51
|
Rebouças JS, DeFreitas-Silva G, Spasojević I, Idemori YM, Benov L, Batinić-Haberle I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radic Biol Med 2008; 45:201-10. [PMID: 18457677 PMCID: PMC2614336 DOI: 10.1016/j.freeradbiomed.2008.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/03/2008] [Accepted: 04/05/2008] [Indexed: 01/11/2023]
Abstract
Understanding the factors that determine the ability of Mn porphyrins to scavenge reactive species is essential for tuning their in vivo efficacy. We present herein the revised structure-activity relationships accounting for the critical importance of electrostatics in the Mn porphyrin-based redox modulation systems and show that the design of effective SOD mimics (per se) based on anionic porphyrins is greatly hindered by inappropriate electrostatics. A new strategy for the beta-octabromination of the prototypical anionic Mn porphyrins Mn(III) meso-tetrakis(p-carboxylatophenyl)porphyrin ([Mn(III)TCPP](3-) or MnTBAP(3-)) and Mn(III) meso-tetrakis(p-sulfonatophenyl)porphyrin ([Mn(III)TSPP](3-)), to yield the corresponding anionic analogues [Mn(III)Br(8)TCPP](3-) and [Mn(III)Br(8)TSPP](3-), respectively, is described along with characterization data, stability studies, and their ability to substitute for SOD in SOD-deficient Escherichia coli. Despite the Mn(III)/Mn(II) reduction potential of [Mn(III)Br(8)TCPP](3-) and [Mn(III)Br(8)TSPP](3-) being close to the SOD-enzyme optimum and nearly identical to that of the cationic Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (Mn(III)TM-2-PyP(5+)), the SOD activity of both anionic brominated porphyrins ([Mn(III)Br(8)TCPP](3-), E(1/2)=+213 mV vs NHE, log k(cat)=5.07; [Mn(III)Br(8)TSPP](3-), E(1/2)=+209 mV, log k(cat)=5.56) is considerably lower than that of Mn(III)TM-2-PyP(5+) (E(1/2)=+220 mV, log k(cat)=7.79). This illustrates the impact of electrostatic guidance of O(2)(-) toward the metal center of the mimic. With low k(cat), the [Mn(III)TCPP](3-), [Mn(III)TSPP](3-), and [Mn(III)Br(8)TCPP](3-) did not rescue SOD-deficient E. coli. The striking ability of [Mn(III)Br(8)TSPP](3-) to substitute for the SOD enzymes in the E. coli model does not correlate with its log k(cat). In fact, the protectiveness of [Mn(III)Br(8)TSPP](3-) is comparable to or better than that of the potent SOD mimic Mn(III)TM-2-PyP(5+), even though the dismutation rate constant of the anionic complex is 170-fold smaller. Analyses of the medium and E. coli cell extract revealed that the major species in the [Mn(III)Br(8)TSPP](3-) system is not the Mn complex, but the free-base porphyrin [H(2)Br(8)TSPP](4-) instead. Control experiments with extracellular MnCl(2) showed the lack of E. coli protection, indicating that "free" Mn(2+) cannot enter the cell to a significant extent. We proposed herein the alternative mechanism where a labile Mn porphyrin [Mn(III)Br(8)TSPP](3-) is not an SOD mimic per se but carries Mn into the E. coli cell.
Collapse
Affiliation(s)
- Júlio S. Rebouças
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| | - Gilson DeFreitas-Silva
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ivan Spasojević
- Department of Medicine, Duke University Medical School, Durham, NC 27710, USA
| | - Ynara M. Idemori
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat, 13110, Kuwait
| | - Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| |
Collapse
|
52
|
Co-regulation of constitutive nitric oxide synthases and NADPH oxidase by the small GTPase Rac. FEBS Lett 2008; 582:2195-202. [PMID: 18501711 DOI: 10.1016/j.febslet.2008.04.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/23/2008] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO), generated by NO synthases (NOSs), has multifarious roles in signal transduction. Reactive oxygen species (ROS), generated by ubiquitous NADPH oxidases (NOXs), also participate in cellular signaling. However, the coordination of signals conveyed by NO and ROS is poorly understood. We show that the small GTPase Rac, a component of some NOXs, also interacts with and regulates the constitutively-expressed NOSs. Cellular NO and O(2)(-) production increase or decrease together following activation or inhibition of Rac, and Rac inhibition reveals transduction mechanisms that depend upon NO (vasodilation), ROS (actin polymerization) or both (cytoskeletal organization). Thus, signaling by NO and ROS may be coordinated through a common control element.
Collapse
|
53
|
Rebouças JS, Spasojević I, Tjahjono DH, Richaud A, Méndez F, Benov L, Batinić-Haberle I. Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: the effect of charge distribution. Dalton Trans 2008:1233-42. [PMID: 18283384 DOI: 10.1039/b716517j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We evaluate herein the impact of positive charge distribution on the in vitro and in vivo properties of Mn porphyrins as redox modulators possessing the same overall 5+ charge and of minimal stericity demand: Mn(III) meso-tetrakis(trimethylanilinium-4-yl)porphyrin (MnTTriMAP(5+)), Mn(III) meso-tetrakis(N,N'-dimethylpyrazolium-4-yl)porphyrin (MnTDM-4-PzP(5+)), Mn(III) meso-tetrakis(N,N'-dimethylimidazolium-2-yl)porphyrin (MnTDM-2-ImP(5+)), and the ortho and para methylpyridinium complexes Mn(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (MnTM-4-PyP(5+)) and Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (MnTM-2-PyP(5+)). Both Mn(III)/Mn(II) reduction potential and SOD activity within the series follow the order: MnTTriMAP(5+)<MnTDM-4-PzP(5+)<MnTM-4-PyP(5+)<MnTM-2-PyP(5+)<MnTDM-2-ImP(5+). The kinetic salt effect (KSE) on the catalytic rate constant for superoxide dismutation (k(cat)) indicates that the electrostatic contribution to the O(2)*(-) dismutation is the greatest with MnTM-2-PyP(5+) and follows the order: MnTM-4-PyP(5+)<MnTDM-4-PzP(5+) approximately MnTDM-2-ImP(5+)<MnTM-2-PyP(5+). The KSE observed on k(cat) suggests that the charges are relatively confined within specific regions of the aryl rings. Whereas the charges in imidazolium, pyrazolium, and MnTM-4-PyP(5+) compounds are distributed in-plane with the porphyrin ring, the charges of MnTM-2-PyP(5+) are either above or below the plane, which channels the negatively-charged superoxide toward the axial positions of the Mn porphyrin more efficiently, and leads to the highest KSE. This mimics the tunneling effect observed in the SOD enzymes themselves. The modulation of the reactivity of the Mn center by the electronic perturbations caused by the meso-aryl substituent could be explained by DFT calculation, whereby a correlation between the Mn(III)/Mn(II) reduction potential (and/or SOD activity) and meso-aryl fragment softness descriptors for nucleophilic (s(f)(+)) and radical (s(f)(o)) attacks was observed. MnTDM-4-PzP(5+) and MnTM-4-PyP(5+) did not protect SOD-deficient E. coli grown aerobically, which is in agreement with their low k(cat). MnTM-2-PyP(5+) and MnTDM-2-ImP(5+) have similar high k(cat), but MnTDM-2-ImP(5+) was significantly less protective to E. coli, probably due to its bulkier size, decreased cellular uptake, and/or observed toxicity. The placement of charges closer to the metal center and spatial charge localization increases both the in vitro and the in vivo SOD activity of the compound.
Collapse
Affiliation(s)
- Júlio S Rebouças
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Kitamura Y, Mori K, Yamamoto M, Nozaki A, Saito M, Tsukamoto I, Mifune M, Saito Y. Peroxidase-Like Catalytic Activity of Aqueous- and Immobilized-Mn3+-octabromo-porphyrins on Ion-Exchange Resin Supplied as Mimetic of Horseradish Peroxidase. Chem Pharm Bull (Tokyo) 2008; 56:1364-6. [DOI: 10.1248/cpb.56.1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Youji Kitamura
- Department of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University
| | - Katsuya Mori
- Department of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University
| | - Makiko Yamamoto
- Department of Pharmaceutical Chemistry, Graduate School of Natural Science and Technology, Okayama Universi-ty
| | - Akira Nozaki
- Department of Pharmaceutical Chemistry, Graduate School of Natural Science and Technology, Okayama Universi-ty
| | - Madoka Saito
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | | | - Masaki Mifune
- Department of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yutaka Saito
- Department of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
55
|
Samaroo D, Vinodu M, Chen X, Drain CM. meso-Tetra(pentafluorophenyl)porphyrin as an efficient platform for combinatorial synthesis and the selection of new photodynamic therapeutics using a cancer cell line. JOURNAL OF COMBINATORIAL CHEMISTRY 2007; 9:998-1011. [PMID: 17877415 PMCID: PMC2535813 DOI: 10.1021/cc070067j] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four para fluoro groups on 5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (TPPF20) are known to react with a variety of nucleophiles, but the reaction conditions for this substitution reaction depend on the nature of the nucleophiles, e.g. primary amines versus thiols. Glycosylated derivatives of this core porphyrin have been shown to be effective photodynamic agents in the induction of necrosis or apoptosis in several cancer cell lines. The present report demonstrates that TPPF20 can be used as a core platform to efficiently generate a variety of solution-phase combinatorial libraries. The focused combinatorial libraries have substituents that are chosen from a set of motifs known to bind biopolymers such as DNA, be taken up by cancer cells, or to render the compounds amphipathic. Incubation of a breast cancer cell line with these solution-phase libraries, followed by cell lyses and extraction, affords a selection assay. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the extracts allows identification of the molecules taken up by the cells. Cell binding assays of the winning compounds synthesized directly indicate that both glycosylation and amphipathicity are key properties since neither tetraglycosylated porphyrins nor those with four polar groups are selected to the same extent. In addition, photodynamic efficacy was evaluated.
Collapse
Affiliation(s)
- Diana Samaroo
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10021
| | - Mikki Vinodu
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10021
| | - Xin Chen
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10021
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10021
- The Rockefeller University, 1230 York Avenue, New York, NY 10021
| |
Collapse
|
56
|
Cisnetti F, Lefèvre AS, Guillot R, Lambert F, Blain G, Anxolabéhère-Mallart E, Policar C. A New Pentadentate Ligand Forms Both a Di- and a Mononuclear MnII Complex: Electrochemical, Spectroscopic and Superoxide Dismutase Activity Studies. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601236] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
57
|
Renner MW, Bochot C, Héroux A, Mansuy D, Battioni P. Structural, Electrochemical, and Spectroscopic Properties of a Class of Dodecasubstituted Iron Porphyrins Bearing Four Positive Charges Close to the Metal. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark W. Renner
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Building 555, Upton, NY 11973‐5000, USA
| | - Constance Bochot
- UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris 5 45 rue des Saints‐Pères, 75270 Paris Cedex 06, France
| | - Annie Héroux
- Biology Department, Brookhaven National Laboratory Upton, NY 11973‐5000, USA
| | - Daniel Mansuy
- UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris 5 45 rue des Saints‐Pères, 75270 Paris Cedex 06, France
| | - Pierrette Battioni
- UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris 5 45 rue des Saints‐Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
58
|
Cyclohexane hydroxylation by iodosylbenzene and iodobenzene diacetate catalyzed by a new β-octahalogenated Mn–porphyrin complex: The effect of meso-3-pyridyl substituents. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcata.2006.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Sharma SS, Gupta S. Neuroprotective effect of MnTMPyP, a superoxide dismutase/catalase mimetic in global cerebral ischemia is mediated through reduction of oxidative stress and DNA fragmentation. Eur J Pharmacol 2007; 561:72-9. [PMID: 17320858 DOI: 10.1016/j.ejphar.2006.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 12/18/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
Excessive generation of free radicals and decreased levels of the antioxidant enzymes such as superoxide dismutase (SOD) and catalase have been observed after brain ischemic reperfusion injury. In the present study, we have investigated the neuroprotective potential of MnTMPyP (Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride), a SOD/Catalase mimetic in bilateral carotid artery occlusion model of global cerebral ischemia in Mongolian gerbils. Five minutes of bilateral carotid artery occlusion produced global cerebral ischemia, which was evident from the neurological deficits, spontaneous motor activity and the decrease in the number of viable hippocampal CA1 neurons. Global ischemia was also associated with increased levels of malondialdehyde, decreased levels of SOD and catalase, and increased TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) positive cells, indicating oxidative stress and DNA fragmentation. Administration of a single dose of MnTMPyP, 1 mg/kg i.p. (30 min before occlusion), produced no significant neuroprotection; however, 3 mg/kg i.p. (30 min before to occlusion) produced significant reduction in neurological score, spontaneous motor activity and CA1 pyramidal neuronal damage. MnTMPyP also attenuated the increased levels of malondialdehyde and improved the levels of SOD and catalase, and inhibited DNA fragmentation in the ischemic animals. Multiple administration of MnTMPyP, 3 mg/kg i.p. (three times: 30 min before, 1 h and 3 h after occlusion), produced better neuroprotection as compared to single dose administration. This study demonstrates that the neuroprotective effect of MnTMPyP in global ischemia is mediated through reduction in oxidative stress and DNA fragmentation.
Collapse
Affiliation(s)
- Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar (Mohali), Punjab-160062, India.
| | | |
Collapse
|
60
|
Krasowska A, Piasecki A, Polinceusz A, Prescha A, Sigler K. Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast. Folia Microbiol (Praha) 2006; 51:99-107. [PMID: 16821718 DOI: 10.1007/bf02932163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilic 3-(alkanoylamino)propyldimethylamine-N-oxides with different length of the alkyl chain, i.e. different hydrophilic-lipophilic balance, act in micromolar concentrations as SOD mimics by lifting the inhibition of aerobic growth caused by SOD deletions in Saccharomyces cerevisiae. They also enhance the survival of sod mutants of S. cerevisiae exposed to the hydrophilic superoxide-generating prooxidant paraquat and the amphiphilic hydroperoxide-producing tert-butylhydroperoxide (TBHP), and largely prevent TBHP-induced peroxidation of isolated yeast plasma membrane lipids. Unlike the SOD-mimicking effect, the magnitude of these effects depends on the alkyl chain length of the amine-N-oxides, which incorporate into S. cerevisiae membranes, causing fluidity changes in both the hydrophilic surface part of the membrane and the membrane lipid matrix. Unlike wild-type strains, the membranes of sod mutants were found to contain polyunsaturated fatty acids; the sensitivity of the mutants to lipophilic pro-oxidants was found to increase with increasing content of these acids. sod mutants are useful in assessing pro- and antioxidant properties of different compounds.
Collapse
Affiliation(s)
- A Krasowska
- Institute of Genetics and Microbiology, Wrocław University, 51-148 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
61
|
Mifune M, Kawata K, Tanaka K, Kitamura Y, Tsukamoto I, Saito M, Haginaka J, Saito Y. HPLC Retention Behaviors of Poly-aromatic-hydrocarbones on Cu(II)-octabromotetrakis(4-carboxyphenyl)porphine Derivatives-Immobilized Aminopropyl Silica Gels in Polar and Non-Polar Eluents. Chem Pharm Bull (Tokyo) 2006; 54:94-8. [PMID: 16394557 DOI: 10.1248/cpb.54.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As one of approaches of developing novel HPLC stationary phases, we prepared Cu-octabromotetrakis(4-carboxyphenyl)porphine derivative-immobilized silica gels (Cu-OBTCPP(D)), and evaluated the availability of the resultant Cu-OBTCPP(D) as a stationary phase for separation of poly-aromatic-hydrocarbons (PAHs) and their related compounds. A Cu-OBTCPP(D) column was revealed to have an ability to separate simple PAHs and be useful as a stationary phase in both polar and non-polar eluents. The retention property of the Cu-OBTCPP(D) column was evaluated in various comparative experiments using commercially available columns. In comparison with 2-(1-pyrenyl)ethyl dimetylsilyl silica gel column (PYE column) regarding the retention behavior for PAHs etc., the Cu-OBTCPP(D) column showed stronger interactions involving pi electron in non-polar eluent than PYE column. In comparison with a pentabromobenzyloxy propylsilyl silica gel column (PBB column) regarding the influence of bromination, the Cu-OBTCPP(D) column was affected differently from the PBB column. In comparison with nitrophenylethyl silica gel column (NPE column) regarding the retention behavior for compounds having a dipole in a non-polar eluent, the Cu-OBTCPP(D) column showed electrostatic interactions such as dipole-dipole interaction equivalent to or larger than the NPE column.
Collapse
Affiliation(s)
- Masaki Mifune
- Department of Pharmaceutical Sciences, Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Batinić-Haberle I, Spasojević I, Stevens RD, Bondurant B, Okado-Matsumoto A, Fridovich I, Vujasković Z, Dewhirst MW. New PEG-ylated Mn(iii) porphyrins approaching catalytic activity of SOD enzyme. Dalton Trans 2006:617-24. [PMID: 16402149 DOI: 10.1039/b513761f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two new tri(ethyleneglycol)-derivatized Mn(III) porphyrins were synthesized with the aim of increasing their bioavailability, and blood-circulating half-life. These are Mn(III) tetrakis(N-(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl)porphyrin, MnTTEG-2-PyP5+ and Mn(III) tetrakis(N,N'-di(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)imidazolium-2-yl)porphyrin, MnTDTEG-2-ImP5+. Both porphyrins have ortho pyridyl or di-ortho imidazolyl electron-withdrawing substituents at meso positions of the porphyrin ring that assure highly positive metal centered redox potentials, E1/2 = +250 mV vs. NHE for MnTTEG-2-PyP5+ and E1/2 = + 412 mV vs. NHE for MnTDTEG-2-ImP5+. As expected, from established E1/2 vs. log kcat(O2 *-) structure-activity relationships for metalloporphyrins (Batinic-Haberle et al., Inorg. Chem., 1999, 38, 4011), both compounds exhibit higher SOD-like activity than any meso-substituted Mn(III) porphyrins-based SOD mimic thus far, log kcat = 8.11 (MnTTEG-2-PyP5+) and log kcat = 8.55 (MnTDTEG-2-ImP5+), the former being only a few-fold less potent in disproportionating O2*- than the SOD enzyme itself. The new porphyrins are stable to both acid and EDTA, and non toxic to E. coli. Despite elongated substituents, which could potentially lower their ability to cross the cell wall, MnTTEG-2-PyP5+ and MnTDTEG-2-ImP5+ exhibit similar protection of SOD-deficient E. coli as their much smaller ethyl analogues MnTE-2-PyP5+ and MnTDE-2-ImP5+, respectively. Consequently, with anticipated increased blood-circulating half-life, these new Mn(III) porphyrins may be more effective in ameliorating oxidative stress injuries than ethyl analogues that have been already successfully explored in vivo.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang HY, Priyadarsini KI. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic Biol Med 2005; 39:811-22. [PMID: 16109310 DOI: 10.1016/j.freeradbiomed.2005.05.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.
Collapse
Affiliation(s)
- Atanu Barik
- Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Tauskela JS, Brunette E, O'Reilly N, Mealing G, Comas T, Gendron TF, Monette R, Morley P. An alternative Ca2+‐dependent mechanism of neuroprotection by the metalloporphyrin class of superoxide dismutase mimetics. FASEB J 2005; 19:1734-6. [PMID: 16081500 DOI: 10.1096/fj.05-3795fje] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study challenges the conventional view that metalloporphyrins protect cultured cortical neurons in models of cerebral ischemia by acting as intracellular catalytic antioxidants [superoxide dismutase (SOD) mimetics]. High SOD-active Mn(III)porphyrins meso-substituted with N,N'-dimethylimidazolium or N-alkylpyridinium groups did not protect neurons against oxygen-glucose deprivation (OGD), although lower SOD-active and -inactive para isomers protected against N-methyl-D-aspartate (NMDA) exposure. Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP), as well as SOD-inactive metalloTBAPs and other phenyl ring- or beta-substituted metalloporphyrins that contained redox-insensitive metals, protected cultures against OGD and NMDA neurotoxicity. Crucially, neuroprotective metalloporphyrins suppressed OGD- or NMDA-induced rises in intracellular Ca2+ concentration in the same general rank order as observed for neuroprotection. Results from paraquat toxicity, intracellular fluorescence quenching, electrophysiology, mitochondrial Ca2+, and spontaneous synaptic activity experiments suggest a model in which metalloporphyrins, acting at the plasma membrane, protect neurons against OGD by suppressing postsynaptic NMDA receptor-mediated Ca2+ rises, thereby indirectly preventing accumulation of neurotoxic mitochondrial Ca2+ levels. Though neuroprotective in a manner not originally intended, SOD-inactive metalloporphyrins may represent promising therapeutic agents in diseases such as cerebral ischemia, in which Ca2+ toxicity is implicated. Conventional syntheses aimed at improving the catalytic antioxidant capability and/or intracellular access of metalloporphyrins may not yield improved efficacy in some disease models.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Pathophysiology Group, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Lee JH, Lee YM, Park JW. Regulation of ionizing radiation-induced apoptosis by a manganese porphyrin complex. Biochem Biophys Res Commun 2005; 334:298-305. [PMID: 16002045 DOI: 10.1016/j.bbrc.2005.06.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 11/19/2022]
Abstract
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Jin Hyup Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | | | | |
Collapse
|
66
|
do Nascimento E, de F Silva G, Caetano FA, Fernandes MAM, da Silva DC, de Carvalho MEMD, Pernaut JM, Rebouças JS, Idemori YM. Partially and fully β-brominated Mn-porphyrins in P450 biomimetic systems: Effects of the degree of bromination on electrochemical and catalytic properties. J Inorg Biochem 2005; 99:1193-204. [PMID: 15833343 DOI: 10.1016/j.jinorgbio.2005.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 02/18/2005] [Accepted: 02/19/2005] [Indexed: 10/25/2022]
Abstract
Beta-hexabromo-5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatomanganese(III) chloride (Mn(III)(Br6TCMPP)Cl) was prepared by selective Br2-hexabromation of its parent non-brominated manganese complex (Mn(III)(TCMPP)Cl), whereas the octabrominated analogue beta-octabromo-5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatomanganese(III) chloride (Mn(III)(Br8TCMPP)Cl) was synthesized via metallation of the corresponding free-base. Beta-octabromo-5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrin was obtained by demetallation of its brominated Cu(II) derivative, which, in its turn, was prepared by either a Br2 or an N-bromosuccinimide protocol. Relative to Mn(III)(TCMPP)Cl (E(1/2) = -0.16 V vs. normal hydrogen electrode, CH2Cl2), the Mn(III)/Mn(II) reduction potential of Mn(III)(Br8TCMPP)Cl and Mn(III)(Br6TCMPP)Cl showed anodic shifts of 0.43 and 0.33 V, respectively, which corresponded to a linear shift of 0.05 V per bromine added. These manganese complexes were evaluated as cytochrome P450 mimics in catalytic iodosylbenzene (PhIO)-oxidations of cyclohexane and cyclohexene. In aerobic PhIO-oxidation of cyclohexene, epoxidation and allylic autoxidation reactions were inversely related, competitive processes; the most efficient P450-mimics were the least effective autoxidation catalysts. Mn(III)(Br6TCMPP)Cl was more efficient as epoxidation or hydroxylation catalyst than both its fully and non-beta-brominated counterparts were. There was no linear relationship between the catalytic efficiency and both the number of bromine substituents and the Mn(III)/Mn(II) potential; these observations were compared to Lyons system literature data and discussed. Analogously to enzymatic optimum pH effects, an optimum redox potential effect is suggested as relevant in designing and understanding cytochrome P450 biomimetic catalysts.
Collapse
Affiliation(s)
- Eliane do Nascimento
- Departamento de Química--ICEx--Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Motohashi N, Takahashi A, Mifune M, Saito Y. Inhibitory effects of water-soluble cationic manganese porphyrins on peroxynitrite-induced SOS response in Salmonella typhimurium TA4107/pSK1002. Mutat Res 2004; 554:165-74. [PMID: 15450415 DOI: 10.1016/j.mrfmmm.2004.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.
Collapse
Affiliation(s)
- Noriko Motohashi
- Department of Radiopharmacy, Kobe Pharmaceutical University, Higashinda-Ku, Motoyamakita-machi 4-19-1, 658-8558, Japan.
| | | | | | | |
Collapse
|
69
|
Nagami H, Umakoshi H, Shimanouchi T, Kuboi R. Variable SOD-like activity of liposome modified with Mn(II)–porphyrin derivative complex. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2004.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
70
|
Lee JH, Park JW. A manganese porphyrin complex is a novel radiation protector. Free Radic Biol Med 2004; 37:272-83. [PMID: 15203198 DOI: 10.1016/j.freeradbiomed.2004.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Exposure of cells to ionizing radiation leads to formation of reactive oxygen species, which are associated with radiation-induced cytotoxicity. Therefore, compounds that scavenge reactive oxygen species may confer radioprotective effects. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of manganese(III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on radiation-dependent toxicity. We investigated the protective role of MnTMPyP against ionizing radiation in U937 cells and mice. On exposure to ionizing radiation, there was a distinct difference between control cells and cells pretreated with MnTMPyP with respect to viability, cellular redox status, and oxidative damage to cells. Lipid peroxidation, oxidative DNA damage, and protein oxidation were significantly lower in the cells treated with MnTMPyP when the cells were exposed to ionizing radiation. The [GSSG]/[GSH + GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP+ + NADPH] ratio was lower in control cells compared with MnTMPyP-treated cells. Ionizing radiation-induced mitochondrial damage, as reflected by the altered mitochondrial permeability transition, increase in accumulation of reactive oxygen species, reduction of ATP production, and morphological change, was significantly higher in control cells than in MnTMPyP-treated cells. MnTMPyP administration for 14 days at a daily dosage of 5 mg/kg provided substantial protection against killing and oxidative damage in mice exposed to whole-body irradiation. These data indicate that MnTMPyP may have great application potential as a new class of in vivo, non-sulfur-containing radiation protectors.
Collapse
Affiliation(s)
- Jin Hyup Lee
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, South Korea
| | | |
Collapse
|
71
|
Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Neta P, Okado-Matsumoto A, Fridovich I. New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans 2004:1696-702. [PMID: 15252564 DOI: 10.1039/b400818a] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three new Mn(III) porphyrin catalysts of O2.-dismutation (superoxide dismutase mimics), bearing ether oxygen atoms within their side chains, were synthesized and characterized: Mn(III) 5,10,15,20-tetrakis[N-(2-methoxyethyl)pyridinium-2-yl]porphyrin (MnTMOE-2-PyP(5+)), Mn(III)5,10,15,20-tetrakis[N-methyl-N'-(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTM,MOE-2-ImP(5+)) and Mn(III) 5,10,15,20-tetrakis[N,N'-di(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTDMOE-2-ImP(5+)). Their catalytic rate constants for O2.-dismutation (disproportionation) and the related metal-centered redox potentials vs. NHE are: log k(cat)= 8.04 (E(1/2)=+251 mV) for MnTMOE-2-PyP(5+), log k(cat)= 7.98 (E(1/2)=+356 mV) for MnTM,MOE-2-ImP(5+) and log k(cat)= 7.59 (E(1/2)=+365 mV) for MnTDMOE-2-ImP(5+). The new porphyrins were compared to the previously described SOD mimics Mn(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)), Mn(III) 5,10,15,20-tetrakis(N-n-butylpyridinium-2-yl)porphyrin (MnTnBu-2-PyP(5+)) and Mn(III) 5,10,15,20-tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin (MnTDE-2-ImP(5+)). MnTMOE-2-PyP(5+) has side chains of the same length and the same E(1/2), as MnTnBu-2-PyP(5+)(k(cat)= 7.25, E(1/2)=+ 254 mV), yet it is 6-fold more potent a catalyst of O2.-dismutation , presumably due to the presence of the ether oxygen. The log k(cat)vs. E(1/2) relationship for all Mn porphyrin-based SOD mimics thus far studied is discussed. None of the new compounds were toxic to Escherichia coli in the concentration range studied (up to 30 microM), and protected SOD-deficient E. coli in a concentration-dependent manner. At 3 microM levels, the MnTDMOE-2-ImP(5+), bearing an oxygen atom within each of the eight side chains, was the most effective and offered much higher protection than MnTE-2-PyP(5+), while MnTDE-2-ImP(5+) was of very low efficacy.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Kachadourian R, Flaherty MM, Crumbliss AL, Patel M, Day BJ. Synthesis and in vitro antioxidant properties of manganese(III) beta-octabromo-meso-tetrakis(4-carboxyphenyl)porphyrin. J Inorg Biochem 2003; 95:240-8. [PMID: 12818794 DOI: 10.1016/s0162-0134(03)00135-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Manganese(III) meso-tetrakis(4-carboxypheny)porphyrin (MnTBAP) is a readily available and widely used agent to scavenge reactive oxygen species. A major limitation of MnTBAP is its relatively weak potency due to its low metal centered redox potential. The goal of these studies was to prepare a more potent analog of MnTBAP by increasing its redox potential through beta-substitution on the porphyrin ring by bromination. Manganese(III) beta-octabromo-meso-tetrakis(4-carboxyphenyl)porphyrin (MnBr(8)TBAP) was prepared in three steps starting from the methyl ester of the free ligand meso-tetrakis(4-carboxyphenyl)porphyrin, with an overall yield of 50%. The superoxide dismutase (SOD)-like activity of MnBr(8)TBAP (IC(50)=0.7 microM) was the same as manganese(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (MnTM-4-PyP(5+)), while the metal-centered redox potential of the first was considerably higher than the second (E(1/2)=+128 and 0 mV vs. normal hydrogen electrode, respectively). However, a number of these cationic Mn-porphyrins (such as MnTM-4-PyP(5+)) redox-cycle with cytochrome P450 reductase in the presence of oxygen and NADPH whereas MnTBAP and its halogenated analog, MnBr(8)TBAP do not. The enhanced ability of MnBr(8)TBAP to inhibit paraquat- and hypoxia-induced injuries in vitro is also reported. In these in vitro models, in which cationic Mn-porphyrins exhibit very low activity, MnBr(8)TBAP appears to be at least eightfold more active than the non-brominated analog MnTBAP.
Collapse
Affiliation(s)
- Remy Kachadourian
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
73
|
Vajragupta O, Boonchoong P, Sumanont Y, Watanabe H, Wongkrajang Y, Kammasud N. Manganese-based complexes of radical scavengers as neuroprotective agents. Bioorg Med Chem 2003; 11:2329-37. [PMID: 12713845 DOI: 10.1016/s0968-0896(03)00070-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Manganese was incorporated in the structure of the selected antioxidants to mimic the superoxide dismutase (SOD) and to increase radical scavenging ability. Five manganese complexes (1-5) showed potent SOD activity in vitro with IC(50) of 1.18-1.84 microM and action against lipid peroxidation in vitro with IC(50) of 1.97-8.00 microM greater than their ligands and trolox. The manganese complexes were initially tested in vivo at 50 mg/kg for antagonistic activity on methamphetamine (MAP)-induced hypermotility resulting from dopamine release in the mice brain. Only manganese complexes of kojic acid (1) and 7-hydroxyflavone (3) exhibited the significant suppressions on MAP-induced hypermotility and did not significantly decrease the locomotor activity in normal condition. Manganese complex 3 also showed protective effects against learning and memory impairment in transient cerebral ischemic mice. These results supported the brain delivery and the role of manganese in SOD activity as well as in the modulation of brain neurotransmitters in the aberrant condition. Manganese complex 3 from 7-hydroxyflavone was the promising candidate for radical implicated neurodegenerative diseases.
Collapse
Affiliation(s)
- Opa Vajragupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand.
| | | | | | | | | | | |
Collapse
|
74
|
Spasojevic I, Batinic-Haberle I, Reboucas JS, Idemori YM, Fridovich I. Electrostatic contribution in the catalysis of O2*- dismutation by superoxide dismutase mimics. MnIIITE-2-PyP5+ versus MnIIIBr8T-2-PyP+. J Biol Chem 2003; 278:6831-7. [PMID: 12475974 DOI: 10.1074/jbc.m211346200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) is a potent superoxide dismutase (SOD) mimic in vitro and was beneficial in rodent models of oxidative stress pathologies. Its high activity has been ascribed to both the favorable redox potential of its metal center and to the electrostatic facilitation assured by the four positive charges encircling the metal center. Its comparison with the non-alkylated, singly charged analogue Mn(III) beta-octabromo meso-tetrakis(2-pyridyl)porphyrin (Mn(III)Br(8)T-2-PyP(+)) enabled us to evaluate the electrostatic contribution to the catalysis of O(2)() dismutation. Both compounds exhibit nearly identical metal-centered redox potential for Mn(III)/Mn(II) redox couple: +228 mV for Mn(III)TE-2-PyP(5+) and +219 mV versus NHE for Mn(III)Br(8)T-2-PyP(+). The eight electron-withdrawing beta pyrrolic bromines contribute equally to the redox properties of the parent Mn(III)T-2-PyP(+) as do four quaternized cationic meso ortho pyridyl nitrogens. However, the SOD-like activity of the highly charged Mn(III)TE-2-PyP(5+) is >100-fold higher (log k(cat) = 7.76) than that of the singly charged Mn(III)Br(8)T-2-PyP(+) (log k(cat) = 5.63). The kinetic salt effect showed that the catalytic rate constants of the Mn(III)TE-2-PyP(5+) and of its methyl analogue, Mn(III)TM-2-PyP(5+), are exactly 5-fold more sensitive to ionic strength than is the k(cat) of Mn(III)Br(8)T-2-PyP(+), which parallels the charge ratio of these compounds. Interestingly, only a small effect of ionic strength on the rate constant was found in the case of penta-charged para (Mn(III)TM-4-PyP(5+)) and meta isomers (Mn(III)TM-3-PyP(5+)), indicating that the placement of the positive charges in the close proximity of the metal center (ortho position) is essential for the electrostatic facilitation of O(2)() dismutation.
Collapse
Affiliation(s)
- Ivan Spasojevic
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
75
|
Bailey SL, Hambright P. Kinetics of the reactions of divalent copper, zinc, cobalt, and nickel with a deformed water soluble centrally monoprotic porphyrin. Inorganica Chim Acta 2003. [DOI: 10.1016/s0020-1693(02)01323-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Chang LYL, Subramaniam M, Yoder BA, Day BJ, Ellison MC, Sunday ME, Crapo JD. A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2003; 167:57-64. [PMID: 12502477 DOI: 10.1164/rccm.200203-232oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Superoxide anion and other oxygen-free radicals have been implicated in the pathogenesis of bronchopulmonary dysplasia. We tested the hypothesis that a catalytic antioxidant metalloporphyrin AEOL 10113 can protect against hyperoxia-induced lung injury using a fetal baboon model of bronchopulmonary dysplasia. Fetal baboons were delivered by hysterotomy at 140 days of gestation (term = 185 days) and given 100% oxygen for 10 days. Morphometric analysis of alveolar structure showed that fetal baboons on 100% oxygen alone had increased parenchymal mast cells and eosinophils, increased alveolar tissue volume and septal thickness, and decreased alveolar surface area compared with animals given oxygen as needed. Treatment with AEOL 10113 (continuous intravenous infusion) during 100% oxygen exposure partially reversed these oxygen-induced changes. Hyperoxia increased the number of neuroendocrine cells in the peripheral lung, which was preceded by increased levels of urine bombesin-like peptide at 48 hours of age. AEOL 10113 inhibited the hyperoxia-induced increases in urine bombesin-like peptide and numbers of neuroendocrine cells. An increasing trend in oxygenation index over time was observed in the 100% oxygen group but not the mimetic-treated group. These results suggest that AEOL 10113 might reduce the risk of pulmonary oxygen toxicity in prematurely born infants.
Collapse
Affiliation(s)
- Ling-Yi L Chang
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Pérez MJ, Cederbaum AI. Antioxidant and pro-oxidant effects of a manganese porphyrin complex against CYP2E1-dependent toxicity. Free Radic Biol Med 2002; 33:111-27. [PMID: 12086689 DOI: 10.1016/s0891-5849(02)00865-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Superoxide dismutases (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP) on CYP2E1-dependent toxicity. The synergistic toxicity of iron and arachidonic acid has been associated with oxidative stress and lipid peroxidation in HepG2 cells that overexpress CYP2E1. Iron plus arachidonic acid caused loss of viability, increased lipid peroxidation and reactive oxygen species generation, and mitochondrial membrane injury in these cells. MnTMPyP partially protected against the decrease in cell viability, the enhanced lipid peroxidation and oxygen radical production, and the loss of mitochondrial membrane potential. The effect of MnTMPyP on arachidonic acid (absence of iron) toxicity was also evaluated. Arachidonic acid also caused toxicity, lipid peroxidation and reduction of the mitochondrial membrane potential. However, in this model, all of these alterations were actually enhanced by MnTMPyP. MnTMPyP also enhanced toxicity in CYP2E1-expressing HepG2 cells depleted of reduced glutathione (GSH). MnCl(2) had little or no effect on the toxicity by arachidonic acid, and MnTMPyP itself did not peroxidize arachidonic acid. MnTMPyP, an SOD mimetic that also scavenges hydrogen peroxide and peroxynitrite, thus showed an antioxidant and protective effect against iron plus arachidonic acid toxicity, but a pro-oxidant and cytotoxic effect against arachidonic acid toxicity in CYP2E1-expressing cells. These different actions may relate to the ability of MnTMPyP to either scavenge or produce free radicals in cells depending upon the prevailing MnTMPyP oxidation-reduction pathways. MnTMPyP and related manganese porphyrin compounds may have potential clinical utility against diseases associated with the overproduction of reactive oxygen species such as ethanol-induced liver injury but it is clear that further investigation of all the pathways of manganese porphyrin oxidation-reduction are necessary.
Collapse
Affiliation(s)
- María José Pérez
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
78
|
Batinić-Haberle I. Manganese porphyrins and related compounds as mimics of superoxide dismutase. Methods Enzymol 2002; 349:223-33. [PMID: 11912911 DOI: 10.1016/s0076-6879(02)49337-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ines Batinić-Haberle
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
79
|
Ferrer-Sueta G, Quijano C, Alvarez B, Radi R. Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol 2002; 349:23-37. [PMID: 11912912 DOI: 10.1016/s0076-6879(02)49318-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Department of Physical-Chemical Biology, Universidad de la República, 11800 Montevideo, Uruguay
| | | | | | | |
Collapse
|
80
|
Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Fridovich I. Manganese(iii) meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of O2˙− dismutation. ACTA ACUST UNITED AC 2002. [DOI: 10.1039/b201057g] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
81
|
MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM. Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation 2001; 104:2967-74. [PMID: 11739314 DOI: 10.1161/hc4901.100382] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelium-derived nitric oxide (NO) selectively enhances myocardial relaxation. In experimental left ventricular hypertrophy (LVH), this endothelium-dependent LV relaxant response is impaired despite a preserved response to exogenous NO. We investigated the potential role of reactive oxygen species (ROS) in this defect. METHODS AND RESULTS Short-term treatment with the antioxidants vitamin C (10 micromol/L) or deferoxamine (500 micromol/L) restored LV relaxant responses to the NO agonists bradykinin (10 nmol/L) and substance P (100 nmol/L) in isolated ejecting hearts of aortic-banded guinea pigs. Substance P decreased the time to onset of LV relaxation (tdP/dt(min)) by -6.8+/-1.7 ms in the presence of vitamin C and by -8.9+/-2.2 ms in the presence of deferoxamine compared with -0.8+/-2.2 ms in the absence of antioxidants (P<0.05 either antioxidant versus control). A similar restoration of relaxant response to substance P was observed in the presence of the superoxide dismutase mimetic, Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (10 micromol/L), but not with tetrahydrobiopterin or L-arginine. Protein expression of the NADPH oxidase subunits gp91-phox and p67-phox and myocardial NADPH oxidase activity were significantly increased (P<0.05) in the banded group compared with shams. CONCLUSIONS An increase in ROS, most likely derived at least in part from NADPH oxidase, is responsible for the impaired endothelial regulation of LV relaxation in LVH. These are the first data to potentially link increased NADPH oxidase-derived ROS with a defect in cardiac contractile function in a pathological setting.
Collapse
Affiliation(s)
- P A MacCarthy
- Department of Cardiology, Guy's King's and St Thomas' Schools of Medicine and Biomedical Sciences, King's College London, UK
| | | | | | | | | | | |
Collapse
|
82
|
Yu JW, Yoon SS, Yang R. Iron chlorin e6 scavenges hydroxyl radical and protects human endothelial cells against hydrogen peroxide toxicity. Biol Pharm Bull 2001; 24:1053-9. [PMID: 11558568 DOI: 10.1248/bpb.24.1053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron chlorin e6 (FeCe6) has recently been proposed to be potentially antimutagenic and antioxidative. However, the antioxidant property of FeCe6 has not been elucidated in detail. In this study, we investigated the ability of FeCe6 to scavenge hydroxyl radical and to protect biomolecules and mammalian cells from oxidative stress-mediated damage. In electron spin resonance (ESR) experiments, FeCe6 showed excellent hydroxyl radical scavenging activity, whereas its iron-deficient molecule, chlorin e6 (Ce6) showed little effect. FeCe6 also significantly reduced hydroxyl radical-induced thiobarbituric acid reactive substance (TBARS) formation and benzoate hydroxylation in a dose-dependent manner. The rate constant for reaction between FeCe6 and hydroxyl radical was measured as 8.5 x 10(10) M(-1) s(-1) by deoxyribose degradation method, and this value was much higher than that of most hydroxyl radical scavengers. Superoxide dismutase (SOD) activity of FeCe6 was also confirmed by ESR study and cytochrome c reduction assay, but its in vitro activity appeared to be less efficient in comparison with other well-known SOD mimics. In addition, FeCe6 appreciably diminished hydroxyl radical-induced DNA single-strand breakage and protein degradation in Fe-catalyzed and Cu-catalyzed Fenton systems, and it significantly protected human endothelial cells against hydrogen peroxide (H2O2) toxicity. These results suggest that FeCe6 is a novel hydroxyl radical scavenger and may be useful for preventing oxidative injury in biological systems.
Collapse
Affiliation(s)
- J W Yu
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
83
|
Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 2001; 89:224-36. [PMID: 11485972 DOI: 10.1161/hh1501.094365] [Citation(s) in RCA: 396] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evanescent nature of reactive oxygen and nitrogen species, the multiple cellular mechanisms evolved to maintain these substances at low (submicromolar) concentrations within the vascular system, and the often multifaceted nature of their reactivities have made measurement of these compounds within the vasculature problematic. This review attempts to provide a critical description of some of the most common approaches to quantification of nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite, with attention to key issues that may influence the utility of a particular assay when adapted for use in vascular cells and tissues.
Collapse
Affiliation(s)
- M M Tarpey
- Department of Anesthesiology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | |
Collapse
|
84
|
Abstract
Hallervorden-Spatz syndrome is an autosomal-recessive brain disorder with signs of extrapyramidal dysfunction and mental deterioration, which associate with iron accumulation in globus pallidus and substantia nigra pars reticulata. Studies of oxidant stress in parkinsonian animal models suggest a linkage of iron overload to axonal dystrophy. Redox cycling of iron complexes (i.e., ferrous citrate and hemoglobin) increases hydroxyl radicals, lipid peroxidation, axonal dystrophy, and necrotic or apoptotic cell death. An increase of oxidative stress in the basal ganglia because of redox cycling of iron complexes leads to dopamine overflow and psychomotor dysfunction. Iron overload-induced axonal dystrophy has been demonstrated consistently using in vitro and in vivo models with a prominent feature of lipid peroxidation. This iron-induced oxidative stress is often accentuated by ascorbate and oxidized glutathione, although it is suppressed by the following antioxidants: S-nitrosoglutathione or nitric oxide, MnSOD mimics, manganese, U-78517F, Trolox, and deferoxamine. Preconditioning induction of stress proteins (i.e., hemeoxygenase-1 and neuronal nitric oxide synthase) and hypothermia therapy suppress the generation of toxic reactive oxygen, lipid, and thiol species evoked by bioactive iron complexes in the brain. Finally, combined antioxidative therapeutics and gene induction procedures may prove to be useful for slowing progressive neurodegeneration caused by iron overload in the brain.
Collapse
Affiliation(s)
- C C Chiueh
- Unit on Neurodegeneration and Neuroprotection, Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1264, USA
| |
Collapse
|
85
|
Abstract
Reactive oxygen species contribute to ischemic brain injury. This study examined whether the porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) reduces oxidative stress and improves outcome from experimental cerebral ischemia. Rats that were subjected to 90 min focal ischemia and 7 d recovery were given MnTE-2-PyP(5+) (or vehicle) intracerebroventricularly 60 min before ischemia, or 5 or 90 min or 6 or 12 hr after reperfusion. Biomarkers of brain oxidative stress were measured at 4 hr after postischemic treatment (5 min or 6 hr). MnTE-2-PyP(5+), given 60 min before ischemia, improved neurologic scores and reduced total infarct size by 70%. MnTE-2-PyP(5+), given 5 or 90 min after reperfusion, reduced infarct size by 70-77% and had no effect on temperature. MnTE-2-PyP(5+) treatment 6 hr after ischemia reduced total infarct volume by 54% (vehicle, 131 +/- 60 mm(3); MnTE-2-PyP(5+), 300 ng, 60 +/- 68 mm(3)). Protection was observed in both cortex and caudoputamen, and neurologic scores were improved. No MnTE-2-PyP(5+) effect was observed if it was given 12 hr after ischemia. MnTE-2-PyP(5+) prevented mitochondrial aconitase inactivation and reduced 8-hydroxy-2'-deoxyguanosine formation when it was given 5 min or 6 hr after ischemia. In mice, MnTE-2-PyP(5+) reduced infarct size and improved neurologic scores when it was given intravenously 5 min after ischemia. There was no effect of 150 or 300 ng of MnTE-2-PyP(5+) pretreatment on selective neuronal necrosis resulting from 10 min forebrain ischemia and 5 d recovery in rats. Administration of a metalloporphyrin catalytic antioxidant had marked neuroprotective effects against focal ischemic insults when it was given up to 6 hr after ischemia. This was associated with decreased postischemic superoxide-mediated oxidative stress.
Collapse
|
86
|
Policar C, Durot S, Lambert F, Cesario M, Ramiandrasoa F, Morgenstern-Badarau I. New MnII Complexes with an N/O Coordination Sphere from TripodalN-Centered Ligands − Characterization from Solid State to Solution and Reaction with Superoxide in Non-Aqueous and Aqueous Media. Eur J Inorg Chem 2001. [DOI: 10.1002/1099-0682(200107)2001:7<1807::aid-ejic1807>3.0.co;2-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
87
|
Manganese(III) complexes with porphyrins and related compounds as catalytic scavengers of superoxide. Inorganica Chim Acta 2001. [DOI: 10.1016/s0020-1693(01)00365-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
88
|
Spasojević I, Batinić-Haberle I, Stevens RD, Hambright P, Thorpe AN, Grodkowski J, Neta P, Fridovich I. Manganese(III) biliverdin IX dimethyl ester: a powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple. Inorg Chem 2001; 40:726-39. [PMID: 11225116 DOI: 10.1021/ic0004986] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A manganese(III) complex of biliverdin IX dimethyl ester, (MnIIIBVDME)2, was prepared and characterized by elemental analysis, UV/vis spectroscopy, cyclic voltammetry, chronocoulometry, electrospray mass spectrometry, freezing-point depression, magnetic susceptibility, and catalytic dismuting of superoxide anion (O2.-). In a dimeric conformation each trivalent manganese is bound to four pyrrolic nitrogens of one biliverdin dimethyl ester molecule and to the enolic oxygen of another molecule. This type of coordination stabilizes the +4 metal oxidation state, whereby the +3/+4 redox cycling of the manganese in aqueous medium was found to be at E1/2 = +0.45 V vs NHE. This potential allows the Mn(III)/Mn(IV) couple to efficiently catalyze the dismutation of O2.- with the catalytic rate constant of kcat = 5.0 x 10(7) M-1 s-1 (concentration calculated per manganese) obtained by cytochrome c assay at pH 7.8 and 25 degrees C. The fifth coordination site of the manganese is occupied by an enolic oxygen, which precludes binding of NO., thus enhancing the specificity of the metal center toward O2.-. For the same reason the (MnIIIBVDME)2 is resistant to attack by H2O2. The compound also proved to be an efficient SOD mimic in vivo, facilitating the aerobic growth of SOD-deficient Escherichia coli.
Collapse
Affiliation(s)
- I Spasojević
- Department of Biochemistry and Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
The rate constant for the reaction of nitric oxide with superoxide virtually assures that peroxynitrite will be formed to some extent in any cell or tissue where both radicals exist simultaneously. The precise biological targets for peroxynitrite and the nature of the modification of those targets vary dramatically depending on their relative concentrations and the rates and duration of peroxynitrite formation. Thus, peroxynitrite may have physiological functions in addition to pathological ones. Peroxynitrite scavenger compounds may prove to be therapeutic by effectively intercepting higher levels of peroxynitrite and thereby preventing injurious oxidative modifications of cellular components. Thiols and thiolates comprise a class of sacrificial scavengers that react with peroxynitrite anion with rate constants ranging from 2 x 10(3) M(-1) s(-1) to 2 x 10(8) M(-1) s(-1), depending on the microenvironment of the thiol. Several Mn and Fe porphyrins have been shown to react quite rapidly with peroxynitrite (10(6) to 10(7) M(-1) s(-1)) and decompose it in a catalytic manner; Mn porphyrins require exogenous reductants for complete cycling whereas Fe porphyrins do not. Sacrificial thiol/thiolate scavengers effectively quench the total oxidative yield of peroxynitrite, whereas the catalytic porphyrins redirect it and can, under some conditions, enhance total nitration and oxidative yield.
Collapse
Affiliation(s)
- J P Crow
- Departments of Anesthesiology, and Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
90
|
Schmidt PJ, Ramos-Gomez M, Culotta VC. A gain of superoxide dismutase (SOD) activity obtained with CCS, the copper metallochaperone for SOD1. J Biol Chem 1999; 274:36952-6. [PMID: 10601249 DOI: 10.1074/jbc.274.52.36952] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The incorporation of copper ions into the cytosolic superoxide dismutase (SOD1) is accomplished in vivo by the action of the copper metallochaperone CCS (copper chaperone for SOD1). Mammalian CCS is comprised of three distinct protein domains, with a central region exhibiting remarkable homology (approximately 50% identity) to SOD1 itself. Conserved in CCS are all the SOD1 zinc binding ligands and three of four histidine copper binding ligands. In CCS the fourth histidine is replaced by an aspartate (Asp(200)). Despite this conservation of sequence between SOD1 and CCS, CCS exhibited no detectable SOD activity. Surprisingly, however, a single D200H mutation, targeting the fourth potential copper ligand in CCS, granted significant superoxide scavenging activity to this metallochaperone that was readily detected with CCS expressed in yeast. This mutation did not inhibit the metallochaperone capacity of CCS, and in fact, D200H CCS appears to represent a bifunctional SOD that can self-activate itself with copper. The aspartate at CCS position 200 is well conserved among mammalian CCS molecules, and we propose that this residue has evolved to preclude deleterious reactions involving copper bound to CCS.
Collapse
Affiliation(s)
- P J Schmidt
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
91
|
Crow JP. Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch Biochem Biophys 1999; 371:41-52. [PMID: 10525288 DOI: 10.1006/abbi.1999.1414] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twelve substituted metalloporphyrins (MPs), some of which have been previously characterized with respect to superoxide dismutase and peroxynitrite decomposing activities, were evaluated for their ability to scavenge peroxynitrite in vitro at 37 degrees C. Because the overall effectiveness of MPs as catalytic peroxynitrite scavengers is a function of (1) how fast they react with peroxynitrite, (2) how fast they cycle back to the starting compound, and (3) how well they contain or quench the reactive intermediates generated, all of these properties were evaluated and compared directly under the same conditions. Of the various MPs tested, only the iron and manganese porphyrins showed significant reactivity with peroxynitrite. The Mn(IV) intermediates resulting from oxidation by peroxynitrite were relatively stable and rereduction to the Mn(III) forms was rate-limiting to catalytic decomposition of peroxynitrite. However, in the presence of oxidizeable substrates like phenolics, rereduction of Mn(IV) forms occurred very rapidly and both the Mn- and Fe-porphyrins catalyzed nitration and oxidation by peroxynitrite. Mn- and Fe-porphyrins enhanced the yield of nitrated phenolics by peroxynitrite as much as 5-fold at pH 7.4 and up to 12-fold at pH 9. 1, while total oxidative yield was more than doubled. Nitration enhancement by MPs was effectively inhibited by ascorbate, glutathione, or serum, although much higher concentrations of ascorbate were required to inhibit nitration catalyzed by either Mn or Fe tetramethylpyridyl porphyrin. Catalysis of peroxynitrite nitration by MPs appears to proceed via a radical-mediated reaction mechanism whereby the phenolic substrate rapidly reduces Mn(IV) = O or Fe[IV] = O to the +3 state to yield phenoxyl radical which then combines with the other primary product, nitrogen dioxide. Based on the rate constants and the proposed reaction mechanism, it is reasonable to suggest that Mn and Fe porphyrins could detoxify peroxynitrite in vivo by efficiently trapping the relatively unreactive peroxynitrite anion and, in effect, channeling it into a single reaction pathway which could then be more effectively scavenged by cellular reductants like ascorbate.
Collapse
Affiliation(s)
- J P Crow
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA.
| |
Collapse
|
92
|
Riley DP. Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem Rev 1999; 99:2573-88. [PMID: 11749493 DOI: 10.1021/cr980432g] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- D P Riley
- MetaPhore Pharmaceuticals, Incorporated, 3655 Vista Avenue, St. Louis, Missouri 63110
| |
Collapse
|
93
|
Abstract
Metalloporphyrins have emerged as a novel class of catalytic antioxidants that scavenge a wide range of reactive oxygen species (ROS) such as superoxide, peroxide, peroxynitrite and lipid peroxyl radicals. Factors such as the type of metal centre, redox potential and electrostatic charge of the compounds are recognized as important determinants of their antioxidant activity and potency. These concepts have guided the development of metalloporphyrins with specific activities greater than those of the native superoxide dismutases. Several compounds in this class have been shown to be efficacious in a variety of in vitro and in vivo oxidative stress models of human diseases.
Collapse
Affiliation(s)
- M Patel
- National Jewish Medical & Research Center, K706, University of Colorado Health Sciences Center, 1400 Jackson St, Denver, CO 80206, USA.
| | | |
Collapse
|
94
|
Batinić-Haberle I, Spasojević I, Hambright P, Benov L, Crumbliss AL, Fridovich I. Relationship among Redox Potentials, Proton Dissociation Constants of Pyrrolic Nitrogens, and in Vivo and in Vitro Superoxide Dismutating Activities of Manganese(III) and Iron(III) Water-Soluble Porphyrins. Inorg Chem 1999. [DOI: 10.1021/ic990118k] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
95
|
Salvemini D, Riley DP, Lennon PJ, Wang ZQ, Currie MG, Macarthur H, Misko TP. Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin-induced intestinal damage. Br J Pharmacol 1999; 127:685-92. [PMID: 10401559 PMCID: PMC1566068 DOI: 10.1038/sj.bjp.0702604] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. The relative contributions of superoxide anion (O2-) and peroxynitrite (PN) were evaluated in the pathogenesis of intestinal microvascular damage caused by the intravenous injection of E. coli lipopolysaccharide (LPS) in rats. The superoxide dismutase mimetic (SODm) SC-55858 and the active peroxynitrite decomposition catalysts 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-disulphonatophenyl)-por phyrinato iron (III) and 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)-porphyrinato iron (III) (FeTMPS, FeTMPyP respectively) were used to assess the roles of O2- and PN respectively. 2. The intravenous injection of LPS elicited an inflammatory response that was characterized by a time-dependent infiltration of neutrophils, lipid peroxidation, microvascular leakage (indicative of microvascular damage), and epithelial cell injury in both the duodenum and jejunum. 3. Administration of the SODm SC-55858, FeTMPS or FeTMPyP at 3 h post LPS reduced the subsequent increase in microvascular leakage, lipid peroxidation and epithelial cell injury. Inactive peroxynitrite decomposition catalysts exhibited no protective effects. Only, SC-55858 inhibited neutrophil infiltration. 4. Our results suggest that O2 and peroxynitrite play a significant role in the pathogenesis of duodenal and intestinal injury during endotoxaemia and that their remoyal by SODm and peroxynitrite decomposition catalysts offers a novel approach to the treatment of septic shock or clinical conditions of gastrointestinal inflammation. Furthermore, the remarkable protection of the intestinal epithelium by these agents suggests their use during chemo- and radiation therapy, cancer treatments characterized by gastrointestinal damage. Potential mechanisms through which these radicals evoke damage are discussed.
Collapse
Affiliation(s)
- D Salvemini
- Discovery Pharmacology, G.D. Searle, Monsanto Co, St. Louis, MO 63167, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Tarpey MM, White CR, Suarez E, Richardson G, Radi R, Freeman BA. Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 1999; 84:1203-11. [PMID: 10347095 DOI: 10.1161/01.res.84.10.1203] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lucigenin-amplified chemiluminescence has frequently been used to assess the formation of superoxide in vascular tissues. However, the ability of lucigenin to undergo redox cycling in purified enzyme-substrate mixtures has raised questions concerning the use of lucigenin as an appropriate probe for the measurement of superoxide production. Addition of lucigenin to reaction mixtures of xanthine oxidase plus NADH resulted in increased oxygen consumption, as well as superoxide dismutase-inhibitable reduction of cytochrome c, indicative of enhanced rates of superoxide formation. Additionally, it was revealed that lucigenin stimulated oxidant formation by both cultured bovine aortic endothelial cells and isolated rings from rat aorta. Lucigenin treatment resulted in enhanced hydrogen peroxide release from endothelial cells, whereas exposure to lucigenin resulted in inhibition of endothelium-dependent relaxation in isolated aortic rings that was superoxide dismutase inhibitable. In contrast, the chemiluminescent probe coelenterazine had no significant effect on xanthine oxidase-dependent oxygen consumption, endothelial cell hydrogen peroxide release, or endothelium-dependent relaxation. Study of enzyme and vascular systems indicated that coelenterazine chemiluminescence is a sensitive marker for detecting both superoxide and peroxynitrite.
Collapse
Affiliation(s)
- M M Tarpey
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Trotti D, Rolfs A, Danbolt NC, Brown RH, Hediger MA. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 1999; 2:427-33. [PMID: 10321246 DOI: 10.1038/8091] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanism by which Cu2+/Zn2+ superoxide dismutase (SOD1) mutants lead to motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS) is unknown. We show that oxidative reactions triggered by hydrogen peroxide and catalyzed by A4V and I113T mutant but not wild-type SOD1 inactivated the glutamate transporter human GLT1. Chelation of the copper ion of the prosthetic group of A4V prevented GLT1 inhibition. GLT1 was a selective target of oxidation mediated by SOD1 mutants, and its reactivity was confined to the intracellular carboxyl-terminal domain. The antioxidant Mn(III)TBAP rescued GLT1 from inhibition. Because inactivation of GLT1 results in neuronal degeneration, we propose that toxic properties of SOD1 mutants lead to neuronal death via an excitotoxic mechanism in SOD1-linked FALS.
Collapse
Affiliation(s)
- D Trotti
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
98
|
Abstract
The objectives of these studies were to determine whether metalloporphyrins could inhibit lipid peroxidation, characterize factors that influence their potency and compare their potency to prototypical antioxidants. Lipid peroxidation was initiated with iron and ascorbate in rat brain homogenates and the formation of thiobarbituric acid reactive species was used as an index of lipid peroxidation. Metalloporphyrins were found to be a novel and potent class of lipid peroxidation inhibitors. Inhibition of lipid peroxidation by metalloporphyrins was dependent on the transition metal ligated to the porphyrin, indicating that metal centered redox chemistry was important to the mechanism of their antioxidant activities. Manganese porphyrins with the highest superoxide dismutase (SOD) activities, MnOBTM-4-PyP and MnTM-2-PyP (charges are omitted throughout text for clarity), were the most potent inhibitors of lipid peroxidation with calculated IC50s of 1.3 and 1.0 microM, respectively. These manganese porphyrins were 2 orders of magnitude more potent than either trolox (IC50 = 204 microM) or rutin (IC50 = 112 microM). The potencies of the manganese porphyrins were related not only to their redox potentials and SOD activities, but also to other factors that may contribute to their ability to act as electron acceptors. The broad array of antioxidant activities possessed by metalloporphyrins make them attractive therapeutic agents in disease states that involve the overproduction of reactive oxygen species.
Collapse
Affiliation(s)
- B J Day
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | |
Collapse
|
99
|
Güner S, Karaböcek S, Kaklikkaya I. Models for superoxide dismutases: characterization of mononuclear Cu(II), Fe(III), and Mn(II) complexes with 4',5'-bis(salicylideneimino)benzo-15-crown-5. Bioorg Med Chem 1999; 7:329-33. [PMID: 10218825 DOI: 10.1016/s0968-0896(98)00240-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear Cu(II), Fe(III), and Mn(II) complexes with 4',5'-bis (salicylideneimino)benzo-15-crown-5, (SALH2), were characterized by elemental analysis, IR and UV-Vis spectroscopy and tested spectrometrically as catalysts for superoxide disproportionation by utilizing xanthine-xanthine oxidase (XXO) assays. The results indicate that the examined mononuclear complexes are speculative potent superoxide dismutase mimics.
Collapse
Affiliation(s)
- S Güner
- Karadeniz Technical University, Department of Chemistry, Trabzon, Turkey.
| | | | | |
Collapse
|
100
|
Kachadourian R, Batinić-Haberle I, Fridovich I. Syntheses and Superoxide Dismuting Activities of Partially (1−4) β-Chlorinated Derivatives of Manganese(III) meso-Tetrakis(N-ethylpyridinium-2-yl)porphyrin. Inorg Chem 1998. [DOI: 10.1021/ic9808854] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Remy Kachadourian
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Ines Batinić-Haberle
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Irwin Fridovich
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|