51
|
Rontani P, Perche O, Greetham L, Jullien N, Gepner B, Féron F, Nivet E, Erard-Garcia M. Impaired expression of the COSMOC/MOCOS gene unit in ASD patient stem cells. Mol Psychiatry 2021; 26:1606-1618. [PMID: 32327736 PMCID: PMC8159765 DOI: 10.1038/s41380-020-0728-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders with a very large number of risk loci detected in the genome. However, at best, each of them explains rare cases, the majority being idiopathic. Genomic data on ASD derive mostly from post-mortem brain analyses or cell lines derived from blood or patient-specific induced pluripotent stem cells (iPSCS). Therefore, the transcriptional and regulatory architecture of the nervous system, particularly during early developmental periods, remains highly incomplete. To access the critical disturbances that may have occurred during pregnancy or early childhood, we recently isolated stem cells from the nasal cavity of anesthetized patients diagnosed for ASD and compared them to stem cells from gender-matched control individuals without neuropsychiatric disorders. This allowed us to discover MOCOS, a non-mutated molybdenum cofactor sulfurase-coding gene that was under-expressed in the stem cells of most ASD patients of our cohort, disturbing redox homeostasis and synaptogenesis. We now report that a divergent transcription upstream of MOCOS generates an antisense long noncoding RNA, to which we coined the name COSMOC. Surprisingly, COSMOC is strongly under-expressed in all ASD patients of our cohort with the exception of a patient affected by Asperger syndrome. Knockdown studies indicate that loss of COSMOC reduces MOCOS expression, destabilizes lipid and energy metabolisms of stem cells, but also affects neuronal maturation and splicing of synaptic genes. Impaired expression of the COSMOC/MOCOS bidirectional unit might shed new lights on the origins of ASD that could be of importance for future translational studies.
Collapse
Affiliation(s)
- Pauline Rontani
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, INP, UMR 7051 Marseille, France
| | - Olivier Perche
- grid.112485.b0000 0001 0217 6921Orléans University, CNRS, INEM, UMR 7355 Orleans, France ,Department of Genetics, Regional Hospital, Orleans, France
| | - Louise Greetham
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, INP, UMR 7051 Marseille, France
| | - Nicolas Jullien
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, INP, UMR 7051 Marseille, France
| | - Bruno Gepner
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, INP, UMR 7051 Marseille, France
| | - François Féron
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, INP, UMR 7051 Marseille, France
| | - Emmanuel Nivet
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, INP, UMR 7051 Marseille, France
| | - Madeleine Erard-Garcia
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France. .,Orléans University, CNRS, INEM, UMR 7355, Orleans, France.
| |
Collapse
|
52
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
53
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat Commun 2020; 11:5430. [PMID: 33110062 PMCID: PMC7591894 DOI: 10.1038/s41467-020-19249-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023] Open
Abstract
Human steroid 5α-reductase 2 (SRD5A2) is an integral membrane enzyme in steroid metabolism and catalyzes the reduction of testosterone to dihydrotestosterone. Mutations in the SRD5A2 gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride, as SRD5A2 inhibitors, are widely used antiandrogen drugs for benign prostate hyperplasia. The molecular mechanisms underlying enzyme catalysis and inhibition for SRD5A2 and other eukaryotic integral membrane steroid reductases remain elusive due to a lack of structural information. Here, we report a crystal structure of human SRD5A2 at 2.8 Å, revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the transmembrane domain. Structural analysis together with computational and mutagenesis studies reveal the molecular mechanisms of the catalyzed reaction and of finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region that regulate NADPH/NADP+ exchange. Mapping disease-causing mutations of SRD5A2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and may facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, 999078, Macau, SAR, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Ye
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
54
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
55
|
Parks EE, Logan S, Yeganeh A, Farley JA, Owen DB, Sonntag WE. Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to age-related cognitive decline in mice. J Lipid Res 2020; 61:1308-1319. [PMID: 32669383 PMCID: PMC7529050 DOI: 10.1194/jlr.ra119000479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.
Collapse
Affiliation(s)
- Eileen E Parks
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Yeganeh
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Julie A Farley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel B Owen
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
56
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
57
|
Avallone R, Lucchi C, Puja G, Codeluppi A, Filaferro M, Vitale G, Rustichelli C, Biagini G. BV-2 Microglial Cells Respond to Rotenone Toxic Insult by Modifying Pregnenolone, 5α-Dihydroprogesterone and Pregnanolone Levels. Cells 2020; 9:E2091. [PMID: 32933155 PMCID: PMC7563827 DOI: 10.3390/cells9092091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation, whose distinctive sign is the activation of microglia, is supposed to play a key role in the development and progression of neurodegenerative diseases. The aim of this investigation was to determine levels of neurosteroids produced by resting and injured BV-2 microglial cells. BV-2 cells were exposed to increasing concentrations of rotenone to progressively reduce their viability by increasing reactive oxygen species (ROS) production. BV-2 cell viability was significantly reduced 24, 48 and 72 h after rotenone (50-1000 nM) exposure. Concomitantly, rotenone (50-100 nM) determined a dose-independent augmentation of ROS production. Then, BV-2 cells were exposed to a single, threshold dose of rotenone (75 nM) to evaluate the overtime release of neurosteroids. In particular, pregnenolone, pregnenolone sulfate, progesterone, 5α-dihydroprogesterone (5α-DHP), allopregnanolone, and pregnanolone, were quantified in the culture medium by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. BV-2 cells synthesized all the investigated neurosteroids and, after exposure to rotenone, 5αDHP and pregnanolone production was remarkably increased. In conclusion, we found that BV-2 cells not only synthesize several neurosteroids, but further increase this production following oxidative damage. Pregnanolone and 5α-DHP may play a role in modifying the progression of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rossella Avallone
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.L.); (M.F.); (G.B.)
| | - Giulia Puja
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Alessandro Codeluppi
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.L.); (M.F.); (G.B.)
| | - Giovanni Vitale
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Cecilia Rustichelli
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.L.); (M.F.); (G.B.)
| |
Collapse
|
58
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
59
|
Nicholson K, MacLusky NJ, Leranth C. Synaptic effects of estrogen. VITAMINS AND HORMONES 2020; 114:167-210. [PMID: 32723543 DOI: 10.1016/bs.vh.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The concept that estradiol may act as a local neuromodulator in the brain, rapidly affecting connectivity and synaptic function, has been firmly established by research over the last 30 years. De novo synthesis of estradiol within the brain as well as signaling mechanisms mediating responses to the hormone have been demonstrated, along with morphological evidence indicating rapid changes in synaptic input following increases in local estradiol levels. These rapid synaptic effects may play important roles in both physiological and pathophysiological responses to changes in circulating hormone levels, as well as in neurodegenerative disease. How local effects of estradiol on synaptic plasticity are integrated into changes in the overall activity of neural networks in the brain, however, remains a subject that is only incompletely understood.
Collapse
Affiliation(s)
- Kate Nicholson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
60
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with anti-androgen drug finasteride. RESEARCH SQUARE 2020:rs.3.rs-40159. [PMID: 32702725 PMCID: PMC7373137 DOI: 10.21203/rs.3.rs-40159/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human steroid 5α-reductase 2 (SRD5α2) as a critical integral membrane enzyme in steroid metabolism catalyzes testosterone to dihydrotestosterone. Mutations on its gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride as SRD5α2 inhibitors are widely used anti-androgen drugs for benign prostate hyperplasia, which have recently been indicated in the treatment of COVID-19. The molecular mechanisms underlying enzyme catalysis and inhibition remained elusive for SRD5α2 and other eukaryotic integral membrane steroid reductases due to a lack of structural information. Here, we report a crystal structure of human SRD5α2 at 2.8 Å revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the membrane. Structural analysis together with computational and mutagenesis studies reveals molecular mechanisms for the 5α-reduction of testosterone and the finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region regulating the NADPH/NADP + exchange. Mapping disease-causing mutations of SRD5α2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and will facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Fei Ye
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
61
|
Dieni CV, Contemori S, Biscarini A, Panichi R. De Novo Synthesized Estradiol: A Role in Modulating the Cerebellar Function. Int J Mol Sci 2020; 21:ijms21093316. [PMID: 32392845 PMCID: PMC7247543 DOI: 10.3390/ijms21093316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The estrogen estradiol is a potent neuroactive steroid that may regulate brain structure and function. Although the effects of estradiol have been historically associated with gonadal secretion, the discovery that this steroid may be synthesized within the brain has expanded this traditional concept. Indeed, it is accepted that de novo synthesized estradiol in the nervous system (nE2) may modulate several aspects of neuronal physiology, including synaptic transmission and plasticity, thereby influencing a variety of behaviors. These modulations may be on a time scale of minutes via non-classical and often membrane-initiated mechanisms or hours and days by classical actions on gene transcription. Besides the high level, recent investigations in the cerebellum indicate that even a low aromatase expression can be related to the fast nE2 effect on brain functioning. These pieces of evidence point to the importance of an on-demand and localized nE2 synthesis to rapidly contribute to regulating the synaptic transmission. This review is geared at exploring a new scenario for the impact of estradiol on brain processes as it emerges from the nE2 action on cerebellar neurotransmission and cerebellum-dependent learning.
Collapse
Affiliation(s)
- Cristina V. Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| | - Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia;
| | - Andrea Biscarini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
| | - Roberto Panichi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| |
Collapse
|
62
|
Ganji R, Razavi S, Ghasemi N, Mardani M. Improvement of Remyelination in Demyelinated Corpus Callosum Using Human Adipose-Derived Stem Cells (hADSCs) and Pregnenolone in the Cuprizone Rat Model of Multiple Sclerosis. J Mol Neurosci 2020; 70:1088-1099. [PMID: 32314194 DOI: 10.1007/s12031-020-01515-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Adipose-derived stem cells (ASCs) have neuroprotective effects, and their repair ability has been approved in neurodegenerative studies. Pregnenolone as a neurosteroid plays significant roles in neurogenesis. We aimed to consider the effect of ADSCs and pregnenolone injection on the multiple sclerosis (MS) model created by cuprizone. Male Wistar rats (n = 36) were fed with an ordinary diet or a diet with cuprizone (0.6%) for 3 weeks. H-ADSCs were taken from patients with lipoaspirate surgery. The rats were divided into six groups (n = 6): healthy, MS, sham, pregnenolone injection, ADSCs injection, pregnenolone and ADSCs injection. Behavioral test, histological examination and TEM were conducted. The specific markers for myelin and cell differentiation were assessed using immunohistochemistry staining. Additionally, the measure of MBP and MOG gene expression and the amount of related proteins were determined using real-time RT-PCR and ELISA techniques, respectively. Histologic results showed that induced demyelination in corpus callosum fibers. TEM revealed an increased thickness of myelin in fibers in the treated groups (P < 0.05). Injection of hADSC and pregnenolone significantly increased the expression levels of MBP and MOG (P < 0.001). The mean percentage of MOG and MBP markers were significantly increased in the treated groups compared to MS and sham groups (P < 0.05). Moreover, the OD level of MBP and MOG proteins showed that their values in the ADSCs/pregnenolone group were close to those of the control group without a significant difference. Our data indicated the remyelination potency and cell differentiation can improve with ADSCs and pregnenolone treatments in the multiple sclerosis model which created by cuprizone in rats.
Collapse
Affiliation(s)
- Rasoul Ganji
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
| |
Collapse
|
63
|
González-Orozco JC, Moral-Morales AD, Camacho-Arroyo I. Progesterone through Progesterone Receptor B Isoform Promotes Rodent Embryonic Oligodendrogenesis. Cells 2020; 9:cells9040960. [PMID: 32295179 PMCID: PMC7226962 DOI: 10.3390/cells9040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). These cells arise during the embryonic development by the specification of the neural stem cells to oligodendroglial progenitor cells (OPC); newly formed OPC proliferate, migrate, differentiate, and mature to myelinating oligodendrocytes in the perinatal period. It is known that progesterone promotes the proliferation and differentiation of OPC in early postnatal life through the activation of the intracellular progesterone receptor (PR). Progesterone supports nerve myelination after spinal cord injury in adults. However, the role of progesterone in embryonic OPC differentiation as well as the specific PR isoform involved in progesterone actions in these cells is unknown. By using primary cultures obtained from the embryonic mouse spinal cord, we showed that embryonic OPC expresses both PR-A and PR-B isoforms. We found that progesterone increases the proliferation, differentiation, and myelination potential of embryonic OPC through its PR by upregulating the expression of oligodendroglial genes such as neuron/glia antigen 2 (NG2), sex determining region Y-box9 (SOX9), myelin basic protein (MBP), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP1), and NK6 homeobox 1 (NKX 6.1). These effects are likely mediated by PR-B, as they are blocked by the silencing of this isoform. The results suggest that progesterone contributes to the process of oligodendrogenesis during prenatal life through specific activation of PR-B.
Collapse
|
64
|
Tsutsui K, Haraguchi S. Neuroprotective actions of cerebellar and pineal allopregnanolone on Purkinje cells. FASEB Bioadv 2020; 2:149-159. [PMID: 32161904 PMCID: PMC7059624 DOI: 10.1096/fba.2019-00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/12/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
The brain produces steroids de novo from cholesterol, so‐called “neurosteroids.” The Purkinje cell, a cerebellar neuron, was discovered as a major site of the biosynthesis of neurosteroids including sex steroids, such as progesterone, from cholesterol in the brain. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on the Purkinje cell to prevent cell death of this neuron. Recently, the pineal gland was discovered as an important site of the biosynthesis of neurosteroids. Allopregnanolone, a major pineal neurosteroid, acts on the Purkinje cell for the survival of this neuron by suppressing the expression of caspase‐3, a crucial mediator of apoptosis. This review summarizes the discovery of cerebellar and pineal allopregnanolone and its neuroprotective action on Purkinje cells.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences Department of Biology Waseda University Center for Medical Life Science of Waseda University Tokyo Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences Department of Biology Waseda University Center for Medical Life Science of Waseda University Tokyo Japan.,Department of Biochemistry Showa University School of Medicine Tokyo Japan
| |
Collapse
|
65
|
Ziogas A, Maekawa T, Wiessner JR, Le TT, Sprott D, Troullinaki M, Neuwirth A, Anastasopoulou V, Grossklaus S, Chung KJ, Sperandio M, Chavakis T, Hajishengallis G, Alexaki VI. DHEA Inhibits Leukocyte Recruitment through Regulation of the Integrin Antagonist DEL-1. THE JOURNAL OF IMMUNOLOGY 2020; 204:1214-1224. [PMID: 31980574 DOI: 10.4049/jimmunol.1900746] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Leukocytes are rapidly recruited to sites of inflammation via interactions with the vascular endothelium. The steroid hormone dehydroepiandrosterone (DHEA) exerts anti-inflammatory properties; however, the underlying mechanisms are poorly understood. In this study, we show that an anti-inflammatory mechanism of DHEA involves the regulation of developmental endothelial locus 1 (DEL-1) expression. DEL-1 is a secreted homeostatic factor that inhibits β2-integrin-dependent leukocyte adhesion, and the subsequent leukocyte recruitment and its expression is downregulated upon inflammation. Similarly, DHEA inhibited leukocyte adhesion to the endothelium in venules of the inflamed mouse cremaster muscle. Importantly, in a model of lung inflammation, DHEA limited neutrophil recruitment in a DEL-1-dependent manner. Mechanistically, DHEA counteracted the inhibitory effect of inflammation on DEL-1 expression. Indeed, whereas TNF reduced DEL-1 expression and secretion in endothelial cells by diminishing C/EBPβ binding to the DEL-1 gene promoter, DHEA counteracted the inhibitory effect of TNF via activation of tropomyosin receptor kinase A (TRKA) and downstream PI3K/AKT signaling that restored C/EBPβ binding to the DEL-1 promoter. In conclusion, DHEA restrains neutrophil recruitment by reversing inflammation-induced downregulation of DEL-1 expression. Therefore, the anti-inflammatory DHEA/DEL-1 axis could be harnessed therapeutically in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Tomoki Maekawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 951-8514 Niigata, Japan
| | - Johannes R Wiessner
- Walter Brendel Centre of Experimental Medicine and Institute of Cardiovascular Physiology and Pathophysiology, BioMedical Centre, Ludwig Maximilians University of Munich, 81377 Planegg-Martinsried, Germany; and
| | - Thi Trang Le
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Sprott
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Troullinaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ales Neuwirth
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vasiliki Anastasopoulou
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sylvia Grossklaus
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine and Institute of Cardiovascular Physiology and Pathophysiology, BioMedical Centre, Ludwig Maximilians University of Munich, 81377 Planegg-Martinsried, Germany; and
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| |
Collapse
|
66
|
Miziak B, Chrościńska-Krawczyk M, Czuczwar SJ. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne) 2020; 11:541802. [PMID: 33117274 PMCID: PMC7561372 DOI: 10.3389/fendo.2020.541802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Still circa 25% to 30% of patients with epilepsy cannot be efficiently controlled with available antiepileptic drugs so newer pharmacological treatment options have been continuously searched for. In this context, a group of endogenous or exogenous neurosteroids allosterically positively modulating GABA-A receptors may offer a promising approach. Among endogenous neurosteroids synthesized in the brain, allopregnanolone or allotetrahydrodeoxycorticosterone have been documented to exert anticonvulsant activity in a number of experimental models of seizures-pentylenetetrazol-, bicuculline- pilocarpine-, or 6 Hz-induced convulsions in rodents. Neurosteroids can also inhibit fully kindled seizures and some of them have been reported to counteract maximal electroshock-induced convulsions. An exogenous neurosteroid, alphaxalone, significantly elevated the threshold for maximal electroconvulsions in mice but it did not potentiate the anticonvulsive action of a number of conventional antiepileptic drugs against maximal electroshock-induced seizures. Androsterone not only elevated the threshold but significantly enhanced the protective action of carbamazepine, gabapentin and phenobarbital against maximal electroshock in mice, as well. Ganaxolone (a 3beta-methylated analog of allopregnanolone) needs special consideration for two reasons. First, it performed better than conventional antiepileptic drugs, diazepam or valproate, in suppressing convulsive and lethal effects of pentylenetetrazol in pentylenetetrazol-kindled mice. Second, ganaxolone has been evaluated in the randomized, double-blind, placebo-controlled phase 2 trial in patients with intractable partial seizures, taking maximally 3 antiepileptic drugs. The initial results indicate that add-on therapy with ganaxolone resulted in reduced seizure frequency with adverse effect being mainly mild to moderate. Possibly, ganaxolone may be also considered against catamenial seizures. Some positive effects of ganaxolone as an adjuvant were also observed in children with refractory seizures and its use may also prove efficient for the management of neonatal seizures associated with hypoxic injury. Neurosteroids positively modulating GABA-A receptor complex exert anticonvulsive activity in many experimental models of seizures. Their interactions with antiepileptic drugs seem ambiguous in mice. Initial clinical data indicate that ganaxolone may provide a better seizure control in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar,
| |
Collapse
|
67
|
Notas G, Kampa M, Castanas E. G Protein-Coupled Estrogen Receptor in Immune Cells and Its Role in Immune-Related Diseases. Front Endocrinol (Lausanne) 2020; 11:579420. [PMID: 33133022 PMCID: PMC7564022 DOI: 10.3389/fendo.2020.579420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1), is a functional estrogen receptor involved in estrogen related actions on several systems including processes of the nervous, reproductive, metabolic, cardiovascular, and immune system. Regarding the latter, GPER is expressed in peripheral B and T lymphocytes as well as in monocytes, eosinophils, and neutrophils. Several studies have implicated GPER in immune-mediated diseases like multiple sclerosis, Parkinson's disease, and atherosclerosis-related inflammation, while a recent report suggests that its deletion could be responsible for a form of familial immunodeficiency. It has also been suggested that it is a key regulator of immune-mediated events in breast, pancreatic, prostate, and hepatocellular cancer as well as in melanoma. GPER has been also reported to interact with classic ER-alpha or its splice variants in order to modify immune functions. This review aims to present current knowledge relating GPER to immune functions, the cellular and signaling pathways involved, as well as the potential clinical implications of GPER modulation in immune-related diseases.
Collapse
|
68
|
Haraguchi S, Tsutsui K. Pineal Neurosteroids: Biosynthesis and Physiological Functions. Front Endocrinol (Lausanne) 2020; 11:549. [PMID: 32849313 PMCID: PMC7431617 DOI: 10.3389/fendo.2020.00549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Similar to the adrenal glands, gonads, and placenta, vertebrate brains also produce various steroids, which are known as "neurosteroids." Neurosteroids are mainly synthesized in the hippocampus, hypothalamus, and cerebellum; however, it has recently been discovered that in birds, the pineal gland, a photosensitive region in the brain, produces more neurosteroids than other brain regions. A series of experiments using molecular and biochemical techniques have found that the pineal gland produces various neurosteroids, including sex steroids, de novo from cholesterol. For instance, allopregnanolone and 7α-hydroxypregnenolone are actively produced in the pineal gland, unlike in other brain regions. Pineal 7α-hydroxypregnenolone, an up-regulator of locomotion, enhances locomotor activity in response to light stimuli in birds. Additionally, pineal allopregnanolone acts on Purkinje cells in the cerebellum and prevents neuronal apoptosis within the developing cerebellum in juvenile birds. Furthermore, exposure to light during nighttime hours can cause loss of diurnal variations of pineal allopregnanolone synthesis during early posthatch life, eventually leading to cerebellar Purkinje cell death in juvenile birds. In light of these new findings, this review summarizes the biosynthesis and physiological functions of pineal neurosteroids. Given that the circadian rhythms of individuals in modern societies are constantly interrupted by artificial light exposure, these findings in birds, which are excellent model diurnal animals, may have direct implications for addressing problems regarding the mental health and brain development of humans.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
- *Correspondence: Shogo Haraguchi
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
69
|
Anti-neuroinflammatory, protective effects of the synthetic microneurotrophin BNN-20 in the advanced dopaminergic neurodegeneration of "weaver" mice. Neuropharmacology 2019; 165:107919. [PMID: 31877321 DOI: 10.1016/j.neuropharm.2019.107919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
BNN-20 is a synthetic microneurotrophin, long-term (P1-P21) administration of which exerts potent neuroprotective effect on the "weaver" mouse, a genetic model of progressive, nigrostriatal dopaminergic degeneration. The present study complements and expands our previous work, providing evidence that BNN-20 fully protects the dopaminergic neurons even when administration begins at a late stage of dopaminergic degeneration (>40%). Since neuroinflammation plays a critical role in Parkinson's disease, we investigated the possible anti-neuroinflammatory mechanisms underlying the pharmacological action of BNN-20. The latter was shown to be microglia-mediated, at least in part. Indeed, BNN-20 induced a partial, but significant, reversal of microglia hyperactivation, observed in the untreated "weaver" mouse. Furthermore, it induced a shift in microglia polarization towards the neuroprotective M2 phenotype, suggesting a possible beneficial shifting of microglia activity. This observation was further supported by morphometric measurements. Moreover, BDNF levels, which were severely reduced in the "weaver" mouse midbrain, were restored to normal even after short-term BNN-20 administration. Experiments in "weaver"/NGL (dual GFP/luciferase-NF-κВ reporter) mice using bioluminescence after a short BNN-20 treatment (P60-P74), have shown that the increase of BDNF production was specifically mediated through the TrkB-PI3K-Akt-NF-κB signaling pathway. Interestingly, long-term BNN-20 treatment (P14-P60) significantly increased dopamine levels in the "weaver" striatum, which seems to be associated with the improved motor activity observed in the treated mutant animals. In conclusion, our findings suggest that BNN-20 may serve as a lead molecule for new therapeutic compounds for Parkinson's disease, combining strong anti-neuroinflammatory and neuroprotective properties, leading to elevated dopamine levels and improved motor activity.
Collapse
|
70
|
GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2019; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
|
71
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
72
|
Choi SR, Beitz AJ, Lee JH. Inhibition of Cytochrome P450 Side-Chain Cleavage Attenuates the Development of Mechanical Allodynia by Reducing Spinal D-Serine Production in a Murine Model of Neuropathic Pain. Front Pharmacol 2019; 10:1439. [PMID: 31866864 PMCID: PMC6908476 DOI: 10.3389/fphar.2019.01439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Research indicates that neurosteroids are locally synthesized in the central nervous system and play an important modulatory role in nociception. While the neurosteroidogenic enzyme, cytochrome P450 side-chain cleavage enzyme (P450scc), is the initiating enzyme of steroidogenesis, P450scc has not been examined under the pathophysiological conditions associated with peripheral neuropathy. Thus, we investigated whether chronic constriction injury (CCI) of the sciatic nerve increases the expression of P450scc in the spinal cord and whether this increase modulates serine racemase (Srr) expression and D-serine production contributing to the development of neuropathic pain. CCI increased the immunoreactivity of P450scc in astrocytes of the ipsilateral lumbar spinal cord dorsal horn. Intrathecal administration of the P450scc inhibitor, aminoglutethimide, during the induction phase of neuropathic pain (days 0 to 3 post-surgery) significantly suppressed the CCI-induced development of mechanical allodynia and thermal hyperalgesia, the increased expression of astrocyte Srr in both the total and cytosol levels, and the increases in D-serine immunoreactivity at day 3 post-surgery. By contrast, intrathecal administration of aminoglutethimide during the maintenance phase of pain (days 14 to 17 post-surgery) had no effect on the developed neuropathic pain nor the expression of spinal Srr and D-serine immunoreactivity at day 17 post-surgery. Intrathecal administration of exogenous D-serine during the induction phase of neuropathic pain (days 0 to 3 post-surgery) restored the development of mechanical allodynia, but not the thermal hyperalgesia, that were suppressed by aminoglutethimide administration. Collectively, these results demonstrate that spinal P450scc increases the expression of astrocyte Srr and D-serine production, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
73
|
Tozzi A, Durante V, Manca P, Di Mauro M, Blasi J, Grassi S, Calabresi P, Kawato S, Pettorossi VE. Bidirectional Synaptic Plasticity Is Driven by Sex Neurosteroids Targeting Estrogen and Androgen Receptors in Hippocampal CA1 Pyramidal Neurons. Front Cell Neurosci 2019; 13:534. [PMID: 31866827 PMCID: PMC6904272 DOI: 10.3389/fncel.2019.00534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used. LTP induced by high-frequency stimulation (HFS) depended on activation of ERs since it was prevented by the ER antagonist ICI 182,780 in most of the neurons. Application of the selective antagonists for ERα (MPP) or ERβ (PHTPP) caused a reduction of the LTP amplitude, while these antagonists in combination, prevented LTP completely. LTP was never affected by blocking AR with the specific antagonist flutamide. Conversely, LTD and DP, elicited by low-frequency stimulation (LFS), were impeded by flutamide, but not by ICI 182,780, in most neurons. In few cells, LTD was even reverted to LTP by flutamide. Moreover, the combined application of both ER and AR antagonists completely prevented both LTP and LTD/DP in the same neuron. The current study demonstrates that the activation of ERs is necessary for inducing LTP in hippocampal pyramidal neurons, whereas the activation of ARs is required for LTD and DP. Moreover, both estrogen- and androgen-dependent LTP and LTD can be expressed in the same pyramidal neurons, suggesting that the activation of sex neurosteroids signaling pathways is responsible for bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Valentina Durante
- Department of Medicine, Section of Neurological Clinic, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Paolo Manca
- Department de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Michela Di Mauro
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Juan Blasi
- Department de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Silvarosa Grassi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Department of Medicine, Section of Neurological Clinic, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Suguru Kawato
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Vito Enrico Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| |
Collapse
|
74
|
Tsutsui K. Kobayashi award: Discovery of cerebellar and pineal neurosteroids and their biological actions on the growth and survival of Purkinje cells during development (review). Gen Comp Endocrinol 2019; 284:113051. [PMID: 30339808 DOI: 10.1016/j.ygcen.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022]
Abstract
The brain has traditionally been considered to be a target site of peripheral steroid hormones. On the other hand, extensive studies over the past thirty years have demonstrated that the brain is a site of biosynthesis of several steroids. Such steroids synthesized de novo from cholesterol in the brain are called neurosteroids. To investigate the biosynthesis and biological actions of neurosteroids in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. In the mid 1990s, the Purkinje cell, an important cerebellar neuron, was discovered as a major cell producing neurosteroids in the brain of vertebrates. It was the first demonstration of de novo neuronal biosynthesis of neurosteroids in the brain. Subsequently, neuronal biosynthesis of neurosteroids and biological actions of neurosteroids have become clear by the follow-up studies using the Purkinje cell as an excellent cellular model. Progesterone and estradiol, which are known as sex steroid hormones, are actively synthesized de novo from cholesterol in the Purkinje cell during development, when cerebellar neuronal circuit formation occurs. Importantly, progesterone and estradiol synthesized in the Purkinje cell promote dendritic growth, spinogenesis and synaptogenesis via their cognate nuclear receptors in the Purkinje cell. Neurotrophic factors may mediate these neurosteroid actions. Futhermore, allopregnanolone (3α,5α-tetrahydroprogesterone), a progesterone metabolite, is also synthesized in the cerebellum and acts on the survival of Purkinje cells. On the other hand, at the beginning of 2010s, the pineal gland, an endocrine organ located close to the cerebellum, was discovered as an important site of the biosynthesis of neurosteroids. Allopregnanolone, a major pineal neurosteroid, acts on the Purkinje cell for the survival of Purkinje cells by suppressing the expression of caspase-3, a crucial mediator of apoptosis. I as a recipient of Kobayashi Award from the Japan Society for Comparative Endocrinology in 2016 summarize the discovery of cerebellar and pineal neurosteroids and their biological actions on the growth and survival of Purkinje cells during development.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
75
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
76
|
Neurosteroids and neuropathic pain management: Basic evidence and therapeutic perspectives. Front Neuroendocrinol 2019; 55:100795. [PMID: 31562849 DOI: 10.1016/j.yfrne.2019.100795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
Complex mechanisms involved in neuropathic pain that represents a major health concern make its management complicated. Because neurosteroids are bioactive steroids endogenously synthesized in the nervous system, including in pain pathways, they appear relevant to develop effective treatments against neuropathic pain. Neurosteroids act in paracrine or autocrine manner through genomic mechanisms and/or via membrane receptors of neurotransmitters that pivotally modulate pain sensation. Basic studies which uncovered a direct link between neuropathic pain symptoms and endogenous neurosteroid production/regulation, paved the way for the investigations of neurosteroid therapeutic potential against pathological pain. Concordantly, antinociceptive properties of synthetic neurosteroids were evidenced in humans and animals. Neurosteroids promote peripheral analgesia mediated by T-type calcium and gamma-aminobutyric acid type A channels, counteract chemotherapy-induced neuropathic pain and ameliorate neuropathic symptoms of injured spinal cord animals by stimulating anti-inflammatory, remyelinating and neuroprotective processes. Together, these data open interesting perspectives for neurosteroid-based strategies to manage/alleviate efficiently neuropathic pain.
Collapse
|
77
|
Wu D, Carillo KJD, Tsai S, Shie J, Tzou DM. Solid‐state nuclear magnetic resonance investigation of neurosteroid compounds and magnesium interactions. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danni Wu
- Chemical Engineering Department, National Taiwan University of Science and Technology Taipei Taiwan
| | - Kathleen Joyce D. Carillo
- Taiwan International Graduate Program of Sustainable Chemical Science and Technology Taipei Taiwan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
- Institute of ChemistryAcademia Sinica, Nankang Taipei Taiwan
| | - Shen‐Long Tsai
- Chemical Engineering Department, National Taiwan University of Science and Technology Taipei Taiwan
| | - Jiun‐Jie Shie
- Taiwan International Graduate Program of Sustainable Chemical Science and Technology Taipei Taiwan
- Institute of ChemistryAcademia Sinica, Nankang Taipei Taiwan
| | - Der‐Lii M. Tzou
- Institute of ChemistryAcademia Sinica, Nankang Taipei Taiwan
- Department of Applied ChemistryNational Chia‐Yi University Chia‐Yi Taiwan
| |
Collapse
|
78
|
Tomaselli G, Vallée M. Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 2019; 55:100789. [PMID: 31525393 DOI: 10.1016/j.yfrne.2019.100789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The pregnenolone-progesterone-allopregnanolone pathway is receiving increasing attention in research on the role of neurosteroids in pathophysiology, particularly in stress-related and drug use disorders. These disorders involve an allostatic change that may result from deficiencies in allostasis or adaptive responses, and may be downregulated by adjustments in neurotransmission by neurosteroids. The following is an overview of findings that assess how pregnenolone and/or allopregnanolone concentrations are altered in animal models of stress and after consumption of alcohol or cannabis-type drugs, as well as in patients with depression, anxiety, post-traumatic stress disorder or psychosis and/or in those diagnosed with alcohol or cannabis use disorders. Preclinical and clinical evidence shows that pregnenolone and allopregnanolone, operating according to a different or common pharmacological profile involving GABAergic and/or endocannabinoid system, may be relevant biomarkers of psychiatric disorders for therapeutic purposes. Hence, ongoing clinical trials implicate synthetic analogs of pregnenolone or allopregnanolone, and also modulators of neurosteroidogenesis.
Collapse
Affiliation(s)
- Giovanni Tomaselli
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
79
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
80
|
Choi SR, Beitz AJ, Lee JH. Spinal Nitric Oxide Synthase Type II Increases Neurosteroid-metabolizing Cytochrome P450c17 Expression in a Rodent Model of Neuropathic Pain. Exp Neurobiol 2019; 28:516-528. [PMID: 31495080 PMCID: PMC6751860 DOI: 10.5607/en.2019.28.4.516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 11/29/2022] Open
Abstract
We have previously demonstrated that the neurosteroid dehydroepiandrosterone sulfate (DHEAS) induces functional potentiation of N-methyl-D-aspartate (NMDA) receptors via increases in phosphorylation of NMDA receptor GluN1 subunit (pGluN1). However, the modulatory mechanisms responsible for the expression of the DHEA-synthesizing enzyme, cytochrome P450c17 following peripheral nerve injury have yet to be examined. Here we determined whether oxidative stress induced by the spinal activation of nitric oxide synthase type II (NOS-II) modulates the expression of P450c17 and whether this process contributes to the development of neuropathic pain in rats. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of NOS-II in microglial cells and NO levels in the lumbar spinal cord dorsal horn at postoperative day 5. Intrathecal administration of the NOS-II inhibitor, L-NIL during the induction phase of neuropathic pain (postoperative days 0~5) significantly reduced the CCI-induced development of mechanical allodynia and thermal hyperalgesia. Sciatic nerve injury increased the expression of PKC- and PKA-dependent pGluN1 as well as the mRNA and protein levels of P450c17 in the spinal cord at postoperative day 5, and these increases were suppressed by repeated administration of L-NIL. Co-administration of DHEAS together with L-NIL restored the development of neuropathic pain and pGluN1 that were originally inhibited by L-NIL administration alone. Collectively these results provide strong support for the hypothesis that activation of NOS-II increases the mRNA and protein levels of P450c17 in the spinal cord, ultimately leading to the development of central sensitization and neuropathic pain induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
81
|
Choi SR, Han HJ, Beitz AJ, Lee JH. Spinal Interleukin-1β Inhibits Astrocyte Cytochrome P450c17 Expression Which Controls the Development of Mechanical Allodynia in a Mouse Model of Neuropathic Pain. Front Mol Neurosci 2019; 12:153. [PMID: 31281242 PMCID: PMC6596369 DOI: 10.3389/fnmol.2019.00153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
We have recently demonstrated that sciatic nerve injury increases the expression of spinal cytochrome P450c17, a key neurosteroidogenic enzyme, which plays a critical role in the development of peripheral neuropathic pain. However, the modulatory mechanisms responsible for the expression of spinal P450c17 have yet to be examined. Here we investigated the possible involvement of interleukin-1β (IL-1β) in altering P450c17 expression during the induction phase of neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in mice and mechanical allodynia was evaluated in the hind paws using a von-Frey filament (0.16 g). Western blotting and immunohistochemistry were performed to assess the expression of spinal IL-1β, interleukin-1 receptor type 1 (IL-1R1), P450c17, and GFAP. Spinal IL-1β was significantly increased on day 1 post-surgery and its receptor, IL-1R1 was expressed in GFAP-positive astrocytes. Intrathecal administration of the recombinant interleukin-1 receptor antagonist (IL-1ra, 20 ng) on days 0 and 1 post-surgery enhanced GFAP expression on day 1 post-surgery and induced an early increase in P450c17 expression in astrocytes, but not in neurons. Administration of IL-1β (10 ng) on days 0 and 1 post-surgery blocked the enhancement of both spinal P450c17 and GFAP expression induced by IL-1ra (20 ng) administration. Intrathecal administration of IL-1ra (20 ng) on days 0 to 3 post-surgery also facilitated the CCI-induced development of mechanical allodynia, and this early developed pain was dose-dependently attenuated by the administration of the P450c17 inhibitor, ketoconazole (1, 3, or 10 nmol) or the astrocyte metabolic inhibitor, fluorocitrate (0.01, 0.03, or 0.1 nmol). These results demonstrate that early increases in spinal IL-1β temporally inhibit astrocyte P450c17 expression and astrocyte activation ultimately controlling the development of mechanical allodynia induced by peripheral nerve injury. These findings imply that spinal IL-1β plays an important role as an early, but transient, control mechanism in the development of peripheral neuropathic pain via the inhibition of astrocyte P450c17 expression and astrocyte activation.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
82
|
González-Orozco JC, Camacho-Arroyo I. Progesterone Actions During Central Nervous System Development. Front Neurosci 2019; 13:503. [PMID: 31156378 PMCID: PMC6533804 DOI: 10.3389/fnins.2019.00503] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Although progesterone is a steroid hormone mainly associated with female reproductive functions, such as uterine receptivity and maintenance of pregnancy, accumulating data have shown its physiological actions to extend to several non-reproductive functions in the central nervous system (CNS) both in males and females. In fact, progesterone is de novo synthesized in specific brain regions by neurons and glial cells and is involved in the regulation of various molecular and cellular processes underlying myelination, neuroprotection, neuromodulation, learning and memory, and mood. Furthermore, progesterone has been reported to be implicated in critical developmental events, such as cell differentiation and neural circuits formation. This view is supported by the increase in progesterone synthesis observed during pregnancy in both the placenta and the fetal brain. In the present review, we will focus on progesterone actions during CNS development.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
83
|
Choi SR, Roh DH, Yoon SY, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Spinal cytochrome P450c17 plays a key role in the development of neuropathic mechanical allodynia: Involvement of astrocyte sigma-1 receptors. Neuropharmacology 2019; 149:169-180. [PMID: 30797030 DOI: 10.1016/j.neuropharm.2019.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
While evidence indicates that sigma-1 receptors (Sig-1Rs) play an important role in the induction of peripheral neuropathic pain, there is limited understanding of the role that the neurosteroidogenic enzymes, which produce Sig-1R endogenous ligands, play during the development of neuropathic pain. We examined whether sciatic nerve injury upregulates the neurosteroidogenic enzymes, cytochrome P450c17 and 3β-hydroxysteroid dehydrogenase (3β-HSD), which modulate the expression and/or activation of Sig-1Rs leading to the development of peripheral neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of P450c17, but not 3β-HSD, in the ipsilateral lumbar spinal cord dorsal horn at postoperative day 3. Intrathecal administration of the P450c17 inhibitor, ketoconazole during the induction phase of neuropathic pain (day 0 to day 3 post-surgery) significantly reduced the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw. However, administration of the 3β-HSD inhibitor, trilostane had no effect on the development of neuropathic pain. Sciatic nerve injury increased astrocyte Sig-1R expression as well as dissociation of Sig-1Rs from BiP in the spinal cord. These increases were suppressed by administration of ketoconazole, but not by administration of trilostane. Co-administration of the Sig-1R agonist, PRE084 restored the development of mechanical allodynia originally suppressed by the ketoconazole administration. However, ketoconazole-induced inhibition of thermal hyperalgesia was not affected by co-administration of PRE084. Collectively these results demonstrate that early activation of P450c17 modulates the expression and activation of astrocyte Sig-1Rs, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo-Yeon Yoon
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, 55108, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
84
|
Benlloch-Navarro S, Trachsel-Moncho L, Fernández-Carbonell Á, Olivar T, Soria JM, Almansa I, Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J Steroid Biochem Mol Biol 2019; 189:291-301. [PMID: 30654106 DOI: 10.1016/j.jsbmb.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/20/2023]
Abstract
The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
Collapse
Affiliation(s)
- Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | | | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José Miguel Soria
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
85
|
Rossetti MF, Schumacher R, Lazzarino GP, Gomez AL, Varayoud J, Ramos JG. The impact of sensory and motor enrichment on the epigenetic control of steroidogenic-related genes in rat hippocampus. Mol Cell Endocrinol 2019; 485:44-53. [PMID: 30721712 DOI: 10.1016/j.mce.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
In the present study, we analyzed the effects of a short-term environmental enrichment on the mRNA expression and DNA methylation of steroidogenic enzymes in the hippocampus. Thus, young adult (80-day-old) and middle-aged (350-day-old) Wistar female rats were exposed to sensory (SE) or motor (ME) enrichment during 10 days and compared to animals housed under standard conditions. SE was provided by an assortment of objects that included plastic tubes and toys; for ME, rodent wheels were provided. In young adult animals, SE and ME increased the mRNA expression of cytochrome P450 17α-hydroxylase/c17,20-lyase, steroid 5α-reductase type 1 (5αR-1) and 3α-hydroxysteroid dehydrogenase and decreased the methylation levels of 5αR-1 gene. In middle-aged rats, ME and SE upregulated the gene expression of aldosterone synthase and decreased the methylation state of its promoter. These results propose that SE and ME differentially regulate the transcription of neurosteroidogenic enzymes through epigenetic mechanisms in young and aged rats.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Ayelen Luciana Gomez
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
86
|
Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in perioperative anesthesia. Expert Opin Drug Discov 2019; 14:683-699. [DOI: 10.1080/17460441.2019.1599356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University,
Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, Experimental Anaesthesiology Section, Werner Reichardt Center for Integrative Neuroscience, Tübingen,
Germany
| | - Gerhard Rammes
- University Hospital rechts der Isar, Department of Anesthesiology, München,
Germany
| |
Collapse
|
87
|
Keating N, Zeak N, Smith SS. Pubertal hormones increase hippocampal expression of α4βδ GABA A receptors. Neurosci Lett 2019; 701:65-70. [PMID: 30742936 DOI: 10.1016/j.neulet.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
CA1 hippocampal expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty in female mice, an effect dependent upon the decline in hippocampal levels of the neurosteroid THP (3α-OH-5α-pregnan-20-one) which occurs at this time. The present study further characterized the mechanisms underlying α4βδ expression, assessed in vivo. Blockade of pubertal levels of 17β-estradiol (E2) (formestane, 0.5 mg/kg, i.p. 3 d) reduced α4 and δ expression by 75-80% (P < 0.05) in CA1 hippocampus of female mice, assessed using Western blot techniques. Conversely, E2 administration increased α4 and δ expression by 50-100% in adults, an effect enhanced by more than 2-fold by concomitant administration of the 5α-reductase blocker finasteride (50 mg/kg, i.p., 3d, P < 0.05), suggesting that both declining THP levels and increasing E2 levels before puberty trigger α4βδ expression. This effect was blocked by ICI 182,780 (20 mg/kg, s.c., 3 d), a selective blocker of E2 receptor-α (ER-α). These results suggest that both the rise in circulating levels of E2 and the decline in hippocampal THP levels at the onset of puberty trigger maximal levels of α4βδ expression in the CA1 hippocampus.
Collapse
Affiliation(s)
- Nicole Keating
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Nicole Zeak
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| |
Collapse
|
88
|
Tajalli-Nezhad S, Karimian M, Beyer C, Atlasi MA, Azami Tameh A. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci 2019; 76:523-537. [PMID: 30377701 PMCID: PMC11105485 DOI: 10.1007/s00018-018-2953-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the most common cerebrovascular disease and considered as a worldwide leading cause of death. After cerebral ischemia, different pathophysiological processes including neuroinflammation, invasion and aggregation of inflammatory cells and up-regulation of cytokines occur simultaneously. In this respect, Toll-like receptors (TLRs) are the first identified important mediators for the activation of the innate immune system and are widely expressed in glial cells and neurons following brain trauma. TLRs are also able to interact with endogenous and exogenous molecules released during ischemia and can increase tissue damage. Particularly, TLR2 and TLR4 activate different downstream inflammatory signaling pathways. In addition, TLR signaling can alternatively play a role for endogenous neuroprotection. In this review, the gene and protein structures, common genetic polymorphisms of TLR2 and TLR4, TLR-related molecular pathways and their putative role after ischemic stroke are delineated. Furthermore, the relationship between neurosteroids and TLRs as neuroprotective mechanism is highlighted in the context of brain ischemia.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
89
|
Ieko T, Sasaki H, Maeda N, Fujiki J, Iwano H, Yokota H. Analysis of Corticosterone and Testosterone Synthesis in Rat Salivary Gland Homogenates. Front Endocrinol (Lausanne) 2019; 10:479. [PMID: 31379745 PMCID: PMC6650613 DOI: 10.3389/fendo.2019.00479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Extra-adrenal steroid hormone production has been reported in several tissues, the biological role of which is interesting in terms of hormonal regulation of metabolism, growth, and behavior. In this report, we describe for the first time steroidogenesis in rat salivary glands. Enzyme activities associated with corticosterone and testosterone production were detected in rat salivary glands by LC-MS analysis. In tissue homogenates of rat salivary glands, progesterone was produced enzymatically in vitro from pregnenolone in the presence of NADPH and NADH. Deoxycorticosterone was produced from progesterone, corticosterone from deoxycorticosterone, and testosterone from androstenedione (but not pregnenolone from cholesterol) via enzymatic reactions using the same tissue homogenates. Immunoblotting analysis indicated the expression of 11β-hydroxylase (cytochrome P450 11β1; CYP11β1), which mediated the production of corticosterone from deoxycorticosterone. However, CYP family 11 subfamily A member 1 (CYP11A1)-mediated production of pregnenolone from cholesterol was not detected in the salivary glands by immunoblotting using a specific antibody. These results indicate that corticosterone and testosterone are produced from pregnenolone in rat salivary glands. The initial substrate in salivary steroidogenesis and the roles of salivary corticosterone and testosterone are discussed.
Collapse
Affiliation(s)
- Takahiro Ieko
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hirokuni Sasaki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Naoyuki Maeda
- Laboratory of Meat Science and Technology, Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Hiroshi Yokota
| |
Collapse
|
90
|
Bicikova M, Macova L, Kolatorova L, Hill M, Novotny J, Jandova D, Starka L. Physiological changes after spa treatment - a focus on endocrinology. Physiol Res 2018; 67:S525-S530. [PMID: 30484679 DOI: 10.33549/physiolres.934016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The paper presents the results of our effort to reveal objective parameters for evaluation of the spa treatment for patients with anxiety-depressive disorders. The study was based on our previous experience with neuroactive steroids and neurosteroids, which play a crucial role in the psychological well-being of patients by maintaining balance of the organism. A total number of 94 steroids were determinated in a group of 70 female patients diagnosed with anxiety-depressive disorders. Patients underwent a month spa treatment while maintaining unchanged medication dosing with SSRI (selective serotonin reuptake inhibitors). The other investigated factors contributing to improving the health of treated subjects were amino-acid homocysteine and serotonin. The blood samples were collected at the beginning and the end of the spa treatment. Serotonin in all patients increased by a relative 23 % (results given as relative differences in percent), while homocysteine decreased by 17.1 %. Statistically significant increases were found in 21 steroids, which indicate activation of the adrenal cortex. It can be assumed, that the overall improvement in the mental condition of patients, which was proved by questionnaire from Knobloch and Hausner, the increase in immune suppressive substances and anti-autoimmune responses, will maintain for a longer time after the spa treatment.
Collapse
Affiliation(s)
- M Bicikova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
91
|
Farooqi N, Scotti M, Lew J, Botteron KN, Karama S, McCracken JT, Nguyen TV. Role of DHEA and cortisol in prefrontal-amygdalar development and working memory. Psychoneuroendocrinology 2018; 98:86-94. [PMID: 30121549 PMCID: PMC6204313 DOI: 10.1016/j.psyneuen.2018.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
There is accumulating evidence that both dehydroepiandrosterone (DHEA) and cortisol play an important role in regulating physical maturation and brain development. High DHEA levels tend to be associated with neuroprotective and indirect anabolic effects, while high cortisol levels tend to be associated with catabolic and neurotoxic properties. Previous literature has linked the ratio between DHEA and cortisol levels (DC ratio) to disorders of attention, emotional regulation and conduct, but little is known as to the relationship between this ratio and brain development. Due to the extensive links between the amygdala and the cortex as well as the known amygdalar involvement in emotional regulation, we examined associations between DC ratio, structural covariance of the amygdala with whole-brain cortical thickness, and validated report-based measures of attention, working memory, internalizing and externalizing symptoms, in a longitudinal sample of typically developing children and adolescents 6-22 years of age. We found that DC ratio predicted covariance between amygdalar volume and the medial anterior cingulate cortex, particularly in the right hemisphere. DC ratio had a significant indirect effect on working memory through its impact on prefrontal-amygdalar covariance, with higher DC ratios associated with a prefrontal-amygdalar covariance pattern predictive of higher scores on a measure of working memory. Taken together, these findings support the notion, as suggested by animal and in vitro studies, that there are opposing effects of DHEA and cortisol on brain development in humans, and that these effects may especially target prefrontal-amygdalar development and working memory, in a lateralized fashion.
Collapse
Affiliation(s)
- Nasr Farooqi
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Martina Scotti
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Jimin Lew
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Kelly N Botteron
- Washington University School of Medicine, St. Louis, MO, USA, 63110,Brain Development Cooperative Group
| | - Sherif Karama
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H4A 3J1,McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4,Douglas Mental Health University Institute, Montreal, QC, Canada, H4H 1R3
| | - James T McCracken
- Brain Development Cooperative Group,Department of Child and Adolescent Psychiatry, University of California in Los Angeles, Los Angeles, CA, USA, 90024
| | - Tuong-Vi Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, H4A 3J1, Canada; Research Institute of McGill University Health Center, Montreal, QC, H4A 3J1, Canada; Department of Obstetrics-Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
92
|
Chang Y, Hsieh HL, Huang SK, Wang SJ. Neurosteroid allopregnanolone inhibits glutamate release from rat cerebrocortical nerve terminals. Synapse 2018; 73:e22076. [PMID: 30362283 DOI: 10.1002/syn.22076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Allopregnanolone, an active metabolite of progesterone, has been reported to exhibit neuroprotective activity in several preclinical models. Considering that the excitotoxicity caused by excessive glutamate is implicated in many brain disorders, the effect of allopregnanolone on glutamate release in rat cerebrocortical nerve terminals and possible underlying mechanism were investigated. We observed that allopregnanolone inhibited 4-aminopyridine (4-AP)-evoked glutamate release, and this inhibition was prevented by chelating the extracellular Ca2+ ions and the vesicular transporter inhibitor. Allopregnanolone reduced the elevation of 4-AP-evoked intrasynaptosomal Ca2+ levels, but did not affect the synaptosomal membrane potential. In the presence of N-, P/Q-, and R-type channel blockers, allopregnanolone-mediated inhibition of 4-AP-evoked glutamate release was markedly reduced; however, the intracellular Ca2+ -release inhibitors did not affect the allopregnanolone effect. Furthermore, allopregnanolone-mediated inhibition of 4-AP-evoked glutamate release was completely abolished in the synaptosomes pretreated with inhibitors of Ca2+ /calmodulin, adenylate cyclase, and protein kinase A (PKA), namely calmidazolium, MDL12330A, and H89, respectively. Additionally, the allopregnanolone effect on evoked glutamate release was antagonized by the GABAA receptor antagonist SR95531. Our data are the first to suggest that allopregnanolone reduce the Ca2+ influx through N-, P/Q-, and R-type Ca2+ channels, through the activation of GABAA receptors present on cerebrocortical nerve terminals, subsequently suppressing the Ca2+ -calmodulin/PKA cascade and decreasing 4-AP-evoked glutamate release.
Collapse
Affiliation(s)
- Yi Chang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsi Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
93
|
Barendse MEA, Simmons JG, Byrne ML, Patton G, Mundy L, Olsson CA, Seal ML, Allen NB, Whittle S. Associations between adrenarcheal hormones, amygdala functional connectivity and anxiety symptoms in children. Psychoneuroendocrinology 2018; 97:156-163. [PMID: 30036793 DOI: 10.1016/j.psyneuen.2018.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The transition from childhood to adolescence is a vulnerable period for the development of anxiety symptoms. There is some evidence that hormonal changes occurring during adrenarche, an early pubertal phase, might play a role in this increased vulnerability. Little is known about underlying brain mechanisms. Given the role of the amygdala-based fear circuit in anxiety, the current study aimed to investigate whether children's adrenarcheal hormone levels were associated with functional connectivity of the amygdala while processing fearful facial expressions, and how this in turn related to anxiety symptoms. METHOD Participants were 83 children (M age 9.53 years) who completed two morning saliva collections to measure levels of dehydroepiandrosterone (DHEA), its sulphate (DHEAS), and testosterone. They also completed the Spence Children's Anxiety Scale (SCAS), and viewed fearful and calm facial expressions while undergoing a functional MRI scan. Psychophysiological interaction (PPI) analyses were performed to examine amygdala connectivity and significant clusters were fed into a bootstrapping mediation model. RESULTS In boys, mediation analyses showed an indirect positive effect of testosterone on anxiety symptoms, which was mediated by amygdala-secondary visual cortex connectivity as well as amygdala-anterior cingulate connectivity. In girls, DHEAS showed a negative indirect association with anxiety symptoms mediated by amygdala connectivity to the fusiform face area and insula. CONCLUSION The results indicate unique roles for adrenarcheal hormones in anxiety and suggest that amygdala connectivity may represent an important neural mechanism in these associations. Importantly, results reveal prominent sex differences in the biological mechanisms associated with anxiety in children undergoing adrenarche.
Collapse
Affiliation(s)
- Marjolein E A Barendse
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia.
| | - Julian G Simmons
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - George Patton
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lisa Mundy
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Craig A Olsson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia; Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Marc L Seal
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Nicholas B Allen
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
94
|
Miller WL. The Hypothalamic-Pituitary-Adrenal Axis: A Brief History. Horm Res Paediatr 2018; 89:212-223. [PMID: 29719288 DOI: 10.1159/000487755] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is central to homeostasis, stress responses, energy metabolism, and neuropsychiatric function. The history of this complex system involves discovery of the relevant glands (adrenal, pituitary, hypothalamus), hormones (cortisol, corticotropin, corticotropin-releasing hormone), and the receptors for these hormones. The adrenal and pituitary were identified by classical anatomists, but most of this history has taken place rather recently, and has involved complex chemistry, biochemistry, genetics, and clinical investigation. The integration of the HPA axis with modern neurology and psychiatry has cemented the role of endocrinology in contemporary studies of behavior.
Collapse
|
95
|
Joksimovic SL, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Neurosteroids in Pain Management: A New Perspective on an Old Player. Front Pharmacol 2018; 9:1127. [PMID: 30333753 PMCID: PMC6176051 DOI: 10.3389/fphar.2018.01127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the nervous system’s ability to produce steroid hormones, numerous studies have demonstrated their importance in modulating neuronal excitability. These central effects are mostly mediated through different ligand-gated receptor systems such as GABAA and NMDA, as well as voltage-dependent Ca2+ or K+ channels. Because these targets are also implicated in transmission of sensory information, it is not surprising that numerous studies have shown the analgesic properties of neurosteroids in various pain models. Physiological (nociceptive) pain has protective value for an organism by promoting survival in life-threatening conditions. However, more prolonged pain that results from dysfunction of nerves (neuropathic pain), and persists even after tissue injury has resolved, is one of the main reasons that patients seek medical attention. This review will focus mostly on the analgesic perspective of neurosteroids and their synthetic 5α and 5β analogs in nociceptive and neuropathic pain conditions.
Collapse
Affiliation(s)
- Sonja L Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Douglas F Covey
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
96
|
Abstract
INTRODUCTION Epilepsy is one of the most serious neurological conditions, affecting almost 50 million people around the world. Despite more than 20 antiepileptic drugs (AEDs) available, seizures are still uncontrolled in one third of patients. Areas covered: The present paper reviews current compounds in preclinical and clinical development for the treatment of focal epilepsies and new potential molecular targets recently identified. Expert opinion: 1OP-2198, Cannabidavirin, Everolimus, FV-082, Ganaxolone, Minocycline, NAX 810-2, Padsevonil and Selurampanel seem to be particularly promising in focal epilepsy. Some of them, Everolimus and Ganaxolone, are already completing Phase III development while others are still at a preclinical stage. Everolimus represents the first example of precision-medicine in epilepsy and the first generation of disease-modifying agents but data on long-term safety are needed. Among AEDs in Phase II development, Cannabidavirin, Padsevonil and Selurampanel may represent a promising fourth generation of compounds for focal epilepsies if they successfully proceed to subsequent stages. Data on general tolerability, effects of cognition and behavior as well as the potential for interactions in polytherapy will be key element for the success or decline of these drugs.
Collapse
Affiliation(s)
- Marco Mula
- a Institute of Medical and Biomedical Education , St George's University of London , London , UK.,b Atkinson Morley Regional Neuroscience Centre , St George's University Hospitals NHS Foundation Trust , London , UK
| |
Collapse
|
97
|
Tsutsui K, Haraguchi S, Vaudry H. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates. Gen Comp Endocrinol 2018; 265:97-105. [PMID: 28919448 DOI: 10.1016/j.ygcen.2017.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/29/2023]
Abstract
The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan; Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, 76000 Rouen, France
| |
Collapse
|
98
|
Kuang H, Yang F, Zhang Y, Wang T, Chen G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. CHOLESTEROL 2018; 2018:6303810. [PMID: 30210871 PMCID: PMC6126094 DOI: 10.1155/2018/6303810] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Nutrient deficiencies and excess are involved in many aspects of human health. As a source of essential nutrients, eggs have been used worldwide to support the nutritional needs of human societies. On the other hand, eggs also contain a significant amount of cholesterol, a lipid molecule that has been associated with the development of cardiovascular diseases. Whether the increase of egg consumption will lead to elevated cholesterol absorption and disruption of cholesterol homeostasis has been a concern of debate for a while. Cholesterol homeostasis is regulated through its dietary intake, endogenous biosynthesis, utilization, and excretion. Recently, some research interests have been paid to the effects of egg consumption on cholesterol homeostasis through the intestinal cholesterol absorption. Nutrient components in eggs such as phospholipids may contribute to this process. The goals of this review are to summarize the recent progress in this area and to discuss some potential benefits of egg consumption.
Collapse
Affiliation(s)
- Heqian Kuang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
99
|
Dieni CV, Sullivan JA, Faralli M, Contemori S, Biscarini A, Pettorossi VE, Panichi R. 17 beta-estradiol synthesis modulates cerebellar dependent motor memory formation in adult male rats. Neurobiol Learn Mem 2018; 155:276-286. [PMID: 30125696 DOI: 10.1016/j.nlm.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Neurosteroid 17 beta-estradiol (E2) is a steroid synthesized de novo in the nervous system that might influence neuronal activity and behavior. Nevertheless, the impact of E2 on the functioning of those neural systems in which it is slightly synthesized is less questioned. The vestibulo-ocular reflex (VOR) adaptation, may provide an ideal arena for investigating this issue. Indeed, E2 modulates cerebellar parallel fiber-Purkinje cell synaptic plasticity that underlies encoding of VOR adaptation. Moreover, aromatase expression in the cerebellum of adult rodents is maintained at very low levels and localized to Purkinje cells. The significance of age-related maintenance of low levels of aromatase expression in the cerebellum on behavior, however, has yet to be explored. Our aim in this study was to determine whether E2 synthesis exerts an effective and persistent modulation of VOR adaptation in adult male rats. To answer this question, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in VOR adaptation using an oral dose (2.5 mg/kg) of the aromatase inhibitor Letrozole in peri-pubertal and post-pubertal male rats. We found that Letrozole acutely impaired gain increases and decreases in VOR adaptation without altering basal ocular-motor performance and that these effects were similar in peri-pubertal and post-pubertal rats. Thus, in adult male rats neurosteroid E2 effectively modulates VOR adaptation in both of the periods studied. These findings imply that the adult cerebellum uses E2 synthesis for modulating motor memory formation and suggest that low and extremely localized E2 production may play a role in adaptive phenomena.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Mario Faralli
- Department of Medical-Surgical Specialization, Otolaryngology and Cervicofacial Surgery Division, University of Perugia, 06127 Perugia, Italy
| | - Samuele Contemori
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Andrea Biscarini
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Vito E Pettorossi
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Roberto Panichi
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy.
| |
Collapse
|
100
|
Haque MN, Moon IS. Stigmasterol upregulates immediate early genes and promotes neuronal cytoarchitecture in primary hippocampal neurons as revealed by transcriptome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:164-175. [PMID: 30097115 DOI: 10.1016/j.phymed.2018.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The hippocampus is a vulnerable brain region that is implicated in learning and memory impairment by two pathophysiological features, that is, neurite regression and synaptic dysfunction, and stigmasterol (ST), a cholesterol-equivalent phytosterol, is known to facilitate neuromodulatory effects. PURPOSE To investigate the neuromodulatory effects of ST on the development of central nervous system neurons and the molecular bases of these effects in primary hippocampal neurons. METHODS Rat embryonic (E18-19) brain neurons were cultured in the absence or presence of ST (75 µM). Neuritogenic activities of ST were evident by increases in various morphometric parameters. To identify underlying affected genes, total RNA was isolated on day in vitro 12 (DIV 12) and mRNA high throughput sequencing (mRNA-Seq) was performed. Affected key genes for neuronal development were identified using bioinformatics tools and their upregulations were confirmed by immunocytochemistry. RESULTS Among the differentially expressed 17,337 RefSeq genes, 445 genes (up/down 293/157) passed the p-value < 0.05 criterion, 52 genes (up/down; 37/13) had a p-value < 0.05 and a false discovery rate (FDR) q-value of < 0.2, and 24 genes (up/down; 20/4) passed the more stringent criterion of both p < 0.05 and q < 0.05. After applying a stringent FDR q-value cutoff of < 0.2, it was found ST induced many immediate early genes (IEGs), and that a major proportion of upregulated genes were related to central nervous system (CNS) development (neurite outgrowth or synaptic transmission). In a Venn diagram for CNS development Gene Ontologies (GOs) (i.e., axon development, dendrite development, modulation of synaptic transmission), Reln emerged as a central player in these processes, and highly interconnected 'hub' genes, including Dcx, Egr1, Ntrk2, and Slc24a2, were revealed by gene co-expression networks. Finally, transcriptomic data was confirmed by immunocytochemistry of primary hippocampal neurons. CONCLUSION The study indicates that ST upregulates genes for neuritogenesis and synaptogenesis, and suggests ST be viewed as a potential resource for improving brain functions.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|