51
|
Haredi Abdelmonsef A. Computer-aided identification of lung cancer inhibitors through homology modeling and virtual screening. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0008-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
52
|
Bhuin T, Roy JK. Developmental expression, co-localization and genetic interaction of exocyst component Sec15 with Rab11 during Drosophila development. Exp Cell Res 2019; 381:94-104. [PMID: 31071318 DOI: 10.1016/j.yexcr.2019.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Sec15, a component of an evolutionarily conserved octomeric exocyst complex, has been identified as an interactor of GTP-bound Rab11 in mammals and Drosophila which shows its role in secretion in yeast and intracellular vesicle transport. Here, we report the expression patterns of Drosophila Sec15 (DSec15) transcript and Sec15 protein during Drosophila development. At early embryonic stages, a profound level of maternally loaded DSec15 transcript and protein is found. At cellular blastoderm cells (stage 5 embryos); the expression is seen in pole cells, apical membrane and sub-apical region. The transcript is predominantly accumulated in mesoderm, tracheal pits, gut, LE cells, trachea, and ventral nerve cord as development proceeds. While, a robust expression of Sec15 is seen in amnioserosa (AS), lateral epidermis (LAE), developing trachea, gut, ventral nerve cord and epithelial cells. During larval development, the transcript is also found in all imaginal discs with a distinguished accumulation in the morphogenetic furrow of eye disc, gut, proventriculus and gastric ceacae, garland cells/nephrocytes, malpighian tubules, ovary and testis. Further, we show that Sec15 co-localizes with Rab11 during Drosophila embryonic and larval development. Finally, using a genetic approach, we demonstrate that Sec15 interacts with Rab11 in producing blister during Drosophila wing development.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India; Department of Zoology, The University of Burdwan, Golapbag, Burdwan, 713104, India.
| | - Jagat K Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
53
|
Javier-Reyna R, Montaño S, García-Rivera G, Rodríguez MA, González-Robles A, Orozco E. EhRabB mobilises the EhCPADH complex through the actin cytoskeleton during phagocytosis of Entamoeba histolytica. Cell Microbiol 2019; 21:e13071. [PMID: 31219662 DOI: 10.1111/cmi.13071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
Movement and phagocytosis are clue events in colonisation and invasion of tissues by Entamoeba histolytica, the protozoan causative of human amoebiasis. During phagocytosis, EhRab proteins interact with other functional molecules, conducting them to the precise cellular site. The gene encoding EhrabB is located in the complementary chain of the DNA fragment containing Ehcp112 and Ehadh genes, which encode for the proteins of the EhCPADH complex, involved in phagocytosis. This particular genetic organisation suggests that the three corresponding proteins may be functionally related. Here, we studied the relationship of EhRabB with EhCPADH and actin during phagocytosis. First, we obtained the EhRabB 3D structure to carry out docking analysis to predict the interaction sites involved in the EhRabB protein and the EhCPADH complex contact. By confocal microscopy, transmission electron microscopy, and immunoprecipitation assays, we revealed the interaction among these proteins when they move through different vesicles formed during phagocytosis. The role of the actin cytoskeleton in this event was also confirmed using Latrunculin A to interfere with actin polymerisation. This affected the movement of EhRabB and EhCPADH, as well as the rate of phagocytosis. Mutant trophozoites, silenced in EhrabB gene, evidenced the interaction of this molecule with EhCPADH and strengthened the role of actin during erythrophagocytosis.
Collapse
Affiliation(s)
- Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa (FCQB-UAS), Culiacán, Sinaloa, México
| | | | | | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
54
|
Miteva KT, Pedicini L, Wilson LA, Jayasinghe I, Slip RG, Marszalek K, Gaunt HJ, Bartoli F, Deivasigamani S, Sobradillo D, Beech DJ, McKeown L. Rab46 integrates Ca 2+ and histamine signaling to regulate selective cargo release from Weibel-Palade bodies. J Cell Biol 2019; 218:2232-2246. [PMID: 31092558 PMCID: PMC6605797 DOI: 10.1083/jcb.201810118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/24/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
It is unclear how a plethora of stimuli evoke differential cargo secretion from endothelial cells to produce stimulus-appropriate responses. Miteva et al. show that Rab46 integrates histamine signaling and Ca2+ signals to regulate selective cargo release from Weibel-Palade bodies. Endothelial cells selectively release cargo stored in Weibel-Palade bodies (WPBs) to regulate vascular function, but the underlying mechanisms are poorly understood. Here we show that histamine evokes the release of the proinflammatory ligand, P-selectin, while diverting WPBs carrying non-inflammatory cargo away from the plasma membrane to the microtubule organizing center. This differential trafficking is dependent on Rab46 (CRACR2A), a newly identified Ca2+-sensing GTPase, which localizes to a subset of P-selectin–negative WPBs. After acute stimulation of the H1 receptor, GTP-bound Rab46 evokes dynein-dependent retrograde transport of a subset of WPBs along microtubules. Upon continued histamine stimulation, Rab46 senses localized elevations of intracellular calcium and evokes dispersal of microtubule organizing center–clustered WPBs. These data demonstrate for the first time that a Rab GTPase, Rab46, integrates G protein and Ca2+ signals to couple on-demand histamine signals to selective WPB trafficking.
Collapse
Affiliation(s)
- Katarina T Miteva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lesley A Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Izzy Jayasinghe
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Raphael G Slip
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Katarzyna Marszalek
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Hannah J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Shruthi Deivasigamani
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Diego Sobradillo
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
55
|
Edler E, Stein M. Recognition and stabilization of geranylgeranylated human Rab5 by the GDP Dissociation Inhibitor (GDI). Small GTPases 2019; 10:227-242. [PMID: 29065764 PMCID: PMC6548291 DOI: 10.1080/21541248.2017.1371268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/13/2023] Open
Abstract
The small GTPase Rab5 is the key regulator of early endosomal fusion. It is post-translationally modified by covalent attachment of two geranylgeranyl (GG) chains to adjacent cysteine residues of the C-terminal hypervariable region (HVR). The GDP dissociation inhibitor (GDI) recognizes membrane-associated Rab5(GDP) and serves to release it into the cytoplasm where it is kept in a soluble state. A detailed new structural and dynamic model for human Rab5(GDP) recognition and binding with human GDI at the early endosome membrane and in its dissociated state is presented. In the cytoplasm, the GDI protein accommodates the GG chains in a transient hydrophobic binding pocket. In solution, two different binding modes of the isoprenoid chains inserted into the hydrophobic pocket of the Rab5(GDP):GDI complex can be identified. This equilibrium between the two states helps to stabilize the protein-protein complex in solution. Interprotein contacts between the Rab5 switch regions and characteristic patches of GDI residues from the Rab binding platform (RBP) and the C-terminus coordinating region (CCR) reveal insight on the formation of such a stable complex. GDI binding to membrane-anchored Rab5(GDP) is initially mediated by the solvent accessible switch regions of the Rab-specific RBP. Formation of the membrane-associated Rab5(GDP):GDI complex induces a GDI reorientation to establish additional interactions with the Rab5 HVR. These results allow to devise a detailed structural model for the process of extraction of GG-Rab5(GDP) by GDI from the membrane and the dissociation from targeting factors and effector proteins prior to GDI binding.
Collapse
Affiliation(s)
- Eileen Edler
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
56
|
Wang F, Xu X, Tang W, Min L, Yang J. Rab6A GTPase contributes to phenotypic modulation in pulmonary artery smooth muscle cells under hypoxia. J Cell Biochem 2019; 120:7858-7867. [PMID: 30417421 DOI: 10.1002/jcb.28060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Previous studies have demonstrated that hypoxia can induce phenotypic modulation of pulmonary smooth muscle cells; however, the mechanisms remain unclear. The present study aimed to investigate the effect of the GTPase Rab6A-mediated phenotypic modulation and other activities of rat pulmonary artery smooth muscle cells (RPASMCs). We revealed that Rab6A was induced by hypoxia (1% O2 ) and was involved in a hypoxia-induced phenotypic switch and endoplasmic reticulum stress (ERS) in RPASMCs. After 48 hours of hypoxia, the expression of the phenotype marker protein smooth muscle actin was downregulated and vimentin (VIM) expression was upregulated. Rab6A was upregulated after 48 hours of hypoxia, and the level of glucose-regulated protein, 78 kDa (GRP78) after 12 hours of hypoxic stimulation was also increased. After transfection with a Rab6A short interfering RNA under hypoxic conditions, the expression levels of GRP78 and VIM in RPASMCs were downregulated. Overall, hypoxia-induced RPASMCs to undergo ERS followed by phenotypic transformation. Rab6A is involved in this hypoxia-induced phenotypic modulation and ERS in RPASMCs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xingxiang Xu
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Weian Tang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lingfeng Min
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Junjun Yang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
57
|
Segawa K, Tamura N, Mima J. Homotypic and heterotypic trans-assembly of human Rab-family small GTPases in reconstituted membrane tethering. J Biol Chem 2019; 294:7722-7739. [PMID: 30910814 DOI: 10.1074/jbc.ra119.007947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Indexed: 11/06/2022] Open
Abstract
Membrane tethering is a highly regulated event occurring during the initial physical contact between membrane-bounded transport carriers and their target subcellular membrane compartments, thereby ensuring the spatiotemporal specificity of intracellular membrane trafficking. Although Rab-family small GTPases and specific Rab-interacting effectors, such as coiled-coil tethering proteins and multisubunit tethering complexes, are known to be involved in membrane tethering, how these protein components directly act upon the tethering event remains enigmatic. Here, using a chemically defined reconstitution system, we investigated the molecular basis of membrane tethering by comprehensively and quantitatively evaluating the intrinsic capacities of 10 representative human Rab-family proteins (Rab1a, -3a, -4a, -5a, -6a, -7a, -9a, -11a, -27a, and -33b) to physically tether two distinct membranes via homotypic and heterotypic Rab-Rab assembly. All of the Rabs tested, except Rab27a, specifically caused homotypic membrane tethering at physiologically relevant Rab densities on membrane surfaces (e.g. Rab/lipid molar ratios of 1:100-1:3,000). Notably, endosomal Rab5a retained its intrinsic potency to drive efficient homotypic tethering even at concentrations below the Rab/lipid ratio of 1:3,000. Comprehensive reconstitution experiments further uncovered that heterotypic combinations of human Rab-family isoforms, including Rab1a/6a, Rab1a/9a, and Rab1a/33b, can directly and selectively mediate membrane tethering. Rab1a and Rab9a in particular synergistically triggered very rapid and efficient membrane tethering reactions through their heterotypic trans-assembly on two opposing membranes. In conclusion, our findings establish that, in the physiological context, homotypic and heterotypic trans-assemblies of Rab-family small GTPases can provide the essential molecular machinery necessary to drive membrane tethering in eukaryotic endomembrane systems.
Collapse
Affiliation(s)
- Kazuya Segawa
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Tamura
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Mima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
58
|
Li T, Yue J, Huang L, Yang M. Autophagy inhibitor Vacuolin-1 interferes with lipid-based small interference RNA delivery. Biochem Biophys Res Commun 2019; 510:427-434. [PMID: 30732855 DOI: 10.1016/j.bbrc.2019.01.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 01/12/2023]
Abstract
Autophagy and endocytosis are important pathways regulating macromolecule recycling and regeneration. Small molecule inhibitors are utilized to modulate these pathways and to treat autophagy-related diseases. Vacuolin-1 is a small molecule that can potently and reversibly inhibit autophagy by activating Rab5. In addition, Vacuolin-1 can be applied to inhibit exocytosis in a variety of cell types. Here we report that Vacuolin-1 significantly reduces small interference RNA (siRNA)-mediated gene silencing delivered by liposome transfection reagent or lipid nanoparticles in Hela cells. Vacuolin-1 exhibits the strongest inhibition effect among a few autophagy inhibitors including Chloroquine, Wortmannin, and Bafilomycin A1. We found that siRNAs are over-accumulated intracellularly and colocalized with a late endosome marker Rab7 in Vacuolin-1 treated cells, suggesting Vacuolin-1 inhibits the cytoplasmic release of lipid siRNA complexes from late endosomes. We propose that Vacuolin-1 could potentially be used to control the effects of lipid nanoparticle-based RNAi and gene therapy drugs.
Collapse
Affiliation(s)
- Tianzhong Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China.
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China.
| |
Collapse
|
59
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
60
|
Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2018; 11:320-333. [PMID: 30273093 DOI: 10.1080/21541248.2018.1528840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity. The pathogenic amoeba Entamoeba histolytica harbours 91 Rab GTPases which is the highest among the currently available genome sequences from the eukaryotic kingdom. Here, we review the current status of amoebic Rab GTPases diversity, unique biochemical and structural features and summarise their predicted regulators. We discuss how amoebic Rab GTPases are involved in cellular processes such as endocytosis, phagocytosis, and invasion of host cellular components, which are essential for parasite survival and virulence.
Collapse
Affiliation(s)
- Kuldeep Verma
- Institute of Science, Nirma University , Ahmedabad, Gujarat, India.,Regional Centre for Biotechnology, NCR Biotech Science Cluster , Faridabad, India
| | | | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri, India
| |
Collapse
|
61
|
Elmogy M, Mohamed AA, Tufail M, Uno T, Takeda M. Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis. INSECT SCIENCE 2018; 25:751-764. [PMID: 28548451 DOI: 10.1111/1744-7917.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development.
Collapse
Affiliation(s)
- Mohamed Elmogy
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Tomohide Uno
- Laboratory of Biological Chemistry, Faculty of Agriculture, Department of Biofunctional Chemistry, Kobe University, Nada-ku, Hyogo, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
62
|
Song S, Cong W, Zhou S, Shi Y, Dai W, Zhang H, Wang X, He B, Zhang Q. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci 2018; 14:30-39. [PMID: 32104436 PMCID: PMC7032109 DOI: 10.1016/j.ajps.2018.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Small GTPase is a kind of GTP-binding protein commonly found in eukaryotic cells. It plays an important role in cytoskeletal reorganization, cell polarity, cell cycle progression, gene expression and many other significant events in cells, such as the interaction with foreign particles. Therefore, it is of great scientific significance to understand the biological properties of small GTPases as well as the GTPase-nano interplay, since more and more nanomedicine are supposed to be used in biomedical field. However, there is no review in this aspect. This review summarizes the small GTPases in terms of the structure, biological function and its interaction with nanoparticles. We briefly introduced the various nanoparticles such as gold/silver nanoparticles, SWCNT, polymeric micelles and other nano delivery systems that interacted with different GTPases. These current nanoparticles exhibited different pharmacological effect modes and various target design concepts in the small GTPases study. This will help to elucidate the conclusion that the therapeutic strategy targeting small GTPases might be a new research direction. It is believed that the in-depth study on the functional mechanism of GTPases can provide insights for the design and study of nanomedicines.
Collapse
Affiliation(s)
- Siyang Song
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.,Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Wenshu Cong
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Shurong Zhou
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Yujie Shi
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Wenbing Dai
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Hua Zhang
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Xueqing Wang
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Bing He
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Qiang Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.,Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| |
Collapse
|
63
|
Gong X, Liu J, Zhang X, Dong F, Liu Y, Wang P. Rab11 Functions as an Oncoprotein via Nuclear Factor kappa B (NF-κB) Signaling Pathway in Human Bladder Carcinoma. Med Sci Monit 2018; 24:5093-5101. [PMID: 30032159 PMCID: PMC6067026 DOI: 10.12659/msm.911454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Elevated expression of Rab11 has been reported in different human cancers, including human bladder carcinoma. This study, we investigated the biological effects and mechanism of Rab11 overexpression in human bladder carcinoma for the first time. Material/Methods Rab11 expression in bladder cancer tissues was detected using immunohistochemistry and Western blot analysis. Then, Rab11 expression was inhibited in T24 cells and it was overexpressed in BIU-87 cells. The effects of Rab11 perturbations on cell growth rate and invasion were analyzed by CCK8, cell cycle assay, and matrix gel invasion assay. MMP-9, cyclin E, and cyclin D1 levels were studied using Western blot and qPCR. NF-κB activity was studied by luciferase assay. Results High expression of Rab11 was detected in 41.5% (66/159) of tumor specimens. We found a significant correlation between high Rab11 expression and depth of tumor invasion (P=0.004). Rab11 overexpression was observed to promote the growth rate and invasiveness of cancer cells through upregulation of MMP9, cyclin E, and cyclin D1 levels. Rab11 overexpression further elevated NF-κB reporter activity and enhanced p-IκB expression. Use of BAY 11-7082, a noted NF-κB inhibitor, partially abolished overexpression of MMP9 and cyclin D1 by Rab11. Conclusions Our research proved that high Rab11 expression enhances cellular multiplication and invasiveness of bladder cancer, possibly by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue Gong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiling Zhang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Fengming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (mainland)
| |
Collapse
|
64
|
Kulakowski G, Bousquet H, Manneville J, Bassereau P, Goud B, Oesterlin LK. Lipid packing defects and membrane charge control RAB GTPase recruitment. Traffic 2018; 19:536-545. [PMID: 29573133 PMCID: PMC6032855 DOI: 10.1111/tra.12568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Specific intracellular localization of RAB GTPases has been reported to be dependent on protein factors, but the contribution of the membrane physicochemical properties to this process has been poorly described. Here, we show that three RAB proteins (RAB1/RAB5/RAB6) preferentially bind in vitro to disordered and curved membranes, and that this feature is uniquely dependent on their prenyl group. Our results imply that the addition of a prenyl group confers to RAB proteins, and most probably also to other prenylated proteins, the ability to sense lipid packing defects induced by unsaturated conical-shaped lipids and curvature. Consistently, RAB recruitment increases with the amount of lipid packing defects, further indicating that these defects drive RAB membrane targeting. Membrane binding of RAB35 is also modulated by lipid packing defects but primarily dependent on negatively charged lipids. Our results suggest that a balance between hydrophobic insertion of the prenyl group into lipid packing defects and electrostatic interactions of the RAB C-terminal region with charged membranes tunes the specific intracellular localization of RAB proteins.
Collapse
Affiliation(s)
- Guillaume Kulakowski
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Hugo Bousquet
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Jean‐Baptiste Manneville
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Patricia Bassereau
- Laboratoire Physico Chimie, Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR168ParisFrance
| | - Bruno Goud
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Lena K. Oesterlin
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| |
Collapse
|
65
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
66
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
67
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2018. [PMID: 28632484 DOI: 10.1080/215412481336191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
- b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
68
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
69
|
Chen C, Eldein S, Zhou X, Sun Y, Gao J, Sun Y, Liu C, Wang L. Immune function of a Rab-related protein by modulating the JAK-STAT signaling pathway in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21434. [PMID: 29193252 DOI: 10.1002/arch.21434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Rab-family GTPases mainly regulate intracellular vesicle transport, and play important roles in the innate immune response in invertebrates. However, the function and signal transduction of Rab proteins in immune reactions remain unclear in silkworms. In this study, we analyzed a Rab-related protein of silkworm Bombyx mori (BmRABRP) by raising antibodies against its bacterially expressed recombinant form. Tissue distribution analysis showed that BmRABRP mRNA and protein were high expressed in the Malpighian tubule and fat body, respectively. However, among the different stages, only the fourth instar larvae and pupae showed significant BmRABRP levels. After challenge with four pathogenic microorganisms (Escherichia coli, BmNPV, Beauveria bassiana, Micrococcus luteus), the expression of BmRABRP mRNA in the fat body was significantly upregulated. In contrast, the BmRABRP protein was significantly upregulated after infection with BmNPV, while it was downregulated by E. coli, B. bassiana, and M. luteus. A specific dsRNA was used to explore the immune function and relationship between BmRABRP and the JAK-STAT signaling pathway. After BmRABRP gene interference, significant reduction in the number of nodules and increased mortality suggested that BmRABRP plays an important role in silkworm's response to bacterial challenge. In addition, four key genes (BmHOP, BmSTAT, BmSOCS2, and BmSOCS6) of the JAK-STAT signaling pathway showed significantly altered expressions after BmRABRP silencing. BmHOP and BmSOCS6 expressions were significantly decreased, while BmSTAT and BmSOCS2 were significantly upregulated. Our results suggested that BmRABRP is involved in the innate immune response against pathogenic microorganisms through the JAK-STAT signaling pathway in silkworm.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Salah Eldein
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiaosan Zhou
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Yu Sun
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Jin Gao
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Yuxuan Sun
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Chaoliang Liu
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
70
|
Imani S, Ijaz I, Shasaltaneh MD, Fu S, Cheng J, Fu J. Molecular genetics characterization and homology modeling of the CHM gene mutation: A study on its association with choroideremia. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:39-50. [DOI: 10.1016/j.mrrev.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/21/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
|
71
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
72
|
Surkont J, Diekmann Y, Pereira-Leal JB. Rabifier2: an improved bioinformatic classifier of Rab GTPases. Bioinformatics 2017; 33:568-570. [PMID: 27797763 DOI: 10.1093/bioinformatics/btw654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/12/2016] [Indexed: 11/14/2022] Open
Abstract
Summary The Rab family of small GTPases regulates and provides specificity to the endomembrane trafficking system; each Rab subfamily is associated with specific pathways. Thus, characterization of Rab repertoires provides functional information about organisms and evolution of the eukaryotic cell. Yet, the complex structure of the Rab family limits the application of existing methods for protein classification. Here, we present a major redesign of the Rabifier, a bioinformatic pipeline for detection and classification of Rab GTPases. It is more accurate, significantly faster than the original version and is now open source, both the code and the data, allowing for community participation. Availability and Implementation Rabifier and RabDB are freely available through the web at http://rabdb.org . The Rabifier package can be downloaded from the Python Package Index at https://pypi.python.org/pypi/rabifier , the source code is available at Github https://github.com/evocell/rabifier . Contact jsurkont@igc.gulbenkian.pt or jleal@igc.gulbenkian.pt. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Yoan Diekmann
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
73
|
Martín-Davison AS, Pérez-Díaz R, Soto F, Madrid-Espinoza J, González-Villanueva E, Pizarro L, Norambuena L, Tapia J, Tajima H, Blumwald E, Ruiz-Lara S. Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:1-11. [PMID: 28818364 DOI: 10.1016/j.plantsci.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/07/2017] [Accepted: 06/17/2017] [Indexed: 05/26/2023]
Abstract
Physiological responses of plants to salinity stress requires the coordinated activation of many genes. A salt-induced gene was isolated from roots of the wild tomato species Solanum chilense and named SchRabGDI1 because it encodes a protein with high identity to GDP dissociation inhibitors of plants. These proteins are regulators of the RabGTPase cycle that play key roles in intracellular vesicular trafficking. The expression pattern of SchRabGDI1 showed an early up-regulation in roots and leaves under salt stress. Functional activity of SchRabGDI1 was shown by restoring the defective phenotype of the yeast sec19-1 mutant and the capacity of SchRabGDI1 to interact with RabGTPase was demonstrated through BiFC assays. Expression of SchRabGDI1 in Arabidopsis thaliana plants resulted in increased salt tolerance. Also, the root cells of transgenic plants showed higher rate of endocytosis under normal growth conditions and higher accumulation of sodium in vacuoles and small vesicular structures under salt stress than wild type. Our results suggest that in salt tolerant species such as S. chilense, bulk endocytosis is one of the early mechanisms to avoid salt stress, which requires the concerted expression of regulatory genes involved in vesicular trafficking of the endocytic pathway.
Collapse
Affiliation(s)
| | - Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Flavia Soto
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - José Madrid-Espinoza
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | - Lorena Pizarro
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jaime Tapia
- Instituto de Química de los Recursos Naturales, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
74
|
Inoshita M, Mima J. Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system. J Biol Chem 2017; 292:18500-18517. [PMID: 28939769 DOI: 10.1074/jbc.m117.811356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Membrane tethering is a fundamental process essential for the compartmental specificity of intracellular membrane trafficking in eukaryotic cells. Rab-family small GTPases and specific sets of Rab-interacting effector proteins, including coiled-coil tethering proteins and multisubunit tethering complexes, are reported to be responsible for membrane tethering. However, whether and how these key components directly and specifically tether subcellular membranes remains enigmatic. Using chemically defined proteoliposomal systems reconstituted with purified human Rab proteins and synthetic liposomal membranes to study the molecular basis of membrane tethering, we established here that Rab-family GTPases have a highly conserved function to directly mediate membrane tethering, even in the absence of any types of Rab effectors such as the so-called tethering proteins. Moreover, we demonstrate that membrane tethering mediated by endosomal Rab11a is drastically and selectively stimulated by its cognate Rab effectors, class V myosins (Myo5A and Myo5B), in a GTP-dependent manner. Of note, Myo5A and Myo5B exclusively recognized and cooperated with the membrane-anchored form of their cognate Rab11a to support membrane tethering mediated by trans-Rab assemblies on opposing membranes. Our findings support the novel concept that Rab-family proteins provide a bona fide membrane tether to physically and specifically link two distinct lipid bilayers of subcellular membranes. They further indicate that Rab-interacting effector proteins, including class V myosins, can regulate these Rab-mediated membrane-tethering reactions.
Collapse
Affiliation(s)
- Motoki Inoshita
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Mima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
75
|
Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome. NPJ Syst Biol Appl 2017; 3:22. [PMID: 28845240 PMCID: PMC5562915 DOI: 10.1038/s41540-017-0021-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 06/17/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level, the tissue-specific expression of the secretory pathway genes has not been analyzed on the transcriptome level. Based on the recent RNA-sequencing studies, the largest fraction of tissue-specific transcriptome encodes for the secretome (secretory proteins). Here, the question arises that if the expression levels of the secretory pathway genes have a tissue-specific tuning. In this study, we tackled this question by performing a meta-analysis of the recently published transcriptome data on human tissues. As a result, we detected 68 as called “extreme genes” which show an unusual expression pattern in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post-translational modifications in each tissue’s secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications. The secretory pathway, an ubiquitous cellular machinery in human cells, is here shown to have tissue-specific characteristics. A research team led by Prof. Jens Nielsen at the Chalmers University of Technology performed a meta-analysis of the gene expressions of the secretory pathway’ component. They detected that even though most of these components are expressed in all tissues, there exist distinct components with fine-tuned expression. They further evaluated the functional link between the detected tuning and the processes that are demanded to make a set of tissue-specific proteins such as endocrine system hormones or their receptors. These findings open up a new avenue to understand the function of the secretion pathway in human tissues with possible applications for improving production of pharmaceutical proteins and getting more insight into the mechanisms underlying diseases such as diabetes that are connected with the endocrine system.
Collapse
|
76
|
Bahouth SW, Nooh MM. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks. Cell Signal 2017; 36:42-55. [PMID: 28449947 PMCID: PMC5512170 DOI: 10.1016/j.cellsig.2017.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/08/2023]
Abstract
Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β1-adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction pathway in membranes.
Collapse
Affiliation(s)
- Suleiman W Bahouth
- Department of Pharmacology, The University of Tennessee Health Sciences Center, 71 S. Manassas, Memphis, TN 38103, USA.
| | - Mohammed M Nooh
- Department of Biochemistry, Faculty of Pharmacy Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
77
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
78
|
Sherwood RK, Roy CR. Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol 2017; 70:413-33. [PMID: 27607556 DOI: 10.1146/annurev-micro-102215-095557] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gram-negative bacterial pathogen Legionella pneumophila creates a novel organelle inside of eukaryotic host cells that supports intracellular replication. The L. pneumophila-containing vacuole evades fusion with lysosomes and interacts intimately with the host endoplasmic reticulum (ER). Although the natural hosts for L. pneumophila are free-living protozoa that reside in freshwater environments, the mechanisms that enable this pathogen to replicate intracellularly also function when mammalian macrophages phagocytose aerosolized bacteria, and infection of humans by L. pneumophila can result in a severe pneumonia called Legionnaires' disease. A bacterial type IVB secretion system called Dot/Icm is essential for intracellular replication of L. pneumophila. The Dot/Icm apparatus delivers over 300 different bacterial proteins into host cells during infection. These bacterial proteins have biochemical activities that target evolutionarily conserved host factors that control membrane transport processes, which results in the formation of the ER-derived vacuole that supports L. pneumophila replication. This review highlights research discoveries that have defined interactions between vacuoles containing L. pneumophila and the host ER. These studies reveal how L. pneumophila creates a vacuole that supports intracellular replication by subverting host proteins that control biogenesis and fusion of early secretory vesicles that exit the ER and host proteins that regulate the shape and dynamics of the ER. In addition to recruiting ER-derived membranes for biogenesis of the vacuole in which L. pneumophila replicates, these studies have revealed that this pathogen has a remarkable ability to interfere with the host's cellular process of autophagy, which is an ancient cell autonomous defense pathway that utilizes ER-derived membranes to target intracellular pathogens for destruction. Thus, this intracellular pathogen has evolved multiple mechanisms to control membrane transport processes that center on the involvement of the host ER.
Collapse
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| |
Collapse
|
79
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2017. [PMID: 28632484 PMCID: PMC5902227 DOI: 10.1080/21541248.2017.1336191] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France.,b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
80
|
The balance between induction and inhibition of mevalonate pathway regulates cancer suppression by statins: A review of molecular mechanisms. Chem Biol Interact 2017; 273:273-285. [PMID: 28668359 DOI: 10.1016/j.cbi.2017.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
Statins are widely used drugs for their role in decreasing cholesterol in hypercholesterolemic patients. Statins through inhibition of Hydroxy Methyl Glutaryl-CoA Reductase (HMGCR), the main enzyme of the cholesterol biosynthesis pathway, inhibit mevalonate pathway that provides isoprenoids for prenylation of different proteins such as Ras superfamily which has an essential role in cancer developing. Inhibition of the mevalonate/isoprenoid pathway is the cause of the cholesterol independent effects of statins or pleotropic effects. Depending on their penetrance into the extra-hepatic cells, statins have different effects on mevalonate/isoprenoid pathway. Lipophilic statins diffuse into all cells and hydrophilic ones use a variety of membrane transporters to gain access to cells other than hepatocytes. It has been suggested that the lower accessibility of statins for extra-hepatic tissues may result in the compensatory induction of mevalonate/isoprenoid pathway and so cancer developing. However, most of the population-based studies have demonstrated that statins have no effect on cancer developing, even decrease the risk of different types of cancer. In this review we focus on the cancer developing "potentials" and the anti-cancer "activities" of statins regarding the effects of statins on mevalonate/isoprenoid pathway in the liver and extra-hepatic tissues.
Collapse
|
81
|
Yang CD, Dang X, Zheng HW, Chen XF, Lin XL, Zhang DM, Abubakar YS, Chen X, Lu G, Wang Z, Li G, Zhou J. Two Rab5 Homologs Are Essential for the Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2017; 8:620. [PMID: 28529514 PMCID: PMC5418346 DOI: 10.3389/fpls.2017.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The rice blast fungus, Magnaporthe oryzae, infects many economically important cereal crops, particularly rice. It has emerged as an important model organism for studying the growth, development, and pathogenesis of filamentous fungi. RabGTPases are important molecular switches in regulation of intracellular membrane trafficking in all eukaryotes. MoRab5A and MoRab5B are Rab5 homologs in M. oryzae, but their functions in the fungal development and pathogenicity are unknown. In this study, we have employed a genetic approach and demonstrated that both MoRab5A and MoRab5B are crucial for vegetative growth and development, conidiogenesis, melanin synthesis, vacuole fusion, endocytosis, sexual reproduction, and plant pathogenesis in M. oryzae. Moreover, both MoRab5A and MoRab5B show similar localization in hyphae and conidia. To further investigate possible functional redundancy between MoRab5A and MoRab5B, we overexpressed MoRAB5A and MoRAB5B, respectively, in MoRab5B:RNAi and MoRab5A:RNAi strains, but neither could rescue each other's defects caused by the RNAi. Taken together, we conclude that both MoRab5A and MoRab5B are necessary for the development and pathogenesis of the rice blast fungus, while they may function independently.
Collapse
Affiliation(s)
- Cheng D. Yang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xie Dang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hua W. Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiao F. Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiao L. Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Dong M. Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yakubu S. Abubakar
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Chen
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Ocean Science, Minjiang UniversityFuzhou, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma CityOK, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
82
|
Davie JJ, Faitar SL. The identification of protein domains that mediate functional interactions between Rab-GTPases and RabGAPs using 3D protein modeling. Adv Appl Bioinform Chem 2017; 10:47-56. [PMID: 28435300 PMCID: PMC5391865 DOI: 10.2147/aabc.s121245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Currently, time-consuming serial in vitro experimentation involving immunocytochemistry or radiolabeled materials is required to identify which of the numerous Rab-GTPases (Rab) and Rab-GTPase activating proteins (RabGAP) are capable of functional interactions. These interactions are essential for numerous cellular functions, and in silico methods of reducing in vitro trial and error would accelerate the pace of research in cell biology. We have utilized a combination of three-dimensional protein modeling and protein bioinformatics to identify domains present in Rab proteins that are predictive of their functional interaction with a specific RabGAP. The RabF2 and RabSF1 domains appear to play functional roles in mediating the interaction between Rabs and RabGAPs. Moreover, the RabSF1 domain can be used to make in silico predictions of functional Rab/RabGAP pairs. This method is expected to be a broadly applicable tool for predicting protein–protein interactions where existing crystal structures for homologs of the proteins of interest are available.
Collapse
Affiliation(s)
- Jeremiah J Davie
- Department of Biology and Mathematics, School of Arts, Sciences, and Education, D'Youville College, Buffalo, NY, USA
| | - Silviu L Faitar
- Department of Biology and Mathematics, School of Arts, Sciences, and Education, D'Youville College, Buffalo, NY, USA
| |
Collapse
|
83
|
Yin J, Huang Y, Guo P, Hu S, Yoshina S, Xuan N, Gan Q, Mitani S, Yang C, Wang X. GOP-1 promotes apoptotic cell degradation by activating the small GTPase Rab2 in C. elegans. J Cell Biol 2017; 216:1775-1794. [PMID: 28424218 PMCID: PMC5461019 DOI: 10.1083/jcb.201610001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
Rab2 regulates multiple membrane traffic processes, but how it is recruited to and activated on the target membrane remains unclear. Here, Yin et al. identify a conserved protein, GOP-1, that activates UNC-108/Rab2 to promote phagosome, endosome, and DCV maturation. Apoptotic cells generated by programmed cell death are engulfed by phagocytes and enclosed within plasma membrane–derived phagosomes. Maturation of phagosomes involves a series of membrane-remodeling events that are governed by the sequential actions of Rab GTPases and lead to formation of phagolysosomes, where cell corpses are degraded. Here we identified gop-1 as a novel regulator of apoptotic cell clearance in Caenorhabditis elegans. Loss of gop-1 affects phagosome maturation through the RAB-5–positive stage, causing defects in phagosome acidification and phagolysosome formation, phenotypes identical to and unaffected by loss of unc-108, the C. elegans Rab2. GOP-1 transiently associates with cell corpse–containing phagosomes, and loss of its function abrogates phagosomal association of UNC-108. GOP-1 interacts with GDP-bound and nucleotide-free UNC-108/Rab2, disrupts GDI-UNC-108 complexes, and promotes activation and membrane recruitment of UNC-108/Rab2 in vitro. Loss of gop-1 also abolishes association of UNC-108 with endosomes, causing defects in endosome and dense core vesicle maturation. Thus, GOP-1 is an activator of UNC-108/Rab2 in multiple processes.
Collapse
Affiliation(s)
- Jianhua Yin
- National Institute of Biological Sciences, Beijing 102206, China.,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaling Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Pengfei Guo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Siqi Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sawako Yoshina
- Deparment of Physiology, School of Medicine and Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Nan Xuan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwen Gan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shohei Mitani
- Deparment of Physiology, School of Medicine and Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing 102206, China .,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
84
|
Shi MM, Shi CH, Xu YM. Rab GTPases: The Key Players in the Molecular Pathway of Parkinson's Disease. Front Cell Neurosci 2017; 11:81. [PMID: 28400718 PMCID: PMC5369176 DOI: 10.3389/fncel.2017.00081] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive movement disorder with multiple non-motor symptoms. Although family genetic mutations only account for a small proportion of the cases, these mutations have provided several lines of evidence for the pathogenesis of PD, such as mitochondrial dysfunction, protein misfolding and aggregation, and the impaired autophagy-lysosome system. Recently, vesicle trafficking defect has emerged as a potential pathogenesis underlying this disease. Rab GTPases, serving as the core regulators of cellular membrane dynamics, may play an important role in the molecular pathway of PD through the complex interplay with numerous factors and PD-related genes. This might shed new light on the potential therapeutic strategies. In this review, we emphasize the important role of Rab GTPases in vesicle trafficking and summarize the interactions between Rab GTPases and different PD-related genes.
Collapse
Affiliation(s)
- Meng-Meng Shi
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| |
Collapse
|
85
|
Bright LJ, Gout JF, Lynch M. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species. Mol Biol Cell 2017; 28:1101-1110. [PMID: 28251922 PMCID: PMC5391186 DOI: 10.1091/mbc.e16-06-0361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rab GTPase family members in Paramecium have higher retention rates and more-divergent expression levels than other genes after whole-genome duplications, consistent with early steps in functional diversification. Localization analysis also uncovers functionally diversifying Rab11 genes. New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins.
Collapse
Affiliation(s)
- Lydia J Bright
- Department of Biology, Indiana University, Bloomington, IN 47405 .,Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
86
|
Lukman S, Nguyen MN, Sim K, Teo JCM. Discovery of Rab1 binding sites using an ensemble of clustering methods. Proteins 2017; 85:859-871. [PMID: 28120477 DOI: 10.1002/prot.25254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/28/2016] [Accepted: 01/19/2017] [Indexed: 12/29/2022]
Abstract
Targeting non-native-ligand binding sites for potential investigative and therapeutic applications is an attractive strategy in proteins that share common native ligands, as in Rab1 protein. Rab1 is a subfamily member of Rab proteins, which are members of Ras GTPase superfamily. All Ras GTPase superfamily members bind to native ligands GTP and GDP, that switch on and off the proteins, respectively. Rab1 is physiologically essential for autophagy and transport between endoplasmic reticulum and Golgi apparatus. Pathologically, Rab1 is implicated in human cancers, a neurodegenerative disease, cardiomyopathy, and bacteria-caused infectious diseases. We have performed structural analyses on Rab1 protein using a unique ensemble of clustering methods, including multi-step principal component analysis, non-negative matrix factorization, and independent component analysis, to better identify representative Rab1 proteins than the application of a single clustering method alone does. We then used the identified representative Rab1 structures, resolved in multiple ligand states, to map their known and novel binding sites. We report here at least a novel binding site on Rab1, involving Rab1-specific residues that could be further explored for the rational design and development of investigative probes and/or therapeutic small molecules against the Rab1 protein. Proteins 2017; 85:859-871. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suryani Lukman
- Khalifa University, Abu Dhabi Campus, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Minh N Nguyen
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Kelvin Sim
- OneAnalytix Pte Ltd, Onn Wah Building #04-01, 11 Changi South Lane Singapore, 486154, Singapore
| | - Jeremy C M Teo
- Khalifa University, Abu Dhabi Campus, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
87
|
Abstract
Rab proteins are the major regulators of vesicular trafficking in eukaryotic cells. Their activity can be tightly controlled within cells: Regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), they switch between an active GTP-bound state and an inactive GDP-bound state, interacting with downstream effector proteins only in the active state. Additionally, they can bind to membranes via C-terminal prenylated cysteine residues and they can be solubilized and shuttled between membranes by chaperone-like molecules called GDP dissociation inhibitors (GDIs). In this review we give an overview of Rab proteins with a focus on the current understanding of their regulation by GEFs, GAPs and GDI.
Collapse
Affiliation(s)
- Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
88
|
Abstract
A large group of small Rab GTPases which mediate secretory and endosomal membrane transport, as well as autophagosome biogenesis, are essential components of vesicle trafficking machinery. Specific Rab protein together with the cognate effectors coordinates the dynamics of trafficking pathway and determines the cargo proteins destination. Functional impairments of Rab proteins by mutations or post-translational modifications disrupting the regulatory network of vesicle trafficking have been implicated in tumorigenesis. Therefore, the vesicle transport regulators play essential roles in the mediation of cancer cell biology, including uncontrolled cell growth, invasion and metastasis. The context-dependent role of the same Rab to act as either an oncoprotein or tumor suppressor in different cancers is found. Such discrepancies may be due in part to the interaction of specific Rab protein with different effectors or cargos in various tumors. Here, we review recent advances in the roles of Rab GTPases in communicating with other effectors in tumor progression. In this review, we also emphasize dysregulation of Rab-mediated membrane delivery shifting normal cell behaviors toward malignancy. Thus, recovery of the dysregulated vesicle trafficking systems in cancer cells may provide future directions for potential strategy to restrain tumor progression.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, College of Medicine, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, College of Medicine, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China.
| |
Collapse
|
89
|
Chauhan IS, Shukla R, Krishna S, Sekhri S, Kaushik U, Baby S, Pal C, Siddiqi MI, Sundar S, Singh N. Recombinant Leishmania Rab6 (rLdRab6) is recognized by sera from visceral leishmaniasis patients. Exp Parasitol 2016; 170:135-147. [PMID: 27666959 DOI: 10.1016/j.exppara.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Rab proteins form the largest branch of the Ras superfamily. Rab proteins are key regulators of intracellular vesicular transport and membrane trafficking. Although RabGTPases are well-recognized targets in human diseases but are under-explored therapeutically in the Leishmania parasite. Using a quantitative cytofluorimetric assay, we analyzed the composition and organization of Rab6GTPase protein which was found to be primarily localized on the parasite subpellicular membrane and flagellum due to its association with kinesin motor proteins in the cytoskeletal microtubules. Our aim was to also assess the diagnostic role of recombinant Rab6 protein from Leishmania donovani (rLdRab6) using sera/plasma of Indian visceral leishmaniasis (VL) patients. Receiver-operating characteristic (ROC) curve analysis indicated 100% sensitivity and 100% specificity for rLdRab6-based ELISA which was almost similar in comparison to recombinant K39-based ELISA (95.83% sensitivity and 100% specificity). Sera of patients from another intracellular pathogenic infection, Mycobacterium tuberculosis, did not contain any significant levels of anti-rLdRab6 antibody. Thus rLdRab6 accuracy in visceral leishmaniasis diagnosis makes it a promising antigen for clinical use.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rantidev Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Savita Sekhri
- Oscar Medicare Pvt. Ltd, Okhla Industrial Area, Phase-II, New Delhi, 110020, India
| | - Umesh Kaushik
- Oscar Medicare Pvt. Ltd, Okhla Industrial Area, Phase-II, New Delhi, 110020, India
| | - Sabitha Baby
- Department of Microbiology, Karuna Medical College, Vilayodi, Chittur, Palakkad, Kerala, 678103, India
| | - Chiranjib Pal
- Department of Zoology, West Bengal State University, Barasat, Parganas (N), Berunanpukuria, Malikapur, West Bengal, 700126, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeloo Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
90
|
Sakane A, Yoshizawa S, Nishimura M, Tsuchiya Y, Matsushita N, Miyake K, Horikawa K, Imoto I, Mizuguchi C, Saito H, Ueno T, Matsushita S, Haga H, Deguchi S, Mizuguchi K, Yokota H, Sasaki T. Conformational plasticity of JRAB/MICAL-L2 provides "law and order" in collective cell migration. Mol Biol Cell 2016; 27:3095-3108. [PMID: 27582384 PMCID: PMC5063617 DOI: 10.1091/mbc.e16-05-0332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/23/2016] [Indexed: 01/23/2023] Open
Abstract
In fundamental biological processes, cells often move in groups, a process termed collective cell migration. Collectively migrating cells are much better organized than a random assemblage of individual cells. Many molecules have been identified as factors involved in collective cell migration, and no one molecule is adequate to explain the whole picture. Here we show that JRAB/MICAL-L2, an effector protein of Rab13 GTPase, provides the "law and order" allowing myriad cells to behave as a single unit just by changing its conformation. First, we generated a structural model of JRAB/MICAL-L2 by a combination of bioinformatic and biochemical analyses and showed how JRAB/MICAL-L2 interacts with Rab13 and how its conformational change occurs. We combined cell biology, live imaging, computational biology, and biomechanics to show that impairment of conformational plasticity in JRAB/MICAL-L2 causes excessive rigidity and loss of directionality, leading to imbalance in cell group behavior. This multidisciplinary approach supports the concept that the conformational plasticity of a single molecule provides "law and order" in collective cell migration.
Collapse
Affiliation(s)
- Ayuko Sakane
- Department of Biochemistry, Tokushima University, Tokushima 770-8503, Japan
| | - Shin Yoshizawa
- Image Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako 351-0198, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako 351-0198, Japan
| | - Yuko Tsuchiya
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Japan
| | - Natsuki Matsushita
- Translational Research Center, Ehime University Hospital, Ehime 791-0295, Japan
| | - Kazuhisa Miyake
- Department of Biochemistry, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Tokushima University, Tokushima 770-8503, Japan
| | - Issei Imoto
- Department of Human Genetics, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Chiharu Mizuguchi
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroyuki Saito
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Takato Ueno
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo 770-8503, Japan
| | - Sachi Matsushita
- Translational Research Center, Ehime University Hospital, Ehime 791-0295, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo 770-8503, Japan
| | - Shinji Deguchi
- Laboratory for Mechanobiology and Bioengineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Japan
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako 351-0198, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
91
|
Rai A, Oprisko A, Campos J, Fu Y, Friese T, Itzen A, Goody RS, Gazdag EM, Müller MP. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication. eLife 2016; 5. [PMID: 27552051 PMCID: PMC5026484 DOI: 10.7554/elife.18675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking. DOI:http://dx.doi.org/10.7554/eLife.18675.001
Collapse
Affiliation(s)
- Amrita Rai
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anastasia Oprisko
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jeremy Campos
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yangxue Fu
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Timon Friese
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Garching, Germany
| | - Roger S Goody
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Emerich Mihai Gazdag
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Matthias P Müller
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
92
|
Multiple Roles of the Small GTPase Rab7. Cells 2016; 5:cells5030034. [PMID: 27548222 PMCID: PMC5040976 DOI: 10.3390/cells5030034] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes.
Collapse
|
93
|
Mishra AK, Lambright DG. Invited review: Small GTPases and their GAPs. Biopolymers 2016; 105:431-48. [PMID: 26972107 PMCID: PMC5439442 DOI: 10.1002/bip.22833] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Widespread utilization of small GTPases as major regulatory hubs in many different biological systems derives from a conserved conformational switch mechanism that facilitates cycling between GTP-bound active and GDP-bound inactive states under control of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which accelerate slow intrinsic rates of activation by nucleotide exchange and deactivation by GTP hydrolysis, respectively. Here we review developments leading to current understanding of intrinsic and GAP catalyzed GTP hydrolytic reactions in small GTPases from structural, molecular and chemical mechanistic perspectives. Despite the apparent simplicity of the GTPase cycle, the structural bases underlying the hallmark hydrolytic reaction and catalytic acceleration by GAPs are considerably more diverse than originally anticipated. Even the most fundamental aspects of the reaction mechanism have been challenging to decipher. Through a combination of experimental and in silico approaches, the outlines of a consensus view have begun to emerge for the best studied paradigms. Nevertheless, recent observations indicate that there is still much to be learned. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 431-448, 2016.
Collapse
Affiliation(s)
- Ashwini K Mishra
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - David G Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
94
|
Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors. Biochem J 2016; 473:2671-85. [PMID: 27474410 PMCID: PMC5003698 DOI: 10.1042/bcj20160557] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Autosomal dominant mutations that activate the leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson's disease. Recent work has revealed that LRRK2 directly phosphorylates a conserved threonine/serine residue in the effector-binding switch-II motif of a number of Rab GTPase proteins, including Rab10. Here we describe a facile and robust method to assess phosphorylation of endogenous Rab10 in mouse embryonic fibroblasts (MEFs), lung and spleen-derived B-cells, based on the ability of the Phos-tag reagent to retard the electrophoretic mobility of LRRK2-phosphorylated Rab10. We exploit this assay to show that phosphorylation of Rab10 is ablated in kinase-inactive LRRK2[D2017A] knockin MEFs and mouse lung, demonstrating that LRRK2 is the major Rab10 kinase in these cells/tissue. We also establish that the Phos-tag assay can be deployed to monitor the impact that activating LRRK2 pathogenic (G2019S and R1441G) knockin mutations have on stimulating Rab10 phosphorylation. We show that upon addition of LRRK2 inhibitors, Rab10 is dephosphorylated within 1-2 min, markedly more rapidly than the Ser(935) and Ser(1292) biomarker sites that require 40-80 min. Furthermore, we find that phosphorylation of Rab10 is suppressed in LRRK2[S910A+S935A] knockin MEFs indicating that phosphorylation of Ser(910) and Ser(935) and potentially 14-3-3 binding play a role in facilitating the phosphorylation of Rab10 by LRRK2 in vivo The Rab Phos-tag assay has the potential to significantly aid with evaluating the effect that inhibitors, mutations and other factors have on the LRRK2 signalling pathway.
Collapse
|
95
|
Abstract
A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins.
Collapse
|
96
|
Rastogi R, Verma JK, Kapoor A, Langsley G, Mukhopadhyay A. Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania. J Biol Chem 2016; 291:14732-46. [PMID: 27226564 DOI: 10.1074/jbc.m116.716514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania.
Collapse
Affiliation(s)
- Ruchir Rastogi
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Jitender Kumar Verma
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Anjali Kapoor
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Gordon Langsley
- the INSERM U1016, CNRS UMR8104, Cochin Institute, 75014 Paris, France
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
97
|
Yang S, Dizhoor A, Wilson DJ, Adamus G. GCAP1, Rab6, and HSP27: Novel Autoantibody Targets in Cancer-Associated Retinopathy and Autoimmune Retinopathy. Transl Vis Sci Technol 2016; 5:1. [PMID: 27152249 PMCID: PMC4855477 DOI: 10.1167/tvst.5.3.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/19/2016] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Autoantibodies (AAbs) with different retinal specificities were reported in cancer-associated retinopathy (CAR) and autoimmune retinopathy (AR). The goal was to identify the small retinal proteins of apparent molecular mass of 23-kDa often recognized by patients' AAbs. METHODS Sera specific for a 23-kDa retinal protein of 173 patients were investigated retrospectively by Western blotting and double immunofluorescence confocal microscopy. A proteomic analysis revealed new 23-kDa protein candidates, including guanylyl cyclase-activating proteins (GCAPs), heat shock protein 27 (HSP27), and Rab6A GTPase (Rab6A). RESULTS Among the cohort of 173 patients, only 68 had anti-recoverin AAbs and the remaining 105 reacted with 4 unique proteins, which were identified as a Rab6A, HSP27, GCAP1, and GCAP2. Confocal images from a double labeling study confirmed the reactivity of AAbs with different types of cells in human retina, consistent with the target protein's respective cellular functions. Patients (62/173) had been diagnosed with various kinds of cancer, including 20% of patients who had anti-recoverin, 11% anti-Rab6A, and 5% anti-HSP27 AAbs. Only 50% of recoverin-seropositive patients had cancer and the individuals with anti-recoverin AAbs had a significantly higher likelihood to be diagnosed with cancer than patients with other anti-23-kDa AAbs. CONCLUSIONS The newly discovered retinal autoantigens may be involved in pathogenicity of CAR and AR. The recognition of AAbs against various retinal proteins associated with autoimmune retinal degeneration broadens the group of proteins related with these entities. TRANSLATIONAL RELEVANCE Patients with anti-recoverin, anti-GCAP1, anti-Rab6A, and anti-HSP27 AAbs represented diverse clinical phenotypes, so the presence of disease-associated AAbs provides important information for molecular diagnosis.
Collapse
Affiliation(s)
- Sufang Yang
- Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | - David J Wilson
- Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Grazyna Adamus
- Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
98
|
Wyroba E, Kwaśniak P, Miller K, Kobyłecki K, Osińska M. Site-directed mutagenesis, in vivo electroporation and mass spectrometry in search for determinants of the subcellular targeting of Rab7b paralogue in the model eukaryote Paramecium octaurelia. Eur J Histochem 2016; 60:2612. [PMID: 27349314 PMCID: PMC4933825 DOI: 10.4081/ejh.2016.2612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
Protein products of paralogous genes resulting from whole genome duplication may acquire new functions. The role of post-translational modifications (PTM) in proper targeting of Paramecium Rab7b paralogue (distinct from that of Rab7a directly involved in phagocytosis) was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala diminished the incorporation of [P32] by 37% and of [C14-]UDP-glucose by 24% into recombinant Rab7b_200 in comparison to the non-mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells in contrast to non-mutagenized recombinant Rab7b correctly incorporated in the cytostome area. Using nano LC-MS/MS to compare the peptide map of Rab7b with that after deglycosylation with a mixture of five enzymes of different specificity we identified a peptide ion at m/z=677.63+ representing a glycan group attached to Thr200. Based on its mass and quantitative assays with [P32] and [C14]UDP-glucose, the suggested composition of the adduct attached to Thr200 is (Hex)1(HexNAc)1(Phos)3 or (HexNAc)1 (Deoxyhexose)1 (Phos)1 (HexA)1. These data indicate that PTM of Thr200 located in the hypervariable C-region of Paramecium octaurelia Rab7b is crucial for the proper localization/function of this protein. Moreover, the two Rab7 paralogues differ also in another PTM: substantially more phosphorylated amino acid residues are in Rab7b than in Rab7a.
Collapse
Affiliation(s)
- E Wyroba
- Nencki Institute of Experimental Biology of Polish Academy of Sciences.
| | | | | | | | | |
Collapse
|
99
|
Srikanth S, Kim KD, Gao Y, Woo JS, Ghosh S, Calmettes G, Paz A, Abramson J, Jiang M, Gwack Y. A large Rab GTPase encoded by CRACR2A is a component of subsynaptic vesicles that transmit T cell activation signals. Sci Signal 2016; 9:ra31. [PMID: 27016526 DOI: 10.1126/scisignal.aac9171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed thatCRACR2A(Ca(2+) release-activated Ca(2+) channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca(2+) and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yuanyuan Gao
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Shubhamoy Ghosh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Aviv Paz
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
100
|
Schöppner P, Csaba G, Braun T, Daake M, Richter B, Lange OF, Zacharias M, Zimmer R, Haslbeck M. Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins. J Mol Biol 2016; 428:1544-57. [PMID: 26953259 DOI: 10.1016/j.jmb.2016.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
Abstract
Alternative splicing often affects structured and highly conserved regions of proteins, generating so called non-trivial splicing variants of unknown structure and cellular function. The human small G-protein Rab1A is involved in the regulation of the vesicle transfer from the ER to Golgi. A conserved non-trivial splice variant lacks nearly 40% of the sequence of the native Rab1A, including most of the regulatory interaction sites. We show that this variant of Rab1A represents a stable and folded protein, which is still able to bind nucleotides and co-localizes with membranes. Nevertheless, it should be mentioned that compared to other wild-typeRabGTPases, the measured nucleotide binding affinities are dramatically reduced in the variant studied. Furthermore, the Rab1A variant forms hetero-dimers with wild-type Rab1A and its presence in the cell enhances the efficiency of alkaline phosphatase secretion. However, this variant shows no specificity for GXP nucleotides, a constantly enhanced GTP hydrolysis activity and is no longer controlled by GEF or GAP proteins, indicating a new regulatory mechanism for the Rab1A cycle via alternative non-trivial splicing.
Collapse
Affiliation(s)
- Patricia Schöppner
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gergely Csaba
- Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 München, Germany
| | - Tatjana Braun
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marina Daake
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Bettina Richter
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Oliver F Lange
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department, Technische Universität München, James-Franck-Strasse 1, 85747 Garching, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 München, Germany.
| | - Martin Haslbeck
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|