51
|
Li R, Pourpak A, Morris SW. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem 2009; 52:4981-5004. [PMID: 19610618 PMCID: PMC2888655 DOI: 10.1021/jm9002395] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rongshi Li
- Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Oncologic Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612
| | - Alan Pourpak
- Departments of Pathology and Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Stephan W. Morris
- Departments of Pathology and Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| |
Collapse
|
52
|
A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 2009; 4:e6606. [PMID: 19672298 PMCID: PMC2719871 DOI: 10.1371/journal.pone.0006606] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/11/2009] [Indexed: 12/23/2022] Open
Abstract
Background Stromal-Derived Inducing Activity (SDIA) is one of the most efficient methods of generating dopaminergic (DA) neurons from embryonic stem cells (ESC). DA neuron induction can be achieved by co-culturing ESC with the mouse stromal cell lines PA6 or MS5. The molecular nature of this effect, which has been termed “SDIA” is so far unknown. Recently, we found that factors secreted by PA6 cells provided lineage-specific instructions to induce DA differentiation of human ESC (hESC). Methodology/Principal Findings In the present study, we compared PA6 cells to various cell lines lacking the SDIA effect, and employed genome expression analysis to identify differentially-expressed signaling molecules. Among the factors highly expressed by PA6 cells, and known to be associated with CNS development, were stromal cell-derived factor 1 (SDF-1/CXCL12), pleiotrophin (PTN), insulin-like growth factor 2 (IGF2), and ephrin B1 (EFNB1). When these four factors, the combination of which was termed SPIE, were applied to hESC, they induced differentiation to TH-positive neurons in vitro. RT-PCR and western blot analysis confirmed the expression of midbrain specific markers, including engrailed 1, Nurr1, Pitx3, and dopamine transporter (DAT) in cultures influenced by these four molecules. Electrophysiological recordings showed that treatment of hESC with SPIE induced differentiation of neurons that were capable of generating action potentials and forming functional synaptic connections. Conclusions/Significance The combination of SDF-1, PTN, IGF2, and EFNB1 mimics the DA phenotype-inducing property of SDIA and was sufficient to promote differentiation of hESC to functional midbrain DA neurons. These findings provide a method for differentiating hESC to form DA neurons, without a requirement for the use of animal-derived cell lines or products.
Collapse
|
53
|
Lin S, Fan LW, Rhodes PG, Cai Z. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 2009; 217:361-70. [PMID: 19332057 PMCID: PMC2766530 DOI: 10.1016/j.expneurol.2009.03.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/11/2009] [Accepted: 03/14/2009] [Indexed: 02/03/2023]
Abstract
To determine whether intranasal administration (iN) of recombinant human insulin-like growth factor-1 (rhIGF-1) provides neuroprotection to the neonatal rat brain following cerebral hypoxia-ischemia (HI), two doses of rhIGF-1 (50 microg at a 1 h interval) were infused into the right naris of postnatal day 7 (P7) rat pups with or without a prior HI insult (right common carotid artery ligation, followed by an exposure to 8% oxygen for 2 h). Our result showed that rhIGF-1 administered via iN was successfully delivered into the brain 30 min after the second dose. In the following studies rhIGF-1 was administered to P7 rat pups at 0, 1 or 2 h after HI at the dose described above. Pups in the control group received cerebral HI and vehicle treatment. Pups that underwent sham operation and vehicle treatment served as the sham group. Brain pathological changes were evaluated 2 and 15 days after HI. Our results showed that rhIGF-1 treatment up to 1 h after cerebral HI effectively reduced brain injury as compared to that in the vehicle-treated rats. Moreover, rhIGF-1 treatment improved neurobehavioral performance (tested on P5-P21) in juvenile rats subjected to HI. Our results further showed that rhIGF-1 inhibited apoptotic cell death, possibly through activating the Akt signal transduction pathway. rhIGF-1 enhanced proliferation of neuronal and oligodendroglial progenitors after cerebral HI as well. These data suggest that iN administration of IGF-1 has the potential to be used for clinical treatment.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
54
|
Sakowski SA, Schuyler AD, Feldman EL. Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis. AMYOTROPHIC LATERAL SCLEROSIS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY RESEARCH GROUP ON MOTOR NEURON DISEASES 2009; 10:63-73. [PMID: 18608100 PMCID: PMC3211070 DOI: 10.1080/17482960802160370] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects both upper and lower motorneurons (MN) resulting in weakness, paralysis and subsequent death. Insulin-like growth factor-I (IGF-I) is a potent neurotrophic factor that has neuroprotective properties in the central and peripheral nervous systems. Due to the efficacy of IGF-I in the treatment of other diseases and its ability to promote neuronal survival, IGF-I is being extensively studied in ALS therapeutic trials. This review covers in vitro and in vivo studies examining the efficacy of IGF-I in ALS model systems and also addresses the mechanisms by which IGF-I asserts its effects in these models, the status of the IGF-I system in ALS patients, results of clinical trials, and the need for the development of better delivery mechanisms to maximize IGF-I efficacy. The knowledge obtained from these studies suggests that IGF-I has the potential to be a safe and efficacious therapy for ALS.
Collapse
Affiliation(s)
- Stacey A Sakowski
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
55
|
McGough NNH, Thomas JD, Dominguez HD, Riley EP. Insulin-like growth factor-I mitigates motor coordination deficits associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 2009; 31:40-8. [PMID: 18755266 PMCID: PMC3164874 DOI: 10.1016/j.ntt.2008.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 03/18/2008] [Accepted: 08/02/2008] [Indexed: 01/22/2023]
Abstract
Prenatal alcohol exposure can affect brain development, leading to behavioral problems, including overactivity, motor dysfunction and learning deficits. Despite warnings about the effects of drinking during pregnancy, rates of fetal alcohol syndrome remain unchanged and thus, there is an urgent need to identify interventions that reduce the severity of alcohol's teratogenic effects. Insulin-like growth factor-I (IGF-I) is neuroprotective against ethanol-related toxicity and promotes white matter production following a number of insults. Given that prenatal alcohol leads to cell death and white matter deficits, the present study examined whether IGF-I could reduce the severity of behavioral deficits associated with developmental alcohol exposure. Sprague-Dawley rat pups received ethanol intubations (5.25 g/kg/day) or sham intubations on postnatal days (PD) 4-9, a period of brain development equivalent to the third trimester. On PD 10-13, subjects from each treatment received 0 or 10 microg IGF-I intranasally each day. Subjects were then tested on a series of behavioral tasks including open field activity (PD 18-21), parallel bar motor coordination (PD 30-32) and Morris maze spatial learning (PD 45-52). Ethanol exposure produced overactivity, motor coordination impairments, and spatial learning deficits. IGF-I treatment significantly mitigated ethanol's effects on motor coordination, but not on the other two behavioral tasks. These data indicate that IGF-I may be a potential treatment for some of ethanol's damaging effects, a finding that has important implications for children of women who drink alcohol during pregnancy.
Collapse
Affiliation(s)
- Nancy N H McGough
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | | | | | | |
Collapse
|
56
|
Abstract
IGF-I and -II are potent neuronal mitogens and survival factors. The actions of IGF-I and -II are mediated via the type I IGF receptor (IGF-IR) and IGF binding proteins regulate the bioavailability of the IGFs. Cell viability correlates with IGF-IR expression and intact IGF-I/IGF-IR signaling pathways, including activation of MAPK/phosphatidylinositol-3 kinase. The expression of IGF-I and -II, IGF-IR, and IGF binding proteins are developmentally regulated in the central and peripheral nervous system. IGF-I therapy demonstrates mixed therapeutic results in the treatment of peripheral nerve injury, neuropathy, and motor neuron diseases such as amyotrophic lateral sclerosis. In this review we discuss the role of IGFs during peripheral nervous system development and the IGF signaling system as the potential therapeutic target for the treatment of nerve injury and motor neuron diseases.
Collapse
Affiliation(s)
- Kelli A Sullivan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | |
Collapse
|
57
|
Yuen JSP, Macaulay VM. Targeting the type 1 insulin-like growth factor receptor as a treatment for cancer. Expert Opin Ther Targets 2008; 12:589-603. [PMID: 18410242 DOI: 10.1517/14728222.12.5.589] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The type 1 insulin-like growth factor receptor (IGF1R) plays a critical role in transformation, invasion and apoptosis protection, and is an attractive cancer treatment target. OBJECTIVE To review IGF1R antibodies and kinase inhibitors that are in preclinical and clinical development, and to discuss questions that will influence the success of this approach in clinical practice. METHODS This review is drawn from published literature, meeting abstracts and online resources. RESULTS/CONCLUSION IGF1R blockade is generally well tolerated although it can induce hyperglycaemia. Single-agent activity has been documented in Ewing's sarcoma but not thus far in common solid tumours. Key issues include identification of factors that influence sensitivity to IGF1R blockade, and how most effectively to combine IGF1R inhibitors with other treatments.
Collapse
Affiliation(s)
- John S P Yuen
- Weatherall Institute of Molecular Medicine, University of Oxford, IGF Group, Molecular Oncology Laboratories, Headley Way, Headington, Oxford OX3 9DS, UK
| | | |
Collapse
|
58
|
Wilczak N, De Keyser J, Chesik D. Targeting Insulin-Like Growth Factor-1 Signaling into the Central Nervous System for Promoting Myelin Repair. Drug Target Insights 2008. [DOI: 10.4137/dti.s362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Nadine Wilczak
- Department of Neurology, University Medical Center Groningen, the Netherlands
| | - Jacques De Keyser
- Department of Neurology, University Medical Center Groningen, the Netherlands
| | - Daniel Chesik
- Department of Neurology, University Medical Center Groningen, the Netherlands
| |
Collapse
|
59
|
Ryan PD, Goss PE. The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist 2008; 13:16-24. [PMID: 18245009 DOI: 10.1634/theoncologist.2007-0199] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The insulin-like growth factor signaling pathway is important in many human cancers based on data from experimental models as well as epidemiological studies. Important therapies targeted at this pathway have been or are being developed, including monoclonal antibodies to the insulin-like growth factor-I receptor and small molecule inhibitors of the tyrosine kinase function of this receptor. These investigational therapies are now being studied in clinical trials. Emerging data from phase I trials are encouraging regarding the safety of the monoclonal antibodies. In this manuscript, the rationale for targeting the insulin-like growth factor system is reviewed in addition to a summary of the available clinical trial data.
Collapse
Affiliation(s)
- Paula D Ryan
- Massachusetts General Hospital, LRH 308, 55 Fruit Street, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
60
|
Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J Mol Neurosci 2008; 35:81-90. [PMID: 18299999 DOI: 10.1007/s12031-008-9041-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/11/2008] [Accepted: 01/13/2008] [Indexed: 12/13/2022]
Abstract
Amongst the many soluble extracellular factors stimulating intracellular signal transduction pathways and driving cellular processes such as proliferation, differentiation and survival, insulin-like growth factors (IGFs) stand out as indispensable factors for proper oligodendrocyte differentiation and accompanying myelin production. Owing to its potent myelinogenic capacity and its neuroprotective properties, IGFs hold therapeutic potential in demyelinating and neurodengenerative diseases. However, the IGF system is comprised of a complex molecular network involving regulatory binding proteins, proteases, cell surface and extracellular matrix components which orchestrate IGF-specific functions. Thus, the complexity by which these factors are tightly regulated makes a simplistic therapeutic approach towards treating demyelinating conditions unfeasible. In the present review, we address these issues and consider current therapeutic prospects of oligodendrocyte-targeted IGF-based therapies.
Collapse
|
61
|
McDonald TJ, Nijland MJ, Nathanielsz PW. The insulin-like growth factor system and the fetal brain: effects of poor maternal nutrition. Rev Endocr Metab Disord 2007; 8:71-84. [PMID: 17653868 DOI: 10.1007/s11154-007-9044-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factor (IGF) signaling system plays indispensable roles in pre- and post-natal brain growth and development. A large body of studies using both in vivo null mutant and transgenic mice and in vitro neuronal culture techniques indicate that IGF-I acts directly on the brain while IGF-II effects are mediated to a large extent by IGF-II control of placental growth. It appears that all of the mechanisms, except migration, that are involved in normal brain development, e.g., proliferation, apoptosis, maturation and differentiation, are influenced by IGF-I. While IGF system members are produced in the brain, recent reports in post-natal animals indicate that normal brain health and function are dependent upon transfer of circulating IGF-I from the liver and its transfer across the blood brain barrier. Data showing that this phenomenon applies to pre-natal brain growth and development would make an important contribution to fetal physiology. A number of kinase pathways are able to participate in IGF signaling in brain with respect to nutrient restriction; among the most important are the PI3K/AKT, Ras-Raf-MEK-ERK and mTOR-nutrient sensing pathways. Both maternal and fetal IGF-I peripheral plasma concentrations are greatly reduced in nutrient restriction while IGF-II does not appear to be affected. Nutrient restriction also affects IGF binding protein concentrations while effects on the IGF-I receptor appear to vary with the paradigm. Studies on the effects of nutrient restriction on the fetal primate brain in relation to activity of the IGF system are needed to determine the applicability of rodent studies to humans.
Collapse
Affiliation(s)
- Thomas J McDonald
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78253, USA
| | | | | |
Collapse
|
62
|
Woronowicz A, Amith SR, Davis VW, Jayanth P, De Vusser K, Laroy W, Contreras R, Meakin SO, Szewczuk MR. Trypanosome trans-sialidase mediates neuroprotection against oxidative stress, serum/glucose deprivation, and hypoxia-induced neurite retraction in Trk-expressing PC12 cells. Glycobiology 2007; 17:725-34. [PMID: 17389653 DOI: 10.1093/glycob/cwm034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.
Collapse
Affiliation(s)
- Alicja Woronowicz
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L3N6
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Barrett RD, Bennet L, Davidson J, Dean JM, George S, Emerald BS, Gunn AJ. Destruction and reconstruction: Hypoxia and the developing brain. ACTA ACUST UNITED AC 2007; 81:163-76. [DOI: 10.1002/bdrc.20095] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
64
|
Chesik D, Wilczak N, De Keyser J. The insulin-like growth factor system in multiple sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:203-26. [PMID: 17531843 DOI: 10.1016/s0074-7742(07)79009-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic disorder of the central nervous system characterized by inflammation, demyelination, and axonal degeneration. Present therapeutic strategies for MS reduce inflammation and its destructive consequences, but are not effective in the progressive phase of the disease. There is a need for neuroprotective and restorative therapies in MS. Insulin-like growth factor-1 (IGF-1) is of considerable interest because it is not only a potent neuroprotective trophic factor but also a survival factor for cells of the oligodendrocyte lineage and possesses a potent myelinogenic capacity. However, the IGF system is complex and includes not only IGF-1 and IGF-2 and their receptors but also modulating IGF-binding proteins (IGFBPs), of which six have been identified. This chapter provides an overview of the role of the IGF system in the pathophysiology of MS, relevant findings in preclinical models, and discusses the possible use of IGF-1 as a therapeutic agent for MS.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | |
Collapse
|
65
|
Sarfstein R, Werner H. The WT1 Wilms' tumor suppressor gene is a downstream target for insulin-like growth factor-I (IGF-I) action in PC12 cells. J Neurochem 2006; 99:818-26. [PMID: 16911581 DOI: 10.1111/j.1471-4159.2006.04119.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The biological actions of the insulin-like growth factors, IGF-I and IGF-II, are mediated by the ligand-induced activation of the IGF-I receptor (IGF-IR), a transmembrane heterotetramer linked to the ras-raf-mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)-protein kinase B (PKB)/Akt signal transduction cascades. The Wilms' tumor suppressor gene (wt1) encodes a zinc finger transcription factor, WT1, which has been implicated in various cellular processes including proliferation, differentiation and apoptosis. In the present study we demonstrated that IGF-I modulates the WT1 gene expression in neurally derived PC12 cells in a dose- and time-dependent manner. This effect was mediated through both the MAPK and PI3-kinase signaling pathways, as shown by the ability of the specific inhibitors UO126 and LY294002 to abrogate IGF-I action. Moreover, using RT-PCR and transient transfection assays, we demonstrated that the IGF-I effect was associated with corresponding changes in WT1 mRNA levels and WT1 promoter activity. In addition, the results of the present study revealed that high WT1 levels were associated with the induction of apoptosis, whereas low WT1 levels were correlated with the inhibition of apoptosis, as demonstrated by poly ADP ribose polymerase (PARP) cleavage, Bax expression, Annexin V-FITC staining, and by the use of antisense oligonucleotides against WT1. In summary, our results show that the wt1 gene is a novel target for IGF-I action in neurally derived cells.
Collapse
Affiliation(s)
- Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
66
|
Chen MH, Chen PR, Chen MH, Hsieh ST, Lin FH. Gelatin-tricalcium phosphate membranes immobilized with NGF, BDNF, or IGF-1 for peripheral nerve repair: An in vitro and in vivo study. J Biomed Mater Res A 2006; 79:846-57. [PMID: 16886221 DOI: 10.1002/jbm.a.30813] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, NGF, BNDF from the neurotrophin family and IGF-1 were covalently immobilized on gelatin-tricalcium phosphate (GTG) membrane using carbodiimide. We investigated the effects of these growth factors released from the GTG composites on cultured PC12 cells and sciatic nerve regeneration across a 10-mm-long gap in rats. In PC12 cell culture, the total protein content and MTT assay indicated more cell attachment on the composites modified with growth factors. The IGF-1 group showed a higher survival promotion effect on PC12 cells than did BDNF and NGF groups. On the other hand, NGF released from the composite showed the highest level of neuritogenesis for PC12 cells in neurite outgrowth assay. In the animal study, the GTG conduits modified with various growth factors were well tolerated by the host tissue. In the regenerated nerves, the number of the axons per unit area of the BDNF group was significantly higher than that of NGF and GTG groups but similar to that of IGF-1 group. However, the average axon size was the largest in NGF group. This result was in concordance with the neurite outgrowth assay in which NGF showed the highest neuritogenic potential. In the assessment of motor and sensory recovery after nerve repair, conduits modified with various neurotrophic factors showed a more favorable outcome in compound muscle action potential. The BDNF group had a better gastrocnemic muscle weight ratio than blank GTG repair. Nevertheless, the different effects of GTG conduits modified with various neurotrophic factors on functional recovery cannot be simply illustrated in the sciatic function index.
Collapse
Affiliation(s)
- Ming-Hong Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
67
|
Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916-43. [PMID: 16131630 DOI: 10.1210/er.2004-0024] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
68
|
Miller BS, Yee D. Type I Insulin-like Growth Factor Receptor as a Therapeutic Target in Cancer: Figure 1. Cancer Res 2005; 65:10123-7. [PMID: 16287993 DOI: 10.1158/0008-5472.can-05-2752] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Data from experimental model systems and population studies have implicated type I insulin-like growth factor receptor (IGF1R) signaling in many different human cancers. Drugs to disrupt IGF1R function have been developed and are now entering clinical trial. This brief review will identify key areas to consider as these clinical trials move forward.
Collapse
Affiliation(s)
- Bradley S Miller
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
69
|
Alvaro D, Metalli VD, Alpini G, Onori P, Franchitto A, Barbaro B, Glaser SS, Francis H, Cantafora A, Blotta I, Attili AF, Gaudio E. The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis. J Hepatol 2005; 43:875-83. [PMID: 16083987 DOI: 10.1016/j.jhep.2005.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/11/2005] [Accepted: 04/07/2005] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS We evaluated the role and mechanisms by which the GH/IGF1 axis modulates cholangiocyte proliferation. METHODS GH-receptors (GH-R), IGF1, IGFBP3 (binding protein 3), IGF1-R and receptor substrates (IRS) were evaluated in cholangiocytes of normal or bile duct-ligated (BDL) rat livers. The effects of GH and IGF1 on proliferation of normal quiescent cholangiocytes and the transduction pathways involved were investigated. RESULTS IGF1, GH-R, IGF1-R, IRS-1/2 were expressed in normal cholangiocytes and overexpressed in cholangiocytes proliferating after BDL which also secrete IGF1 in a higher amount than normal cells. IGFBP3, which may counter-regulate IGF1 effects, was decreased in BDL cholangiocytes. IGF1 promoted cholangiocyte proliferation in association with overexpression of p-IGF1R, IRS1, IRS-2, p-ERK1/2 and p-AKT. GH induced IGF1 expression and release in isolated cholangiocytes, and reproduced the effects of IGF1 but GH effects were abolished by IGF1-R blocking antibody, suggesting IGF1 as a mediator of GH. Finally, IGF1 and 17beta-estradiol reciprocally potentiated their proliferative effects on cholangiocytes, and by interacting at both receptor and post-receptor levels. CONCLUSIONS Cholangiocytes respond to GH with production and release of IGF1 that modulates cell proliferation by transduction pathways involving IGF1-R, IRS1/2 and both ERK and PI3-kinase pathways. The biliary epithelium is a target of GH/IGF1 liver axis.
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, University of Rome, La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Frago LM, Pañeda C, Argente J, Chowen JA. Growth hormone-releasing peptide-6 increases insulin-like growth factor-I mRNA levels and activates Akt in RCA-6 cells as a model of neuropeptide Y neurones. J Neuroendocrinol 2005; 17:701-10. [PMID: 16218998 DOI: 10.1111/j.1365-2826.2005.01347.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic systemic administration of growth hormone (GH)-releasing peptide-6 (GHRP-6), an agonist for the ghrelin receptor, to normal adult rats increases insulin-like growth factor (IGF)-I mRNA and phosphorylated Akt (pAkt) levels in various brain regions, including the hypothalamus. Because neuropeptide Y (NPY) neurones of the arcuate nucleus express receptors for ghrelin, we investigated whether these neurones increase their IGF-I and p-Akt levels in response to this agonist. In control rats, immunoreactive pAkt was practically undetectable; however, GHRP-6 increased p-Akt immunoreactivity in the arcuate nucleus, with a subset of neurones also being immunoreactive for NPY. Immunoreactivity for IGF-I was detected in NPY neurones in both experimental groups. To determine if activation of this intracellular pathway is involved in modulation of NPY synthesis RCA-6 cells, an embryonic rat hypothalamic neuronal cell line that expresses NPY was used. We found that GHRP-6 stimulates NPY and IGF-I mRNA synthesis and activates Akt in this cell line. Furthermore, inhibition of Akt activation by LY294002 treatment did not inhibit GHRP-6 induction of NPY or IGF-I synthesis. These results suggest that some of the effects of GHRP-6 may involve stimulation of local IGF-I production and Akt activation in NPY neurones in the arcuate nucleus. However, GHRP-6 stimulation of NPY production does not involve this second messenger pathway.
Collapse
Affiliation(s)
- L M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
71
|
Mercer RR, Mastro AM. Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K. Exp Cell Res 2005; 310:270-81. [PMID: 16154565 DOI: 10.1016/j.yexcr.2005.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/19/2005] [Accepted: 07/27/2005] [Indexed: 11/30/2022]
Abstract
Breast cancer frequently metastasizes to bone, resulting in osteolytic lesions. These lesions, formed by activated osteoclasts, cause pain, an increased susceptibility to fractures, and hypercalcemia. It has been shown that breast cancer cells communicate with osteoblasts and subsequently stimulate osteoclast activity; however, little research has focused on understanding the interaction between breast cancer cells and osteoblasts. We recently reported that conditioned medium from MDA-MB-231 breast cancer cells inhibited the differentiation of MC3T3-E1 osteoblasts through the secretion of transforming growth factor beta (TGFbeta). In addition, the breast cancer conditioned medium altered MC3T3-E1 morphology, the pattern of actin stress fibers, and reduced focal adhesion plaques. In the current study, we identified the mechanism used by MDA-MB-231 cells to cause these effects. When MC3T3-E1 osteoblasts were cultured with MDA-MB-231 conditioned medium preincubated with neutralizing antibodies to platelet derived growth factor (PDGF), insulin-like growth factorII (IGFII), and TGFbeta, focal adhesion plaques and actin stress fiber formation were restored. These cytokines were further found to signal through PI3Kinase and Rac. In conclusion, TGFbeta, PDGF, and IGFII might be good therapeutic targets for treating breast cancer-induced osteolytic lesions.
Collapse
Affiliation(s)
- Robyn R Mercer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 431 South Frear Bldg., University Park, PA 16802, USA
| | | |
Collapse
|
72
|
Romano PS, Carvelli L, López AC, Jofré G, Sartor T, Sosa MA. Developmental differences between cation-independent and cation-dependent mannose-6-phosphate receptors in rat brain at perinatal stages. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 158:23-30. [PMID: 15982751 DOI: 10.1016/j.devbrainres.2005.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 05/03/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Mannose-6-phosphate receptors (MPRs) play a role in the selective transport of macromolecules bearing mannose-6-phosphate residue to lysosomes. To date, two types of MPRs have been described in most of cells and tissues: the cation-dependent (CD-MPR) and cation-independent mannose-6-phosphate receptor (CI-MPR). In order to elucidate their possible role in the central nervous system, the expression and binding properties of both MPRs were studied in rat brain along perinatal development. It was observed that the expression of CI-MPR decreases progressively from fetuses to adults, while the CD-MPR increases around the 10th day of birth, and maintains these values up to adulthood. Binding assays showed differences in the Bmax and KD values between the ages studied, and they did not correlate with the expression levels of both MPRs. Variations in lysosomal enzyme activities and expression of phosphomannosylated ligands during development correlated more with CD-MPR than with CI-MPR expression. These results suggest that both receptors play a different role in rat brain during perinatal development, being CD-MPR mostly involved in lysosome maturation.
Collapse
Affiliation(s)
- P S Romano
- Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
73
|
Brywe KG, Mallard C, Gustavsson M, Hedtjärn M, Leverin AL, Wang X, Blomgren K, Isgaard J, Hagberg H. IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3beta? Eur J Neurosci 2005; 21:1489-502. [PMID: 15845077 DOI: 10.1111/j.1460-9568.2005.03982.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin-like growth factor I (IGF-I) is a neurotrophic factor that promotes neuronal growth, differentiation and survival. Neuroprotective effects of IGF-I have previously been shown in adult and juvenile rat models of brain injury. We wanted to investigate the neuroprotective effect of IGF-I after hypoxia-ischemia (HI) in 7-day-old neonatal rats and the mechanisms of IGF-I actions in vivo. We also wanted to study effects of HI and/or IGF-I on the serine/threonine kinases Akt and glycogen synthase kinase 3beta (GSK3beta) in the phophatidylinositol-3 kinase (PI3K) pathway. Immediately after HI, phosphorylated Akt (pAkt) and phosphorylated GSK3beta (pGSK3beta) immunoreactivity was lost in the ipsilateral and reduced in the contralateral hemisphere. After 45 min, pAkt levels were restored to control values, whereas pGSK3beta remained low 4 h after HI. Administration of IGF-I (50 microg i.c.v.) after HI resulted in a 40% reduction in brain damage (loss of microtubule-associated protein) compared with vehicle-treated animals. IGF-I treatment without HI was shown to increase pAkt whereas pGSK3beta decreased in the cytosol, but increased in the nuclear fraction. IGF-I treatment after HI increased pAkt in the cytosol and pGSK3beta in both the cytosol and the nuclear fraction in the ipsilateral hemisphere compared with vehicle-treated rats, concomitant with a reduced caspase-3- and caspase-9-like activity. In conclusion, IGF-I induces activation of Akt during recovery after HI which, in combination with inactivation of GSK3beta, may explain the attenuated activation of caspases and reduction of injury in the immature brain.
Collapse
Affiliation(s)
- Katarina G Brywe
- Department of Obstetrics and Gynecology, Perinatal Center, Sahlgrenska Academy, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Teng Q, Garrity-Moses M, Federici T, Tanase D, Liu JK, Mazarakis ND, Azzouz M, Walmsley LE, Carlton E, Boulis NM. Trophic activity of Rabies G protein-pseudotyped equine infectious anemia viral vector mediated IGF-I motor neuron gene transfer in vitro. Neurobiol Dis 2005; 20:694-700. [PMID: 16005636 DOI: 10.1016/j.nbd.2005.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 04/25/2005] [Accepted: 05/02/2005] [Indexed: 11/20/2022] Open
Abstract
The present study examines gene delivery to cultured motor neurons (MNs) with the Rabies G protein (RabG)-pseudotyped lentiviral equine infectious anemia virus (RabG.EIAV) vector. RabG.EIAV-mediated beta-galactosidase (RabG.EIAV-LacZ) gene expression in cultured MNs plateaus 120 h after infection. The rate and percent of gene expression observed are titer-dependent (P < 0.001). The rat IGF-I cDNA sequence was then cloned into a RabG.EIAV vector (RabG.EIAV-IGF-I) and was shown to induce IGF-I expression in HEK 293 cells. MNs infected with RabG.EIAV-IGF-I demonstrate enhanced survival compared to MNs infected with RabG.EIAV-LacZ virus (P < 0.01). In addition, IGF-I expression in cultured MNs induced profound MN axonal elongation compared to control virus (P < 0.01). The enhanced motor neuron tropism of RabG.EIAV previously demonstrated in vivo, together with the trophic effects of RabG.EIAV-IGF-I MN gene expression may lend this vector to therapeutic application in motor neuron disease.
Collapse
Affiliation(s)
- Qingshan Teng
- Department of Neuroscience and Center for Neurological Restoration, Lerner Research Institute, Cleveland Clinic Foundation, NB2-126, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Peruzzi F, Bergonzini V, Aprea S, Reiss K, Sawaya BE, Rappaport J, Amini S, Khalili K. Cross talk between growth factors and viral and cellular factors alters neuronal signaling pathways: implication for HIV-associated dementia. ACTA ACUST UNITED AC 2005; 50:114-25. [PMID: 15936090 DOI: 10.1016/j.brainresrev.2005.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/10/2005] [Accepted: 05/02/2005] [Indexed: 12/14/2022]
Abstract
HIV-associated dementia (HAD) is a serious neurological disorder affecting about 7% of people with AIDS. In the brain, HIV-1 infects a restricted number of cell types, being primarily present in macrophages and microglial cells, less abundant in astrocytes, and rarely seen in oligodendrocytes and neurons. Lack of a productive HIV-1 infection of neuronal cells suggests the presence of an indirect pathway by which the virus may determine the brain pathology and neuronal dysfunction seen in AIDS patients. Among the participants in this event, viral proteins including gp120 and Tat, along with host factors including cytokines, chemokines, and several signaling pathways have received considerable attention. In this article, we discuss the most recent concepts pertaining to the mechanisms of HIV-1-induced neuronal dysfunction by highlighting the interplay between signal transduction pathways activated by viral and host factors and their consequences in neuronal cell function.
Collapse
Affiliation(s)
- Francesca Peruzzi
- Center for Neurovirology and Cancer Biology, Temple University, 1900 12th North Street, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Ruigrok YM, Slooter AJC, Bardoel A, Frijns CJM, Rinkel GJE, Wijmenga C. Genes and outcome after aneurysmal subarachnoid haemorrhage. J Neurol 2005; 252:417-22. [PMID: 15726267 DOI: 10.1007/s00415-005-0661-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 08/18/2004] [Accepted: 09/01/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Initial and secondary ischaemia are important determinants of outcome after subarachnoid haemorrhage (SAH). Cerebral ischaemia is a potent stimulus for expression of genes that may influence recovery.We investigated whether functional polymorphisms in the apolipoprotein E (APOE), insulin-like growth factor-1 (IGF-1), tumor necrosis factor-A (TNF-A), interleukin-1A (IL-1A), interleukin-1B (IL-1B), and interleukin-6 (IL-6) genes are related with outcome after aneurysmal SAH. METHODS Genotyping of the polymorphisms was performed in a consecutive series of 167 patients with aneurysmal SAH. The risk of a poor outcome was analysed with logistic regression with adjustment for prognostic factors for outcome after SAH, using the homozygotes for the wild type alleles as a reference. RESULTS Patients carrying any IGF-1 non-wild type allele had a lower risk of a poor outcome (OR 0.4, 95% CI 0.2-1.0), while carriers of the TNF-A non-wild type allele had a higher risk (OR 2.3, 95% CI 1.0-5.4). We could not demonstrate an association with outcome for APOE (APOE epsilon4 OR 0.4, 95% CI 0.1-1.2; APOE epsilon2 OR 0.7, 95% CI 0.2-2.4), IL-1A (OR 1.8, 95% CI 0.8-4.0), IL-1B (OR 0.7, 95% CI 0.3-1.5) and IL-6 (OR 0.7, 95% CI 0.3-1.8) polymorphisms. CONCLUSIONS Variation in some genes that are expressed after cerebral ischaemia may partly explain the large differences in outcome between patients with aneurysmal SAH. SAH patients homozygote for the IGF-1 wild type allele or carriers of the TNF-A non-wild type allele have a higher risk of poor outcome. Additional studies in other populations are needed to assess the generalisability of our results.
Collapse
Affiliation(s)
- Y M Ruigrok
- Dept. of Neurology, Rudolf Magnus Institute of Neuroscience University Medical Centre Utrecht, 85500, 3500 GA Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
77
|
Wiedmann M, Wang X, Tang X, Han M, Li M, Mao Z. PI3K/Akt-dependent regulation of the transcription factor myocyte enhancer factor-2 in insulin-like growth factor-1- and membrane depolarization-mediated survival of cerebellar granule neurons. J Neurosci Res 2005; 81:226-34. [PMID: 15931671 DOI: 10.1002/jnr.20556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Survival signals such as insulin-like growth factor-1 (IGF-1) or membrane depolarization convey their neuronal protective effects through the activation of signaling networks and nuclear factors. In cerebellar granule neurons, IGF-1 mediates survival primarily through the PI3K/Akt pathway. The function of the transcription factor myocyte enhancer factor-2 (MEF2) is required for mediating membrane depolarization-dependent neuronal survival. However, whether PI3K/Akt regulates MEF2 and the role of MEF2 in IGF-1-mediated survival of neurons are unknown. In addition, the contribution of the PI3K/Akt pathway in membrane depolarization-induced neuronal survival remains undefined. We show here that the PI3K/Akt pathway promotes the survival of cerebellar granule neurons derived from Long-Evans rats following IGF-1 stimulation or membrane depolarization through regulation of MEF2 activity. IGF-1 stimulated the gene transactivation activity of MEF2 and its DNA binding potential. Moreover, regulation of MEF2 function by IGF-1 was dependent on the activity of the PI3K/Akt signaling pathway. Blocking MEF2 function reduced IGF-1-induced survival of cerebellar granule neurons. Membrane depolarization stimulated phosphorylation of Akt in cerebellar granule neurons. Blocking of the PI3K/Akt pathway with either a pharmacological inhibitor of PI3K, LY294002, or dominant negative mutants of PI3K and Akt inhibited the membrane depolarization-induced increase in MEF2 transactivation as well as its DNA binding activity and reduced neuronal survival. Together, these findings provide clear evidence to support an important role of the PI3K/Akt pathway in the regulation of nuclear survival factor MEF2 upon either IGF-1 stimulation or membrane depolarization, thus placing MEF2 as a novel downstream effector of the PI3K/Akt pathway in neurons.
Collapse
Affiliation(s)
- M Wiedmann
- Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
78
|
Zhang J, D'Ercole AJ. Expression of Mcl-1 in cerebellar granule neurons is regulated by IGF-I in a developmentally specific fashion. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:255-63. [PMID: 15351513 DOI: 10.1016/j.devbrainres.2004.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2004] [Indexed: 12/12/2022]
Abstract
Transgenic (Tg) mice that overexpress IGF-I during postnatal brain development exhibit remarkable cerebellar overgrowth characterized by significant increases in granule cell number that is predominantly due to IGF-I anti-apoptotic actions. Using these mice as a model to define the gene expression profile underlying the pro-survival actions of IGF-I, we screened 243 apoptosis-related genes by cDNA arrays and found that Mcl-1 was down-regulated in cerebella of IGF-I Tg mice. Contrary to the results obtained by cDNA array, Northern blot analyses showed that the Mcl-1 mRNA abundance in the cerebella of IGF-I Tg mice at postnatal day 14 (P14) was five times more than that of wild-type (Wt) controls. The increase in Mcl-1 mRNA expression in IGF-I Tg mice was detected as early as P8, peaked at P14, and remained detectable at P20. Both IGF-I Tg and Wt mice showed a similar expression pattern of Mcl-1 mRNA which coincided with the post-mitotic migration and the post-migratory maturation of granule cells. We measured the relative abundance of Mcl-1 protein in the cerebellum by immunoblots and found that anti-apoptotic Mcl-1L was the predominant form, while pro-apoptotic Mcl-1S was minimally detectable. Cerebellar Mcl-1L was 2.6-fold more abundant in IGF-I Tg mice compared with that in their Wt littermates. Using laser capture microdissection followed by RT-PCR, we determined that Mcl-1 mRNA was expressed in granule cells, but not in Purkinje cells. In summary, these findings show that the anti-apoptotic Mcl-1 isoform is expressed in cerebellar granule neurons, which undergo apoptosis during postnatal cerebellar cortical lamination, and Mcl-1 expression is up-regulated by IGF-I overexpression in a developmentally specific manner. These data suggest that anti-apoptotic Mcl-1 may mediate IGF-I pro-survival actions on granule neurons during the development of cerebellar cortex. They also point out pitfalls of cDNA array analyses.
Collapse
Affiliation(s)
- Jihui Zhang
- Department of Pediatrics, Division of Endocrinology, CB# 7039, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, United States
| | | |
Collapse
|
79
|
Tam J, Rosenberg L, Maysinger D. INGAP peptide improves nerve function and enhances regeneration in streptozotocin-induced diabetic C57BL/6 mice. FASEB J 2004; 18:1767-9. [PMID: 15345684 DOI: 10.1096/fj.04-1894fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INGAP peptide comprises the core active sequence of Islet Neogenesis Associated Protein (INGAP), a pancreatic cytokine that can induce new islet formation and restore euglycemia in diabetic rodents. The ability of INGAP peptide in vitro to enhance nerve growth from sensory ganglia suggests its potential utility in peripheral nerve disorders. In this study, INGAP peptide was administered alone or in combination with insulin to streptozotocin-induced diabetic mice exhibiting signs of peripheral neuropathy. Following a 2-wk treatment period, thermal hypoalgesia in diabetic mice was significantly improved in groups that received INGAP peptide, without development of hyperalgesia. Explanted dorsal root ganglia (DRG) from these groups showed enhanced nerve outgrowth and evidence of increased mitochondrial activity. Western blotting experiments revealed attenuation of neurofilament hyperphosphorylation, up-regulation of beta-tubulin and actin, and increased phosphorylation of the transcription factor STAT3 in DRG. These findings suggest that INGAP peptide can activate some of the signaling pathways implicated in nerve regeneration in sensory ganglia, thereby providing a means of improvement of nociceptive dysfunction in the peripheral nervous system.
Collapse
Affiliation(s)
- Joseph Tam
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
80
|
Wang J, Cheng CM, Zhou J, Smith A, Weickert CS, Perlman WR, Becker KG, Powell D, Bondy CA. Estradiol alters transcription factor gene expression in primate prefrontal cortex. J Neurosci Res 2004; 76:306-14. [PMID: 15079859 DOI: 10.1002/jnr.20076] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen protects neurons from a variety of experimental insults in vitro, and is thought to protect from acute and chronic neurodegenerative processes in vivo. Estrogen also enhances higher-level cognitive functions that are centered in the dorsolateral prefrontal cortex (DLPFC) in human and non-human primates. To investigate genomic mechanisms involved in estrogenic effects on the primate brain in vivo, we compared transcription factor mRNA and protein expression in the DLPFC of ovariectomized rhesus monkeys treated with either vehicle or estradiol (E2). c-FOS, E2F1, and general transcription factor IIB (TFIIB) mRNA and protein expression were altered significantly by short-term E2 treatment, as shown by DNA array, in situ hybridization, and immunohistochemical and immunoblot evaluations. C-FOS expression was increased significantly whereas E2F1 and TFIIB levels were decreased in the DLPFC of E2-treated animals. These transcription factors were concentrated in cortical pyramids, as were estrogen receptors alpha and beta. These data indicate that estrogen may have direct as well as indirect effects on neuronal gene expression in the primate prefrontal cortex.
Collapse
Affiliation(s)
- J Wang
- Developmental Endocrinology Branch, National Institute of Child Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Vincent AM, Mobley BC, Hiller A, Feldman EL. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 2004; 16:407-16. [PMID: 15193297 DOI: 10.1016/j.nbd.2004.03.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 02/20/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is currently in clinical trials for treatment of amyotrophic lateral sclerosis (ALS), but little is known about how it promotes the survival of motor neurons. In the current study, we examined IGF-I-mediated neuroprotection in an in vitro model of ALS utilizing enriched cultures of embryonic rat spinal cord motor neurons. IGF-I binds to the IGF-I receptor (IGF-IR) in motor neurons and activates MAPK and the downstream effector of phosphatidylinositol 3-kinase (PI-3K) signaling, Akt. IGF-I:IGF-IR signaling involves phosphorylation of IRS-1 and Shc, but not IRS-2. Glutamate, which is elevated in the cerebrospinal fluid of ALS patients, induced DNA fragmentation and caspase-3 cleavage in the spinal cord motor neurons. These effects of glutamate were blocked by co-treatment with IGF-I. However, a delay of IGF-I treatment for as little as 30 min eliminated its neuroprotective effect. Finally, alone, neither the MAPK pathway inhibitor PD98059 nor the PI-3K inhibitor LY294002 blocked the neuroprotective effect of IGF-I, but both inhibitors together were effective in this regard. These results suggest that the dose and timing of IGF-I administration are critical for producing a neuroprotective effect, and also suggest that both the MAPK and PI-3K/Akt pathways can promote the survival of motor neurons. We discuss our results in terms of novel strategies for ALS therapy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
82
|
Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O'Kusky JR, D'Ercole AJ. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci 2004; 19:2056-68. [PMID: 15090033 DOI: 10.1111/j.0953-816x.2004.03320.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vivo actions of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal brain development were investigated in transgenic (Tg) mice that overexpress IGF-I prenatally under the control of regulatory sequences from the nestin gene. Tg mice demonstrated increases in brain weight of 6% by embryonic day (E) 18 and 27% by postnatal day (P) 12. In Tg embryos at E16, the volume of the cortical plate was significantly increased by 52% and total cell number was increased by 54%. S-phase labeling with 5-bromo-2'-deoxyuridine revealed a 13-15% increase in the proportion of labeled neuroepithelial cells in Tg embryos at E14. In Tg mice at P12, significant increases in regional tissue volumes were detected in the cerebral cortex (29%), subcortical white matter (52%), caudate-putamen (37%), hippocampus (49%), dentate gyrus (71%) and habenular complex (48%). Tg mice exhibited significant increases in the total number of neurons in the cerebral cortex (27%), caudate-putamen (27%), dentate gyrus (69%), medial habenular nucleus (61%) and lateral habenular nucleus (36%). In the cerebral cortex and subcortical white matter of Tg mice, the total numbers of glial cells were significantly increased by 37% and 42%, respectively. The numerical density of apoptotic cells in the cerebral cortex, labeled by antibodies against active caspase-3, was reduced by 26% in Tg mice at P7. Our results demonstrate that IGF-I can both promote proliferation of neural cells in the embryonic central nervous system in vivo and inhibit their apoptosis during postnatal life.
Collapse
Affiliation(s)
- Gregory J Popken
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Boulis NM, Noordmans AJ, Song DK, Imperiale MJ, Rubin A, Leone P, During M, Feldman EL. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis 2004; 14:535-41. [PMID: 14678769 DOI: 10.1016/j.nbd.2003.08.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current investigation tests whether adeno-associated viral vectors (rAAV) undergo remote delivery to the spinal cord via peripheral nerve injection as previously demonstrated with adenoviral vectors. The sciatic nerves of adult rats (n = 10) were injected with either an rAAV (rAAVCMV-lacZ) or adenoviral (AdCMV-lacZ) vector (1.4 x 10(7) particles/ml). After 21 days, the rAAV group demonstrated significantly higher spinal cord viral expression than the adenoviral group (P < 0.024). A second group of rats was injected with rAAV expressing the green fluorescence protein (GFP) reporter gene. GFP was detected 21 days after unilateral sciatic nerve injection in the neurons of the dorsal root ganglion and spinal cord. The codistribution of the viral genome and transgene in CNS neurons was confirmed with in situ hybridization. In summary, rAAV genes are expressed in CNS neurons following peripheral nerve injection at levels exceeding those seen following remote adenovirus injection.
Collapse
Affiliation(s)
- Nicholas M Boulis
- Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Neuroblastoma is a heterogeneous tumor consisting of N (neuronal) and S (stromal) cells. We report that more tumorigenic and motile N cells express higher levels of IGF-I receptor (IGF-IR) than less tumorigenic, more adherent S cells. Shc, one of the two major docking partners of IGF-IR, is equally expressed in N and S cell lines. IGF-I treatment phosphorylates Shc in N cells, but only weakly activates Shc in S cells. Expression of the second partner, insulin receptor substrate (IRS), is cell type specific. S cells exclusively express IRS-1 that undergoes sustained phosphorylation by IGF-I. In contrast, N cells express IRS-2 that is transiently phosphorylated by IGF-I. Downstream of IRS-2 and Shc, IGF-I treatment results in strong activation of Akt and MAPK in N cells and activation of both pathways is required for IGF-I-mediated differentiation. Only IGF-IR activation of phosphatidylinositol-3 kinase is required for tumor edge ruffling in N and S cells, with stimulation of focal adhesion kinase (FAK) and paxillin. This detailed understanding of the 'biochemical signature' of N and S cells provides the background needed to target and disrupt specific IGF signaling pathways in an attempt to develop more effective therapies.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, 4414 Kresge III, 200 Zina Pitcher Place, Ann Arbor, MI 48109-0588, USA.
| | | | | |
Collapse
|
85
|
Li ZG, Zhang W, Sima AAF. C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 2003; 19:375-85. [PMID: 12951645 DOI: 10.1002/dmrr.389] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND We have previously reported that C-peptide exerts preventive and therapeutic effects on diabetic neuropathy in type 1 diabetic BB/Wor-rats and that it prevents duration-dependent hippocampal apoptosis in the same animal model. In the present study, we examined human neuroblastoma SH-SY5Y cells to examine whether C-peptide stimulates cell proliferation/neurite outgrowth and whether it has antiapoptotic effects. METHODS For neurite outgrowth, serum-starved cultures were treated with C-peptide and/or insulin or IGF-1. Neurites were visualized with NF-L antibody and measured morphometrically. Cell numbers were determined using an electronic cell counter. Scrambled C-peptide was used as a negative control. For assessment of apoptosis, SH-SY5Y cells were incubated with 100 mM glucose for 24 h, and the effects of C-peptide and/or insulin or IGF-1 were examined. Apoptosis was demonstrated by transferase-mediated dUTP nick-end labeling (TUNEL)/4,6-diamidino-2-phenylindole (DAPI) stainings, flow cytometry and changes in the expression of Bcl2. Activation of insulin signaling intermediaries was determined by Western blots. Translocation of NF-kappaB was demonstrated immunocytochemically. RESULTS C-peptide but not scrambled C-peptide stimulated cell proliferation and neurite outgrowth. In the presence of 4 nM insulin, 3 nM C-peptide significantly increased autophosphorylation of the insulin receptor (IR) but not that of the insulin-like growth factor 1 receptor (IGF-1R). It stimulated phosphoinositide 3-kinase (PI-3 kinase) and p38 mitogen-activated protein (MAP) kinase activation, enhanced the expression and translocation of nuclear factor-kappaB (NF-kappaB), promoted the expression of Bcl2 and reduced c-jun N-terminal kinase (JNK) phosphorylation in excess of that of insulin alone. CONCLUSIONS C-peptide in the presence of insulin exerts synergistic effects on cell proliferation, neurite outgrowth and has in the presence of insulin an antiapoptotic effect on high glucose-induced apoptosis but less so on hyperosmolar-induced apoptosis. These effects are likely to be mediated via interactions with the insulin signaling pathway.
Collapse
Affiliation(s)
- Zhen-Guo Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
86
|
Tolbert DL, Clark BR. GDNF and IGF-I trophic factors delay hereditary Purkinje cell degeneration and the progression of gait ataxia. Exp Neurol 2003; 183:205-19. [PMID: 12957504 DOI: 10.1016/s0014-4886(03)00172-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotrophic factors GDNF and/or IGF-I were chronically infused into shaker mutant rats to rescue cerebellar Purkinje neurons from adult-onset heredodegeneration. The natural expression of the shaker mutation is characterized by spatially restricted degeneration of Purkinje cells that occurs earlier and faster in an anterior vermal compartment and slightly later and more slowly in a posterior vermal compartment. Gait ataxia and whole body tremor develop concomitant with the degeneration of Purkinje neurons. The number and spatial distribution of surviving Purkinje neurons, identified by cell-specific calbindin immunoreactivity, were quantitatively analyzed in mid-sagittal sections and correlated with quantitative movement analysis of hindlimb gait patterns. Compared to the number of surviving Purkinje cells in age-matched, non-infused, or saline-infused control mutants, 4 weeks of infusion of GDNF or IGF-I rescued many anterior compartment Purkinje cells from early degeneration. However, 2 and 4 weeks after cessation of GDNF or IGF-I infusion, respectively, the number and spatial distribution of surviving Purkinje cells was comparable to that observed in age-matched controls. Eight weeks of infusion of trophic factors did not support the continued survival of most anterior compartment Purkinje cells and was partially, and probably only transiently, neuroprotective for some posterior compartment Purkinje cells. When GDNF and IGF-I were infused together for 4 weeks the number of surviving Purkinje cells was additively greater than with either factor alone. Behaviorally, 4 weeks of infusion of trophic factors delayed the development of gait ataxia. Infused GDNF appeared to preserve hip stability, whereas IGF-I stabilized step length. Tremor was attenuated with 8 weeks of infusion of GDNF or IGF-I. GDNF-infused animals showed low power tremor frequencies, whereas IGF-I infusion resulted in a single large power peak with decreased numbers of low-amplitude frequencies. Collectively these findings indicate that exogenous trophic factors can delay the onset of hereditary Purkinje cell degeneration and gait ataxia. Quite surprisingly, GDNF and IGF-I appeared to act on disparate populations of mutant Purkinje cells, whose differential survival affected different aspects of locomotion.
Collapse
Affiliation(s)
- Daniel L Tolbert
- Department of Anatomy and Neurobiology, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | |
Collapse
|
87
|
Abstract
Insulin-like growth factor-1 (IGF-1) is a naturally occurring neurotrophic factor that plays an important role in promoting cell proliferation and differentiation during normal brain development and maturation. The present review examines recent evidence that endogenous IGF-1 also plays a significant role in recovery from insults such as hypoxia-ischemia and that giving additional exogenous IGF-1 can actively ameliorate damage. It is now well established that neurons and other cell types die many hours or even days after initial injury due to activation of programmed cell death pathways. IGF-1 and its binding proteins and receptors are intensely induced within damaged brain regions following brain injury, suggesting a possible a role for IGF-1 in brain recovery. Exogenous administration of IGF-1 within a few hours after brain injury is now known to be protective in both gray and white matter and leads to improved somatic function. In contrast, pre-treatment is ineffective, likely reflecting limited intracerebral penetration of IGF-1 into the uninjured brain. The neuroprotective effects of IGF-1 are mediated by IGF-1 receptors and its binding proteins and are specific to particular cellular phenotypes and brain regions. The window of opportunity for treatment with IGF-1 is limited to a few hours after normothermic brain injury, reflecting its specific actions on early, intracellular events in the apoptotic cascade. However, injury-associated mild post-hypoxic hypothermia, which delays the development of cell death, can shift and dramatically extend the window of opportunity for delayed treatment with IGF-1. Such a combined approach is likely to be essential for any clinical treatment.
Collapse
Affiliation(s)
- J Guan
- Faculty of Medicine and Health Sciences, The Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
88
|
Zhang J, Popken GJ, Ye P, D'Ercole AJ. Down-regulation of 14-3-3 eta gene expression by IGF-I in mouse cerebellum during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:199-206. [PMID: 12855191 DOI: 10.1016/s0165-3806(03)00132-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor I (IGF-I) overexpression in the postnatal cerebellum of transgenic (Tg) mice results in remarkable cerebellar overgrowth characterized by a near doubling of granule cell number that is predominantly due to inhibition of apoptosis. Using this Tg model we set out to investigate IGF-I anti-apoptotic mechanisms by defining the influence of IGF-I on gene expression. Using a cDNA array technique, we screened a total of 243 mouse apoptosis-related genes, and found that 14-3-3 eta gene expression was significantly reduced in the cerebella of Tg mice compared with their wild-type (Wt) littermates. Using Northern blot analysis to corroborate our microarray finding, we showed that 14-3-3 eta mRNA abundance was decreased from postnatal day P5 through P17. Nonetheless, the expression pattern of 14-3-3 eta in Tg mice followed the same pattern observed in Wt mice, and was indistinguishable from that in Wt mice at P20 and P23. 14-3-3 eta protein abundance, as determined by Western immunoblot analyses, showed similar decreases in the cerebella of Tg mice. In situ hybridization demonstrated that 14-3-3 eta was predominantly, if not exclusively, expressed and regulated in Purkinje cells. 14-3-3 proteins have multiple functions, including participation in pathways that favor cell survival. Our finding of IGF-I-induced down-regulation of 14-3-3 eta expression in Purkinje cell at a time when IGF-I promotes granule cell survival leads us to speculate that down-regulation of 14-3-3 eta may: (a) serve a negative feedback role to modulate Purkinje cell survival, i.e. limit Purkinje cell number, and/or (b) function as part of a distinct signaling mechanism, perhaps one that augments the capacity of Purkinje cells to promote granule cell survival.
Collapse
Affiliation(s)
- Jihui Zhang
- Department of Pediatrics, Division of Endocrinology, CB# 7039, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, USA
| | | | | | | |
Collapse
|
89
|
Cheng CM, Mervis RF, Niu SL, Salem N, Witters LA, Tseng V, Reinhardt R, Bondy CA. Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 2003; 73:1-9. [PMID: 12815703 DOI: 10.1002/jnr.10634] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study evaluated somatic and dendritic growth of neurons in the frontoparietal cortex of Igf1-/- brains. Pyramidal neuron density was increased by approximately 25% (P =.005) and soma size reduced by approximately 10% (P <.001). Golgi staining revealed that cortical layer II-III neurons exhibited a significant reduction in dendritic length and complexity in Igf1 null mice. Dendritic spine density and presumably synaptic contacts were reduced by 16% (P =.002). Similar findings were obtained for cortical layer V and piriform cortex pyramids. Supporting a reduction in synapses, synaptotagmin levels were reduced by 30% (P <.02) in the Igf1 null brain. Investigation of factors critically involved in dendritic growth and synaptogenesis showed an approximately 50% reduction in cortical CDC42 protein expression (P <.001) and an approximately 10% reduction in brain cholesterol levels (P <.01) in Igf1 null mice. Evidence is presented that Igf1 deletion causes disruptions in lipid and microtubule metabolism, leading to impaired neuronal somatic and dendritic growth. Published 2003 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Clara M Cheng
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Caelers A, Schmid AC, Hrusovsky A, Reinecke M. Insulin-like growth factor II mRNA is expressed in neurones of the brain of the bony fish Oreochromis mossambicus, the tilapia. Eur J Neurosci 2003; 18:355-63. [PMID: 12887417 DOI: 10.1046/j.1460-9568.2003.02761.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The physiological meaning of insulin-like growth factor II (IGF-II) is still enigmatic. IGF-II occurs in the adult mammalian brain where it is expressed in the mesodermal portion of the choroid plexus and the meninges, but results on its presence in cells of neuroepithelial origin are controversial. However, IGF-II mRNA is transiently expressed in neurones during mammalian early development. In bony fish, IGF-II mRNA is also present in the adult brain but nothing is known about its synthesis sites. Thus, the present study using in situ hybridization with digoxigenin-labelled RNA species-specific probes investigates the cellular distribution of IGF-II mRNA in the adult brain of a bony fish, the tilapia (Oreochromis mossambicus). As in mammals, IGF-II mRNA was strongly expressed in the choroid plexus and meninges. Thus, IGF-II synthesis by choroid plexus and meninges seems to have a long evolutionary history and may be common to all vertebrates. However, as shown by the detailed investigation of landmark nuclei and regions, IGF-II mRNA occurred also in numerous neurones at all levels of the tilapia brain. The distinct localization of IGF-II mRNA in neurones might indicate that neuronal IGF-II acts as transmitter or modulator. However, the widespread occurrence of the IGF-II-producing neurones argues against this assumption and most probably suggests that IGF-II plays a role in the differentiation, maintenance and regeneration of neurones. It is further assumed that the sustained neuronal IGF-II expression in the brain of the adult tilapia correlates with continued post-embryonic up to life-long brain growth as has been shown in many teleost fishes.
Collapse
Affiliation(s)
- Antje Caelers
- Division of Neuroendocrinology, Institute of Anatomy, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
91
|
Pierson CR, Zhang W, Sima AAF. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 2003; 62:765-79. [PMID: 12901702 DOI: 10.1093/jnen/62.7.765] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We recently reported that early gene responses and expression of cytoskeletal proteins are perturbed in regenerating nerve in type 1 insulinopenic diabetes but not in type 2 hyperinsulinemic diabetes. We hypothesized that these differences were due to impaired insulin action in the former type of diabetes. To test this hypothesis, type 1 diabetic BB/Wor-rats were replaced with proinsulin C-peptide, which enhances insulin signaling without lowering blood glucose. Following sciatic nerve crush injury, early gene responses such as insulin-like growth factor, c-fos, and nerve growth factor were examined longitudinally in sciatic nerve. Neurotrophic factors, their receptors, and beta-tubulin and neurofilament expression were examined in dorsal root ganglia. C-peptide replacement significantly normalized early gene responses in injured sciatic nerve and partially corrected the expression of endogenous neurotrophic factors and their receptors, as well as neuroskeletal protein in dorsal root ganglia. These effects translated into normalization of axonal radial growth and significantly improved axonal elongation of regenerating fibers in C-peptide-replaced BB/Wor-rats. The findings in C-peptide replaced type 1 diabetic rats were similar to those previously reported in hyperinsulinemic and iso-hyperglycemic type 2 BB/Z-rats. We conclude that impaired insulin action may be more important than hyperglycemia in suppressing nerve fiber regeneration in type 1 diabetic neuropathy.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
92
|
Fressinaud C, Jean I, Dubas F. Selective decrease in axonal nerve growth factor and insulin-like growth factor I immunoreactivity in axonopathies of unknown etiology. Acta Neuropathol 2003; 105:477-83. [PMID: 12677448 DOI: 10.1007/s00401-002-0669-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/09/2002] [Accepted: 12/12/2002] [Indexed: 01/17/2023]
Abstract
In an attempt to approach the mechanisms underlying axonopathies of unknown etiology, we have studied by immunocytochemistry the fate of several growth factors in eight of such cases that we had previously analyzed by morphometry and which were characterized by a decrease in neurofilaments and an increase in beta tubulin immunostaining. Here we establish that, contrary to beta tubulin, growth-associated protein43 (GAP-43) immunolabeling is not up-regulated in theses cases, correlating well with the failure of regeneration. Neurotrophin-3 (NT-3) and its receptor TrkC were not modified compared to controls (five cases). On the contrary, we observed in all cases a pronounced decrease in the number of fibers labeled for nerve growth factor (NGF) and insulin-like growth factor I (IGF-I), which were both approximately half of control values. This decrease could not be ascribed to the reduction in fiber density since it was also present in cases without fiber loss (isolated large fiber atrophy). The fact that only around 50% of fibers were stained, versus all fibers in controls, probably accounted for this decrease. It contrasted also with the normality of NGF and IGF-I immunolabeling in six cases of chronic inflammatory demyelinating neuropathy that were investigated in parallel. These results differ from those reported in experimental diabetic neuropathy, during which NT-3 is also decreased. A deficient supply of specific growth factors delivered by neuronal targets may be responsible for these neuropathies and their associated axonal cytoskeleton abnormalities.
Collapse
Affiliation(s)
- Catherine Fressinaud
- Department of Neurology, UPRES EA 3143, University Hospital, 4 rue Larrey, 49033 Angers, France.
| | | | | |
Collapse
|
93
|
Carro E, Trejo JL, Núñez A, Torres-Aleman I. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 2003; 27:153-62. [PMID: 12777685 DOI: 10.1385/mn:27:2:153] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The existence of protective mechanisms in the adult brain is gradually being recognized as an important aspect of brain function. For many years, self-repair processes in the post-embryonic brain were considered of minor consequence or nonexistent. This notion dominated the study of neurotrophism. Thus, although the possibility that neurotrophic factors participate in brain function in adult life was prudently maintained, the majority of the studies on the role of trophic factors in the brain were focused on developmental aspects. With the recent recognition that the adult brain keeps a capacity for cell renewal, although limited, a new interest in the regenerative properties of brain tissue has emerged. New findings on the role of insulin-like growth factor I (IGF-I), a potent neurotrophic peptide present at high levels in serum, may illustrate this current trend. Circulating IGF-I is an important determinant of proper brain function in the adult. Its pleiotropic effects range from classical trophic actions on neurons such as housekeeping or anti-apoptotic/ pro-survival effects to modulation of brain-barrier permeability, neuronal excitability, or new neuron formation. More recent findings indicate that IGF-I participates in physiologically relevant neuroprotective mechanisms such as those triggered by physical exercise. The increasing number of neurotrophic features displayed by serum IGF-I reinforces the view of a physiological neuroprotective network formed by IGF-I, and possibly other still uncharacterized signals. Future studies with IGF-I, and hopefully other neurotrophic factors, will surely reveal and teach us how to potentiate the self-reparative properties of the adult brain.
Collapse
Affiliation(s)
- Eva Carro
- Laboratory of Neuroendocrinology, Instituto Cajal, CSIC, Madrid, Universidad Autonoma de Madrid, Spain
| | | | | | | |
Collapse
|
94
|
Heininger K. The cerebral glucose-fatty acid cycle: evolutionary roots, regulation, and (patho)physiological importance. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:103-58. [PMID: 12420358 DOI: 10.1016/s0074-7742(02)51004-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, D-40597 Düsseldorf, Germany
| |
Collapse
|
95
|
Pierson CR, Zhang W, Murakawa Y, Sima AAF. Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy. J Neuropathol Exp Neurol 2003; 62:260-71. [PMID: 12638730 DOI: 10.1093/jnen/62.3.260] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diabetic polyneuropathy (DPN) shows more severe functional and structural changes in type 1 than in type 2 human and experimental diabetes. We have previously suggested that these differences may be due to insulin and/or C-peptide deficiencies in type 1 diabetes. To further explore these differences between type I and type 2 DPN, we examined factors underlying nerve fiber regeneration in the hyperinsulinemic type 2 BB/Z-rat and compared these with previous data obtained from the iso-hyperglycemic, insulin and C-peptide-deficient type 1 diabetic BB/Wor-rat. The expression of neurotrophic factors and cytoskeletal proteins were studied in L4 and L5 dorsal root ganglia (DRG) at various time points after sciatic nerve crush. The data were compared to those of nondiabetes-prone BB-rats. Insulin-like growth factor 1 (IGF-1) and TrkA levels were lower in DRG from type 1 than from those of type 2 and control BB-rats. On the other hand, IGF-1 receptor expression was increased at baseline in type 1 BB/Wor-rats and decreased after crush injury, whereas its expression increased after crush injury in both control and type 2 BB/Z-rats. Following crush injury, betaII- and betaIII-tubulins were upregulated in type 2 BB/Z and control rats, which did not occur in type 1 BB/Wor-rats. Furthermore, type 2 BB/Z-rats showed the normal downregulation of low and medium molecular neurofilament (NF-L and NF-M, respectively), which did not occur in type 1 BB/Wor-rats. These findings were associated with significantly milder abnormalities in axonal elongation and caliber growth of regenerating fibers in type 2 compared to type 1 diabetic rats. These data suggest that impaired insulin signaling in type 1 diabetic nerve may be of greater significance in the regulation of neurotrophic and neurocytoskeletal protein synthesis than hyperglycemia in explaining the differences in nerve fiber regeneration between type 2 and type 1 diabetes.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Morris Hood Jr. Comprehensive Diabetes Center, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
96
|
Kakizawa S, Yamada K, Iino M, Watanabe M, Kano M. Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. Eur J Neurosci 2003; 17:545-54. [PMID: 12581172 DOI: 10.1046/j.1460-9568.2003.02486.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional neural circuit formation includes the process by which redundant synaptic connections formed earlier during development are subsequently eliminated. We report that insulin-like growth factor I (IGF-I) is a candidate factor that influences the developmental transition from multiple to mono innervation of cerebellar Purkinje cells (PCs) by climbing fibres (CFs). Continuous local application of exogenous IGF-I to the mouse cerebellum by means of ethylene-vinyl acetate copolymer (Elvax) significantly increased the degree of multiple CF innervation, when the IGF-I containing Elvax was implanted at postnatal day 8 (P8). In contrast, the IGF-I application starting at P12 had no effect on CF innervation. Conversely, continuous local application of antisera against IGF-I and its receptor significantly decreased the degree of multiple CF innervation when the application started at P8. We found that chronic treatment of exogenous IGF-I from P8 significantly enhanced the CF-mediated excitatory postsynaptic currents (CF-EPSCs). This effect was manifest for the smaller CF-EPSCs but not for the largest CF-EPSC of the multiple-innervated PCs. Conversely, chronic application of antisera from P8 caused attenuation of the largest CF-EPSCs. Other parameters for basic synaptic functions and cerebellar morphology were largely normal after the IGF-I or antisera treatment. These results suggest that IGF-I enhances the strength of developing CF synapses and may promote their survival, whereas the shortage of IGF-I impairs the development of CF synapses and, as a result, may facilitate their elimination. Thus, IGF-I is a potentially important factor among various signalling molecules that can influence CF synapse elimination during cerebellar development.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Cellular Neurophysiology, Graduate School of Medical Science, Kanazawa University, Japan
| | | | | | | | | |
Collapse
|
97
|
Schmidt RE. Neuropathology and pathogenesis of diabetic autonomic neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:257-92. [PMID: 12198813 DOI: 10.1016/s0074-7742(02)50080-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autonomic neuropathy is a significant complication of diabetes resulting in increased patient morbidity and mortality. A number of studies, which have shown correspondence between neuropathologic findings in experimental animals and human subjects, have demonstrated that axonal and dendritic pathology in sympathetic ganglia in the absence of significant neuron loss represents a neuropathologic hallmark of diabetic autonomic neuropathy. A recurring theme in sympathetic ganglia, as well as in the pot-ganglionic autonomic innervation of various end organs, is the involvement of distal portions of axons and nerve terminals by degenerative or dystrophic changes. In both animals and humans, there is a surprising selectivity of the diabetic process for subpopulations of autonomic ganglia, nerve terminals within sympathetic ganglia and end organs, from end organ to end organ, and between vascular and other targets within individual end organs. Although the involvement or autonomic axons in somatic nerves may reflect an ischemic pathogenesis, the selectivity of the diabetic process confounds simple global explanations of diabetic autonomic neuropathy as the result of diminished blood flow with resultant tissue hypoxia. A single unifying pathogenetic hypothesis has not yet emerged from clinical and experimental animal studies, and it is likely that diabetic autonomic neuropathy will be shown to have multiple causative mechanisms, which will interact to result in the variety of presentations of autonomic injury in diabetes. Some of these mechanisms will be shared with aging changes in the autonomic nervous system. The role of various neurotrophic substances and the polyol pathway in the pathogenesis and treatment of diabetic neuropathy likely represents a two-edged sword with both salutary and exacerbating effects. The basic neurobiologic process underlying the diabetes-induced development of neuroaxonal dystrophy, synaptic dysplasia, defective axonal regeneration, and alterations in neurotrophic substance may be mechanistically related.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
98
|
Kim B, Feldman EL. Insulin-like growth factor I prevents mannitol-induced degradation of focal adhesion kinase and Akt. J Biol Chem 2002; 277:27393-400. [PMID: 12011046 DOI: 10.1074/jbc.m201963200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our laboratory, we are interested in hyperosmolarity-induced apoptosis in neuronal cells. We have shown that high concentrations of glucose or mannitol induce apoptotic cell death in dorsal root ganglia in culture and in SH-SY5Y and SH-EP human neuroblastoma cells. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that has a critical role for transmitting integrin-mediated-signals. In this study, we report that hyperosmolar treatment mediates FAK dephosphorylation and cleavage, which is prevented by insulin-like growth factor I (IGF-I) treatment. Mannitol treatment of SH-EP cells transfected with vector (SH-EP/pSFFV) results in concentration- and time-dependent dephosphorylation and degradation of FAK. Dephosphorylation and degradation of FAK are tightly correlated with apoptotic morphological changes, including the disruption of actin stress fibers, the loss of focal adhesion sites, membrane blebbing, and cell detachment. Treatment of SH-EP/pSFFV cells with IGF-I or transfection of IGF-I receptor prevents these changes. Treatment of cells with pharmacologic inhibitors of the mitogen-activated protein kinase or phosphatidylinositol 3-kinase pathways does not affect mannitol-induced FAK dephosphorylation and degradation. However, phosphatidylinositol 3-kinase is necessary for IGF-I-mediated protection against FAK alteration. Mannitol treatment also results in the degradation of Akt. Mannitol induces the activation of caspases-3 and -9 in a time course similar to the dephosphorylation and degradation of FAK. Treatment of the cells with ZVAD, a general caspase inhibitor, blocks the mannitol-induced FAK and Akt degradation as well as cell detachment and apoptosis. These results suggest that one of the pathways of mannitol-mediated apoptosis is through the degradation of FAK and Akt and that IGF-I protects the cells from apoptosis by blocking the activation of caspases, which may be responsible for the loss of FAK and Akt.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, 200 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
99
|
Kühl NM, De Keyser J, De Vries H, Hoekstra D. Insulin-like growth factor binding proteins-1 and -2 differentially inhibit rat oligodendrocyte precursor cell survival and differentiation in vitro. J Neurosci Res 2002; 69:207-16. [PMID: 12111802 DOI: 10.1002/jnr.10293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a growth and survival factor for oligodendrocyte lineage cells and induces myelination. Its actions are modulated by IGF binding proteins (IGFBPs) that are present in the extracellular fluids or on the cell surface. Additionally, IGFBPs are also known to exert actions that are independent of IGF-1. We studied whether IGF-binding proteins (IGFBPs)-1 and -2 modulate rat oligodendrocyte precursor (O2A) cell survival and differentiation in vitro both in the absence and presence of exogenously added IGF-1. The data reveal that IGFBP-1 and -2 reduced O2A cell survival in the absence and presence of exogenously added IGF-1. The effects of IGFBP-1 on cell survival in the presence of exogenously added IGF-1 were IGF-1-dependent, whereas IGFBP-2 displayed both IGF-1-dependent and IGF-1-independent effects. Furthermore, IGFBP-1 and -2 inhibited O2A cell differentiation in the presence of IGF-1 as reflected by decreased expression levels of two myelin proteins, CNPase (2',3'-cyclic nucleotide 3'-phosphohydrolase) and MAG (myelin associated glycoprotein). Analysis of medium samples revealed that O2A cells do not secrete proteases that degrade these IGFBPs. Taken together the data show that IGFBP-1 and -2 are negative effectors of oligodendrocyte survival and differentiation. Accordingly, the role of IGFBPs should be explicitly taken into account when investigating IGF-1 effects on oligodendrocytes, especially in the context of therapeutic purposes.
Collapse
Affiliation(s)
- Nicole M Kühl
- Department Membrane Cell Biology, University Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
100
|
Fansa H, Schneider W, Wolf G, Keilhoff G. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts. Muscle Nerve 2002; 26:87-93. [PMID: 12115953 DOI: 10.1002/mus.10165] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal.
Collapse
Affiliation(s)
- Hisham Fansa
- Department of Plastic, Reconstructive and Hand Surgery, Medical Faculty, Otto-von-Guericke-University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|