51
|
Sex differences in inhibitory control in socially-housed baboons (Papio papio). Behav Brain Res 2016; 312:231-7. [PMID: 27321783 DOI: 10.1016/j.bbr.2016.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/16/2023]
Abstract
Inhibitory control is an important component of executive function. An emerging literature in humans suggests that inhibitory control is sexually dimorphic and modulated by sex steroids, but evidence for such a link in nonhuman animals is scarce. In this study, we examined the effects of menstrual cycle and biological sex on response inhibition, as measured by a Stop-Signal task, in the baboon (Papio papio). The monkeys (n=13) were socially-housed, with voluntary access to multiple touchscreen computerized stations. The task required monkeys to inhibit prepotent responses (touching a target, "Go" trials) following the appearance of a visual stop signal on 25% of the trials ("Stop" trials). The cognitive data, consisting of computerized records of the monkeys' performance on the Stop-Signal task over a year of testing, were matched to records of female sexual swellings. Same-day menstrual and cognitive data were available for 5 females, aged 5-18 years. These data were compared to those of 8 males (5-14 years old) performing the Stop-Signal task over the same time period. Contrary to our hypothesis, performance on the task was not significantly affected by the phase (ovulatory vs. luteal) of the cycle in females. However, males were slower than females on Go trials and were less efficient in inhibiting responses on Stop trials. Slower responses in males were indicative of a speed-accuracy trade-off, as overall accuracy was also better in males than in females. Analyses of trial history indicated that males did not speed as much as females following a successful Go trial, but did not differ from females in post-error slowing or post-inhibiting responses. Overall, the data show that biological sex modulates Stop-Signal performance in the baboon, with males exhibiting slower response execution overall, less efficient inhibition, but greater accuracy than females. This pattern of sex differences may reflect motivational sex differences in which males emphasize accuracy rather than speed. Interestingly, these sex differences do not seem to vary as a function of ovarian hormones in females. Males' greater focus on accuracy is possibly due to enhanced sensitivity to reward mediated by testosterone levels.
Collapse
|
52
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
53
|
Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E. Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev 2016; 76:363-379. [PMID: 27039345 PMCID: PMC5045786 DOI: 10.1016/j.neubiorev.2016.03.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience.
Collapse
Affiliation(s)
- Liisa A M Galea
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
54
|
Interactive effects of age and multi-gene profile on motor learning and sensorimotor adaptation. Neuropsychologia 2016; 84:222-34. [PMID: 26926580 DOI: 10.1016/j.neuropsychologia.2016.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
The interactive association of age and dopaminergic polymorphisms on cognitive function has been studied extensively. However, there is limited research on whether age interacts with the association between genetic polymorphisms and motor learning. We examined a group of young and older adults' performance in three motor tasks: explicit sequence learning, visuomotor adaptation, and grooved pegboard. We assessed whether individuals' motor learning and performance were associated with their age and genotypes. We selected three genetic polymorphisms: Catechol-O-Methyl Transferase (COMT val158met) and Dopamine D2 Receptor (DRD2 G>T), which are involved with dopaminergic regulation, and Brain Derived Neurotrophic Factor (BDNF val66met) that modulates neuroplasticity and has been shown to interact with dopaminergic genes. Although the underlying mechanisms of the function of these three genotypes are different, the high performance alleles of each have been linked to better learning and performance. We created a composite polygene score based on the Number of High Performance Alleles (NHPA) that each individual carried. We found several associations between genetic profile, motor performance, and sensorimotor adaptation. More importantly, we found that this association varies with age, task type, and engagement of implicit versus explicit learning processes.
Collapse
|
55
|
Hampson E, Duff-Canning SJ. Salivary cortisol and explicit memory in postmenopausal women using hormone replacement therapy. Psychoneuroendocrinology 2016; 64:99-107. [PMID: 26630390 DOI: 10.1016/j.psyneuen.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/30/2023]
Abstract
Circulating cortisol levels are known to influence explicit memory in humans and other primates. The present study investigated salivary cortisol and its association with explicit memory performance in 99 postmenopausal women (64 treated with conjugated equine estrogens or estradiol, and 35 matched controls not using any form of hormone therapy). Controls were compared with treated women taking estrogens alone (n=39), or taking estrogens in combination with a progestin (n=25). Mean time on hormone therapy was approximately 5 years, with initiation of treatment in close proximity to the onset of menopause. Explicit memory was assessed with the California Verbal Learning Test (CVLT). Saliva was collected before (basal or resting sample) and after (post-test sample) completing a set of cognitive tasks. Cortisol was measured using a high-sensitivity radioimmunoassay. Treated women were found to have higher resting cortisol concentrations than controls matched for time of day. Basal cortisol was a modest predictor of learning and memory on the CVLT. Higher cortisol was associated with better recall and fewer memory errors, which is consistent with experimental studies examining explicit memory under small increases in circulating cortisol load. Potential cumulative effects on the central nervous system of sustained exposure to mildly increased cortisol in conjunction with the long-term use of oral estrogens are discussed in the context of aging and dementia.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario, London, N6A 5C2, Canada.
| | | |
Collapse
|
56
|
Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol 2015; 16:256. [PMID: 26628058 PMCID: PMC4667491 DOI: 10.1186/s13059-015-0815-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023] Open
Abstract
Background Males and females differ in cognitive functions and emotional processing, which in part have been associated with baseline sex differences in gene expression in the medial prefrontal cortex. Nevertheless, a growing body of evidence suggests that sex differences in medial prefrontal cortex-dependent cognitive functions are attenuated by hormonal fluctuations within the menstrual cycle. Despite known genomic effects of ovarian hormones, the interaction of the estrous cycle with sex differences in gene expression in the medial prefrontal cortex remains unclear and warrants further investigations. Results We undertake a large-scale characterization of sex differences and their interaction with the estrous cycle in the adult medial prefrontal cortex transcriptome and report that females with high and low ovarian hormone levels exhibited a partly opposed sexually biased transcriptome. The extent of regulation within females vastly exceeds sex differences, and supports a multi-level reorganization of synaptic function across the estrous cycle. Genome-wide analysis of the transcription factor early growth response 1 binding highlights its role in controlling the synapse-related genes varying within females. Conclusions We uncover a critical influence of the estrous cycle on the adult rat medial prefrontal cortex transcriptome resulting in partly opposite sex differences in proestrus when compared to diestrus females, and we discovered a direct role for Early Growth Response 1 in this opposite regulation. In addition to illustrating the importance of accounting for the estrous cycle in females, our data set the ground for a better understanding of the female specificities in cognition and emotional processing. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0815-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
57
|
Trumble BC, Gaulin SJC, Dunbar MD, Kaplan H, Gurven M. No Sex or Age Difference in Dead-Reckoning Ability among Tsimane Forager-Horticulturalists. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2015; 27:51-67. [DOI: 10.1007/s12110-015-9246-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Hampson E, Phillips SD, Duff-Canning SJ, Evans KL, Merrill M, Pinsonneault JK, Sadée W, Soares CN, Steiner M. Working memory in pregnant women: Relation to estrogen and antepartum depression. Horm Behav 2015; 74:218-27. [PMID: 26187710 PMCID: PMC8693635 DOI: 10.1016/j.yhbeh.2015.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Subjective changes in concentration and memory are commonly reported by women during the second or third trimesters of pregnancy, but the nature of the problem is poorly understood. We hypothesized that these self-reports might reflect difficulties in working memory (WM). It was further hypothesized that antepartum depression (depression arising during pregnancy) may play an etiological role, either on its own or due to secondary changes in endocrine function or sleep. Using WM tasks that emphasized executive control processes mediated by the prefrontal cortex (PFC) we compared pregnant women tested at 34-36 weeks of gestation (n = 28) with age- and education-matched non-pregnant controls (n = 26). All pregnant women were screened for depression. Evidence of a WM disturbance was found, and was evident only among pregnant women showing depressive symptoms. In contrast, pregnant women who were not depressed showed WM performance that equalled, or even significantly exceeded, non-pregnant controls. No significant differences were observed on control tests of other cognitive functions. Multiple regression revealed that serum estradiol concentrations, along with severity of depressive affect but not sleep disruption, significantly predicted variation in the WM scores. In agreement with studies of estradiol and WM in other contexts, higher estradiol was associated with better WM, while higher levels of depressive symptoms predicted poorer WM. We conclude that memory disturbance during gestation might not be as widespread as commonly believed, but can be seen among women experiencing antepartum depression. The high level of WM performance found in healthy, non-depressed, pregnant women is discussed from an adaptationist perspective.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada.
| | - Shauna-Dae Phillips
- Women's Health Concerns Clinic, St. Joseph's Healthcare and Medical Sciences Program, McMaster University, Hamilton, ON, Canada
| | | | - Kelly L Evans
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Mia Merrill
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Julia K Pinsonneault
- Department of Pharmacology and Program in Pharmacogenomics, Ohio State University, Columbus, OH, USA
| | - Wolfgang Sadée
- Department of Pharmacology and Program in Pharmacogenomics, Ohio State University, Columbus, OH, USA
| | - Claudio N Soares
- Women's Health Concerns Clinic, St. Joseph's Healthcare, Department of Psychiatry and Behavioural Neurosciences and Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Meir Steiner
- Women's Health Concerns Clinic, St. Joseph's Healthcare, Department of Psychiatry and Behavioural Neurosciences and Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
59
|
How self-reported hot flashes may relate to affect, cognitive performance and sleep. Maturitas 2015; 81:449-55. [DOI: 10.1016/j.maturitas.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
|
60
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
61
|
Kan H, Hu W, Wang Y, Wu W, Yin Y, Liang Y, Wang C, Huang D, Li W. NADPH oxidase-derived production of reactive oxygen species is involved in learning and memory impairments in 16-month-old female rats. Mol Med Rep 2015; 12:4546-4553. [PMID: 26058943 DOI: 10.3892/mmr.2015.3894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 04/04/2015] [Indexed: 11/06/2022] Open
Abstract
Women undergoing the natural menopause can experience progressive cognitive dysfunction, particularly in the form of memory impairment. However, the mechanisms underlying memory impairments in the menopause remain to be elucidated. There is increasing evidence that oxidative damage caused by excessive reactive oxygen species (ROS) production may correlate with age‑associated cognitive impairment. The nicotinamide adenosine dinucleotide phosphate oxidase (NOX) family is important in the generation of ROS in the brain. It has been hypothesized that the accumulation of ROS, derived from NOX, may be involved in menopause‑associated learning and memory impairments. The present study investigated whether NOX‑derived ROS generation affected the learning and memory ability in 3‑month and 16‑month‑old female rats. The results of a morris water maze assessment revealed that there were significant learning and memory impairments in the 16‑month‑old female rats. Furthermore, the activity of superoxide dismutase (SOD), level of malondialdehyde (MDA), production of ROS and expression levels of NOX2, p47phox, Ras‑related C3 botulinum toxin substrate 1 (RAC1) and protein kinase C α (PKCα) were investigated in the cortex and hippocampus of 3‑month and 16‑month old female rats. The results demonstrated that the activity of SOD was significantly decreased, whereas the levels of MDA, production of ROS and expression levels of NOX2, p47phox, RAC1 and PKCα were significantly increased in the 16‑month old female rats. These results suggested that NOX‑mediated oxidative stress may be important in menopause‑associated learning and memory impairments.
Collapse
Affiliation(s)
- Hongwei Kan
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wen Hu
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuchan Wang
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wangyang Wu
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanyan Yin
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Liang
- Laboratory of Pharmacology, Anhui Institute of Materia Medica, Hefei, Anhui 230022, P.R. China
| | - Chunyan Wang
- Laboratory of Pharmacology, Anhui Institute of Materia Medica, Hefei, Anhui 230022, P.R. China
| | - Dake Huang
- Synthetic Laboratory of Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
62
|
Ycaza Herrera A, Mather M. Actions and interactions of estradiol and glucocorticoids in cognition and the brain: Implications for aging women. Neurosci Biobehav Rev 2015; 55:36-52. [PMID: 25929443 DOI: 10.1016/j.neubiorev.2015.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 02/03/2023]
Abstract
Menopause involves dramatic declines in estradiol production and levels. Importantly, estradiol and the class of stress hormones known as glucocorticoids exert countervailing effects throughout the body, with estradiol exerting positive effects on the brain and cognition, glucocorticoids exerting negative effects on the brain and cognition, and estradiol able to mitigate negative effects of glucocorticoids. Although the effects of these hormones in isolation have been extensively studied, the effects of estradiol on the stress response and the neuroprotection offered against glucocorticoid exposure in humans are less well known. Here we review evidence suggesting that estradiol-related protection against glucocorticoids mitigates stress-induced interference with cognitive processes. Animal and human research indicates that estradiol-related mitigation of glucocorticoid damage and interference is one benefit of estradiol supplementation during peri-menopause or soon after menopause. The evidence for estradiol-related protection against glucocorticoids suggests that maintaining estradiol levels in post-menopausal women could protect them from stress-induced declines in neural and cognitive integrity.
Collapse
Affiliation(s)
- Alexandra Ycaza Herrera
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.
| | - Mara Mather
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.
| |
Collapse
|
63
|
Doty RL, Tourbier I, Ng V, Neff J, Armstrong D, Battistini M, Sammel MD, Gettes D, Evans DL, Mirza N, Moberg PJ, Connolly T, Sondheimer SJ. Influences of hormone replacement therapy on olfactory and cognitive function in postmenopausal women. Neurobiol Aging 2015; 36:2053-9. [PMID: 25850354 DOI: 10.1016/j.neurobiolaging.2015.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 01/13/2023]
Abstract
Olfactory dysfunction can be an early sign of Alzheimer's disease. Since hormone replacement therapy (HRT) may protect against Alzheimer's disease in postmenopausal women, the question arises as to whether it also protects against olfactory dysfunction in such women. A total of three olfactory and 12 neurocognitive tests were administered to 432 healthy postmenopausal women with varied HRT histories. Serum levels of reproductive hormones were obtained for all subjects; APOE-ε4 haplotype was determined for 77 women. National Adult Reading Test and Odor Memory/Discrimination Test scores were positively influenced by HRT. Odor Identification and Odor Memory/Discrimination Test scores were lower for women who scored poorly on a delayed recall test, a surrogate for mild cognitive impairment. The Wechsler Adult Intelligence Scale, Revised, as a Neuropsychological Instrument Spatial Span Backwards Test scores were higher in women receiving estrogen and progestin HRT and directly correlated with serum testosterone levels, the latter implying a positive effect of testosterone on spatial memory. APOE-ε4 was associated with poorer odor threshold test scores. These data suggest that HRT positively influences a limited number of olfactory and cognitive measures during menopause.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Isabelle Tourbier
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Ng
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Neff
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah Armstrong
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Battistini
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary D Sammel
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Gettes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Dwight L Evans
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Natasha Mirza
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Moberg
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Tim Connolly
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J Sondheimer
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
64
|
Castonguay N, Lussier M, Bugaiska A, Lord C, Bherer L. Executive functions in men and postmenopausal women. J Clin Exp Neuropsychol 2015; 37:193-208. [PMID: 25695230 DOI: 10.1080/13803395.2014.1000267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study was designed to assess sex differences in older adults (55-65 years old) in executive functions and to examine the influence of hormone therapy (HT) in postmenopausal women. METHOD We have assessed task performance in memory, visuospatial, and executive functions in 29 women using HT, 29 women who never used HT, and 30 men. RESULTS Men outperformed never users in task switching and updating. HT users outperformed never users in updating. HT users outperformed never users and men in visual divided attention. DISCUSSION The present study support previous findings that sex and HT impact cognition and bring new insights on sex and HT-related differences in executive functions.
Collapse
Affiliation(s)
- Nathalie Castonguay
- a Department of Psychology , Université du Québec à Montréal , Montreal , QC , Canada
| | | | | | | | | |
Collapse
|
65
|
Sex differences on prefrontally-dependent cognitive tasks. Brain Cogn 2015; 93:42-53. [DOI: 10.1016/j.bandc.2014.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022]
|
66
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
67
|
Locklear MN, Bhamidipaty S, Kritzer MF. Local N-methyl-d-aspartate receptor antagonism in the prefrontal cortex attenuates spatial cognitive deficits induced by gonadectomy in adult male rats. Neuroscience 2014; 288:73-85. [PMID: 25545712 DOI: 10.1016/j.neuroscience.2014.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 02/08/2023]
Abstract
Gonadectomy in adult male rats significantly impairs spatial working memory, behavioral flexibility and other functions associated with the prefrontal cortex (PFC). However, the mechanisms through which this occurs are largely unknown. In this study, intracortical drug challenge with the selective N-methyl-d-aspartate receptor (NMDAR) antagonist D(-)-2-amino-5-phosphonopentanoic acid (APV) was combined with Barnes maze testing, gonadectomy (GDX) and hormone replacement (17β-estradiol, testosterone propionate) to explore the contributions of NMDAR-mediated activity within the PFC to hormone effects on spatial cognition in adult male rats. Previous studies have shown that Barnes maze testing reveals significant estrogen-dependent, GDX-induced deficits in spatial working memory and androgen-sensitive, GDX-induced deficits in spatial search strategy. Here we found that bilateral infusion of APV into the medial PFC prior to testing significantly improved both sets of behaviors in gonadectomized rats and significantly worsened performance measures in gonadally intact controls. In hormone-replaced cohorts, we further found that behaviors that are normally similar to controls were significantly disrupted by APV, and those that are normally similar to gonadectomized rats were rescued by intracortical APV infusion. There were, however, no residual effects of APV on retention testing conducted 24h later. Together these findings suggest that hormone regulation of NMDAR-mediated activity specifically within the PFC may be fundamental to the effects of gonadal steroids on spatial cognition in males. Our findings further identify NMDAR antagonists as potentially novel, non-steroidal means of attenuating the cognitive deficits that can accompany gonadal hormone decline in human males in aging, clinical cases of hypogonadalism and in certain neurologic and psychiatric illnesses. Accordingly, it may be important to obtain in males the kind of detailed knowledge concerning hormone effects on, for example, the channel and electrophysiological properties of NMDAR that currently exists for the female brain.
Collapse
Affiliation(s)
- M N Locklear
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794-5230, United States
| | - S Bhamidipaty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, United States
| | - M F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, United States.
| |
Collapse
|
68
|
Yen JY, Tu HP, Chen CS, Yen CF, Long CY, Ko CH. The effect of serotonin 1A receptor polymorphism on the cognitive function of premenstrual dysphoric disorder. Eur Arch Psychiatry Clin Neurosci 2014; 264:729-39. [PMID: 24158751 DOI: 10.1007/s00406-013-0466-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/16/2013] [Indexed: 11/25/2022]
Abstract
Estrogen and serotonin play vital roles in the mechanism of premenstrual dysphoric disorder (PMDD). Cognitive deficit in the premenstrual phase contributes to impaired life function among women with PMDD. The aim of this study was to evaluate the difficulties in cognitive control and working memory (WM) in PMDD and to explore the effects of gonadotropic hormone and polymorphism of serotonin 1A receptor (HTR1A; rs6295) on cognitive deficit in PMDD. Women with PMDD completed diagnostic interviewing, questionnaire assessment, the Go/Nogo task, 2-back and 3-back tasks, and gonadotropic hormone analysis in the premenstrual and follicular phases. Further, they were followed up for two menstrual cycles to confirm two consecutive symptomatic cycles. A total of 59 subjects with PMDD and 74 controls completed all evaluation, fulfilled the criteria, and entered into the final analysis. The results demonstrated cognitive control and WM decline in the premenstrual among women with PMDD. The G/G genotype of HTR1A (rs6295) was found to be associated with impaired WM in the premenstrual phase and premenstrual decline of cognitive function. It also contributed to the vulnerability of cognitive function to the menstrual cycle effect and PMDD effect. As the G/G genotype of HTR1A (rs6295) involves in reducing serotonin neurotransmission, our results provide insight into the serotonin mechanism of cognitive function among women with PMDD.
Collapse
Affiliation(s)
- Ju-Yu Yen
- Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
69
|
Barros LA, Tufik S, Andersen ML. The role of progesterone in memory: an overview of three decades. Neurosci Biobehav Rev 2014; 49:193-204. [PMID: 25434881 DOI: 10.1016/j.neubiorev.2014.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Memory comprises acquisition, consolidation and retrieval of information. Many substances can influence these different phases. It is well demonstrated that sex hormones, mainly estrogen, impact cognitive function. More recently, progesterone has also been documented as playing an important role in cognition, since it influences brain regions involved in memory. Currently, many women are under hormone treatment, which contain progesterone to decrease the risk of development of endometrial cancer. This affords the opportunity to study the real effects of this hormonal replacement on cognition. There are many contradictory results regarding the role of progesterone in memory. Therefore, the aim of this review was to synthesize these studies using the new perspective of the influence of hormone replacement on cognition in women.
Collapse
Affiliation(s)
- L A Barros
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
70
|
Locklear MN, Kritzer MF. Assessment of the effects of sex and sex hormones on spatial cognition in adult rats using the Barnes maze. Horm Behav 2014; 66:298-308. [PMID: 24937438 PMCID: PMC4127089 DOI: 10.1016/j.yhbeh.2014.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
Abstract
Although sex differences and hormone effects on spatial cognition are observed in humans and animals, consensus has not been reached regarding exact impact on spatial working or reference memory. Recent studies in rats suggest that stress and/or reward, which are often different in tasks used to assess spatial cognition, can contribute to the inconsistencies in the literature. To minimize the impact of these sex- and sex hormone-sensitive factors, we used the Barnes maze to compare spatial working memory, spatial reference memory and spatial learning strategy in adult male, female, gonadectomized (GDX) male, and GDX male rats supplemented with 17β-estradiol (E) or testosterone propionate (TP). Rats received four acquisition trials, four trials 24h later, and a single retention trial one week after. Males and females acquired the task during the first four trials and retained the task thereafter. In contrast, GDX rats took longer to acquire the task and showed retention deficits at 1week. All deficits were attenuated similarly by TP and E. Assessment of search patterns also showed that strategies in the males transitioned from random to spatially focused and eventually direct approaches to the goal. However, this transition was faster in control and GDX-TP than in GDX and GDX-E rats. In contrast, the females almost invariantly followed the maze edge in thigmotactic, serial searches. Thus, while Barnes maze reveals activational, in part estrogenic effects on spatial cognition in males, its amenability to animals' use of multiple strategies may limit its ability to resolve mnemonic differences across sex.
Collapse
Affiliation(s)
- M N Locklear
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA; Dept. of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.
| | - M F Kritzer
- Dept. of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
71
|
Lacreuse A, Chang J, Metevier CM, LaClair M, Meyer JS, Ferris CM. Oestradiol modulation of cognition in adult female marmosets (Callithrix jacchus). J Neuroendocrinol 2014; 26:296-309. [PMID: 24617856 PMCID: PMC4040528 DOI: 10.1111/jne.12147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 01/03/2023]
Abstract
The common marmoset (Callithrix jacchus) provides many advantages over traditional rodent and macaque species as a model for human ageing and may be very useful for studying the effects of sex steroids on cognitive and brain ageing. We present the first study examining the effects of oestrogens on cognitive function in female marmosets. Adult monkeys (3-5 years of age) were trained to a specific learning criterion on a battery of cognitive tasks preoperatively (object discrimination, delayed response with increasing delays and detour reaching with opaque box) and were tested on different versions of these tasks (object reversals, delayed response with randomised delays and detour reaching with clear box) after ovariectomy and simultaneous implantation with 17β-oestradiol (E2 ) (n = 6) or blank (n = 6) Silastic capsules. Acquisition of a delayed matching-to-position task with a 1-s delay was also administered after completion of these tests. E2 -treated monkeys were significantly impaired on the second reversal and showed an increase in perseverative responding from reversals 1-3. Their performance also tended to be worse than that of control monkeys on the delayed response task. Performance acquisition on the delayed matching-to-position tended to be better in E2 -treated relative to control monkeys, although the group difference did not reach statistical significance. No effect of treatment was detected for detour reaching or affiliative behaviours. Overall, the findings indicate that E2 compromises performance on prefrontally-mediated tasks. The suggestion that E2 may improve acquisition on tasks dependent on the hippocampus will require further validation. These results are discussed in the context of dopaminergic and serotonergic signalling. We conclude that the marmoset is a useful new primate model for examining the effects of oestrogens on cognitive function.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Department of Psychology, University of Massachusetts, Amherst MA 01003
- Correspondence to: Department of Psychology 135 Hicks Way University of Massachusetts Amherst, MA 01003 Phone: 413-545-2183 Fax: 413-545-0996
| | - Jeemin Chang
- Department of Psychology, University of Massachusetts, Amherst MA 01003
| | | | - Matthew LaClair
- Neuroscience and Behavior graduate program, University of Massachusetts, Amherst MA
| | - Jerrold S. Meyer
- Department of Psychology, University of Massachusetts, Amherst MA 01003
| | - Craig M. Ferris
- Department of Psychology, Northeastern University, Boston MA 02115
| |
Collapse
|
72
|
Alexander JL, Sommer BR, Dennerstein L, Grigorova M, Neylan T, Kotz K, Richardson G, Rosenbaum R. Role of psychiatric comorbidity on cognitive function during and after the menopausal transition. Expert Rev Neurother 2014; 7:S157-80. [DOI: 10.1586/14737175.7.11s.s157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
73
|
Abstract
AbstractStudies in both rodents and humans have made much progress in shedding light on how fluctuations in ovarian hormones can affect memory in women across the lifespan. Specifically, advances in neuroscience have identified multiple memory systems that are each mediated by different brain areas. Two memory systems used to navigate an environment are ‘place’ and ‘response’ memory. They are defined as either using an allocentric strategy: using a spatial or cognitive map of the surroundings, or an egocentric strategy: using habitual-turns/movements, respectively. Studies in neuroendocrinology have shown that estrogen levels can bias a female to use one memory system over another to solve a task, such that high estrogen levels are associated with using place memory and low levels with using response memory. Furthermore, recent advances in identifying and localizing estrogen receptors in the rodent brain are uncovering which brain regions are affected by estrogen and providing insight into how hormonal fluctuations during the menstrual cycle, pregnancy, and menopause might affect which memory system is facilitated or impaired in women at different life stages. These studies can help point the way to improving cognitive health in women.
Collapse
|
74
|
Hampson E, Morley EE. Estradiol concentrations and working memory performance in women of reproductive age. Psychoneuroendocrinology 2013; 38:2897-904. [PMID: 24011502 DOI: 10.1016/j.psyneuen.2013.07.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Estrogen has been proposed to exert a regulatory influence on the working memory system via actions in the female prefrontal cortex. Tests of this hypothesis have been limited almost exclusively to postmenopausal women and pharmacological interventions. We explored whether estradiol discernibly influences working memory within the natural range of variation in concentrations characteristic of the menstrual cycle. METHOD The performance of healthy women (n=39) not using hormonal contraceptives, and a control group of age- and education-matched men (n=31), was compared on a spatial working memory task. Cognitive testing was done blind to ovarian status. Women were retrospectively classified into low- or high-estradiol groups based on the results of radioimmunoassays of saliva collected immediately before and after the cognitive testing. RESULTS Women with higher levels of circulating estradiol made significantly fewer errors on the working memory task than women tested under low estradiol. Pearson's correlations showed that the level of salivary estradiol but not progesterone was correlated inversely with the number of working memory errors produced. Women tested at high levels of circulating estradiol tended to be more accurate than men. Superior performance by the high estradiol group was seen on the working memory task but not on two control tasks, indicating selectivity of the effects. CONCLUSIONS Consistent with previous studies of postmenopausal women, higher levels of circulating estradiol were associated with better working memory performance. These results add further support to the hypothesis that the working memory system is modulated by estradiol in women, and show that the effects can be observed under non-pharmacological conditions.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada.
| | | |
Collapse
|
75
|
Frick KM. Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 2013; 25:1151-62. [PMID: 24028406 PMCID: PMC3943552 DOI: 10.1111/jne.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 02/02/2023]
Abstract
Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the aetiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that the regulation of these epigenetic processes by modulatory factors, such as environmental enrichment, stress and hormones, substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-oestradiol (E2 ) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and ageing. The present review provides a brief overview of the literature on epigenetics and memory, describes in detail our findings demonstrating that epigenetic alterations regulate E2 -induced memory enhancement in female mice, and discusses future directions for research on the epigenetic regulation of E2 -induced memory enhancement.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
76
|
Ovariectomy-mediated impairment of spatial working memory, but not reference memory, is attenuated by the knockout of the dopamine D3 receptor in female mice. Behav Brain Res 2013; 247:27-33. [DOI: 10.1016/j.bbr.2013.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 01/23/2023]
|
77
|
|
78
|
Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp 2012; 35:847-65. [PMID: 23238908 DOI: 10.1002/hbm.22218] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023] Open
Abstract
Midlife decline in cognition, specifically in areas of executive functioning, is a frequent concern for which menopausal women seek clinical intervention. The dependence of executive processes on prefrontal cortex function suggests estrogen effects on this brain region may be key in identifying the sources of this decline. Recent evidence from rodent, nonhuman primate, and human subject studies indicates the importance of considering interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events when determining the cognitive effects of menopause and estrogen therapy.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
79
|
Hesson J. Cumulative estrogen exposure and prospective memory in older women. Brain Cogn 2012; 80:89-95. [DOI: 10.1016/j.bandc.2012.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 11/27/2022]
|
80
|
Administration of dehydroepiandrosterone (DHEA) increases serum levels of androgens and estrogens but does not enhance short-term memory in post-menopausal women. Brain Res 2012; 1483:54-62. [PMID: 22985672 DOI: 10.1016/j.brainres.2012.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 09/04/2012] [Accepted: 09/08/2012] [Indexed: 11/20/2022]
Abstract
The current study examines the effect of administering dehydroepiandrosterone (DHEA) on short-term memory. This experiment used a double-blind placebo-controlled cross-over design to explore the effects of a four week regimen of 50 mg oral DHEA on performance on the digit span, verbal span, and modified Sternberg (Oberauer) tasks. The results demonstrate that the current regimen of drug administration significantly increases serum levels of DHEA, DHEAS, testosterone and estrone and substantially alters the patterns of correlations among the serum levels of these hormones. Despite this substantial change in the hormonal milieu, DHEA administration produced no beneficial effects on cognitive performance in the digit span, verbal span, or modified Sternberg paradigm tasks. Ancillary analyses of the relation between hormone levels and cognitive performance demonstrated a strong positive correlation between DHEA levels and performance on digit span forward/backward and verbal span forward in the placebo drug condition, but not in the DHEA condition. We interpret the juxtaposition of the null results of DHEA administration and the correlation of DHEA levels and performance in the placebo condition to indicate that the referenced correlations arise because a third variable (i.e., age) is associated with both performance and DHEA levels. Additional analyses supported this hypothesis.
Collapse
|
81
|
|
82
|
Velázquez-Zamora DA, González-Tapia D, González-Ramírez MM, Flores-Soto ME, Vázquez-Valls E, Cervantes M, González-Burgos I. Plastic changes in dendritic spines of hippocampal CA1 pyramidal neurons from ovariectomized rats after estradiol treatment. Brain Res 2012; 1470:1-10. [PMID: 22750586 DOI: 10.1016/j.brainres.2012.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/02/2012] [Accepted: 06/06/2012] [Indexed: 02/05/2023]
Abstract
Cognitive impairment or its recovery has been associated with the absence or reestablishment of estrogenic actions in the central nervous system of female experimental animals or women. It has been proposed that these cognitive phenomena are related to estrogen-mediated modulatory activity of synaptic transmission in brain structures involved in cognitive functions. In the present work a morphological study was conducted in adult female ovariectomized rats to evaluate estradiol-dependent dendritic spine sprouting in hippocampal pyramidal neurons, and changes in the presynaptic marker synaptophysin. Three or ten days after estradiol treatment (10 μg/day, twice) in the ovariectomized rats, a significant increase of synaptophysin was observed, which was coincident with a significant higher numerical density of thin (22%), stubby (36%), mushroom (47%) and double spines (125%), at day 3, without significant changes of spine density at day 10, after treatment. These results may be interpreted as evidence of pre- and postsynaptic plastic events that may be involved in the modulation of cognitive-related behavioral performance after estrogen replacement therapy.
Collapse
|
83
|
Frick KM. Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 2012; 126:29-53. [PMID: 22289043 DOI: 10.1037/a0026660] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 East Hartford Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
84
|
Velázquez-Zamora DA, Garcia-Segura LM, González-Burgos I. Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm Behav 2012; 61:512-7. [PMID: 22285935 DOI: 10.1016/j.yhbeh.2012.01.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 12/30/2022]
Abstract
Estradiol and some selective estrogen receptor modulators (SERMs) are neuroprotective in a variety of experimental models of neurodegeneration, reduce the inflammatory response of glial cells, reduce anxiety and depression, promote cognition and modulate synaptic plasticity in the hippocampus of rodents. In this study we have assessed whether estradiol and two SERMs currently used in clinics, tamoxifen and raloxifene, affect medial prefrontal cortex function and morphology. Rats were ovariectomized and six days later some animals received a subcutaneous injection of the estrogenic compounds. In a first experiment animals were treated with estradiol benzoate or sesame oil vehicle. In a second experiment animals received raloxifene, tamoxifen or dimethyl sulfoxide as vehicle. Twenty four hours after the pharmacological treatment, animals were challenged to solve an allocentric working memory paradigm in a "Y" maze. Twenty trials consisting of a study phase and a test phase were conducted according to a delayed match-to-sample procedure in a single one-day session. Animals that were not submitted to behavioral test were used for Golgi analysis of the prefrontal cortex. Rats treated with estradiol benzoate, tamoxifen or raloxifene performed better in the Y maze and showed a significant increase in the numerical density of dendritic spines in secondary apical dendrites of layer III pyramidal neurons from the prelimbic/infralimbic prefrontal cortex, compared to their respective control groups. These findings suggest that estradiol, tamoxifen and raloxifene improve prefrontal cortex-related cognitive performance and modulate prefrontal cortex morphology in ovariectomized rats.
Collapse
Affiliation(s)
- D A Velázquez-Zamora
- Laboratorio de Psicobiología, División de Neurociencias, CIBO, IMSS, Guadalajara, Jal, Mexico
| | | | | |
Collapse
|
85
|
Epperson CN, Amin Z, Ruparel K, Gur R, Loughead J. Interactive effects of estrogen and serotonin on brain activation during working memory and affective processing in menopausal women. Psychoneuroendocrinology 2012; 37:372-82. [PMID: 21820247 PMCID: PMC3226892 DOI: 10.1016/j.psyneuen.2011.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 07/05/2011] [Indexed: 01/22/2023]
Abstract
While cognitive changes and mood instability are frequent symptoms reported by menopausal women, the degree to which the decline in estrogen production is responsible is not yet clear. Several lines of evidence suggest that estrogen may produce its effects on cognition and mood through modulation of serotonergic function. To test this hypothesis, we used the tryptophan depletion (TD) paradigm to lower central serotonin levels and pharmacologically manipulated estrogen levels in healthy menopausal women. We examined the individual and combined effects of estradiol and serotonin on working memory, emotion processing and task-related brain activation. Eight healthy predominantly early postmenopausal women underwent TD or sham depletion followed by functional magnetic resonance imaging (fMRI) both before and after short-term transdermal estradiol 75-150 μg/d administration. There was an estradiol treatment by TD interaction for brain activation during performance on both the N-back Task (working memory) and Emotion Identification Task (affective processing). During the 2-back condition, TD attenuated activation prior to, but not after, estradiol treatment in the right and left dorsal lateral prefrontal and middle frontal/cingulate gyrus. During emotion identification, TD heightened activation in the orbital frontal cortex and bilateral amygdala, and this effect was attenuated by estradiol treatment. These results provide preliminary evidence that serotonergic effects directly mediate the impact of estrogen on brain activation during working memory and affective processing.
Collapse
|
86
|
Chisholm NC, Juraska JM. Long-term replacement of estrogen in combination with medroxyprogesterone acetate improves acquisition of an alternation task in middle-aged female rats. Behav Neurosci 2011; 126:128-36. [PMID: 22141470 DOI: 10.1037/a0026461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies have shown that ovarian hormones protect against some of the cognitive deficits associated with aging. Although much of the literature in rodents has focused on hippocampal dependent tasks, studies suggest that tasks dependent on the prefrontal cortex are also influenced by ovarian hormones. The present study investigated the effects of ovarian hormone treatment during aging on a delayed alternation t-maze. Female Long Evans hooded rats were ovariectomized at middle age (11-12 months) and placed in 1 of 5 treatment groups: no replacement, chronic estradiol (E(2)), cyclic E(2), chronic E(2) and progesterone, or chronic E(2) and medroxyprogesterone acetate (MPA). Following 6 months of hormone treatment, animals were trained to alternate in a t-maze. After reaching criterion, a series of delays from 5 to 90 s were introduced in random order. Rats receiving E(2) with MPA reached criterion significantly faster than animals not receiving treatment and those who received chronic or cyclic E(2) only. There was a nonsignificant trend for animals receiving E(2) and progesterone to reach criterion in fewer sessions than animals receiving E(2) only. Mode of administration, cyclic or chronic, did not affect performance. Hormones did not affect performance on the delayed alternation. This study, in combination with previous research, indicates that hormone effects cannot be generalized across tasks, age, or duration, and long-term estrogen in combination with MPA can be beneficial for some tasks.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana, Champaign, IL 61820, USA.
| | | |
Collapse
|
87
|
Joseph JE, Swearingen JE, Corbly CR, Curry TE, Kelly TH. Influence of estradiol on functional brain organization for working memory. Neuroimage 2011; 59:2923-31. [PMID: 21985908 DOI: 10.1016/j.neuroimage.2011.09.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/03/2011] [Accepted: 09/25/2011] [Indexed: 10/17/2022] Open
Abstract
Working memory is a cognitive function that is affected by aging and disease. To better understand the neural substrates for working memory, the present study examined the influence of estradiol on working memory using functional magnetic resonance imaging. Pre-menopausal women were tested on a verbal n-back task during the early (EF) and late follicular (LF) phases of the menstrual cycle. Although brain activation patterns were similar across the two phases, the most striking pattern that emerged was that estradiol had different associations with the two hemispheres. Increased activation in left frontal circuitry in the LF phase was associated with increased estradiol levels and decrements in working memory performance. In contrast, increased activation in right hemisphere regions in the LF phase was associated with improved task performance. The present study showed that better performance in the LF than the EF phase was associated with a pattern of reduced recruitment of the left-hemisphere and increased recruitment of the right-hemisphere in the LF compared to EF phase. We speculate that estradiol interferes with left-hemisphere working-memory processing in the LF phase, but that recruitment of the right hemisphere can compensate for left-hemisphere interference. This may be related to the proposal that estradiol can reduce cerebral asymmetries by modulating transcallosal communication (Hausmann, 2005).
Collapse
Affiliation(s)
- Jane E Joseph
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | |
Collapse
|
88
|
Stangl B, Hirshman E, Verbalis J. Administration of dehydroepiandrosterone (DHEA) enhances visual-spatial performance in postmenopausal women. Behav Neurosci 2011; 125:742-52. [PMID: 21942436 PMCID: PMC3715689 DOI: 10.1037/a0025151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current article examines the effect of administering dehydroepiandrosterone (DHEA) on visual-spatial performance in postmenopausal women (N = 24, ages 55-80). The concurrent reduction of serum DHEA levels and visual-spatial performance in this population, coupled with the documented effects of DHEA's androgenic metabolites on visual-spatial performance, suggests that DHEA administration may enhance visual-spatial performance. The current experiment used a double-blind, placebo-controlled crossover design in which 50 mg of oral DHEA was administered daily in the drug condition to explore this hypothesis. Performance on the Mental Rotation, Subject-Ordered Pointing, Fragmented Picture Identification, Perceptual Identification, Same-Different Judgment, and Visual Search tasks and serum levels of DHEA, DHEAS, testosterone, estrone, and cortisol were measured in the DHEA and placebo conditions. In contrast to prior experiments using the current methodology that did not demonstrate effects of DHEA administration on episodic and short-term memory tasks, the current experiment demonstrated large beneficial effects of DHEA administration on Mental Rotation, Subject-Ordered Pointing, Fragmented Picture Identification, Perceptual Identification, and Same-Different Judgment. Moreover, DHEA administration enhanced serum levels of DHEA, DHEAS, testosterone, and estrone, and regression analyses demonstrated that levels of DHEA and its metabolites were positively related to cognitive performance on the visual-spatial tasks in the DHEA condition.
Collapse
Affiliation(s)
- Bethany Stangl
- National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, USA
| | | | | |
Collapse
|
89
|
Henry JF, Sherwin BB. Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci 2011; 34:589-94. [PMID: 21928875 DOI: 10.3233/jad-122101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This longitudinal study investigated the possible influence of estradiol (E₂), progesterone (P), testosterone (T), cortisol (CORT), and prolactin (PRL) levels on cognitive functioning during late pregnancy and the early postpartum period. The performance of 55 pregnant women on a battery of neuropsychological tests, tested once during the third trimester of pregnancy and once during the early postpartum period, was compared with that of 21 nonpregnant controls matched for age and education. Women in the pregnancy group had significantly lower scores than the controls during both the pre- and postpartum visits on tasks of verbal recall and processing speed. CORT levels were significantly associated, in an inverted-U function, with verbal recall scores at both the pregnancy and at postpartum periods and with spatial abilities at postpartum only. During pregnancy, PRL levels were associated in both a linear and an inverted-U function with scores on tests of paragraph recall and in a linear function with scores on tests of executive function. At postpartum, E₂ and CORT were negatively associated in a linear fashion with attention scores. These findings provide new evidence that fluctuating hormone levels during late pregnancy and early postpartum may modulate selected cognitive abilities.
Collapse
Affiliation(s)
- Jessica F Henry
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A
| | | |
Collapse
|
90
|
Henry JF, Sherwin BB. Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci 2011; 126:73-85. [PMID: 21928875 DOI: 10.1037/a0025540] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This longitudinal study investigated the possible influence of estradiol (E₂), progesterone (P), testosterone (T), cortisol (CORT), and prolactin (PRL) levels on cognitive functioning during late pregnancy and the early postpartum period. The performance of 55 pregnant women on a battery of neuropsychological tests, tested once during the third trimester of pregnancy and once during the early postpartum period, was compared with that of 21 nonpregnant controls matched for age and education. Women in the pregnancy group had significantly lower scores than the controls during both the pre- and postpartum visits on tasks of verbal recall and processing speed. CORT levels were significantly associated, in an inverted-U function, with verbal recall scores at both the pregnancy and at postpartum periods and with spatial abilities at postpartum only. During pregnancy, PRL levels were associated in both a linear and an inverted-U function with scores on tests of paragraph recall and in a linear function with scores on tests of executive function. At postpartum, E₂ and CORT were negatively associated in a linear fashion with attention scores. These findings provide new evidence that fluctuating hormone levels during late pregnancy and early postpartum may modulate selected cognitive abilities.
Collapse
Affiliation(s)
- Jessica F Henry
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A
| | | |
Collapse
|
91
|
Jacobs E, D'Esposito M. Estrogen shapes dopamine-dependent cognitive processes: implications for women's health. J Neurosci 2011; 31:5286-93. [PMID: 21471363 PMCID: PMC3089976 DOI: 10.1523/jneurosci.6394-10.2011] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 01/02/2023] Open
Abstract
The prefrontal cortex (PFC) is exquisitely sensitive to its neurochemical environment. Minor fluctuations in cortical dopamine (DA) can profoundly alter working memory, a PFC-dependent cognitive function that supports an array of essential human behaviors. Dopamine's action in the PFC follows an inverted U-shaped curve, where an optimal DA level results in maximal function and insufficient or excessive DA impairs PFC function. In animals, 17β-estradiol (the major estrogen in most mammals, referred to henceforth as estradiol) has been shown to enhance DA activity, yet no human study has adequately addressed whether estradiol's impact on cognition occurs by way of modulating specific neurochemical systems. Here we examined the effects of endogenous fluctuations in estradiol on working memory in healthy young women as a function of baseline PFC DA [indexed by catechol-O-methyltransferase (COMT) Val(158)Met genotype and, at a finer scale, COMT enzyme activity]. The results demonstrate that estradiol status impacts working memory function and, crucially, the direction of the effect depends on indices of baseline DA. Moreover, consistent with a DA cortical efficiency hypothesis, functional MRI revealed that inferred optimal DA was associated with reduced PFC activity sustained across task blocks and selectively enhanced PFC activity on trials with the greatest demand for cognitive control. The magnitude of PFC activity during high control trials was predictive of an individual's performance. These findings show that although estrogen, considered in isolation, may have unpredictable effects on cognitive performance, its influence is clarified when considered within a larger neuromodulatory framework. Given the clinical prevalence of dopaminergic drugs, understanding the relationship between estrogen and DA is essential for advancing women's health.
Collapse
Affiliation(s)
- Emily Jacobs
- Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| | - Mark D'Esposito
- Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
92
|
Galderisi S, Bucci P, Mucci A, Bellodi L, Cassano GB, Santonastaso P, Erzegovesi S, Favaro A, Mauri M, Monteleone P, Maj M. Neurocognitive functioning in bulimia nervosa: the role of neuroendocrine, personality and clinical aspects. Psychol Med 2011; 41:839-848. [PMID: 20594380 DOI: 10.1017/s0033291710001303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Studies investigating neurocognitive impairment in subjects with eating disorders (EDs) have reported heterogeneous patterns of impairment and, in some instances, no dysfunction. The present study aimed to define the pattern of neurocognitive impairment in a large sample of bulimia nervosa (BN) patients and to demonstrate that neuroendocrine, personality and clinical characteristics influence neurocognitive performance in BN. METHOD Attention/immediate memory, set shifting, perseveration, conditional and implicit learning were evaluated in 83 untreated female patients with BN and 77 healthy controls (HC). Cortisol and 17β-estradiol plasma levels were assessed. Cloninger's Temperament and Character Inventory - Revised (TCI-R), the Bulimic Investigation Test Edinburgh (BITE) and the Montgomery-Asberg Depression Rating Scale (MADRS) were administered. RESULTS No impairment of cognitive performance was found in subjects with BN compared with HC. Cortisol and 'Self-directedness' were associated with better performance on conditional learning whereas 17β-estradiol had a negative influence on this domain; 'Reward dependence' was associated with worse performance on implicit learning; and depressive symptomatology influenced performance on the Wisconsin Card Sorting Test (WCST) negatively. CONCLUSIONS No cognitive impairment was found in untreated patients with BN. Neuroendocrine, personality and clinical variables do influence neurocognitive functioning and might explain discrepancies in literature findings.
Collapse
Affiliation(s)
- S Galderisi
- Department of Psychiatry, University of Naples SUN, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Executive functions in recently postmenopausal women: Absence of strong association with serum gonadal steroids. Brain Res 2011; 1379:199-205. [DOI: 10.1016/j.brainres.2010.10.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
|
94
|
Clement YN, Onakpoya I, Hung SK, Ernst E. Effects of herbal and dietary supplements on cognition in menopause: a systematic review. Maturitas 2011; 68:256-63. [PMID: 21237589 DOI: 10.1016/j.maturitas.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Many postmenopausal women use herbal remedies and dietary supplements to counteract menopausal symptoms, including the decline in cognitive function. The aim of this systematic review is to evaluate the evidence regarding the efficacy of herbal and dietary supplements on cognition in menopause. DESIGN Randomized clinical trials (RCTs) of herbal medicines and dietary supplements were identified using the Medline, EMBASE, AMED, PsycINFO, CINAHL and The Cochrane Library 2010 (Issue 2) electronic databases and by hand searches. Data were independently extracted and evaluated by two reviewers. Risk of bias was assessed by two independent reviewers using the Cochrane Collaboration tool. RESULTS Twelve RCTs were included and five of these suggest that isoflavone, soy and Gingko biloba supplementation may improve cognition in postmenopausal women. However, most of the included studies had serious methodological flaws which demand a cautious interpretation of these findings. CONCLUSIONS The evidence that herbal and dietary supplements might positively affect the cognitive decline during the menopause is not compelling.
Collapse
Affiliation(s)
- Yuri N Clement
- Pharmacology Unit, Faculty of Medical Sciences, University of the West Indies, Trinidad and Tobago.
| | | | | | | |
Collapse
|
95
|
Quinlan MG, Duncan A, Loiselle C, Graffe N, Brake WG. Latent inhibition is affected by phase of estrous cycle in female rats. Brain Cogn 2011; 74:244-8. [PMID: 20817338 DOI: 10.1016/j.bandc.2010.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 11/28/2022]
Abstract
Estrogen has been shown to have a strong modulatory influence on several types of cognition in both women and female rodents. Latent inhibition is a task in which pre-exposure to a neutral stimulus, such as a tone, later impedes the association of that stimulus with a particular consequence, such as a shock. Previous work from our lab demonstrates that high levels of estradiol (E2) administered to ovariectomized (OVX) female rats abolishes latent inhibition when compared to female rats with low levels of E2 or male rats. To determine if this E2-induced impairment also occurs with the natural variations of ovarian hormones during the estrous cycle, this behavior was investigated in cycling female rats. In addition, pre-pubertal male and female rats were also tested in this paradigm to determine if the previously described sex differences are activational or organizational in nature. In a latent inhibition paradigm using a tone and a shock, adult rats were conditioned during different points of the estrous cycle. Rats conditioned during proestrus, a period of high E2 levels, exhibited attenuated latent inhibition when compared to rats conditioned during estrus or metestrus, periods associated with low levels of E2. Moreover, this effect is not seen until puberty indicating it is dependent on the surge of hormones at puberty. This study confirms recent findings that high E2 interferes with latent inhibition and is the first to show this is based in the activational actions of hormones.
Collapse
Affiliation(s)
- Matthew G Quinlan
- Center for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada H4B 1R6
| | | | | | | | | |
Collapse
|
96
|
Boulware MI, Kent BA, Frick KM. The impact of age-related ovarian hormone loss on cognitive and neural function. Curr Top Behav Neurosci 2011; 10:165-84. [PMID: 21533680 DOI: 10.1007/7854_2011_122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On average, women now live one-third of their lives after menopause. Because menopause has been associated with an elevated risk of dementia, an increasing body of research has studied the effects of reproductive senescence on cognitive function. Compelling evidence from humans, nonhuman primates, and rodents suggests that ovarian sex-steroid hormones can have rapid and profound effects on memory, attention, and executive function, and on regions of the brain that mediate these processes, such as the hippocampus and prefrontal cortex. This chapter will provide an overview of studies in humans, nonhuman primates, and rodents that examine the effects of ovarian hormone loss and hormone replacement on cognitive functions mediated by the hippocampus and prefrontal cortex. For humans and each animal model, we outline the effects of aging on reproductive function, describe how ovarian hormones (primarily estrogens) modulate hippocampal and prefrontal physiology, and discuss the effects of both reproductive aging and hormone treatment on cognitive function. Although this review will show that much has been learned about the effects of reproductive senescence on cognition, many critical questions remain for future investigation.
Collapse
Affiliation(s)
- Marissa I Boulware
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
97
|
Alhola P, Tuomisto H, Saarinen R, Portin R, Kalleinen N, Polo-Kantola P. Estrogen + progestin therapy and cognition: a randomized placebo-controlled double-blind study. J Obstet Gynaecol Res 2010; 36:796-802. [PMID: 20666948 DOI: 10.1111/j.1447-0756.2010.01214.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The use of hormone therapy (HT) is a relevant and topical issue in the treatment of menopausal symptoms in women. Information regarding the effects of combination treatment with estrogen and progesterone as well as treatment timing on cognitive function is lacking and was evaluated in healthy pre- and postmenopausal women. METHODS Sixteen premenopausal (45-51 years) and 16 postmenopausal (58-70 years) women were randomly assigned to receive either estrogen + progestin therapy (HT) or placebo (PL) for six months. The study was double-blind. Cognitive performance was measured at baseline and follow up with tests of verbal and visuomotor functions, verbal and visual memory, and attention. RESULTS In premenopausal women, cognitive attention, when compared to baseline, improved with HT but declined slightly with PL in the two-choice reaction time task (P = 0.049), while PL was associated with better performance in tests of shared attention (P = 0.024) and auditory attention (P < 0.05). In postmenopausal women, HT was associated with improved performance in verbal episodic memory (P = 0.024) and a minor decline in auditory attention (P = 0.025). CONCLUSIONS HT, with estradiol valerate and norethisterone, in healthy women showed only minor effects on attention around the menopausal transition and on memory in postmenopause.
Collapse
Affiliation(s)
- Paula Alhola
- Sleep Research Unit, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
98
|
Dumas JA, Kutz AM, Naylor MR, Johnson JV, Newhouse PA. Increased memory load-related frontal activation after estradiol treatment in postmenopausal women. Horm Behav 2010; 58:929-35. [PMID: 20849856 PMCID: PMC2982897 DOI: 10.1016/j.yhbeh.2010.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/01/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
Abstract
Prior research shows that menopause is associated with changes in cognition in some older women. However, how estrogen loss and subsequent estrogen treatment affects cognition and particularly the underlying brain processes responsible for any cognitive changes is less well understood. We examined the ability of estradiol to modulate the manipulation of information in working memory and related brain activation in postmenopausal women. Twenty healthy postmenopausal women (mean age (SD)=59.13 (5.5)) were randomly assigned to three months of 1mg oral 17-β estradiol or placebo. At baseline and three months later each woman completed a visual verbal N-back sequential letter test of working memory during functional magnetic resonance imaging (fMRI). The fMRI data showed that women who were treated with estradiol for three months had increased frontal activation during the more difficult working memory load conditions compared to women treated with placebo. Performance on the verbal working memory task showed no difference between estradiol and placebo treated subjects. These data are consistent with prior work showing increases in frontal activation on memory tasks after estrogen treatment. However, this is the first study to show that estrogen-induced increases in brain activity were tied to cognitive load during a verbal working memory task. These data suggest that estradiol treatment effects on cognition may be in part produced through modulation of frontal lobe functioning under difficult task conditions.
Collapse
Affiliation(s)
- Julie A Dumas
- Clinical Neuroscience Research Unit and Brain Imaging Program, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA.
| | | | | | | | | |
Collapse
|
99
|
Craig MC, Brammer M, Maki PM, Fletcher PC, Daly EM, Rymer J, Giampietro V, Picchioni M, Stahl D, Murphy DGM. The interactive effect of acute ovarian suppression and the cholinergic system on visuospatial working memory in young women. Psychoneuroendocrinology 2010; 35:987-1000. [PMID: 20102786 DOI: 10.1016/j.psyneuen.2009.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/19/2009] [Accepted: 12/20/2009] [Indexed: 10/19/2022]
Abstract
Women have an increased risk of developing Alzheimer's Dementia (AD) compared to men. It has been postulated that this risk may be modulated by a reduction in the neuroprotective effects of estrogen on the brain in the early postmenopausal period. This view is supported by, for example, findings that ovariectomy in younger women (i.e. prior to menopause) significantly increases the risk for the development of memory problems and AD in later life. However, the biological basis underlying these cognitive changes is still poorly understood. Our aim in the current study was to understand the interactive effects of acute, pharmacological-induced menopause (after Gonadotropin Hormone Releasing Hormone agonist (GnRHa) treatment) and scopolamine (a cholinergic antagonist used to model the memory decline associated with aging and AD) on brain functioning. To this end we used fMRI to study encoding during a Delayed Match to Sample (DMTS) (visual working memory) task. We report a relative attenuation in BOLD response brought about by scopolamine in regions that included bilateral prefrontal cortex and the left parahippocampal gyrus. Further, this was greater in women post-GnRHa than in women whose ovaries were functional. Our results also indicate that following pharmacological-induced menopause, cholinergic depletion produces a more significant behavioural deficit in overall memory performance, as manifest by increased response time. These findings suggest that acute loss of ovarian hormones exacerbate the effects of cholinergic depletion on a memory-related, behavioural measure, which is dependent on fronto-temporal brain regions. Overall, our findings point to a neural network by which acute loss of ovarian function may interact to negatively impact encoding.
Collapse
Affiliation(s)
- M C Craig
- Department of Psychological Medicine, Institute of Psychiatry, Kings College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Lowry NC, Pardon LP, Yates MA, Juraska JM. Effects of long-term treatment with 17 beta-estradiol and medroxyprogesterone acetate on water maze performance in middle aged female rats. Horm Behav 2010; 58:200-7. [PMID: 20362580 PMCID: PMC2879457 DOI: 10.1016/j.yhbeh.2010.03.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 12/15/2022]
Abstract
Although previous research has indicated that hormone replacement therapy benefits memory in menopausal women, several recent studies have shown either detrimental or no effects of treatment. These inconsistencies emphasize the need to evaluate the role of ovarian hormones in protecting against age-related cognitive decline in an animal model. The present study investigated the effects of long-term hormone treatment during aging on the Morris water maze. Female Long Evans hooded rats were ovariectomized at middle age (12-13 months) and were immediately placed in one of five groups: no replacement, chronic 17 beta-estradiol only, chronic 17 beta-estradiol and progesterone, chronic 17 beta-estradiol and medroxyprogesterone acetate (MPA), or cyclic 17 beta-estradiol only. 17 beta-estradiol was administered in the drinking water in either a chronic or cyclic (3 out of 4 days) fashion. Progesterone and MPA were administered via subcutaneous pellets. Following 6 months of hormone treatment, animals were tested on the Morris water maze. Animals performed four trials a day for 4 days and after the final day of testing a subset of animals completed a probe trial. Across 4 days of testing, rats receiving 17 beta-estradiol in combination with MPA performed significantly worse than all other groups receiving hormone replacement. In addition on the last day of testing, chronic 17 beta-estradiol administration was more beneficial than cyclic administration and no replacement. Thus compared to other hormone-treated groups, long-term 17 beta-estradiol treatment in combination with MPA results in impaired performance on the spatial Morris water maze.
Collapse
Affiliation(s)
- Nioka C. Lowry
- Department of Psychology, University of Illinois at Urbana– Champaign, Champaign, Illinois 61820
| | - Laura P. Pardon
- Department of Psychology, University of Illinois at Urbana– Champaign, Champaign, Illinois 61820
| | - Melissa A. Yates
- Department of Psychology, University of Illinois at Urbana– Champaign, Champaign, Illinois 61820
| | - Janice M. Juraska
- Department of Psychology, University of Illinois at Urbana– Champaign, Champaign, Illinois 61820
- Neuroscience Program, University of Illinois at Urbana– Champaign, Champaign, Illinois 61820
- To whom correspondence should be addressed at Department of Psychology, University of Illinois, 603 E. Daniel Street, Champaign, IL 61820. Fax: (217) 244-5876.
| |
Collapse
|