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
84
|
Hui SC, Zöllner HJ, Gong T, Hupfeld KE, Gudmundson AT, Murali-Manohar S, Davies-Jenkins CW, Song Y, Chen Y, Oeltzschner G, Wang G, Edden RAE. sLASER and PRESS perform similarly at revealing metabolite-age correlations at 3 T. Magn Reson Med 2024; 91:431-442. [PMID: 37876339 PMCID: PMC10942734 DOI: 10.1002/mrm.29895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE To compare the respective ability of PRESS and sLASER to reveal biological relationships, using age as a validation covariate at 3 T. METHODS MRS data were acquired from 102 healthy volunteers using PRESS and sLASER in centrum semiovale and posterior cingulate cortex (PCC). Acquisition parameters included TR/TE = 2000/30 ms, 96 transients, and 2048 datapoints sampled at 2 kHz. Spectra were analyzed using Osprey. SNR, FWHM linewidth of total creatine, and metabolite concentrations were extracted. A linear model was used to compare SNR and linewidth. Paired t-tests were used to assess differences in metabolite measurements between PRESS and sLASER. Correlations were used to evaluate the relationship between PRESS and sLASER metabolite estimates, as well as the strength of each metabolite-age relationship. Coefficients of variation were calculated to assess inter-subject variability in each metabolite measurement. RESULTS SNR and linewidth were significantly higher (p < 0.01) for sLASER than PRESS in PCC. Paired t-tests showed significant differences between PRESS and sLASER in most metabolite measurements. PRESS-sLASER measurements were significantly correlated (p < 0.05) for most metabolites. Metabolite-age relationships were consistently identified using both methods. Similar coefficients of variation were observed for most metabolites. CONCLUSION The study results suggest strong agreement between PRESS and sLASER in identifying relationships between brain metabolites and age in centrum semiovale and PCC data acquired at 3 T. sLASER is technically desirable due to the reduced chemical shift displacement artifact; however, PRESS performed similarly in homogeneous brain regions at clinical field strength.
Collapse
Affiliation(s)
- Steve C.N. Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Developing Brain Institute, Children’s National Hospital, Washington, DC, USA
| | - Helge J. Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kathleen E. Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Saipavitra Murali-Manohar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Richard A. E. Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
85
|
Dziadkowiak E, Koszewicz M, Podgórski P, Wieczorek M, Budrewicz S, Zimny A. Central nervous system involvement in chronic inflammatory demyelinating polyradiculoneuropathy-MRS and DTI study. Front Neurol 2024; 15:1301405. [PMID: 38333607 PMCID: PMC10850251 DOI: 10.3389/fneur.2024.1301405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Objective The current research aimed to analyze the alterations within the motor cortex and pyramidal pathways and their association with the degree of damage within the peripheral nerve fibers in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). To achieve that goal, we investigated the microstructural changes within the pyramidal white matter tracts using diffusion tensor imaging (DTI) parameters, evaluated metabolic alterations in both precentral gyri using magnetic resonance spectroscopy (MRS) ratios, and correlated them with the neurographic findings in patients with CIDP. Methods The spectroscopic ratios of NAA/Cr, Cho/Cr, and mI/Cr from both precentral gyri and the values of fractional anisotropy (FA), axial diffusivity (AD), and mean diffusivity (MD) from both of the corticospinal tracts were correlated with the results of neurological and neurographic findings. The comparison of DTI parameters between the patients and controls was performed using Student's t-test or the Mann-Whitney U test. Due to the lack of normal distribution of most variables, Spearman's Rho rank coefficient was used to test all correlations. All analyses were performed at a significant level of alpha = 0.05 using STATISTICA 13.3. Results Compared to the control group (CG), the patient group showed significantly lower ratios of NAA/Cr (1.66 ± 0.11 vs. 1.61 ± 0.15; p = 0.022), higher ratios of ml/Cr in the right precentral gyrus (0.57 ± 0.15 vs. 0.61 ± 0.08; p = 0.005), and higher levels of Cho/Cr within the left precentral gyrus (0.83 ± 0.09 vs. 0.88 ± 0.14, p = 0.012). The DTI parameters of MD from the right CST and AD from the right and left CSTs showed a strong positive correlation (0.52-0.53) with the sural sensory nerve action potential (SNAP) latency of the right sural nerve. There were no other significant correlations between other DTI and MRS parameters and neurographic results. Significance In our study, significant metabolic alterations were found in the precentral gyri in patients with CIDP without clinical symptoms of central nervous system involvement. The revealed changes reflected neuronal loss or dysfunction, myelin degradation, and increased gliosis. Our results suggest coexisting CNS damage in these patients and may provide a new insight into the still unknown pathomechanism of CIDP.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Przemysław Podgórski
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Małgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Uniwersytecki, Wrocław, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska, Wrocław, Poland
| |
Collapse
|
86
|
Zöllner HJ, Davies-Jenkins C, Simicic D, Tal A, Sulam J, Oeltzschner G. Simultaneous multi-transient linear-combination modeling of MRS data improves uncertainty estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565164. [PMID: 38260650 PMCID: PMC10802456 DOI: 10.1101/2023.11.01.565164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Purpose The interest in applying and modeling dynamic MRS has recently grown. 2D modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to 1D modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. Methods Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multi-transient LCM with 1D-LCM of the average. 2,500 datasets per condition with different noise representations of a 64-transient MRS experiment at 6 signal-to-noise levels for two separate spin systems (scyllo-inositol and GABA) were analyzed. Additional datasets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by standard deviations and Cramér-Rao Lower Bounds (CRLB). Results Amplitude estimates for 1D- and 2D-LCM agreed well and showed similar level of bias compared to the ground truth. Estimated CRLBs agreed well between both models and with ground truth CRLBs. For correlated noise the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. Conclusion Our results indicate that the model performance of 2D multi-transient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as necessary basis for further applications of 2D modeling.
Collapse
Affiliation(s)
- Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Dunja Simicic
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Mathematical Institute for Data Science, The Johns Hopkins University, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
87
|
Huang NX, Huang HW, Dong QY, Wen YL, Li D, Li JQ, Chen HJ. Metabolic alterations in the right anterior insula among patients with cirrhosis without overt hepatic encephalopathy: a magnetic resonance spectroscopy study. Front Neurol 2024; 14:1291478. [PMID: 38283679 PMCID: PMC10811796 DOI: 10.3389/fneur.2023.1291478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose We investigated metabolic alterations in the right anterior insula (rAI) in cirrhotic patients and determined its association with patients' cognitive dysfunction. Methods In this study, 31 healthy controls (HCs) and 32 cirrhotic patients without overt hepatic encephalopathy participated. Both blood ammonia level and Child-Pugh score were measured. The psychometric hepatic encephalopathy score (PHES) was used to evaluate cognitive function. 1H-magnetic resonance spectroscopy (MRS) data located in the rAI were recorded on a commercially available 3T magnetic resonance imaging scanner. The ratios of metabolites were measured, including N-acetylaspartate (NAA)/total creatine (tCr), glutamate plus glutamine (Glx)/tCr, myo-inositol (mI)/tCr, and total choline (tCho)/tCr. We adopted the non-parametric Mann-Whitney U-test for intergroup comparison of metabolic ratios. To determine the association between metabolite concentration and clinical parameters, we performed Spearman correlation analyses. Results Patients with cirrhosis performed worse on PHES in comparison with HCs (P < 0.001). Patients with cirrhosis had significantly decreased mI/tCr (0.87 ± 0.07 vs. 0.74 ± 0.19, P = 0.025) and increased Glx/tCr (1.79 ± 0.17 vs. 2.07 ± 0.29, P < 0.001) in the rAI. We did not observe any significant between-group differences in tCho/tCr and NAA/tCr. The blood ammonia level was correlated with Glx/tCr (r = 0.405, P = 0.022) and mI/tCr (r = -0.398, P = 0.024) of the rAI. In addition, PHES was negatively correlated with Glx/tCr of the rAI (r = -0.379, P = 0.033). Conclusion Metabolic disturbance of the rAI, which is associated with ammonia intoxication, might account for the neural substrate of cirrhosis-related cognitive dysfunction to some extent.
Collapse
Affiliation(s)
- Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui-Wei Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu-Lin Wen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
88
|
Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeill A, Taylor R, Su L, Wilkinson I, Jenkins T, Mortiboys H, Bandmann O. Multimodal assessment of mitochondrial function in Parkinson's disease. Brain 2024; 147:267-280. [PMID: 38059801 PMCID: PMC10766247 DOI: 10.1093/brain/awad364] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.
Collapse
Affiliation(s)
- Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Toby Burgess
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen Bradley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Sarah Roscoe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Dunning
- The Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20814, USA
| | - Sonja Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Alisdair McNeill
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rosie Taylor
- Statistical Services Unit, The University of Sheffield, Shefield S3 7RH, UK
| | - Li Su
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
| | - Iain Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF, UK
| | - Thomas Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Neurology, Royal Perth Hospital, Perth WA6000, Australia
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
89
|
Sirucek L, Zoelch N, Schweinhardt P. Improving magnetic resonance spectroscopy in the brainstem periaqueductal gray using spectral registration. Magn Reson Med 2024; 91:28-38. [PMID: 37800387 DOI: 10.1002/mrm.29832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Functional understanding of the periaqueductal gray (PAG), a clinically relevant brainstem region, can be advanced using 1 H-MRS. However, the PAG's small size and high levels of physiological noise are methodologically challenging. This study aimed to (1) improve 1 H-MRS quality in the PAG using spectral registration for frequency and phase error correction; (2) investigate whether spectral registration is particularly useful in cases of greater head motion; and (3) examine metabolite quantification using literature-based or individual-based water relaxation times. METHODS Spectra were acquired in 33 healthy volunteers (50.1 years, SD = 17.19, 18 females) on a 3 T Philipps MR system using a point-resolved spectroscopy (PRESS) sequence optimized with very selective saturation pulses (OVERPRESS) and voxel-based flip angle calibration (effective volume of interest size: 8.8 × 10.2 × 12.2 mm3 ). Spectra were fitted using LCModel and SNR, NAA peak linewidths and Cramér-Rao lower bounds (CRLBs) were measured after spectral registration and after minimal frequency alignment. RESULTS Spectral registration improved SNR by 5% (p = 0.026, median value post-correction: 18.0) and spectral linewidth by 23% (p < 0.001, 4.3 Hz), and reduced the metabolites' CRLBs by 1% to 15% (p < 0.026). Correlational analyses revealed smaller SNR improvements with greater head motion (p = 0.010) recorded using a markerless motion tracking system. Higher metabolite concentrations were detected using individual-based compared to literature-based water relaxation times (p < 0.001). CONCLUSION This study demonstrates high-quality 1 H-MRS acquisition in the PAG using spectral registration. This shows promise for future 1 H-MRS studies in the PAG and possibly other clinically relevant brain regions with similar methodological challenges.
Collapse
Affiliation(s)
- Laura Sirucek
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Niklaus Zoelch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
90
|
Dennis EL, Keleher F, Bartnik-Olson B. Neuroimaging Correlates of Functional Outcome Following Pediatric TBI. ADVANCES IN NEUROBIOLOGY 2024; 42:33-84. [PMID: 39432037 DOI: 10.1007/978-3-031-69832-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Neuroimaging plays an important role in assessing the consequences of TBI across the postinjury period. While identifying alterations to the brain is important, associating those changes to functional, cognitive, and behavioral outcomes is an essential step to establishing the value of advanced neuroimaging for pediatric TBI. Here we highlight research that has revealed links between advanced neuroimaging and outcome after TBI and point to opportunities where neuroimaging could expand our ability to prognosticate and potentially uncover opportunities to intervene.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Finian Keleher
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, School of Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
91
|
Wang M, Korbmacher M, Eikeland R, Craven AR, Specht K. The intra-individual reliability of 1 H-MRS measurement in the anterior cingulate cortex across 1 year. Hum Brain Mapp 2024; 45:e26531. [PMID: 37986643 PMCID: PMC10789202 DOI: 10.1002/hbm.26531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions. In addition, previous studies which predominately used only two measurements (two data points) failed to provide the details of the time effect (e.g., time-of-day) on MRS measurement within subjects. Therefore, in this study, MRS data located in the anterior cingulate cortex (ACC) were repeatedly recorded across 1 year leading to at least 25 sessions for each subject with the aim of exploring the variability of other metabolites by using the index coefficient of variability (CV); the smaller the CV, the more reliable the measurements. We found that the metabolites of NAA, tNAA, and tCr showed the smallest CVs (between 1.43% and 4.90%), and the metabolites of Glu, Glx, mI, and tCho showed modest CVs (between 4.26% and 7.89%). Furthermore, we found that the concentration reference of the ratio to water results in smaller CVs compared to the ratio to tCr. In addition, we did not find any time-of-day effect on the MRS measurements. Collectively, the results of this study indicate that the MRS measurement is reasonably reliable in quantifying the levels of metabolites.
Collapse
Affiliation(s)
- Meng‐Yun Wang
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Mohn Medical Imaging and Visualization Centre (MMIV)Haukeland University HospitalBergenNorway
| | - Max Korbmacher
- Mohn Medical Imaging and Visualization Centre (MMIV)Haukeland University HospitalBergenNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Rune Eikeland
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Mohn Medical Imaging and Visualization Centre (MMIV)Haukeland University HospitalBergenNorway
| | - Alexander R. Craven
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
| | - Karsten Specht
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Mohn Medical Imaging and Visualization Centre (MMIV)Haukeland University HospitalBergenNorway
- Department of EducationUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
92
|
Murray AJ, Humpston CS, Wilson M, Rogers JC, Zia Ul Haq Katshu M, Liddle PF, Upthegrove R. Measurement of brain glutathione with magnetic Resonance spectroscopy in Schizophrenia-Spectrum disorders - A systematic review and Meta-Analysis. Brain Behav Immun 2024; 115:3-12. [PMID: 37769980 DOI: 10.1016/j.bbi.2023.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
Oxidative stress may contribute to declining course and poor outcomes in psychosis. However, in vivo Magnetic Resonance Spectroscopy studies yield disparate results due to clinical stage, sample demographics, neuroanatomical focus, sample size, and acquisition method variations. We investigated glutathione in brain regions from participants with psychosis, and the relation of glutathione to clinical features and spectroscopy protocols. Meta-analysis comprised 21 studies. Glutathione levels did not differ between total psychosis patients (N = 639) and controls (N = 704) in the Medial Prefrontal region (k = 21, d = -0.09, CI = -0.28 to 0.10, p = 0.37). Patients with stable schizophrenia exhibited a small but significant glutathione reduction compared to controls (k = 14, d = -0.20, CI = -0.40 to -0.00, p = 0.05). Meta-regression showed older studies had greater glutathione reductions, possibly reflecting greater accuracy related to spectroscopy advancements in more recent studies. No significant effects of methodological variables, such as voxel size or echo time were found. Reduced glutathione in patients with stable established schizophrenia may provide novel targets for precision medicine. Standardizing MRS acquisition methods in future studies may help address discrepancies in glutathione levels.
Collapse
Affiliation(s)
- Alex J Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | - Clara S Humpston
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Department of Psychology, University of York, York, United Kingdom
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jack C Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom; Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F Liddle
- Institute of Mental Health, Division of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom; Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
93
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
94
|
Matsuoka K, Hirata K, Kokubo N, Maeda T, Tagai K, Endo H, Takahata K, Shinotoh H, Ono M, Seki C, Tatebe H, Kawamura K, Zhang MR, Shimada H, Tokuda T, Higuchi M, Takado Y. Investigating neural dysfunction with abnormal protein deposition in Alzheimer's disease through magnetic resonance spectroscopic imaging, plasma biomarkers, and positron emission tomography. Neuroimage Clin 2023; 41:103560. [PMID: 38147791 PMCID: PMC10944210 DOI: 10.1016/j.nicl.2023.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
In Alzheimer's disease (AD), aggregated abnormal proteins induce neuronal dysfunction. Despite the evidence supporting the association between tau proteins and brain atrophy, further studies are needed to explore their link to neuronal dysfunction in the human brain. To clarify the relationship between neuronal dysfunction and abnormal proteins in AD-affected brains, we conducted magnetic resonance spectroscopic imaging (MRSI) and assessed the neurofilament light chain plasma levels (NfL). We evaluated tau and amyloid-β depositions using standardized uptake value ratios (SUVRs) of florzolotau (18F) for tau and 11C-PiB for amyloid-β positron emission tomography in the same patients. Heatmaps were generated to visualize Z scores of glutamate to creatine (Glu/Cr) and N-acetylaspartate to creatine (NAA/Cr) ratios using data from healthy controls. In AD brains, Z score maps revealed reduced Glu/Cr and NAA/Cr ratios in the gray matter, particularly in the right dorsolateral prefrontal cortex (rDLPFC) and posterior cingulate cortex (PCC). Glu/Cr ratios were negatively correlated with florzolotau (18F) SUVRs in the PCC, and plasma NfL levels were elevated and negatively correlated with Glu/Cr (P = 0.040, r = -0.50) and NAA/Cr ratios (P = 0.003, r = -0.68) in the rDLPFC. This suggests that the abnormal tau proteins in AD-affected brains play a role in diminishing glutamate levels. Furthermore, neuronal dysfunction markers including Glu/tCr and NAA/tCr could potentially indicate favorable clinical outcomes. Using MRSI provided spatial information about neural dysfunction in AD, enabling the identification of vulnerabilities in the rDLPFC and PCC within the AD's pathological context.
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Psychiatry, Nara Medical University, Nara, Japan.
| | - Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamasa Maeda
- QST Hospital, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan; Neurology Clinic, Chiba, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan; Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan; Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan; Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
95
|
Just N, Chevillard PM, Batailler M, Dubois JP, Vaudin P, Pillon D, Migaud M. Multiparametric MR Evaluation of the Photoperiodic Regulation of Hypothalamic Structures in Sheep. Neuroscience 2023; 535:142-157. [PMID: 37913859 DOI: 10.1016/j.neuroscience.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Most organisms on earth, humans included, have developed strategies to cope with environmental day-night and seasonal cycles to survive. For most of them, their physiological and behavioral functions, including the reproductive function, are synchronized with the annual changes of day length, to ensure winter survival and subsequent reproductive success in the following spring. Sheep are sensitive to photoperiod, which also regulates natural adult neurogenesis in their hypothalamus. We postulate that the ovine model represents a good alternative to study the functional and metabolic changes occurring in response to photoperiodic changes in hypothalamic structures of the brain. Here, the impact of the photoperiod on the neurovascular coupling and the metabolism of the hypothalamic structures was investigated at 3T using BOLD fMRI, perfusion-MRI and proton magnetic resonance spectroscopy (1H-MRS). A longitudinal study involving 8 ewes was conducted during long days (LD) and short days (SD) revealing significant BOLD, rCBV and metabolic changes in hypothalamic structures of the ewe brain between LD and SD. More specifically, the transition between LD and SD revealed negative BOLD responses to hypercapnia at the beginning of SD period followed by significant increases in BOLD, rCBV, Glx and tNAA concentrations towards the end of the SD period. These observations suggest longitudinal mechanisms promoting the proliferation and differentiation of neural stem cells within the hypothalamic niche of breeding ewes. We conclude that multiparametric MRI studies including 1H-MRS could be promising non-invasive translational techniques to investigate the existence of natural adult neurogenesis in-vivo in gyrencephalic brains.
Collapse
Affiliation(s)
- Nathalie Just
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France; Danish Research Centre for Magnetic Resonance (DRCMR), Hvidovre, Denmark.
| | - Pierre Marie Chevillard
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Batailler
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Jean-Philippe Dubois
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Pascal Vaudin
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Delphine Pillon
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Migaud
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| |
Collapse
|
96
|
Davies-Jenkins CW, Döring A, Fasano F, Kleban E, Mueller L, Evans CJ, Afzali M, Jones DK, Ronen I, Branzoli F, Tax CMW. Practical considerations of diffusion-weighted MRS with ultra-strong diffusion gradients. Front Neurosci 2023; 17:1258408. [PMID: 38144210 PMCID: PMC10740196 DOI: 10.3389/fnins.2023.1258408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) offers improved cellular specificity to microstructure-compared to water-based methods alone-but spatial resolution and SNR is severely reduced and slow-diffusing metabolites necessitate higher b-values to accurately characterize their diffusion properties. Ultra-strong gradients allow access to higher b-values per-unit time, higher SNR for a given b-value, and shorter diffusion times, but introduce additional challenges such as eddy-current artefacts, gradient non-uniformity, and mechanical vibrations. Methods In this work, we present initial DW-MRS data acquired on a 3T Siemens Connectom scanner equipped with ultra-strong (300 mT/m) gradients. We explore the practical issues associated with this manner of acquisition, the steps that may be taken to mitigate their impact on the data, and the potential benefits of ultra-strong gradients for DW-MRS. An in-house DW-PRESS sequence and data processing pipeline were developed to mitigate the impact of these confounds. The interaction of TE, b-value, and maximum gradient amplitude was investigated using simulations and pilot data, whereby maximum gradient amplitude was restricted. Furthermore, two DW-MRS voxels in grey and white matter were acquired using ultra-strong gradients and high b-values. Results Simulations suggest T2-based SNR gains that are experimentally confirmed. Ultra-strong gradient acquisitions exhibit similar artefact profiles to those of lower gradient amplitude, suggesting adequate performance of artefact mitigation strategies. Gradient field non-uniformity influenced ADC estimates by up to 4% when left uncorrected. ADC and Kurtosis estimates for tNAA, tCho, and tCr align with previously published literature. Discussion In conclusion, we successfully implemented acquisition and data processing strategies for ultra-strong gradient DW-MRS and results indicate that confounding effects of the strong gradient system can be ameliorated, while achieving shorter diffusion times and improved metabolite SNR.
Collapse
Affiliation(s)
- Christopher W. Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - André Döring
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- CIBM Center for Biomedical Imaging, EPFL CIBM-AIT, EPFL Lausanne, Lausanne, Switzerland
| | - Fabrizio Fasano
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Siemens Healthcare Ltd., Camberly, United Kingdom
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Department of Radiology, Universität Bern, Bern, Switzerland
| | - Lars Mueller
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - C. John Evans
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Maryam Afzali
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Itamar Ronen
- Clinical Sciences Institue, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Francesca Branzoli
- Center for NeuroImaging Research (CENIR), Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France
- Inserm U1127, CNRS U7225, Sorbonne Universités, Paris, France
| | - Chantal M. W. Tax
- Brain Research Imaging Centre, School Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
97
|
Ungan G, Arús C, Vellido A, Julià-Sapé M. A comparison of non-negative matrix underapproximation methods for the decomposition of magnetic resonance spectroscopy data from human brain tumors. NMR IN BIOMEDICINE 2023; 36:e5020. [PMID: 37582395 DOI: 10.1002/nbm.5020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Magnetic resonance spectroscopy (MRS) is an MR technique that provides information about the biochemistry of tissues in a noninvasive way. MRS has been widely used for the study of brain tumors, both preoperatively and during follow-up. In this study, we investigated the performance of a range of variants of unsupervised matrix factorization methods of the non-negative matrix underapproximation (NMU) family, namely, sparse NMU, global NMU, and recursive NMU, and compared them with convex non-negative matrix factorization (C-NMF), which has previously shown a good performance on brain tumor diagnostic support problems using MRS data. The purpose of the investigation was 2-fold: first, to ascertain the differences among the sources extracted by these methods; and second, to compare the influence of each method in the diagnostic accuracy of the classification of brain tumors, using them as feature extractors. We discovered that, first, NMU variants found meaningful sources in terms of biological interpretability, but representing parts of the spectrum, in contrast to C-NMF; and second, that NMU methods achieved better classification accuracy than C-NMF for the classification tasks when one class was not meningioma.
Collapse
Affiliation(s)
- Gulnur Ungan
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alfredo Vellido
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- IDEAI-UPC Intelligent Data Science and Artificial Intelligence Research Center, Universitat Politècnica de Catalunya (UPC) BarcelonaTech, Barcelona, Spain
| | - Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
98
|
Rizzo R, Kreis R. Multi-echo single-shot spectroscopy combined with simultaneous 2D model fitting for fast and accurate measurement of metabolite-specific concentrations and T 2 relaxation times. NMR IN BIOMEDICINE 2023; 36:e5016. [PMID: 37587062 DOI: 10.1002/nbm.5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
The purpose of the current study was to develop a novel single-voxel MR spectroscopy acquisition scheme to simultaneously determine metabolite-specific concentrations and transverse relaxation times within realistic clinical scan times. Partly truncated multi-TE data are acquired as an echo train in a single acquisition (multi-echo single-shot [MESS]). A 2D multiparametric model fitting approach combines truncated, low-resolved short TE data with fully sampled, highly resolved, longer TE data to yield concentration and T2 estimates for major brain metabolites simultaneously. Cramer-Rao lower bounds (CRLB) are used as a measure of performance. The novel scheme was compared with traditional multi-echo multi-shot methods. In silico, in vitro, and in vivo experiments support the findings. MESS schemes, requiring only 2 min 12 s for the acquisition of three echo times, provide valid concentration and relaxation estimates for multiple metabolites and outperform traditional methods for simultaneous determinations of metabolite-specific T2 s and concentrations, with improvements ranging from 5% to 30% for T2 s and from 10% to 50% for concentrations. However, substantial unsuppressed residual water signals may hamper the method's reproducibility, as observed in an initial experiment setup that prioritizes short TEs with severely truncated acquisition for the benefit of signal-to-noise ratio (SNR). Nevertheless, CRLB have been confirmed to be well suited as design criteria, and within-session repeatability approaches CRLB when residual water is removed in postprocessing by exploiting longer and less truncated data recordings. MESS MRS combined with 2D model fitting promises comparable accuracy, increased precision, or inversely shorter experimental times compared with traditional approaches. However, the optimal design must be investigated as a trade-off between SNR, the truncation factor, and TE batch selections, all of which influence the robustness of estimations.
Collapse
Affiliation(s)
- Rudy Rizzo
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel), Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel), Bern, Switzerland
| |
Collapse
|
99
|
Pan JW, Terpstra MJ, Moon CH, Hetherington HP. Map-based B 0 shimming for single voxel brain spectroscopy at 7T. NMR IN BIOMEDICINE 2023; 36:e5021. [PMID: 37586403 PMCID: PMC12056978 DOI: 10.1002/nbm.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
While B0 shimming is an important requirement for in vivo brain spectroscopy, for single voxel spectroscopy (SVS), the role for advanced shim methods has been questioned. Specifically, with the small spatial dimensions of the voxel, the extent to which inhomogeneities higher than second order exist and the ability of higher order shims to correct them is controversial. To assess this, we acquired SVS from two loci of neurophysiological interest, the rostral prefrontal cortex (rPFC; 8 cc) and hippocampus (Hc; 9 cc). The rPFC voxel was placed using SUsceptibility Managed Optimization (SUMO) and an initial B0 map that covers the entire cerebrum to cerebellum. In each location, we compared map-based shimming (Bolero) with projection-based shimming (FAST(EST)MAP). We also compared vendor-provided spherical harmonic first- and second-order shims with additional third- and fourth-order shim hardware. The 7T SVS acquisition used stimulated echo acquisition mode (STEAM) TR/TM/TE of 6 s/20 ms/8 ms, a tissue water acquisition for concentration reference, and LCModel for spectral analysis. In the rPFC (n = 7 subjects), Bolero shimming with first- and second-order shims reduced the residual inhomogeneity σ B 0 from 9.8 ± 4.5 Hz with FAST(EST)MAP to 6.5 ± 2.0 Hz. The addition of third- and fourth-order shims further reduced σ B 0 to 4.0 ± 0.8 Hz. In the Hc (n = 7 subjects), FAST(EST)MAP, Bolero with first- and second-order shims, and Bolero with first- to fourth-order shims achieved σ B 0 values of 8.6 ± 1.9, 5.6 ± 1.0, and 4.6 ± 0.9 Hz, respectively. The spectral linewidth,Δ v σ B 0 , was estimated with a Voigt lineshape using σ B 0 and T2 = 130 ms.Δ v σ B 0 significantly correlated with the Cramer-Rao lower bounds and concentrations of several metabolites, including glutamate and glutamine in the rPFC. In both loci, if the B0 distribution is well described by a Gaussian model, the variance of the metabolite concentrations is reduced, consistent with the LCModel fit based on a unimodal lineshape. Overall, the use of the high order and map-based B0 shim methods improved the accuracy and consistency of spectroscopic data.
Collapse
Affiliation(s)
- Jullie W. Pan
- Department Radiology, University of Missouri Columbia, Columbia, Missouri, USA
| | - Melissa J. Terpstra
- Department Radiology, University of Missouri Columbia, Columbia, Missouri, USA
- Chemical and Biomedical Engineering, University of Missouri Columbia, Columbia, Missouri, USA
| | - Chan-Hong Moon
- Department Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hoby P. Hetherington
- Department Radiology, University of Missouri Columbia, Columbia, Missouri, USA
- Resonance Research Inc., Billerica, Massachusetts, USA
| |
Collapse
|
100
|
Wong A. High-resolution magic-angle spinning NMR metabolic profiling with spatially localized spectroscopy under slow sample spinning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6302-6308. [PMID: 37965882 DOI: 10.1039/d3ay01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Owing to its feasibility and versatility, High-Resolution Magic-Angle Spinning (HRMAS) NMR spectroscopy is considered an essential analytical technique in metabolomics for assessing the biochemical composition of tissue samples. Localized profiling with HRMAS has recently emerged and shown promise for spatial resolution of metabolic profiles within the sampling tissues. However, the requisite sample spinning in a few kHz can perturb the tissues spatially and morphologically. This study explored a simple approach to slow sample spinning experiments at 500 Hz without needing pulse-assist sideband suppression experiments to acquire localized spectral data. Slow-spinning localized one-and two-dimensional spectroscopy, including Total Correlation Spectroscopy (TOCSY), were explored on soft tissues for metabolic profiling. We also examined inhomogeneous radiofrequency B1 field distribution across the sampling volume, which can affect the quantification analysis.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|