51
|
Butelman ER, Yuferov V, Kreek MJ. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci 2012; 35:587-96. [PMID: 22709632 DOI: 10.1016/j.tins.2012.05.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/27/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Addictions to cocaine or heroin/prescription opioids [short-acting μ-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. κ-Opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN), have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often comorbid with addictions. In this opinion article we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric comorbidity.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/genetics
- Behavior, Addictive/physiopathology
- Disease Models, Animal
- Drug Discovery/methods
- Dynorphins/physiology
- Enkephalins/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Illicit Drugs/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Polymorphism, Genetic
- Protein Precursors/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Recurrence
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
52
|
Staub D, Lunden J, Cathel A, Dolben E, Kirby L. Morphine history sensitizes postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Psychoneuroendocrinology 2012; 37:859-70. [PMID: 22047957 PMCID: PMC3319501 DOI: 10.1016/j.psyneuen.2011.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 09/02/2011] [Accepted: 10/05/2011] [Indexed: 01/05/2023]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Previous work has shown that the dorsal raphe nucleus (DR)-5-HT system is inhibited by swim stress via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor (CRF). Additionally, the DR 5-HT system is regulated by opioids. The present study tests the hypothesis that the DR 5-HT system regulates stress-induced opioid relapse. In the first experiment, electrophysiological recordings of GABA synaptic activity in 5-HT DR neurons were conducted in brain slices from Sprague-Dawley rats that were exposed to swim stress-induced reinstatement of previously extinguished morphine conditioned place preference (CPP). Behavioral data indicate that swim stress triggers reinstatement of morphine CPP. Electrophysiology data indicate that 5-HT neurons in the morphine-conditioned group exposed to stress had increased amplitude of inhibitory postsynaptic currents (IPSCs), which would indicate greater postsynaptic GABA receptor density and/or sensitivity, compared to saline controls exposed to stress. In the second experiment, rats were exposed to either morphine or saline CPP and extinction, and then 5-HT DR neurons from both groups were examined for sensitivity to CRF in vitro. CRF induced a greater inward current in 5-HT neurons from morphine-conditioned subjects compared to saline-conditioned subjects. These data indicate that morphine history sensitizes 5-HT DR neurons to the GABAergic inhibitory effects of stress as well as to some of the effects of CRF. These mechanisms may sensitize subjects with a morphine history to the dysphoric effects of stressors and ultimately confer an enhanced vulnerability to stress-induced opioid relapse.
Collapse
Affiliation(s)
| | | | | | | | - L.G. Kirby
- Corresponding Author: Lynn G. Kirby, Ph.D., Center for Substance Abuse Research, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, (215) 707-8566 (phone), (215) 707-9468 (fax)
| |
Collapse
|
53
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
54
|
Marchant NJ, Millan EZ, McNally GP. The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci 2012; 69:581-97. [PMID: 21947443 PMCID: PMC11114730 DOI: 10.1007/s00018-011-0817-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 01/24/2023]
Abstract
The hypothalamus is a neural structure critical for expression of motivated behaviours that ensure survival of the individual and the species. It is a heterogeneous structure, generally recognised to have four distinct regions in the rostrocaudal axis (preoptic, supraoptic, tuberal and mammillary). The tuberal hypothalamus in particular has been implicated in the neural control of appetitive motivation, including feeding and drug seeking. Here we review the role of the tuberal hypothalamus in appetitive motivation. First, we review evidence that different regions of the hypothalamus exert opposing control over feeding. We then review evidence that a similar bi-directional regulation characterises hypothalamic contributions to drug seeking and reward seeking. Lateral regions of the dorsal tuberal hypothalamus are important for promoting reinstatement of drug seeking, whereas medial regions of the dorsal tuberal hypothalamus are important for inhibiting this drug seeking after extinction training. Finally, we review evidence that these different roles for medial versus lateral dorsal tuberal hypothalamus in promoting or preventing reinstatement of drug seeking are mediated, at least in part, by different populations of hypothalamic neurons as well as the neural circuits in which they are located.
Collapse
Affiliation(s)
- Nathan J. Marchant
- School of Psychology, University of New South Wales, Sydney, NSW 2052 Australia
| | - E. Zayra Millan
- School of Psychology, University of New South Wales, Sydney, NSW 2052 Australia
| | - Gavan P. McNally
- School of Psychology, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
55
|
Reyes BAS, Chavkin C, Van Bockstaele EJ. Agonist-induced internalization of κ-opioid receptors in noradrenergic neurons of the rat locus coeruleus. J Chem Neuroanat 2010; 40:301-9. [PMID: 20884346 PMCID: PMC2991477 DOI: 10.1016/j.jchemneu.2010.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 12/11/2022]
Abstract
Kappa-opioid receptors (κOR) are positioned to modulate pre- and post-synaptic responses of norepinephrine-containing neurons in the rat locus coeruleus (LC). The ability of an acute systemic injection of a long acting κOR agonist, U50,488, to induce trafficking of κOR was assessed in the LC using immunogold-silver detection in male Sprague-Dawley rats. U50,488 administration shifted immunogold-silver labeling indicative of κOR from primarily plasmalemmal sites to intracellular sites when compared to vehicle-treated subjects. This translocation from the plasma membrane to the cytoplasmic compartment was prevented by pre-treatment with the κOR antagonist, norbinaltorphimine (norBNI). To determine whether agonist stimulation could induce adaptations in the expression of the noradrenergic synthesizing enzyme, dopamine beta hydroxylase (DβH), and κOR expression, Western blot analysis was used to compare expression levels of DβH and κOR following U50,488 administration. Expression levels for DβH and κOR were significantly increased following U50,488 administration when compared to controls. These data indicate that a systemic injection of a κOR agonist stimulates internalization of κORs in noradrenergic neurons and can impact κOR and DβH expression levels in this stress-sensitive brain region.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- Animals
- Dopamine beta-Hydroxylase/biosynthesis
- Dopamine beta-Hydroxylase/genetics
- Endocytosis/drug effects
- Endocytosis/physiology
- Enkephalins/biosynthesis
- Enkephalins/genetics
- Locus Coeruleus/drug effects
- Locus Coeruleus/metabolism
- Locus Coeruleus/ultrastructure
- Male
- Microscopy, Immunoelectron
- Neurons/drug effects
- Neurons/metabolism
- Neurons/ultrastructure
- Norepinephrine/physiology
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/ultrastructure
Collapse
Affiliation(s)
- B A S Reyes
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
56
|
Marchant NJ, Furlong TM, McNally GP. Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction. J Neurosci 2010; 30:14102-15. [PMID: 20962231 PMCID: PMC6634760 DOI: 10.1523/jneurosci.4079-10.2010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/21/2022] Open
Abstract
Extinction promotes abstinence from drug seeking. Extinction expression is an active process, dependent on infralimbic prefrontal cortex (ilPFC). However, the neurocircuitry mediating extinction expression is unknown. Here we studied the neural mechanisms for expression of extinction of alcoholic beer seeking in rats. We first examined the pattern of activation in prefrontal cortex projections to medial dorsal hypothalamus (MDH) (i.e., perifornical and dorsomedial nuclei) during extinction expression. Double labeling for retrograde tracer cholera toxin B subunit (CTb) and the neuronal activity marker c-Fos revealed significant recruitment of MDH projecting ilPFC neurons during extinction expression. We then studied the causal role of MDH in inhibiting alcoholic beer seeking during extinction expression. MDH infusion of the inhibitory neuropeptide cocaine- and amphetamine-regulated transcript prevented extinction expression, showing that MDH is necessary for extinction expression. Next we examined the pattern of activation in MDH projections to paraventricular thalamus (PVT) during extinction expression. Double labeling for CTb and c-Fos revealed significant recruitment of PVT projecting MDH neurons during extinction expression. We also showed, using triple-label immunofluorescence, that the majority of PVT projecting extinction neurons express prodynorphin, suggesting that actions at κ opioid receptors (KORs) in PVT may be critical for inhibiting alcoholic beer seeking. Consistent with this, infusions of a KOR agonist into PVT prevented reinstatement of alcoholic beer seeking showing that PVT KOR activation is sufficient to inhibit alcoholic beer seeking. Together, these findings identify a role for MDH and its ilPFC afferents and PVT efferents in inhibiting alcoholic beer seeking during extinction expression.
Collapse
Affiliation(s)
- Nathan J. Marchant
- School of Psychology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Teri M. Furlong
- School of Psychology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gavan P. McNally
- School of Psychology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
57
|
Yuferov V, Levran O, Proudnikov D, Nielsen DA, Kreek MJ. Search for genetic markers and functional variants involved in the development of opiate and cocaine addiction and treatment. Ann N Y Acad Sci 2010; 1187:184-207. [PMID: 20201854 PMCID: PMC3769182 DOI: 10.1111/j.1749-6632.2009.05275.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Addiction to opiates and illicit use of psychostimulants is a chronic, relapsing brain disease that, if left untreated, can cause major medical, social, and economic problems. This article reviews recent progress in studies of association of gene variants with vulnerability to develop opiate and cocaine addictions, focusing primarily on genes of the opioid and monoaminergic systems. In addition, we provide the first evidence of a cis-acting polymorphism and a functional haplotype in the PDYN gene, of significantly higher DNA methylation rate of the OPRM1 gene in the lymphocytes of heroin addicts, and significant differences in genotype frequencies of three single-nucleotide polymorphisms of the P-glycoprotein gene (ABCB1) between "higher" and "lower" methadone doses in methadone-maintained patients. In genomewide and multigene association studies, we found association of several new genes and new variants of known genes with heroin addiction. Finally, we describe the development and application of a novel technique: molecular haplotyping for studies in genetics of drug addiction.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Catechol O-Methyltransferase/genetics
- Cocaine-Related Disorders/genetics
- Cocaine-Related Disorders/therapy
- Enkephalins/genetics
- Epigenesis, Genetic
- Genetic Markers
- Genetic Variation
- Genome-Wide Association Study
- Haplotypes
- Humans
- Methadone/metabolism
- Methadone/therapeutic use
- Opioid-Related Disorders/genetics
- Opioid-Related Disorders/therapy
- Pharmacogenetics
- Protein Precursors/genetics
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Serotonin, 5-HT1B/genetics
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/genetics
- Tryptophan Hydroxylase/genetics
Collapse
Affiliation(s)
- Vadim Yuferov
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Dmitri Proudnikov
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - David A. Nielsen
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| |
Collapse
|
58
|
Barson JR, Carr AJ, Soun JE, Sobhani NC, Rada P, Leibowitz SF, Hoebel BG. Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcohol Clin Exp Res 2009; 34:214-22. [PMID: 19951300 DOI: 10.1111/j.1530-0277.2009.01084.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Specialized hypothalamic systems that increase food intake might also increase ethanol intake. To test this possibility, morphine and receptor-specific opioid agonists were microinjected in the paraventricular nucleus (PVN) of rats that had learned to drink ethanol. To cross-validate the results, naloxone methiodide (m-naloxone), an opioid antagonist, was microinjected with the expectation that it would have the opposite effect of morphine and the specific opioid agonists. METHODS Sprague-Dawley rats were trained, without sugar, to drink 4 or 7% ethanol and were then implanted with chronic brain cannulas aimed at the PVN. After recovery, those drinking 7% ethanol, with food and water available, were injected with 2 doses each of morphine or m-naloxone. To test for receptor specificity, 2 doses each of the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), or kappa-receptor agonist U-50,488H were injected. DAMGO was also tested in rats drinking 4% ethanol without food or water available. As an anatomical control for drug reflux, injections were made 2 mm dorsal to the PVN. RESULTS A main result was a significant increase in ethanol intake induced by PVN injection of morphine. The opposite effect was produced by m-naloxone. The effects of morphine and m-naloxone were exclusively on intake of ethanol, even though food and water were freely available. In the analysis with specific receptor agonists, PVN injection of the delta-agonist DALA significantly increased 7% ethanol intake without affecting food or water intake. This is in contrast to the kappa-agonist U-50,488H, which decreased ethanol intake, and the mu-agonist DAMGO, which had no effect on ethanol intake in the presence or absence of food and water. In the anatomical control location 2 mm dorsal to the PVN, no drug caused any significant changes in ethanol, food, or water intake, providing evidence that the active site was close to the cannula tip. CONCLUSIONS The delta-opioid receptor agonist in the PVN increased ethanol intake in strong preference over food and water, while the kappa-opioid agonist suppressed ethanol intake. Prior studies show that learning to drink ethanol stimulates PVN expression and production of the peptides enkephalin and dynorphin, which are endogenous agonists for the delta- and kappa-receptors, respectively. These results suggest that enkephalin via the delta-opioid system can function locally within a positive feedback circuit to cause ethanol intake to escalate and ultimately contribute to the abuse of ethanol. This is in contrast to dynorphin via the kappa-opioid system, which may act to counter this escalation. Naltrexone therapy for alcoholism may act, in part, by blocking the enkephalin-triggered positive feedback cycle.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Czyzyk TA, Nogueiras R, Lockwood JF, McKinzie JH, Coskun T, Pintar JE, Hammond C, Tschöp MH, Statnick MA. kappa-Opioid receptors control the metabolic response to a high-energy diet in mice. FASEB J 2009; 24:1151-9. [PMID: 19917675 DOI: 10.1096/fj.09-143610] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
General opioid receptor antagonists reduce food intake and body weight in rodents, but the contributions of specific receptor subtypes are unknown. We examined whether genetic deletion of the kappa-opioid receptor (KOR) in mice alters metabolic physiology. KOR-knockout (KO) and wild-type (WT) mice were fed a high-energy diet (HED) for 16 wk. KO mice had 28% lower body weight and 45% lower fat mass when compared to WT mice fed an HED. No differences in caloric intake were found. An HED reduced energy expenditure in WT mice, but not in KO mice. KOR deficiency led to an attenuation of triglyceride synthesis in the liver. Malonyl CoA levels were also reduced in response to an HED, thereby promoting hepatic beta-oxidation. Glycemic control was also found to be improved in KO mice. These data suggest a key role for KORs in the central nervous system regulation of the metabolic adaptation to an HED, as we were unable to detect expression of KOR in liver, white adipose tissue, or skeletal muscle in WT mice. This study provides the first evidence that KORs play an essential physiological role in the control of hepatic lipid metabolism, and KOR activation is a permissive signal toward fat storage.-Czyzyk, T. A., Nogueiras, R., Lockwood, J. F., McKinzie, J. H., Coskun, T., Pintar, J. E., Hammond, C., Tschöp, M. H., Statnick, M. A. kappa-Opioid receptors control the metabolic response to a high-energy diet in mice.
Collapse
Affiliation(s)
- Traci A Czyzyk
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, DC 0403, 355 E. Merrill St., Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 2009; 123:353-70. [PMID: 19481570 PMCID: PMC2872771 DOI: 10.1016/j.pharmthera.2009.05.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
Abstract
Since the first description of their opioid properties three decades ago, dynorphins have increasingly been thought to play a regulatory role in numerous functional pathways of the brain. Dynorphins are members of the opioid peptide family and preferentially bind to kappa opioid receptors. In line with their localization in the hippocampus, amygdala, hypothalamus, striatum and spinal cord, their functions are related to learning and memory, emotional control, stress response and pain. Pathophysiological mechanisms that may involve dynorphins/kappa opioid receptors include epilepsy, addiction, depression and schizophrenia. Most of these functions were proposed in the 1980s and 1990s following histochemical, pharmacological and electrophysiological experiments using kappa receptor-specific or general opioid receptor agonists and antagonists in animal models. However, at that time, we had little information on the functional relevance of endogenous dynorphins. This was mainly due to the complexity of the opioid system. Besides actions of peptides from all three classical opioid precursors (proenkephalin, prodynorphin, proopiomelanocortin) on the three classical opioid receptors (delta, mu and kappa), dynorphins were also shown to exert non-opioid effects mainly through direct effects on NMDA receptors. Moreover, discrepancies between the distribution of opioid receptor binding sites and dynorphin immunoreactivity contributed to the difficulties in interpretation. In recent years, the generation of prodynorphin- and opioid receptor-deficient mice has provided the tools to investigate open questions on network effects of endogenous dynorphins. This article examines the physiological, pathophysiological and pharmacological implications of dynorphins in the light of new insights in part obtained from genetically modified animals.
Collapse
Affiliation(s)
- Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
61
|
Magnusson K, Birgner C, Bergström L, Nyberg F, Hallberg M. Nandrolone decanoate administration dose-dependently affects the density of kappa opioid peptide receptors in the rat brain determined by autoradiography. Neuropeptides 2009; 43:105-11. [PMID: 19201466 DOI: 10.1016/j.npep.2008.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/20/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
The kappa opioid receptor ligand [(3)H]CI-977 was used to autoradiographically determine the density of kappa opioid receptors in the male rat brain following chronic treatment with the anabolic androgenic steroid nandrolone decanoate at two different doses. As compared to controls, significantly lower densities of the kappa opioid receptor were encountered after two weeks of high dose nandrolone decanoate (15 mg/kg) in the nucleus accumbens shell (16%), lateral hypothalamic area (36%), ventromedial hypothalamic nucleus (37%), dorsomedial hypothalamic nucleus (49%), central amygdaloid nucleus, capsular part (28%), lateral globus pallidus (35%) and in the stria terminalis (24%). Furthermore, an up-regulation of the receptor level was observed in the caudate putamen (18%) and in the dorsal endopiriform nucleus (23%). These alterations in the kappa opioid receptor expression are possibly attributed to a previously observed pronounced impact of nandrolone decanoate on the dynorphinergic system and could also include involvement of the dopaminergic reward system.
Collapse
Affiliation(s)
- K Magnusson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
62
|
Yuferov V, Ji F, Nielsen DA, Levran O, Ho A, Morgello S, Shi R, Ott J, Kreek MJ. A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain. Neuropsychopharmacology 2009; 34:1185-97. [PMID: 18923396 PMCID: PMC2778041 DOI: 10.1038/npp.2008.187] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynorphin peptides and the kappa-opioid receptor are important in the rewarding properties of cocaine, heroin, and alcohol. We tested polymorphisms of the prodynorphin gene (PDYN) for association with cocaine dependence and cocaine/alcohol codependence. We genotyped six single nucleotide polymorphisms (SNPs), located in the promoter region, exon 4 coding, and 3' untranslated region, in 106 Caucasians and 204 African Americans who were cocaine dependent, cocaine/alcohol codependent, or controls. In Caucasians, we found point-wise significant associations of 3'UTR SNPs (rs910080, rs910079, and rs2235749) with cocaine dependence and cocaine/alcohol codependence. These SNPs are in high linkage disequilibrium, comprising a haplotype block. The haplotype CCT was significantly experiment-wise associated with cocaine dependence and with combined cocaine dependence and cocaine/alcohol codependence (false discovery rate, q=0.04 and 0.03, respectively). We investigated allele-specific gene expression of PDYN, using SNP rs910079 as a reporter, in postmortem human brains from eight heterozygous subjects, using SNaPshot assay. There was significantly lower expression for C allele (rs910079), with ratios ranging from 0.48 to 0.78, indicating lower expression of the CCT haplotype of PDYN in both the caudate and nucleus accumbens. Analysis of total PDYN expression in 43 postmortem brains also showed significantly lower levels of preprodynorphin mRNA in subjects having the risk CCT haplotype. This study provides evidence that a 3'UTR PDYN haplotype, implicated in vulnerability to develop cocaine addiction and/or cocaine/alcohol codependence, is related to lower mRNA expression of the PDYN gene in human dorsal and ventral striatum.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Reyes BAS, Chavkin C, van Bockstaele EJ. Subcellular targeting of kappa-opioid receptors in the rat nucleus locus coeruleus. J Comp Neurol 2009; 512:419-31. [PMID: 19009591 PMCID: PMC2592510 DOI: 10.1002/cne.21880] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dynorphin (DYN)-kappa opioid receptor (kappaOR) system has been implicated in stress modulation, depression, and relapse to drug-seeking behaviors. Previous anatomical and physiological data have indicated that the noradrenergic nucleus locus coeruleus (LC) is one site at which DYN may contribute to these effects. Using light microscopy, immunofluorescence, and electron microscopy, the present study investigated the cellular substrates for pre- and postsynaptic interactions of kappaOR in the LC. Dual immunocytochemical labeling for kappaOR and tyrosine hydroxylase (TH) or kappaOR and preprodynorphin (ppDYN) was examined in the same section of tissue. Light microscopic analysis revealed prominent kappaOR immunoreactivity in the nuclear core of the LC and in the peri-coerulear region where noradrenergic dendrites extend. Fluorescence and electron microscopy revealed kappaOR immunoreactivity within TH-immunoreactive somata and dendrites in the LC as well as localized to ppDYN-immunoreactive processes. In sections processed for kappaOR and TH, approximately 29% (200/688) of the kappaOR-containing axon terminals identified targeted TH-containing profiles. Approximately 49% (98/200) of the kappaOR-labeled axon terminals formed asymmetric synapses with TH-labeled dendrites. Sections processed for kappaOR and ppDYN showed that, of the axon terminals exhibiting kappaOR, 47% (223/477) also exhibited ppDYN. These findings indicate that kappaORs are poised to modulate LC activity by their localization to somata and dendrites. Furthermore, kappaORs are strategically localized to presynaptically modulate DYN afferent input to catecholamine-containing neurons in the LC. These data add to the growing literature showing that kappaORs can modulate diverse afferent signaling to the LC.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
64
|
Wilson MA, Junor L. The role of amygdalar mu-opioid receptors in anxiety-related responses in two rat models. Neuropsychopharmacology 2008; 33:2957-68. [PMID: 18216773 PMCID: PMC2705758 DOI: 10.1038/sj.npp.1301675] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 01/04/2023]
Abstract
Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu-opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze, and the defensive burying test. The role of MORs in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO), or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) or beta-funaltrexamine (FNA) were bilaterally infused into the CEA of rats before testing. The results show that microinjection of DAMGO in the CEA decreased open-arm time in the plus maze, whereas CTAP increased open-arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdalar output circuits and behavioral responses during exposure to potential threats (open arms of the maze) vs discrete threats (predator odor).
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Amygdala/physiopathology
- Analgesics, Opioid/pharmacology
- Animals
- Anxiety Disorders/chemically induced
- Anxiety Disorders/metabolism
- Anxiety Disorders/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Fear/drug effects
- Fear/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Narcotic Antagonists/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Opioid Peptides/metabolism
- Rats
- Rats, Long-Evans
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Smell/drug effects
- Smell/physiology
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
65
|
Kreibich A, Reyes BAS, Curtis AL, Ecke L, Chavkin C, Van Bockstaele EJ, Valentino RJ. Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system. J Neurosci 2008; 28:6516-25. [PMID: 18562623 PMCID: PMC2605626 DOI: 10.1523/jneurosci.0390-08.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/17/2008] [Accepted: 05/05/2008] [Indexed: 11/21/2022] Open
Abstract
The norepinephrine nucleus, locus ceruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAAs), corticotropin-releasing factor (CRF), and endogenous opioids acting at mu-opiate receptors. Because the LC is also innervated by the endogenous kappa-opiate receptor (kappa-OR) ligand dynorphin and expresses kappa-ORs, this study investigated kappa-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of kappa-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the kappa-OR agonist (trans)-3,4-dichloro-N-methyl-N-[2-1-pyrrolidinyl)-cyclo-hexyl] benzeneacetamide (U50488) into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the kappa-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that kappa-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-norepinephrine system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate kappa-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders, or disorders characterized by abnormal sensory responses, such as autism.
Collapse
Affiliation(s)
- Arati Kreibich
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
66
|
Reyes BAS, Drolet G, Van Bockstaele EJ. Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents. J Comp Neurol 2008; 508:663-75. [PMID: 18381633 PMCID: PMC3277290 DOI: 10.1002/cne.21683] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The interaction between the stress axis and endogenous opioid systems has gained substantial attention, because it is increasingly recognized that stress alters individual sensitivity to opiates. One site at which opiates and stress substrates may interact to have global effects on behavior is within the locus coeruleus (LC). We have previously described interactions of several opioid peptides [e.g., proopiomelanocortin, enkephalin (ENK)] with the stress-related peptide corticotropin-releasing factor (CRF) in the LC. To examine further the interactions among dynorphin (DYN), ENK, and CRF in the LC, sections were processed for detection of DYN and CRF or DYN and ENK in rat brain. DYN- and CRF-containing axon terminals overlapped noradrenergic dendrites in this region. Dual immunoelectron microscopy showed coexistence of DYN and CRF; 35% of axon terminals containing DYN were also immunoreactive for CRF. In contrast, few axon terminals contained both DYN and ENK. A potential DYN/CRF afferent is the central nucleus of the amygdala (CeA). Dual in situ hybridization showed that, in CeA neurons, 31% of DYN mRNA-positive cells colocalized with CRF mRNA, whereas 53% of CRF mRNA-containing cells colocalized with DYN mRNA. Finally, to determine whether limbic DYN afferents target the LC, the CeA was electrolytically lesioned. Light-level densitometry of DYN labeling in the LC showed a significant decrease in immunoreactivity on the side of the lesion. Taken together, these data indicate that DYN- and CRF-labeled axon terminals, most likely arising from amygdalar sources, are positioned dually to affect LC function, whereas DYN and ENK function in parallel.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
67
|
Perreault ML, Graham D, Scattolon S, Wang Y, Szechtman H, Foster JA. Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology (Berl) 2007; 194:485-96. [PMID: 17619861 DOI: 10.1007/s00213-007-0855-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/08/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE The repeated coadministration of the kappa opioid receptor agonist U69593 with the D2/D3 dopamine (DA) agonist quinpirole (QNP) potentiates locomotor sensitization induced by QNP. Behavioral evidence has implicated both pre- and postsynaptic changes as being involved in this augmentation. OBJECTIVES The objectives of this study were to obtain supporting molecular evidence of pre- and/or postsynaptic alterations in the DA system with U69593/QNP cotreatment and to examine the relationship of such changes to locomotor sensitization. MATERIALS AND METHODS Gene expression of D1 and D2 receptors (D1R and D2R), the DA transporter, as well as the endogenous opioid prodynorphin (DYN), in the basal ganglia was examined by in situ hybridization in rats after one or ten drug injections. RESULTS After one injection, changes that were specific to U69593/QNP cotreatment were decreased D1R and D2R messenger RNA (mRNA) in the nucleus accumbens (Acb) shell and increased DYN mRNA in the dorsal striatum (STR). After ten injections, U69593/QNP-specific changes were decreased D2R mRNA in substantia nigra (SN) and increased DYN mRNA in STR and Acb core. Only in U69593/QNP rats was the sensitized locomotor performance on injection ten positively correlated with DYN mRNA levels in Acb and STR. CONCLUSIONS Distinct alterations of D2R and DYN mRNA levels in SN and Acb/STR, respectively, strengthen the evidence implicating pre- and postsynaptic changes in augmented locomotor sensitization to U69593/QNP cotreatment. It is suggested that repeated U69593/QNP cotreatment may augment locomotor sensitization to QNP by activating D1R-expressing DYN neurons and attenuating presynaptic D2R function.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Psychiatry and Behavioural Neurosciences, Health Science Centre, Room 4N7, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | |
Collapse
|
68
|
Bortolato M, Solbrig MV. The price of seizure control: dynorphins in interictal and postictal psychosis. Psychiatry Res 2007; 151:139-43. [PMID: 17395273 DOI: 10.1016/j.psychres.2006.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/12/2006] [Accepted: 11/02/2006] [Indexed: 11/19/2022]
Abstract
Postictal and interictal psychoses are relatively common complicating factors in the clinical course of epilepsy, yet their neurobiological substrates are poorly understood. Recent evidence shows that kappa opioid receptor (KOR) activation elicits anticonvulsant and psychotomimetic effects. In view of this background, here we introduce the hypothesis that epilepsy-related psychoses may partially result from excessive hippocampal dynorphin release and kappa opioid receptor overstimulation aimed at seizure control.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697-4292, USA.
| | | |
Collapse
|
69
|
Loacker S, Sayyah M, Wittmann W, Herzog H, Schwarzer C. Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors. ACTA ACUST UNITED AC 2007; 130:1017-28. [PMID: 17347252 DOI: 10.1093/brain/awl384] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropsychiatric disorders are one of the main challenges of human medicine with epilepsy being one of the most common serious disorders of the brain. Increasing evidence suggest neuropeptides, particularly the opioids, play an important role in epilepsy. However, little is known about the mechanisms of the endogenous opioid system in epileptogenesis and epilepsy. Therefore, we investigated the role of endogenous prodynorphin-derived peptides in epileptogenesis, acute seizure behaviour and epilepsy in prodynorphin-deficient mice. Compared with wild-type littermates, prodynorphin knockout mice displayed a significantly reduced seizure threshold as assessed by tail-vein infusion of the GABA(A) antagonist pentylenetetrazole. This phenotype could be entirely rescued by the kappa receptor-specific agonist U-50488, but not by the mu receptor-specific agonist DAMGO. The delta-specific agonist SNC80 decreased seizure threshold in both genotypes, wild-type and knockout. Pre-treatment with the kappa selective antagonist GNTI completely blocked the rescue effect of U-50488. Consistent with the reduced seizure threshold, prodynorphin knockout mice showed faster seizure onset and a prolonged time of seizure activity after intracisternal injection of kainic acid. Three weeks after local injection of kainic acid into the stratum radiatum CA1 of the dorsal hippocampus, prodynorphin knockout mice displayed an increased extent of granule cell layer dispersion and neuronal loss along the rostrocaudal axis of the ipsi- and partially also of the contralateral hippocampus. In the classical pentylenetetrazole kindling model, dynorphin-deficient mice showed significantly faster kindling progression with six out of eight animals displaying clonic seizures, while none of the nine wild-types exceeded rating 3 (forelimb clonus). Taken together, our data strongly support a critical role for dynorphin in the regulation of hippocampal excitability, indicating an anticonvulsant role of kappa opioid receptors, thereby providing a potential target for antiepileptic drugs.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics/pharmacology
- Animals
- Benzamides/pharmacology
- Cell Count
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalins/genetics
- Enkephalins/metabolism
- Enkephalins/physiology
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/physiopathology
- Guanidines
- Hippocampus/metabolism
- Kindling, Neurologic/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphinans
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Nerve Degeneration/metabolism
- Piperazines/pharmacology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Protein Precursors/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Synaptic Transmission/physiology
- Time Factors
Collapse
Affiliation(s)
- Stephan Loacker
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
70
|
Dynorphin-containing axons directly innervate noradrenergic neurons in the rat nucleus locus coeruleus. Neuroscience 2007; 145:1077-86. [PMID: 17289275 DOI: 10.1016/j.neuroscience.2006.12.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/13/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Stress causes increased dynorphin (DYN) expression in limbic brain regions and antagonism of kappa-opioid receptors may offer therapeutic potential for the treatment of depression. A potential site of DYN action relevant to stress and related neuropsychiatric disorders is the locus coeruleus (LC), the primary source of forebrain norepinephrine. Therefore, using immunofluorescence and immunoelectron microscopic analyses, we characterized the cellular substrates for interactions between DYN and tyrosine hydroxylase (TH), a catecholamine synthesizing enzyme in single sections through the rat LC. Light microscopic analysis of DYN immunoreactivity indicated that DYN fibers are distributed within the core and pericoerulear subregions of the LC. Using electron microscopy, immunoperoxidase labeling for DYN was primarily found in axon terminals, although in some cases was diffusely localized to somatodendritic processes. When DYN-containing axons formed synaptic contacts, they typically (89%) exhibited an asymmetric morphology. Almost a third (28%) of the postsynaptic targets of DYN-containing axons contained immunogold labeling for TH. These findings reveal some diversity as to the localization of DYN in the LC within axons that contact both TH and non-TH containing dendrites. However, the present data provide the first ultrastructural evidence that DYN-containing axon terminals directly innervate catecholaminergic LC dendrites. Moreover, DYN axon terminals targeting catecholaminergic LC dendrites via asymmetric synapses are consistent with localization within excitatory type afferents to the LC. Therefore, direct modulation of catacholaminergic LC neurons maybe an important site of action for DYN relevant to stress and stress-related disorders.
Collapse
|
71
|
Marchant NJ, Densmore VS, Osborne PB. Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: Evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 2007; 504:702-15. [PMID: 17722034 DOI: 10.1002/cne.21464] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral subdivision of the central nucleus of the amygdala (CeA) comprises two groups of gamma-aminobutyric acid (GABA) neurons that express corticotrophin-releasing hormone (CRH) and enkephalin. Regulation of the expression and release of these neuropeptides by glucocorticoids and other factors has been suggested to have a regulatory function on the diverse somatic, autonomic, and neuroendocrine responses that are coordinated by the CeA. Because another opioid peptide, dynorphin, has been reported to be also expressed by neurons in the lateral CeA, this study examined the neuronal expression of this kappa-opioid (KOP) receptor-preferring ligand by using immunohistochemistry for the precursor peptide prodynorphin. Prodynorphin neurons in the extended amygdala were observed mostly in the medial and central regions of the lateral CeA and the oval of the bed nucleus of the stria terminalis (BST). About one-third of the prodynorphin neurons in the CeA coexpressed CRH, whereas no coexpression with CRH was detected in the BST. Prodynorphin was not expressed by calbindin neurons in the medial part of the lateral CeA, and indirect evidence suggested that it was not expressed by enkephalin neurons. Coexpression of prodynorphin in extrahypothalamic CRH neurons in the CeA could provide an anatomical basis for regulation of the stress responses and other CRH-related functions by the brain dynorphin/KOP receptor system.
Collapse
Affiliation(s)
- Nathan J Marchant
- Pain Management Research Institute (Kolling Institute), The University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | |
Collapse
|
72
|
Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, Ekström TJ, Hauser KF, Pickel VM, Bakalkin G. Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 2006; 20:2124-6. [PMID: 16966485 DOI: 10.1096/fj.06-6174fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The classical view postulates that neuropeptide precursors in neurons are processed into mature neuropeptides in the somatic trans-Golgi network (TGN) and in secretory vesicles during axonal transport. Here we show that prodynorphin (PDYN), precursor to dynorphin opioid peptides, is predominantly located in axon terminals and dendrites in hippocampal and striatal neurons. The molar content of unprocessed PDYN was much greater than that of dynorphin peptides in axon terminals of PDYN-containing neurons projecting to the CA3 region of the hippocampus and in the striatal projections to the ventral tegmental area. Electron microscopy showed coexistence of PDYN and dynorphins in the same axon terminals with occasional codistribution in individual dense core vesicles. Thus, the precursor protein is apparently stored at presynaptic sites. In comparison with the hippocampus and striatum, PDYN and dynorphins were more equally distributed between neuronal somata and processes in the amygdala and cerebral cortex, suggesting regional differences in the regulation of trafficking and processing of the precursor protein. Potassium-induced depolarization activated PDYN processing and secretion of opioid peptides in neuronal cultures and in a model cell line. Regulation of PDYN storage and processing at synapses by neuronal activity or extracellular stimuli may provide a local mechanism for regulation of synaptic transmission.
Collapse
Affiliation(s)
- Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Solbrig MV, Adrian R, Chang DY, Perng GC. Viral risk factor for seizures: Pathobiology of dynorphin in herpes simplex viral (HSV-1) seizures in an animal model. Neurobiol Dis 2006; 23:612-20. [PMID: 16843674 DOI: 10.1016/j.nbd.2006.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 04/13/2006] [Accepted: 05/18/2006] [Indexed: 11/24/2022] Open
Abstract
Up to 89% of patients with herpes simplex virus type-1 (HSV-1) encephalitis can have seizures. Possibly, viruses are environmental triggers for seizures in genetically vulnerable individuals. Inherited dynorphin promoter polymorphisms are associated with temporal lobe epilepsy and febrile seizures in man. In animals, the dynorphin system in the hippocampus regulates excitability. The hypothesis that reduced dynorphin expression in dentate gyrus of hippocampus due to HSV-1 infection leads to epileptic responses was tested in a rat model of HSV-1 encephalitis using EEG recording, histopathological and neuropharmacologic probes. HSV-1 infection causes loss of dynorphin A-like immunoreactivity in hippocampus, an effect independent of direct viral interference and cell loss. A kappa opioid receptor agonist U50488 effectively blocks ictal activity, linking absence of dynorphin to propensity for epileptic activity. These findings show a vulnerability of hippocampal dynorphin during infection, suggesting a neurochemical basis for seizures that may be generalizable to other encephalitic viruses.
Collapse
Affiliation(s)
- Marylou V Solbrig
- Department of Neurology, University of California-Irvine, Irvine, CA 92697-4292, USA.
| | | | | | | |
Collapse
|
74
|
Gray AC, Coupar IM, White PJ. Comparison of opioid receptor distributions in the rat central nervous system. Life Sci 2006; 79:674-85. [PMID: 16546223 DOI: 10.1016/j.lfs.2006.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.
Collapse
MESH Headings
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Brain Chemistry
- Central Nervous System/metabolism
- Female
- Immunohistochemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neuropeptides/chemistry
- Neuropeptides/immunology
- Rats
- Rats, Wistar
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Andrew C Gray
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Pde, Parkville, VIC 3052, Melbourne, Australia
| | | | | |
Collapse
|
75
|
Merg F, Filliol D, Usynin I, Bazov I, Bark N, Hurd YL, Yakovleva T, Kieffer BL, Bakalkin G. Big dynorphin as a putative endogenous ligand for the kappa-opioid receptor. J Neurochem 2006; 97:292-301. [PMID: 16515546 DOI: 10.1111/j.1471-4159.2006.03732.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diversity of peptide ligands for a particular receptor may provide a greater dynamic range of functional responses, while maintaining selectivity in receptor activation. Dynorphin A (Dyn A), and dynorphin B (Dyn B) are endogenous opioid peptides that activate the kappa-opioid receptor (KOR). Here, we characterized interactions of big dynorphin (Big Dyn), a 32-amino acid prodynorphin-derived peptide consisting of Dyn A and Dyn B, with human KOR, mu- (hMOR) and delta- (hDOR) opioid receptors and opioid receptor-like receptor 1 (hORL1) expressed in cells transfected with respective cDNA. Big Dyn and Dyn A demonstrated roughly similar affinity for binding to hKOR that was higher than that of Dyn B. Dyn A was more selective for hKOR over hMOR, hDOR and hORL1 than Big Dyn, while Dyn B demonstrated low selectivity. In contrast, Big Dyn activated G proteins through KOR with much greater potency, efficacy and selectivity than other dynorphins. There was no correlation between the rank order of the potency for the KOR-mediated activation of G proteins and the binding affinity of dynorphins for KOR. The rank of the selectivity for the activation of G proteins through hKOR and of the binding to this receptor also differed. Immunoreactive Big Dyn was detected using the combination of radioimmunoassay (RIA) and HPLC in the human nucleus accumbens, caudate nucleus, hippocampus and cerebrospinal fluid (CSF) with the ratio of Big Dyn and Dyn B being approximately 1:3. The presence in the brain implies that Big Dyn, along with other dynorphins, is processed from prodynorphin and secreted from neurons. Collectively, the high potency and efficacy and the relative abundance suggest that Big Dyn may play a role in the KOR-mediated activation of G proteins.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Cerebrospinal Fluid/metabolism
- Dynorphins/cerebrospinal fluid
- Dynorphins/chemistry
- Dynorphins/genetics
- Endorphins/cerebrospinal fluid
- Endorphins/chemistry
- Endorphins/genetics
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Ligands
- Mice
- Mice, Knockout
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Pain/genetics
- Pain/metabolism
- Pain/physiopathology
- Radioimmunoassay
- Radioligand Assay
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Nociceptin Receptor
Collapse
Affiliation(s)
- Florence Merg
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Barr J, Van Bockstaele EJ. Vesicular glutamate transporter-1 colocalizes with endogenous opioid peptides in axon terminals of the rat locus coeruleus. ACTA ACUST UNITED AC 2005; 284:466-74. [PMID: 15803474 DOI: 10.1002/ar.a.20184] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have previously shown that a subset of axon terminals in the locus coeruleus (LC) containing methionine(5)-enkephalin (ENK) forms type I (asymmetric-type) synaptic specializations that are characteristic of excitatory-type transmitters. In addition, we previously provided ultrastructural evidence showing that ENK is colocalized with glutamate using a combination of pre- and postembedding immunohistochemistry. To examine cellular substrates for interactions between glutamate and other endogenous opioid peptides in the LC, we examined the localization of the vesicular glutamate transporter 1 (VGLUT1), a transporter protein involved in the accumulation of the transmitter glutamate into synaptic vesicles, with either ENK or preprodynorphin (ppDYN). Dual-immunofluorescence and electron microscopy showed prominent coexistence of VGLUT1 and ENK in varicose processes of the LC, confirming our previous report using postembedding immunolabeling for glutamate. Likewise, VGLUT1 and ppDYN were identified in common varicose processes in the LC using confocal fluorescence microscopy. Immunoelectron microscopy using gold-silver labeling for VGLUT1 and peroxidase labeling for ppDYN established that this endogenous opioid peptide also colocalizes with glutamate transporters. The majority of these formed asymmetric-type synapses. Taken together, these results demonstrate that excitatory LC afferents are enriched with endogenous opioid peptides and are positioned to modulate LC neuronal activity dually.
Collapse
Affiliation(s)
- Jeffrey Barr
- Farber Institute for Neurosciences, Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
77
|
Nikoshkov A, Hurd YL, Yakovleva T, Bazov I, Marinova Z, Cebers G, Pasikova N, Gharibyan A, Terenius L, Bakalkin G. Prodynorphin transcripts and proteins differentially expressed and regulated in the adult human brain. FASEB J 2005; 19:1543-5. [PMID: 16014400 DOI: 10.1096/fj.05-3743fje] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription from multiple promoters along with alternative mRNA splicing constitutes the basis for cell-specific gene expression and mRNA and protein diversity. The prodynorphin gene (PDYN) gives rise to prodynorphin (PDYN), precursor to dynorphin opioid peptides that regulate diverse physiological functions and are implicated in various neuropsychiatric disorders. Here, we characterized PDYN transcripts and proteins in the adult human brain and studied PDYN processing and intracellular localization in model cell lines. Seven PDYN mRNAs were identified in the human brain; two of the transcripts, FL1 and FL2, encode the full-length PDYN. The dominant, FL1 transcript shows high expression in limbic-related structures such as the nucleus accumbens and amygdala. The second, FL2 transcript is only expressed in few brain structures such as the claustrum and hypothalamus. FL-PDYN was identified for the first time in the brain as the dominant PDYN protein product. Three novel PDYNs expressed from spliced or truncated PDYN transcripts either lack a central segment but are still processed into dynorphins, or are translated into N-terminally truncated proteins. One truncated PDYN is located in the cell nucleus, suggesting a novel nonopioid function for this protein. The complexity of PDYN expression and diversity of its protein products may be relevant for diverse levels of plasticity in adaptive responses for the dynorphin system.
Collapse
Affiliation(s)
- Andrej Nikoshkov
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mello NK, Mendelson JH, Sholar MB, Jaszyna-Gasior M, Goletiani N, Siegel AJ. Effects of the mixed mu/kappa opioid nalbuphine on cocaine-induced changes in subjective and cardiovascular responses in men. Neuropsychopharmacology 2005; 30:618-32. [PMID: 15602503 PMCID: PMC1513125 DOI: 10.1038/sj.npp.1300631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kappa opioid agonists functionally antagonize some abuse-related and locomotor effects of cocaine, and reduce cocaine self-administration by rhesus monkeys. We compared the cardiovascular and subjective effects of acute doses of the mu/kappa opioid nalbuphine alone (5 mg/70 kg, intravenous (i.v.)), with cocaine alone (0.2 mg/kg, i.v.), and with nalbuphine+cocaine in combination, under placebo-controlled, double-blind conditions. Subjects met American Psychiatric Association Diagnostic and Statistical Manual (DSM-IV) criteria for current cocaine abuse. Nalbuphine serum levels exceeded 50 ng/ml within 10 min after injection, and cocaine plasma levels exceeded 130 ng/ml within 4 min. Cocaine's pharmacokinetic profile did not change after concurrent nalbuphine administration. The nalbuphine+cocaine combination was safe and without synergistic effects on heart rate and systolic or diastolic blood pressure. Moreover, the addition of cocaine did not increase the subjective effects of nalbuphine. Visual Analog Scale (VAS) ratings of High, Euphoria, Stimulated, and Good Effect were equivalent after nalbuphine+cocaine and nalbuphine alone, and both were significantly higher than after cocaine alone (area under the curve analysis) (p<0.05-0.01). Peak VAS ratings of High, Stimulated, Good Effect, and Drug Effect were also significantly higher after nalbuphine+cocaine than after cocaine alone (p<0.01). Addiction Research Center Inventory (ARCI) scores were equivalent for nalbuphine+cocaine and nalbuphine alone, but the PCAG, MBG, and amphetamine scores were significantly higher after both nalbuphine+cocaine and nalbuphine alone than after cocaine alone (p<0.01-0.003). Thus, there were no additive interactions between nalbuphine and cocaine on cardiovascular, subjective, or drug level measures after acute administration.
Collapse
Affiliation(s)
- Nancy K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Marinova Z, Yakovleva T, Melzig MF, Hallberg M, Nylander I, Ray K, Rodgers DW, Hauser KF, Ekström TJ, Bakalkin G. A novel soluble protein factor with non-opioid dynorphin A-binding activity. Biochem Biophys Res Commun 2004; 321:202-9. [PMID: 15358236 DOI: 10.1016/j.bbrc.2004.06.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Indexed: 10/26/2022]
Abstract
A novel soluble non-opioid dynorphin A-binding factor (DABF) was identified and characterized in neuronal cell lines, rat spinal cord, and brain. DABF binds dynorphin A(1-17), dynorphin A(2-17), and the 32 amino acid prodynorphin fragment big dynorphin consisting of dynorphin A and B, but not other opioid and non-opioid peptides, opiates, and benzomorphans. The IC50 for dynorphin A(1-17), dynorphin A(2-17), and big dynorphin is in the 5-10 nM range. Using dynorphin A and big dynorphin fragments a binding epitope was mapped to dynorphin A(6-13). DABF has a molecular mass of about 70 kDa. SH-groups are apparently involved in the binding of dynorphin A since p-hydroxy-mercuribenzoic acid inhibited this process. Upon interaction with DABF dynorphin A was converted into Leu-enkephalin, which remained bound to the protein. These data suggest that DABF functions as an oligopeptidase that forms stable and specific complexes with dynorphin A. The presence of DABF in brain structures and other tissues with low level of prodynorphin expression suggests that DABF as an oligopeptidase may degrade other peptides. Dynorphin A at the sites of its release in the CNS may attenuate this degradation as a competitor when it specifically binds to the enzyme.
Collapse
Affiliation(s)
- Zoya Marinova
- Alcohol and Drug Dependence Research Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Epilepsy is a significant health problem. Despite the widespread use of both classic and newer pharmacological agents that target ion channels, amino acid transmission or receptors, there are numerous examples of mono- or polytherapy being ineffective. Seizures that are secondary to CNS infections are among the most refractory medically, and thus insult-specific agents are desirable. Recently, the study of the neuropharmacological actions of dynorphin in CNS viral injury has yielded new insights into epileptogenesis and epilepsy treatment. The opioid neuropeptide dynorphin modulates neuronal excitability in vitro in hippocampal slices and potentiates endogenous anti-ictal (i.e. protective) processes in animal models and humans. This work has renewed interest in the role of dysregulation of dynorphin in the pathogenesis of refractory seizures, including encephalitic seizures. The important role of dynorphin in epilepsy is also supported by new models of symptomatic epilepsies based on viral-induced seizures.
Collapse
Affiliation(s)
- Marylou V Solbrig
- Department of Neurology, University of California, Irvine, Irvine, CA 92697-4292, USA.
| | | |
Collapse
|
81
|
Popper P, Cristobal R, Wackym PA. Expression and distribution of μ opioid receptors in the inner ear of the rat. Neuroscience 2004; 129:225-33. [PMID: 15489044 DOI: 10.1016/j.neuroscience.2004.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Opioid peptides have demonstrated modulatory effects on the vestibular afferent discharge and are putative vestibular efferent neuromodulators. The distribution of their receptors in the mammalian vestibular epithelia is not known. We used reverse transcriptase-polymerase chain reaction (RT-PCR), in situ hybridization, Western blots and immunohistochemistry to study the expression of mu opioid receptor (MOR) in the Scarpa's ganglia and cristae ampullares of rats. MOR transcript was only detected in the somata of the vestibular afferent neurons. MOR-like immunoreactivity was observed in the somata of vestibular afferents and in nerve terminals in the cristae ampullares epithelia both in the center and peripheral regions. Double labeling of cristae sections with the MOR1 antibody in combination with antibodies against calretinin (a marker for vestibular afferents terminating in calices) and peripherin (a marker for afferents terminating in boutons), respectively showed that MOR1 immunoreactivity was in calyx, dimorphic and bouton vestibular afferents. MOR immunoreactivity was not detected in vestibular efferent fibers identified with choline acetyltransferase immunohistochemistry. These results indicate that MOR may mediate effects of vestibular efferents on afferents.
Collapse
Affiliation(s)
- P Popper
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
82
|
Abstract
Effective medications for cocaine dependence are needed to improve outcome in this chronic, relapsing disorder. Medications affecting glutamate function are reasonable candidates for investigation, given the involvement of glutamate circuits in reward-related brain regions and evidence of cocaine-induced glutamatergic dysregulation. In addition, it is increasingly apparent that glutamatergic mechanisms underlie several clinical aspects of cocaine dependence, including euphoria, withdrawal, craving, and hedonic dysfunction. Even denial, traditionally viewed as purely psychological, may result, in part, from dysfunctional glutamate-rich cortical regions. We review the involvement of glutamate in reward-related circuits, the acute and chronic effects of cocaine on these pathways, and glutamatergic mechanisms that contribute to the neurobiology of cocaine dependence. We also present preliminary data from our research of modafinil, a glutamate-enhancing agent with promise in the treatment of cocaine-addicted individuals.
Collapse
Affiliation(s)
- Charles Dackis
- Treatment Research Center, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
83
|
Shane R, Acosta J, Rossi GC, Bodnar RJ. Reciprocal interactions between the amygdala and ventrolateral periaqueductal gray in mediating of Q/N(1-17)-induced analgesia in the rat. Brain Res 2003; 980:57-70. [PMID: 12865159 DOI: 10.1016/s0006-8993(03)02887-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The opioid peptide, Orphanin FQ/nociceptin (OFQ/N(1-17))(,) its active fragments, and a related precursor peptide each produce analgesia following microinjection into the amygdala of rats. OFQ/N(1-17)-induced analgesia elicited from the amygdala is blocked by amygdala pretreatment of either general, mu, kappa, or delta-opioid antagonists even though OFQ/N(1-17) binds poorly to these receptor subtypes, and the antagonists bind poorly to the ORL-1/KOR-3 receptor. Agonists at mu and kappa opioid receptors as well as beta-endorphin each produce analgesia elicited from the amygdala that is blocked by opioid antagonist pretreatment in the ventrolateral periaqueductal gray (vlPAG) of rats. The present study examined whether pretreatment of general and selective opioid antagonists in the vlPAG blocked OFQ/N(1-17)-induced analgesia on the tail-flick test elicited from the amygdala, and whether pretreatment of general and selective opioid antagonists in the amygdala blocked OFQ/N(1-17)-induced analgesia elicited from the vlPAG of rats. OFQ/N(1-17)-induced analgesia elicited from the amygdala was significantly and markedly reduced following vlPAG pretreatment with a dose range of either naltrexone, beta-funaltrexamine (beta-FNA, mu), nor-binaltorphamine (NBNI, kappa) or naltrindole (NTI, delta). In contrast, opioid antagonists administered into misplaced mesencephalic control placements ventral and lateral to the vlPAG actually enhanced OFQ/N(1-17)-induced analgesia elicited from the amygdala. OFQ/N(1-17)-induced analgesia elicited from the vlPAG was significantly and markedly reduced following amygdala pretreatment with naltrexone and NBNI, to a lesser degree by NTI, and was unaffected by beta-FNA. Yet, opioid antagonists administered into misplaced amygdala control placements were generally ineffective in altering OFQ/N(1-17)-induced analgesia elicited from the vlPAG. Latencies were transiently increased by general, but not selective opioid antagonist treatment alone in the amygdala, but not the vlPAG. These data indicate reciprocal and regional interactions between the amygdala and vlPAG in the mediation of OFQ/N(1-17) by classic opioid receptor subtype antagonists in rats.
Collapse
Affiliation(s)
- Randi Shane
- Neuropsychology Doctoral Sub-Program and Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | | | | | | |
Collapse
|
84
|
Andrews ZB, Grattan DR. Opioid receptor subtypes involved in the regulation of prolactin secretion during pregnancy and lactation. J Neuroendocrinol 2003; 15:227-36. [PMID: 12588510 DOI: 10.1046/j.1365-2826.2003.00975.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Afferent endogenous opioid neuronal systems facilitate prolactin secretion in a number of physiological conditions including pregnancy and lactation, by decreasing tuberoinfundibular dopamine (TIDA) inhibitory tone. The aim of this study was to investigate the opioid receptor subtypes involved in regulating TIDA neuronal activity and therefore facilitating prolactin secretion during early pregnancy, late pregnancy and lactation in rats. Selective opioid receptor antagonists nor-binaltorphimine (kappa-receptor antagonist, 15 micro g/5 micro l), beta funaltrexamine (mu-receptor antagonist, 5 microg/5 microl) and naltrindole (delta-receptor antagonist, 5 microg/5 microl) or saline were administered intracerebroventricularly (i.c.v.) on day 8 of pregnancy during a nocturnal prolactin surge, on day 21 of pregnancy during the ante partum prolactin surge or on day 7 of lactation before the onset of a suckling stimulus. Serial blood samples were collected at regular time intervals, via chronic indwelling jugular cannulae, before and after drug administration and plasma prolactin was determined by radioimmunoassay. TIDA neuronal activity was measured using the 3,4-dihydroxyphenylacetic acid (DOPAC) : dopamine ratio in the median eminence 2 h 30 min after i.c.v. drug injection. In each experimental condition, plasma prolactin was significantly inhibited by both kappa- and mu-receptor antagonists, whereas the delta-receptor antagonist had no effect compared to saline-injected controls. Similarly, nor-binaltorphimine and beta funaltrexamine significantly increased the median eminence DOPAC : dopamine ratio during early and late pregnancy, and lactation whereas naltrindole had no effect compared to saline-injected controls. These data suggest that TIDA neuronal activity, and subsequent prolactin secretion, is regulated by endogenous opioid peptides acting at both kappa- and mu-opioid receptors during prolactin surges of early pregnancy, late pregnancy and lactation.
Collapse
MESH Headings
- Animals
- Female
- Injections, Intraventricular
- Lactation/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Pituitary Gland/metabolism
- Pregnancy
- Pregnancy, Animal/metabolism
- Prolactin/blood
- Prolactin/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Z B Andrews
- Department of Anatomy and Structural Biology and Neuroscience Research Centre, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
85
|
Abstract
Postsynaptic and presynaptic effects of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor, were investigated in an in vitro slice preparation of the rat thalamic reticular nucleus (NRT) and ventrobasal complex (VB). In NRT as well as VB, all tested neurons developed an outward current on application of 1 micrometer N/OFQ. Basic properties of the N/OFQ-induced current included inward rectification, dependence on extracellular K(+), reduction by 100 micrometer Ba(+), antagonistic effect of [Nphe(1)]nociceptin(1-13)NH(2), and sensitivity to internal GDP-beta-S. Miniature IPSCs (mIPSCs) mediated by GABA(A) receptors in VB neurons were not affected by 1 micrometer N/OFQ. In addition, paired-pulse depression of evoked IPSCs was unchanged, indicating a lack of presynaptic effects. By comparison, N/OFQ application resulted in a reduction in frequency of miniature EPSCs (mEPSCs) in a subpopulation of NRT neurons, whereas paired-pulse facilitation of evoked EPSCs was not altered. In either nucleus, current-clamp experiments revealed a hyperpolarization and associated decrease in input resistance in response to N/OFQ. Although N/OFQ had no measurable effect on calcium-mediated burst activity evoked by depolarizing steps from hyperpolarized values of the membrane potential, rebound bursts on relief of hyperpolarizing current steps were decreased. Slow thalamic oscillations induced in vitro by extracellular stimulation were dampened by N/OFQ in VB and NRT, as seen by delayed onset of rhythmic multiple-unit activity and reduction in amplitude and duration. We conclude that N/OFQ reduces the excitability of NRT and VB neurons predominantly through an increase of a G-protein-coupled inwardly rectifying K(+) conductance.
Collapse
|
86
|
Peckys D, Hurd YL. Prodynorphin and kappa opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. Brain Res Bull 2001; 55:619-24. [PMID: 11576758 DOI: 10.1016/s0361-9230(01)00525-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study examined the prodynorphin and kappa opioid receptor mRNA expression levels in the anterior cingulate and dorsolateral prefrontal cortices of subjects diagnosed with schizophrenia, bipolar disorder, or major depression as compared with normal controls without a psychiatric diagnosis. Multivariate analyses failed to reveal any differences in the mRNA expression levels between the four diagnostic groups, though a group trend (non-significant) was evident for the expression of the kappa opioid receptor and prodynorphin mRNAs in the prefrontal cortex. The mRNA expression levels were not associated with lifetime history of antipsychotic treatment or with suicide as a cause of death. The results, however, suggested an influence of certain drugs of abuse on the prodynorphin cortical mRNA expression. Prodynorphin mRNA expression levels were found to be elevated in individuals with a history of marihuana or stimulant use, but not alcohol. Overall, our data do not provide strong evidence for impaired prodynorphin or kappa opioid receptor mRNA levels in the dorsolateral prefrontal or cingulate cortices of schizophrenic, bipolar disorder, or major depressed subjects.
Collapse
Affiliation(s)
- D Peckys
- Department of Psychiatry, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
87
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
88
|
Smith MJ, Wise PM. Localization of kappa opioid receptors in oxytocin magnocellular neurons in the paraventricular and supraoptic nuclei. Brain Res 2001; 898:162-5. [PMID: 11292460 DOI: 10.1016/s0006-8993(01)02154-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been demonstrated previously that kappa opioid receptor agonists, such as dynorphin, inhibit oxytocin secretion in the rat. To determine whether kappa agonists act directly on oxytocin-containing magnocellular neurons to inhibit hormone secretion, we utilized immunofluorescence to examine the cellular localization of kappa opioid receptors in the rat paraventricular and supraoptic nuclei. kappa Opioid receptor immunoreactivity co-localized with oxytocin-containing cell bodies, their axons and axon terminals. Thus, our results suggest that kappa opioid receptor agonists can exert direct inhibitory actions on oxytocin magnocellular neurons.
Collapse
Affiliation(s)
- M J Smith
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, MS508, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
89
|
Johansson PA, Andersson M, Andersson KE, Cenci MA. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 2001; 8:220-39. [PMID: 11300719 DOI: 10.1006/nbdi.2000.0372] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid receptor-binding autoradiography was used as a way to map sites of altered opioid transmission in a rat model of l-DOPA-induced dyskinesia. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathways sustained a 3-week treatment with l-DOPA (6 mg/kg/day, combined with 12 mg/kg/day benserazide), causing about half of them to develop dyskinetic-like movements on the side of the body contralateral to the lesion. Autoradiographic analysis of mu-, delta-, and kappa-opioid binding sites was carried out in the caudate-putamen (CPu), the globus pallidus (GP), the substantia nigra (SN), the primary motor area, and the premotor-cingulate cortex. The dopamine-denervating lesion alone caused an ipsilateral reduction in opioid radioligand binding in the CPu, GP, and SN, but not in the cerebral cortex. Chronic l-DOPA treatment affected opioid receptor binding in both the basal ganglia and the cerebral cortex, producing changes that were both structure- and receptor-type specific, and closely related to the motor response elicited by the treatment. In the basal ganglia, the most clear-cut differences between dyskinetic and nondyskinetic rats pertained to kappa opioid sites. On the lesioned side, both striatal and nigral levels of kappa binding densities were significantly lower in the dyskinetic group, showing a negative correlation with the rats' dyskinesia scores on one hand and with the striatal expression of opioid precursor mRNAs on the other hand. In the cerebral cortex, levels of mu and delta binding site densities were bilaterally elevated in the dyskinetic group, whereas kappa radioligand binding was specifically increased in the nondyskinetic cases and showed a negative correlation with the rats' dyskinesia scores. These data demonstrate that bilateral changes in cortical opioid transmission are closely associated with l-DOPA-induced dyskinesia in the rat. Moreover, the fact that dyskinetic and nondyskinetic animals often show opposite changes in opioid radioligand binding suggests that the motor response to l-DOPA is determined, at least in part, by compensatory adjustments of brain opioid receptors.
Collapse
MESH Headings
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Basal Ganglia/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Binding Sites/drug effects
- Binding Sites/physiology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Diprenorphine/pharmacokinetics
- Disease Models, Animal
- Dopamine Agents/pharmacology
- Dyskinesia, Drug-Induced/etiology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Enkephalins/genetics
- Female
- Levodopa/pharmacology
- Narcotic Antagonists/pharmacokinetics
- Oxidopamine/pharmacology
- Protein Precursors/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Sympatholytics/pharmacology
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- P A Johansson
- Department of Physiological Sciences, Neurobiology Division, Wallenberg Neuroscience Centre, University of Lund, Sölvegatan 17, Lund, S-223 62, Sweden
| | | | | | | |
Collapse
|
90
|
Simonin F, Slowe S, Becker JA, Matthes HW, Filliol D, Chluba J, Kitchen I, Kieffer BL. Analysis of [3H]bremazocine binding in single and combinatorial opioid receptor knockout mice. Eur J Pharmacol 2001; 414:189-95. [PMID: 11239918 DOI: 10.1016/s0014-2999(01)00822-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite ample pharmacological evidence for the existence of multiple mu-, delta- and kappa-opioid receptor subtypes, only three genes encoding mu-(MOR), delta-(DOR) and kappa-(KOR) opioid receptor have been cloned. The KOR gene encodes kappa(1)-sites, which specifically bind arylacetamide compounds, and the possible existence of kappa-opioid receptor subtypes derived from another kappa-opioid-receptor gene, yet to be characterized, remains a very contentious issue. kappa(2)-Opioid receptors are described as binding sites typically labelled by the non-selective benzomorphan ligand [3H]bremazocine in the presence of mu-, delta- and kappa(1)-opioid receptor blocking ligands. To investigate the genetic origin of kappa(2)-opioid receptors, we have carried out homogenate binding experiments with [3H]bremazocine in brains of single MOR-, DOR-, KOR- and double MOR/DOR-deficient mice. Scatchard analysis showed that 68+/-12% of the binding sites arise from the MOR gene, 27+/-1% from the DOR gene and 14.5+/-0.2% from the KOR gene, indicating that the three known genes account for total [3H]bremazocine binding. Experiments in the presence of mu-, delta- and kappa(1)-opioid receptor suppressor ligands further showed that non-kappa(1)-opioid receptor labelling can be accounted for by binding to both the mu- and delta-opioid receptors. Finally, [3H]bremazocine binding experiments performed on brain membranes from the triple MOR/DOR/KOR-deficient mice revealed a complete absence of binding sites, confirming definitively that no additional gene is required to explain the total population of [3H]bremazocine binding sites. Altogether the data show that the putative kappa(2)-opioid receptors are in fact a mixed population of KOR, DOR and predominantly MOR gene products.
Collapse
MESH Headings
- Analgesics/metabolism
- Animals
- Benzomorphans/metabolism
- Brain/metabolism
- Mice
- Mice, Knockout
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/deficiency
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- F Simonin
- UPR 9050 CNRS, ESBS Université Louis Pasteur, 67400 Illkirch, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Halasy K, Rácz B, Maderspach K. Kappa opioid receptors are expressed by interneurons in the CA1 area of the rat hippocampus: a correlated light and electron microscopic immunocytochemical study. J Chem Neuroanat 2000; 19:233-41. [PMID: 11036240 DOI: 10.1016/s0891-0618(00)00068-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A local GABA-system is known to have a mediatory function between several afferents and the principal cells of the hippocampus. This study examines the distribution and fine structure of kappa opioid receptor-immunoreactive elements in the CA1 subfield and reveals some new aspects concerning the structural basis of opioid-GABA interaction in the rat hippocampal formation. Kappa receptors were visualized immunocytochemically with a previously produced and characterized monoclonal antibody, the mAb KA8 (Maderspach, K., Németh, K., Simon, J., Benyhe, S., Szûcs, M., Wollemann, M., 1991. A monoclonal antibody recognizing kappa-, but not mu- and delta-opioid receptors. J. Neurochem. 56, 1897-1904). The antibody selectively recognizes the kappa opioid receptor with preference to the kappa(2) subtype. Neuronal cell bodies, proximal dendrites and occasionally glial processes surrounding neuronal perikarya were labelled in the CA1 area. The immunopositive cells were present mainly in the stratum oriens, followed by the stratum pyramidale in a rostrocaudally increasing number. Their shape was fusiform, or multipolar. Occasionally kappa receptor-immunoreactive boutons surrounding weakly immunopositive somata were also observed. Electron microscopy of immunopositive neurons showed that the DAB labelling was intensive in the perinuclear cytoplasm. The widths and electron densities of the postsynaptic densities of some axosomatic synapses were remarkably increased. Similar increase of postsynaptic densities were observable at some axodendritic and axospinous synapses. On the basis of their location and fine structural properties the labelled cells are suggested to be GABAergic inhibitory interneurons, probably belonging to the somatostatinergic sub-population. The axons of these inhibitory interneurons are known to arborize in the stratum lacunosum-moleculare where the entorhinal afferents terminate. A modulatory effect of opioids on the entorhinal input, mediated by somatostatinergic interneurons is suggested
Collapse
Affiliation(s)
- K Halasy
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, István u.2., 1078, Budapest, Hungary.
| | | | | |
Collapse
|
92
|
Shuster SJ, Riedl M, Li X, Vulchanova L, Elde R. The kappa opioid receptor and dynorphin co-localize in vasopressin magnocellular neurosecretory neurons in guinea-pig hypothalamus. Neuroscience 2000; 96:373-83. [PMID: 10683577 DOI: 10.1016/s0306-4522(99)00472-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between the cloned kappa opioid receptor, dynorphin, and the neurohypophysial hormones vasopressin and oxytocin was analysed in the guinea-pig hypothalamic magnocellular neurosecretory neurons. This analysis was performed in order to understand better which population of neuroendocrine neurons in the guinea-pig is modulated by kappa opioid receptors and its endogenous ligand dynorphin. Extensive co-localization was observed between kappa opioid receptor immunoreactivity and preprodynorphin immunoreactivity in neuronal cell bodies in the paraventricular and supraoptic nuclei. Cells positive for either the kappa opioid receptor or both the kappa opioid receptor and preprodynorphin were restricted to the vasopressin expressing neuronal population and not found in the oxytocin expressing neuronal population. The kappa opioid receptor and dynorphin were examined in the posterior pituitary and both were found to be extensively distributed. Staining for the kappa opioid receptor and dynorphin B co-localized in posterior pituitary. In addition, immunogold electron microscopy confirmed that kappa opioid receptor and dynorphin B immunoreactivity were found in the same nerve terminals. Ultrastructural analysis also revealed that kappa opioid receptor immunoreactivity was associated with both nerve terminals and pituicytes. Within nerve terminals, kappa opioid receptor immunoreactivity was often associated with large secretory vesicles and rarely associated with the plasma membrane. Our data suggest that the cloned kappa opioid receptor may directly modulate the release of vasopressin but not oxytocin in guinea-pig hypothalamic magnocellular neurosecretory neurons and posterior pituitary. Furthermore, we propose that this receptor is an autoreceptor in this system because our results demonstrate a high degree of co-localization between kappa opioid receptor and dynorphin peptide immunoreactivity in magnocellular nerve terminals.
Collapse
Affiliation(s)
- S J Shuster
- Department of Neuroscience, University of Minnesota, Minneapolis 55108, USA
| | | | | | | | | |
Collapse
|
93
|
Pavlides C, McEwen BS. Effects of mineralocorticoid and glucocorticoid receptors on long-term potentiation in the CA3 hippocampal field. Brain Res 1999; 851:204-14. [PMID: 10642845 DOI: 10.1016/s0006-8993(99)02188-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that the two types of adrenal steroid receptors, mineralocorticoid MR. and glucocorticoid GR. produce opposite effects on long-term potentiation LTP. in the dentate gyrus in vivo. and CA1 hippocampal field in vitro. More specifically, MR activation enhanced and prolonged LTP, whereas GR activation suppressed LTP in these areas and also produced a long-term depression LTD. of the synaptic response. In the present experiment we investigated acute effects of MR and GR activation on LTP induction in the mossy fiber and commissural associational input to the CA3 hippocampal field, since the mechanisms underlying LTP induction in these two pathways differ, the former being N-methyl-D-aspartate receptor NMDAR. independent while the latter being NMDAR-dependent. Rats were either adrenalectomized ADX or adrenally intact. ADX animals were acutely injected with either the specific MR agonist, aldosterone, the specific GR agonist RU 28362 or vehicle. One hour following the injection, the animals were prepared for electrophysiological recording stimulation. Field potential recordings were performed in the radiatum or laconosum moleculare layers of the CA3 field, with stimulation of either the mossy fibers or the commissural associational input from the contralateral hemisphere. We also replicated our previous findings by recording in the dentate gyrus with stimulation of the medial perforant pathway, in the same animals. As observed in our previous study in the dentate gyrus, we found an enhancement and a suppression of LTP with MR and GR activation, respectively. Similarly, for the commissural associational input to CA3, MR activation enhanced LTP, while GR activation reduced it. In contrast, for the mossy fiber input to CA3, neither MR nor GR activation significantly affected LTP induction. These results indicate that adrenal steroids may modulate LTP induction in the hippocampus via an interaction with glutamatergic NMDAR.
Collapse
Affiliation(s)
- C Pavlides
- Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
94
|
Rosin A, Lindholm S, Franck J, Georgieva J. Downregulation of kappa opioid receptor mRNA levels by chronic ethanol and repetitive cocaine in rat ventral tegmentum and nucleus accumbens. Neurosci Lett 1999; 275:1-4. [PMID: 10554970 DOI: 10.1016/s0304-3940(99)00675-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The combination of ethanol and cocaine is commonly abused by human addicts which has serious clinical consequences. Here, the effects of separately and concurrently administered ethanol and 'binge' cocaine on kappa opioid receptor (KOR) mRNA in the ventral tegmental area (VTA) and nucleus accumbens (NAc) of rats were studied. KOR mRNA was down-regulated in both brain regions during concurrent as well as separate treatment with these drugs. In the VTA, the most pronounced decrease was obtained following combined treatment with ethanol and 'binge' cocaine. In the NAc, the strongest decrease was observed in the 'binge' cocaine group. This profound decrease of KOR mRNA in regions important for brain reward suggests a potential role of the KOR system in the abuse of cocaine and ethanol.
Collapse
Affiliation(s)
- A Rosin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
95
|
Mao J. NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:289-304. [PMID: 10567729 DOI: 10.1016/s0165-0173(99)00020-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last several years, significant progress has been made in our understanding of interactions between the N-methyl-D-aspartate (NMDA) and opioid receptors. Such interactions have been demonstrated at two distinct sites: (1) modulation of NMDA receptor-mediated electrophysiological events by opioids; and (2) intracellular events involving interactions between NMDA and opioid receptors. Furthermore, a considerable number of studies have shown the involvement of such interactions in neural mechanisms of nociceptive transmission, antinociception in acute and chronic pain states, opioid tolerance/dependence, and neuroplasticity. Importantly, emerging evidence indicates that activation of NMDA receptors may differentially modulate functions mediated by distinct opioid receptor subtypes, namely mu, delta, and kappa receptors. These studies have greatly enriched our knowledge regarding both NMDA and opioid receptor systems and have shed light on neurobiology of both acute and chronic pain. The advancement of such knowledge also promotes new strategies for better clinical management of pain patients.
Collapse
Affiliation(s)
- J Mao
- MGH Pain Center, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Suite WAC-324, Boston, MA, USA
| |
Collapse
|
96
|
Neal CR, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: Comparison of ORL1 receptor mRNA expression with125I-[14Tyr]-orphanin FQ binding. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991004)412:4<563::aid-cne2>3.0.co;2-z] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
97
|
Cowen MS, Lawrence AJ. The role of opioid-dopamine interactions in the induction and maintenance of ethanol consumption. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:1171-212. [PMID: 10581642 DOI: 10.1016/s0278-5846(99)00060-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Alcohol is one of the most widely used recreational drugs, but also one of the most widely abused, causing vast economic, social and personal damage. 2. Several animal models are available to study the reinforcing mechanisms that are the basis of the abuse liability of ethanol. Innate differences in opioid or dopamine neurotransmission may enhance the abuse liability of ethanol, as indicated by animal and human studies. 3. Opioid antagonists have been shown to be effective, both experimentally and clinically, in decreasing ethanol consumption, presumably since ethanol induces the release of endogenous opioid peptides in vivo. However, ethanol may also stimulate the formation of opiate-like compounds, which could interact with opioid (or dopamine) receptors. Ethanol may cause changes in neurotransmission mediated via opioid receptors that determines whether alcohol abuse is more or less likely. 4. Ethanol appears to facilitate dopamine release by increasing opioidergic activity, disinhibiting dopaminergic neurons (by inhibition of GABAergic neurotransmission) via mu-opioid receptors in the ventral tegmental area (VTA) and delta-opioid receptors in the nucleus accumbens (NAcc). The effects of ethanol would be antagonised by presynaptic kappa-opioid receptors present on dopaminergic terminals in the NAcc. 5. Mesolimbic dopamine release induced by ethanol consumption seems to indicate ethanol-related stimuli are important, focussing attention on and enabling learning of the stimuli. However, studies indicate that there are redundant pathways, and neural pathways 'downstream' of the mesolimbic dopamine system, which also enable the reinforcing properties of ethanol to be mediated.
Collapse
Affiliation(s)
- M S Cowen
- Dept. of Pharmacology, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
98
|
Mash DC, Staley JK. D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Ann N Y Acad Sci 1999; 877:507-22. [PMID: 10415668 DOI: 10.1111/j.1749-6632.1999.tb09286.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is thought to be addictive because chronic use leads to molecular adaptations within the mesolimbic dopamine (DA) circuitry, which affects motivated behavior and emotion. Although the reinforcing effects of cocaine are mediated primarily by blockade of DA uptake, reciprocal signaling between DA and endogenous opioids has important implications for understanding cocaine dependence. We have used in vitro autoradiography and ligand binding to map D3 DA and kappa opioid receptors in the human brains of cocaine-overdose victims. The number of D3 binding sites was increased one-to threefold over the nucleus accumbens and ventromedial sectors of the caudate and putamen from cocaine-overdose victims, as compared to age-matched and drug-free control subjects. D3 receptor/cyclophilin mRNA ratios in the nucleus accumbens were increased sixfold in cocaine-overdose victims over control values, suggesting that cocaine exposure also affects the expression of D3 receptor mRNA. The number of kappa opioid receptors in the nucleus accumbens and other corticolimbic areas from cocaine fatalities was increased twofold as compared to control values. Cocaine-overdose victims exhibiting preterminal excited delirium had a selective upregulation of kappa receptors measured also in the amygdala. Understanding the complex regulatory profiles of DA and opioid synaptic markers that occur with chronic misuse of cocaine may suggest multitarget strategies for treating cocaine dependence.
Collapse
Affiliation(s)
- D C Mash
- Department of Neurology, University of Miami School of Medicine, Florida 33136, USA.
| | | |
Collapse
|
99
|
Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 1999; 88:1093-135. [PMID: 10336124 DOI: 10.1016/s0306-4522(98)00251-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The existence of at least three opioid receptor types, referred to as mu, kappa, and delta, is well established. Complementary DNAs corresponding to the pharmacologically defined mu, kappa, and delta opioid receptors have been isolated in various species including man. The expression patterns of opioid receptor transcripts in human brain has not been established with a cellular resolution, in part because of the low apparent abundance of opioid receptor messenger RNAs in human brain. To visualize opioid receptor messenger RNAs we developed a sensitive in situ hybridization histochemistry method using 33P-labelled RNA probes. In the present study we report the regional and cellular expression of mu, kappa, and delta opioid receptor messenger RNAs in selected areas of the human brain. Hybridization of the different opioid receptor probes resulted in distinct labelling patterns. For the mu and kappa opioid receptor probes, the most intense regional signals were observed in striatum, thalamus, hypothalamus, cerebral cortex, cerebellum and certain brainstem areas as well as the spinal cord. The most intense signals for the delta opioid receptor probe were found in cerebral cortex. Expression of opioid receptor transcripts was restricted to subpopulations of neurons within most regions studied demonstrating differences in the cellular expression patterns of mu, kappa, and delta opioid receptor messenger RNAs in numerous brain regions. The messenger RNA distribution patterns for each opioid receptor corresponded in general to the distribution of opioid receptor binding sites as visualized by receptor autoradiography. However, some mismatches, for instance between mu opioid receptor receptor binding and mu opioid receptor messenger RNA expression in the anterior striatum, were observed. A comparison of the distribution patterns of opioid receptor messenger RNAs in the human brain and that reported for the rat suggests a homologous expression pattern in many regions. However, in the human brain, kappa opioid receptor messenger RNA expression was more widely distributed than in rodents. The differential and region specific expression of opioid receptors may help to identify targets for receptor specific compounds in neuronal circuits involved in a variety of physiological functions including pain perception, neuroendocrine regulation, motor control and reward.
Collapse
Affiliation(s)
- D Peckys
- Department of Neurology, Albert-Ludwigs-University Freiburg, Neurozentrum, Germany
| | | |
Collapse
|
100
|
Kalyuzhny AE, Wessendorf MW. Serotonergic and GABAergic neurons in the medial rostral ventral medulla express kappa-opioid receptor immunoreactivity. Neuroscience 1999; 90:229-34. [PMID: 10188949 DOI: 10.1016/s0306-4522(98)00376-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of kappa-opioid receptors in the rostral ventral medulla has been reported to attenuate analgesia induced by activation of mu-opioid receptors in the periaqueductal gray matter. Previous studies have suggested that the cells associated with this effect might contain serotonin. In the present study, we investigated the relationship of the cloned kappa-opioid receptor to spinally projecting neurons immunoreactive for serotonin or GABA. This was done by employing two-color immunofluorescence in combination with retrograde tract-tracing using Fluoro-Gold. In the rostral ventral medulla, neurons triple-labeled for the cloned kappa-opioid receptor, serotonin and Fluoro-Gold were observed; neurons double-labeled for the cloned kappa-opioid receptor and serotonin, or single-labeled for the cloned kappa-opioid receptor or for serotonin were also observed. In addition, cloned kappa-opioid receptor immunoreactivity was expressed in some cell profiles immunoreactive for GABA. The expression of the cloned kappa-opioid receptor in the spinal cord dorsal horn was not associated with processes immunoreactive for serotonin. Our findings suggest that kappa-opioid receptors in the rostral ventral medulla are positioned to directly control the activity of at least some serotonergic neurons projecting to the dorsal spinal cord. Thus, it appears possible that the anti-analgesic action resulting from microinjection of kappa-opioid agonists into the rostral ventral medulla is mediated, at least in part, by these neurons.
Collapse
Affiliation(s)
- A E Kalyuzhny
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|