51
|
Hitsumoto T. Factors Associated with High-sensitivity Cardiac Troponin T in Patients with Type 2 Diabetes Mellitus. J NIPPON MED SCH 2016; 82:274-80. [PMID: 26823030 DOI: 10.1272/jnms.82.274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The blood concentration of high-sensitivity cardiac troponin T (hs-cTnT) is an established, useful biomarker for evaluating the pathogenesis of heart failure and predicting cardiovascular events. The aim of this study was to evaluate factors that are potentially associated with elevated blood hs-cTnT in patients with type 2 diabetes mellitus. PATIENTS AND METHODS Patients with type 2 diabetes mellitus (N=280, 111 men and 169 women; mean ± SD age: 71±9 years) with no history of cardiovascular events were enrolled. Relationships between hs-cTnT level and various clinical parameters were examined. RESULTS Hs-cTnT was detected in 244 (87.1%) patients. There were no significant relationships between hs-cTnT and fasting blood glucose levels or insulin resistance. hs-cTnT was significantly correlated with advanced glycation end-product levels at the skin (r=0.23, p<0.001), blood concentrations of brain natriuretic peptide (r=0.23, p<0.001), reactive oxygen metabolites as markers of oxidative stress (r=0.28, p<0.001), and the augmentation index at the radial artery as marker of arterial reflection (r=0.31, p<0.001). Furthermore, multiple regression analysis revealed that these factors were also selected as independent variables, with hs-cTnT as a subordinate factor. CONCLUSION These results indicate that novel cardiovascular risk factors including advanced glycation end-products, in vivo oxidative stress, and high arterial reflection are closely associated with high concentrations of blood hs-cTnT in patients with type 2 diabetes mellitus.
Collapse
|
52
|
Okatan EN, Durak AT, Turan B. Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Can J Physiol Pharmacol 2016; 94:1064-1073. [DOI: 10.1139/cjpp-2015-0531] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial contractility is controlled by intracellular Ca2+ cycling with the contribution of sarcoplasmic reticulum (SR). In this study, we aimed to investigate the role of altered SR function in defective regulation of intracellular Ca2+ levels in rats with metabolic syndrome (MetS) induced by a 16-week high-sucrose drinking-water diet. Electric-field stimulated transient intracellular Ca2+ changes in MetS cardiomyocytes exhibited significantly reduced amplitude (∼30%) and prolonged time courses (2-fold), as well as depressed SR Ca2+ loading (∼55%) with increased basal Ca2+ level. Consistent with these data, altered ryanodine receptor (RyR2) function and SERCA2a activity were found in MetS cardiomyocytes through Ca2+ spark measurements and caffeine application assay in a state in which sodium calcium exchanger was inhibited. Furthermore, tetracaine application assay results and hyperphosphorylated level of RyR2 also support the “leaky RyR2” hypothesis. Moreover, altered phosphorylation levels of phospholamban (PLN) support the depressed SERCA2a-activity thesis and these alterations in the phosphorylation of Ca2+-handling proteins are correlated with altered protein kinase and phosphatase activity in MetS cardiomyocytes. In conclusion, MetS-rat heart exhibits altered Ca2+ signaling largely due to altered SR function via changes in RyR2 and SERCA2a activity. These results point to RyR2 and SERCA2a as potential pharmacological targets for restoring intracellular Ca2+ homeostasis and, thereby, combatting dysfunction in MetS-rat heart.
Collapse
Affiliation(s)
- Esma N. Okatan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Aysegul Toy Durak
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
53
|
Liu XY, Liu FC, Deng CY, Zhang MZ, Yang M, Xiao DZ, Lin QX, Cai ST, Kuang SJ, Chen J, Chen SX, Zhu JN, Yang H, Rao F, Fu YH, Yu XY. Left ventricular deformation associated with cardiomyocyte Ca(2+) transients delay in early stage of low-dose of STZ and high-fat diet induced type 2 diabetic rats. BMC Cardiovasc Disord 2016; 16:41. [PMID: 26879576 PMCID: PMC4754853 DOI: 10.1186/s12872-016-0220-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background In the early stage of diabetes, the cardiac ejection fraction is preserved, despite the existence of the subclinical cardiac dysfunction to some extent. However, the detailed phenotype of this dysfunction and the underlying mechanism remain unclear. To improve our understanding of this issue, we used low-dose STZ and high-fat diet to induce type 2 diabetic models in rats. The effects and the mechanism associated with the early stages of the disease were analyzed. Methods The type 2 diabetic mellitus (T2DM) in SD rats were induced through 30 mg/kg STZ and high-fat diet. Two-dimensional spackle-tracking echocardiography (STE) and the dobutamine test were performed to examine the cardiac function. Calcium transients of left ventricular myocytes were detected and the related intracellular signalling factors were analyzed by western blotting. Results After 6-weeks, T2DM rats in left ventricular (LV) diastole showed decreased global and segment strain(S) levels (P < 0.05), both in the radial and circumferential directions. Strain rate (Sr) abatement occurred in three segments in the radial and circumferential directions (P < 0.05), and the radial global Sr also decreased (P < 0.05). In the systolic LV, radial Sr was reduced, except the segment of the anterior septum, and the Sr of the lateral wall and post septum decreased in the circumferential direction (P < 0.05). Conventional M-mode echocardiography failed to detect significant alterations of cardiac performance between the two groups even after 12 weeks, and the decreased ejection fraction (EF%), fractional shortening (FS%) and end-systolic diameters (ESD) could be detected only under stress conditions induced by dobutamine (P < 0.05). In terms of calcium transients in cardiac myocytes, the Tpeak in model rats at 6 weeks was not affected, while the Tdecay1/2 was higher than that of the controls (P < 0.05), and both showed a dose-dependent delay after isoproterenol treatment (P < 0.05). Western blot analysis showed that in 6-week T2DM rats, myocardial p-PLB expression was elevated, whereas p-CaMKII, p-AMPK and Sirt1 were significantly down-regulated (P < 0.05). Conclusion A rat model of T2DM was established by low dose STZ and a high-fat diet. LV deformation was observed in the early stages of T2DM in association with the delay of Ca2+ transients in cardiomyocytes due to the decreased phosphorylation of CaMKII. Myocardial metabolism remodeling might contribute to the early LV function and calcium transportation abnormalities.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Fu-Cheng Liu
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China.,Department of Cardiology of the First Affiliated Hospital, Jinan University, Guangzhou, 510630, P.R. China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Meng-Zhen Zhang
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Min Yang
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Ding-Zhang Xiao
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Qiu-Xiong Lin
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Shi-Ting Cai
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Su-Juan Kuang
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Jing Chen
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Shao-Xian Chen
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Jie-Ning Zhu
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Hui Yang
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Fang Rao
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Yong-Heng Fu
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Xi-Yong Yu
- Guangdong Cardiovascular Institute and Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, P.R. China. .,Institute of Molecular and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| |
Collapse
|
54
|
Afanasiev SA, Kondratieva DS, Rebrova TY, Batalov RE, Popov SV. Coupling of the Functional Stability of Rat Myocardium and Activity of Lipid Peroxidation in Combined Development of Postinfarction Remodeling and Diabetes Mellitus. J Diabetes Res 2016; 2016:2548689. [PMID: 26844230 PMCID: PMC4710906 DOI: 10.1155/2016/2548689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Coupling of the functional stability of rat myocardium and activity of lipid peroxidation processes in combined development of postinfarction remodeling and diabetes mellitus has been studied. The functional stability of myocardium was studied by means of the analysis of inotropic reaction on extrasystolic stimulus, the degree of left ventricular hypertrophy, and the size of scar zone. It was shown that in combined development of postinfarction cardiac remodeling of heart (PICR) with diabetes mellitus (DM) animal body weight decreased in less degree than in diabetic rats. Animals with combined pathology had no heart hypertrophy. The amplitude of extrasystolic contractions in rats with PICR combined with DM had no differences compared to the control group. In myocardium of rats with PICR combined with DM postextrasystolic potentiation was observed in contrast with the rats with PICR alone. The rats with combined pathology had the decreased value of TBA-active products. Thus, the results of study showed that induction of DM on the stage of the development of postinfarction remodeling increases adaptive ability of myocardium. It is manifested in inhibition of increase of LPO processes activity and maintaining of force-interval reactions of myocardium connected with calcium transport systems of sarcoplasmic reticulum of cardiomyocytes.
Collapse
Affiliation(s)
- S. A. Afanasiev
- Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, 111a Kievskaya Street, Tomsk 634012, Russia
| | - D. S. Kondratieva
- Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, 111a Kievskaya Street, Tomsk 634012, Russia
- *D. S. Kondratieva:
| | - T. Yu. Rebrova
- Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, 111a Kievskaya Street, Tomsk 634012, Russia
| | - R. E. Batalov
- Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, 111a Kievskaya Street, Tomsk 634012, Russia
| | - S. V. Popov
- Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, 111a Kievskaya Street, Tomsk 634012, Russia
| |
Collapse
|
55
|
Riojas-Hernández A, Bernal-Ramírez J, Rodríguez-Mier D, Morales-Marroquín FE, Domínguez-Barragán EM, Borja-Villa C, Rivera-Álvarez I, García-Rivas G, Altamirano J, García N. Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/fa rats with type 2 diabetes. Life Sci 2015; 141:32-43. [DOI: 10.1016/j.lfs.2015.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/18/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
|
56
|
Sung MM, Hamza SM, Dyck JRB. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015; 22:1606-30. [PMID: 25808033 DOI: 10.1089/ars.2015.6305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Cardiovascular complications in diabetes are particularly serious and represent the primary cause of morbidity and mortality in diabetic patients. Despite early observations of cardiac dysfunction in diabetic humans, cardiomyopathy unique to diabetes has only recently been recognized. RECENT ADVANCES Research has focused on understanding the pathogenic mechanisms underlying the initiation and development of diabetic cardiomyopathy. Emerging data highlight the importance of altered mitochondrial function as a major contributor to cardiac dysfunction in diabetes. Mitochondrial dysfunction occurs by several mechanisms involving altered cardiac substrate metabolism, lipotoxicity, impaired cardiac insulin and glucose homeostasis, impaired cellular and mitochondrial calcium handling, oxidative stress, and mitochondrial uncoupling. CRITICAL ISSUES Currently, treatment is not specifically tailored for diabetic patients with cardiac dysfunction. Given the multifactorial development and progression of diabetic cardiomyopathy, traditional treatments such as anti-diabetic agents, as well as cellular and mitochondrial fatty acid uptake inhibitors aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose may not adequately target all aspects of this condition. Thus, an alternative treatment such as resveratrol, which targets multiple facets of diabetes, may represent a safe and promising supplement to currently recommended clinical therapy and lifestyle changes. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the initiation and progression of diabetic cardiomyopathy is essential for development of effective and targeted treatment strategies. Of particular interest is the investigation of alternative therapies such as resveratrol, which can function as both preventative and mitigating agents in the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Miranda M Sung
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Shereen M Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
57
|
Zhang Y, Bao M, Dai M, Wang X, He W, Tan T, Lin D, Wang W, Wen Y, Zhang R. Cardiospecific CD36 suppression by lentivirus-mediated RNA interference prevents cardiac hypertrophy and systolic dysfunction in high-fat-diet induced obese mice. Cardiovasc Diabetol 2015; 14:69. [PMID: 26036798 PMCID: PMC4464858 DOI: 10.1186/s12933-015-0234-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023] Open
Abstract
Background Fatty acid (FA) catabolism abnormality has been proved to play an important role in obesity-related cardiomyopathy. We hypothesized that cardiospecific suppression of CD36, the predominant membrane FA transporter, would protect against obesity-related cardiomyopathy. Methods Four-wk-old male C57BL/6 J mice were fed with either high-fat-diet (HFD) or control-normal-diet for 2 wk. Then they were subjected to intramyocardial injection with recombinant lentiviral vectors containing short hairpin RNAs to selectively downregulate the expression of either cardiac CD36 or irrelevant gene by RNA interference. After a 10-wk continuation of the diet, biochemical, functional, morphological, histological, metabolic and molecular profiles were assessed. Results HFD administration elicited obesity, cardiac hypertrophy and systolic dysfunction accompanied with elevated serum levels of blood urea nitrogen (BUN), creatinine, fasting serum glucose (FSG), total cholesterol (TC) and triglyceride. Additionally, HFD consumption promoted lipid accumulation and reactive oxygen species (ROS) generation in the cardiomyocytes. Cardiospecific CD36 inhibition protected against HFD induced cardiac remodeling by decreasing heart/body weight ratio, increasing left ventricular (LV) ejection fraction and fractional shortening as well as normalizing LV diameter, without influencing body weight gain. Inhibition of cardiac CD36 also mitigated obesity induced alteration in BUN, creatinine and triglyceride, but had no effect on FSG or TC. Moreover, cardiospecific CD36 deficiency corrected myocardial lipid overaccumulation and intracellular ROS overproduction that were induced by HFD feeding. Conclusions Cardiospecific CD36 inhibition protects against the aggravation of cardiac functional and morphological changes associated with HFD induced obesity. CD36 represents a potential therapeutic target for obesity cardiomyopathy.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Cardiology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Central Laboratory of Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Mingwei Bao
- Department of Cardiology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Mingyan Dai
- Department of Cardiology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Xin Wang
- Department of Cardiology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Wenbo He
- Department of Cardiology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Tuantuan Tan
- Department of Ultrasonography, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Dandan Lin
- Department of Oncology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Wei Wang
- Department of Thoracic Surgery, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Ying Wen
- Department of Cardiology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China. .,Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| | - Rui Zhang
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Peoples Republic of China.
| |
Collapse
|
58
|
20 years of leptin: Role of leptin in cardiomyocyte physiology and physiopathology. Life Sci 2015; 140:10-8. [PMID: 25748420 DOI: 10.1016/j.lfs.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 02/08/2023]
Abstract
Since the discovery of leptin in 1994 by Zhang et al., there have been a number of reports showing its implication in the development of a wide range of cardiovascular diseases. However, there exists some controversy about how leptin can induce or preserve cardiovascular function, as different authors have found contradictory results about leptin beneficial or detrimental effects in leptin deficient/resistant murine models and in wild type tissue and cardiomyocytes. Here, we will focus on the main discoveries about the leptin functions at cardiac level within the last two decades, focusing on its role in cardiac metabolism, remodeling and contractile function.
Collapse
|
59
|
Yuan F, Lei Y, Wang Q, Esberg LB, Huang Z, Scott GI, Li X, Ren J. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity. Toxicol Lett 2015; 233:267-77. [DOI: 10.1016/j.toxlet.2014.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022]
|
60
|
Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015; 2015:656795. [PMID: 25973429 PMCID: PMC4417999 DOI: 10.1155/2015/656795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis, hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses. Also, novel experimental models based on genetic modifications of specific related genes have been discussed. The study of specific pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - B. Picatoste
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - A. Gómez-Hernández
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - J. Egido
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - J. Tuñón
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - Ó. Lorenzo
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
61
|
Hitsumoto T, Shirai K. Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients. Diabetes Metab Syndr Obes 2015; 8:157-62. [PMID: 25792848 PMCID: PMC4362654 DOI: 10.2147/dmso.s80907] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The blood concentration of cardiac troponin T (ie, high-sensitivity cardiac troponin T [hs-cTnT]), measured using a highly sensitive assay, represents a useful biomarker for evaluating the pathogenesis of heart failure or predicting cardiovascular events. However, little is known about the clinical significance of hs-cTnT in metabolic syndrome. The aim of this study was to examine the factors affecting hs-cTnT elevation in Japanese metabolic syndrome patients. PATIENTS AND METHODS We enrolled 258 metabolic syndrome patients who were middle-aged males without a history of cardiovascular events. We examined relationships between hs-cTnT and various clinical parameters, including diagnostic parameters of metabolic syndrome. RESULTS There were no significant correlations between hs-cTnT and diagnostic parameters of metabolic syndrome. However, hs-cTnT was significantly correlated with age (P<0.01), blood concentrations of brain natriuretic peptide (P<0.01), reactive oxygen metabolites (markers of oxidative stress, P<0.001), and the cardio-ankle vascular index (marker of arterial function, P<0.01). Furthermore, multiple regression analysis revealed that these factors were independent variables for hs-cTnT as a subordinate factor. CONCLUSION The findings of this study indicate that in vivo oxidative stress and abnormality of arterial function are closely associated with an increase in hs-cTnT concentrations in Japanese metabolic syndrome patients.
Collapse
Affiliation(s)
- Takashi Hitsumoto
- Hitsumoto Medical Clinic, Yamaguchi, Japan
- Correspondence: Takashi Hitsumoto, Hitsumoto Medical Clinic, 2-7-7, Takezakicyou, Shimonoseki-City, Yamaguchi 750-0025, Japan, Tel +81 83 223 0657, Fax +81 83 233 0657, Email
| | - Kohji Shirai
- Department of Vascular Function (donated), Sakura Hospital, Toho University School of Medicine, Chiba, Japan
| |
Collapse
|
62
|
Bugger H, Bode C. The vulnerable myocardium. Diabetic cardiomyopathy. Hamostaseologie 2014; 35:17-24. [PMID: 25408270 DOI: 10.5482/hamo-14-09-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in subjects suffering from diabetes mellitus. While coronary artery disease is the leading cause of cardiac complications in diabetics, it is widely recognized that diabetes increases the risk for the development of heart failure independently of coronary heart disease and hypertension. This increased susceptibility of the diabetic heart to develop structural and functional impairment is termed diabetic cardiomyopathy. The number of different mechanisms proposed to contribute to diabetic cardiomyopathy is steadily increasing and underlines the complexity of this cardiac entity. In this review the mechanisms that account for the increased myocardial vulnerability in diabetic cardiomyopathy are discussed.
Collapse
Affiliation(s)
- H Bugger
- Heiko Bugger, MD, Heart Center Freiburg University, Cardiology and Angiology I, Hugstetter Str. 55, 79106 Freiburg, Germany, E-mail:
| | | |
Collapse
|
63
|
Ziolo MT, Houser SR. Abnormal Ca(2+) cycling in failing ventricular myocytes: role of NOS1-mediated nitroso-redox balance. Antioxid Redox Signal 2014; 21:2044-59. [PMID: 24801117 PMCID: PMC4208612 DOI: 10.1089/ars.2014.5873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Heart failure (HF) results from poor heart function and is the leading cause of death in Western society. Abnormalities of Ca(2+) handling at the level of the ventricular myocyte are largely responsible for much of the poor heart function. RECENT ADVANCES Although studies have unraveled numerous mechanisms for the abnormal Ca(2+) handling, investigations over the past decade have indicated that much of the contractile dysfunction and adverse remodeling that occurs in HF involves oxidative stress. CRITICAL ISSUES Regrettably, antioxidant therapy has been an immense disappointment in clinical trials. Thus, redox signaling is being reassessed to elucidate why antioxidants failed to treat HF. FUTURE DIRECTIONS A recently identified aspect of redox signaling (specifically the superoxide anion radical) is its interaction with nitric oxide, known as the nitroso-redox balance. There is a large nitroso-redox imbalance with HF, and we suggest that correcting this imbalance may be able to restore myocyte contraction and improve heart function.
Collapse
Affiliation(s)
- Mark T Ziolo
- 1 Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio
| | | |
Collapse
|
64
|
Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res 2014; 164:323-35. [PMID: 24880146 PMCID: PMC4180761 DOI: 10.1016/j.trsl.2014.05.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 05/03/2014] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias, and sudden cardiac death in obese subjects. This review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiological alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis, and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiological alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation, and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes, and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the renin-angiotensin-aldosterone system, induction of transforming growth factor β, oxidative stress, advanced glycation end-products, endothelin 1, Rho-kinase signaling, leptin-mediated actions, and upregulation of matricellular proteins (such as thrombospondin 1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response after cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to the development of novel therapies to prevent heart failure and attenuate postinfarction cardiac remodeling in patients with obesity.
Collapse
Affiliation(s)
- Michele Cavalera
- Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Junhong Wang
- Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
65
|
Carvajal K, Balderas-Villalobos J, Bello-Sanchez MD, Phillips-Farfán B, Molina-Muñoz T, Aldana-Quintero H, Gómez-Viquez NL. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress. Cell Calcium 2014; 56:408-15. [PMID: 25168907 DOI: 10.1016/j.ceca.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022]
Abstract
Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling.
Collapse
Affiliation(s)
- Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Jaime Balderas-Villalobos
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico; Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ma Dolores Bello-Sanchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Tzindilu Molina-Muñoz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hugo Aldana-Quintero
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Norma L Gómez-Viquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
66
|
Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT, Bai WW, Liu XQ, Zhao YX. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 2014; 18:1599-611. [PMID: 24889822 PMCID: PMC4190906 DOI: 10.1111/jcmm.12312] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 01/02/2023] Open
Abstract
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol-induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol-mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long-term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol-induced down-regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H2O2 increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1-dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Bo Wang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
In recent years, diabetes mellitus has become an epidemic and now represents one of the most prevalent disorders. Cardiovascular complications are the major cause of mortality and morbidity in diabetic patients. While ischaemic events dominate the cardiac complications of diabetes, it is widely recognised that the risk for developing heart failure is also increased in the absence of overt myocardial ischaemia and hypertension or is accelerated in the presence of these comorbidities. These diabetes-associated changes in myocardial structure and function have been called diabetic cardiomyopathy. Numerous molecular mechanisms have been proposed to contribute to the development of diabetic cardiomyopathy following analysis of various animal models of type 1 or type 2 diabetes and in genetically modified mouse models. The steady increase in reports presenting novel mechanistic data on this subject expands the list of potential underlying mechanisms. The current review provides an update on molecular alterations that may contribute to the structural and functional alterations in the diabetic heart.
Collapse
Affiliation(s)
- Heiko Bugger
- Heart Center Freiburg University, Cardiology and Angiology I, Freiburg, Germany
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 108 CMAB, 451 Newton Road, Iowa City, IA 52242-1101, USA
| |
Collapse
|
68
|
Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, Aoki K, Yufu K, Nakagawa M, Saikawa T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 2013; 78:300-6. [PMID: 24334638 DOI: 10.1253/circj.cj-13-1187] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are the main facilitators of cardiovascular complications in diabetes mellitus (DM), and the ROS level is increased in cultured cells exposed to high glucose concentrations or in diabetic animal models. Emerging evidence shows that mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are dominant mechanisms of ROS production in the diabetic heart. Hyperpolarization of the mitochondrial inner membrane potentials and impaired mitochondrial function promote ROS production in the mitochondria of the diabetic heart. Uncoupling proteins are upregulated and may reduce the ROS level by depolarizing the mitochondrial inner membrane potential. NADPH oxidase is another major site of ROS production and its contribution to DM-induced ROS increase has been elucidated not only in vascular smooth muscle cells and endothelial cells, but also in cardiomyocytes. Protein kinase C, angiotensin II, and advanced glycation endproducts (AGEs)/receptor for AGEs can activate NADPH oxidase. Increased intracellular calcium level mediated via the Na(+)-H(+) exchanger and subsequent activation of Ca(2+)/calmodulin-dependent protein kinase II may also activate NADPH oxidase. This review presents the current understanding of the mechanisms of ROS production, focusing especially on the roles of mitochondria and NADPH oxidase.
Collapse
Affiliation(s)
- Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
70
|
Abstract
SIGNIFICANCE Despite recent medical advances, cardiovascular disease and heart failure (HF) continue to be major health concerns, and related mortality remains high. As a result, investigation of the mechanisms involved in the development of HF continues to be an active field of study. RECENT ADVANCES The renin-angiotensin system (RAS) and its effector molecule, angiotensin (Ang) II, affect cardiac function through both systemic and local actions, and have been shown to play a major role in cardiac remodeling and dysfunction in the failing heart. Many of the downstream effects of AngII signaling are mediated by elevated levels of reactive oxygen species (ROS) and oxidative stress, which have also been implicated in the pathology of HF. CRITICAL ISSUES Inhibitors of the RAS have proven beneficial in the treatment of patients at risk for and suffering from HF, but remain only partially effective. ROS can be generated from several different sources, and the oxidative state is normally tightly regulated in the heart. How AngII increases ROS levels and causes dysregulation of the cardiac oxidative state has been the subject of considerable interest in recent years. FUTURE DIRECTIONS A better understanding of this process and the mechanisms involved should lead to the development of more effective HF therapies and improved outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, New Jersey
| | | |
Collapse
|
71
|
Balderas-Villalobos J, Molina-Muñoz T, Mailloux-Salinas P, Bravo G, Carvajal K, Gómez-Viquez NL. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 305:H1344-53. [PMID: 23997093 DOI: 10.1152/ajpheart.00211.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ca(+) mishandling due to impaired activity of cardiac sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) has been associated with the development of left ventricular diastolic dysfunction in insulin-resistant cardiomyopathy. However, the molecular causes underlying SERCA2a alterations induced by insulin resistance and related metabolic disorders, such as metabolic syndrome (MetS), are not completely understood. In this study, we used a sucrose-fed rat model of MetS to test the hypothesis that decreased SERCA2a activity is mediated by elevated oxidative stress produced in the MetS heart. Production of ROS and cytosolic Ca(2+) concentration were recorded in left ventricular myocytes using confocal imaging. The level of SERCA2a oxidation was determined in left ventricular homogenates by biotinylated iodoacetamide labeling. Compared with control rats, sucrose-fed rats exhibited several characteristics of MetS, including central obesity, insulin resistance, hyperinsulinemia, and hypertriglyceridemia. Moreover, relative to myocytes from control rats, myocytes from MetS rats exhibited elevated basal production of ROS accompanied by slowed cytosolic Ca(2+) removal, reflected by prolonged Ca(2+) transients. The slowed cytosolic Ca(2+) removal was associated with a significant decrease in SERCA2a-mediated Ca(2+) reuptake and increased SERCA2a oxidation. Importantly, myocytes from MetS rats treated with the antioxidant N-acetylcysteine showed normal ROS levels and SERCA2a-mediated Ca(2+) reuptake as well as accelerated cytosolic Ca(2+) removal. These data suggest that elevated oxidative stress may induce oxidative modifications on SERCA2a leading to abnormal function of this protein in the MetS heart.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico; and
| | | | | | | | | | | |
Collapse
|
72
|
Schrammel A, Mussbacher M, Winkler S, Haemmerle G, Stessel H, Wölkart G, Zechner R, Mayer B. Cardiac oxidative stress in a mouse model of neutral lipid storage disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1600-8. [PMID: 23867907 PMCID: PMC3795454 DOI: 10.1016/j.bbalip.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac oxidative stress has been implicated in the pathogenesis of hypertrophy, cardiomyopathy and heart failure. Systemic deletion of the gene encoding adipose triglyceride lipase (ATGL), the enzyme that catalyzes the rate-limiting step of triglyceride lipolysis, results in a phenotype characterized by severe steatotic cardiac dysfunction. The objective of the present study was to investigate a potential role of oxidative stress in cardiac ATGL deficiency. Hearts of mice with global ATGL knockout were compared to those of mice with cardiomyocyte-restricted overexpression of ATGL and to those of wildtype littermates. Our results demonstrate that oxidative stress, measured as lucigenin chemiluminescence, was increased ~ 6-fold in ATGL-deficient hearts. In parallel, cytosolic NADPH oxidase subunits p67phox and p47phox were upregulated 4–5-fold at the protein level. Moreover, a prominent upregulation of different inflammatory markers (tumor necrosis factor α, monocyte chemotactant protein-1, interleukin 6, and galectin-3) was observed in those hearts. Both the oxidative and inflammatory responses were abolished upon cardiomyocyte-restricted overexpression of ATGL. Investigating the effect of oxidative and inflammatory stress on nitric oxide/cGMP signal transduction we observed a ~ 2.5-fold upregulation of soluble guanylate cyclase activity and a ~ 2-fold increase in cardiac tetrahydrobiopterin levels. Systemic treatment of ATGL-deficient mice with the superoxide dismutase mimetic Mn(III)tetrakis (4-benzoic acid) porphyrin did not ameliorate but rather aggravated cardiac oxidative stress. Our data suggest that oxidative and inflammatory stress seems involved in lipotoxic heart disease. Upregulation of soluble guanylate cyclase and cardiac tetrahydrobiopterin might be regarded as counterregulatory mechanisms in cardiac ATGL deficiency. ATGL(−/−) mice suffer from severe cardiac oxidative stress originating from upregulation of NOX2-dependent NADPH oxidase. Inflammation markers TNFα, MCP-1, IL-6, and Mac-2 are increased in cardiac ATGL deficiency. Activity of sGC and cardiac BH4 levels are elevated in ATGL(−/−) hearts. Systemic treatment of ATGL(−/−) mice with the SOD mimetic MnTBAP did not ameliorate oxidative stress.
Collapse
Key Words
- (s)GC
- (soluble) guanylate cyclase
- 2,2-diethyl-1-nitroso-oxyhydrazine
- ATGL
- ATGL(−/−)
- Adipose triglyceride lipase
- BH(2)
- BH(4)
- Cardiac hypertrophy
- DAG
- DEA/NO
- FFA
- GAPDH
- IL-6
- Inflammation
- MCP-1
- Mac-2
- Mn(III)tetrakis (4-benzoic acid) porphyrin chloride
- MnTBAP
- NADPH
- NADPH oxidase
- NO
- NOX
- ONOO(−)
- Oxidative stress
- PBS
- PKC
- PPARα
- SOD
- TG
- TNFα
- VASP
- adipose triglyceride lipase
- adipose triglyceride lipase knockout
- diacylglycerol
- dihydrobiopterin, [2-amino-6-(1,2-dihydroxypropyl)-7,8-dihydro-1H-pteridin-4-one]
- eNOS
- endothelial nitric oxide synthase
- free fatty acid
- galectin-3
- glyceraldehyde-3-phosphate dehydrogenase
- iNOS
- inducible nitric oxide synthase
- interleukin 6
- monocyte chemotactic protein-1
- nNOS
- neuronal nitric oxide synthase
- nicotinamide adenine dinucleotide phosphate
- nitric oxide
- pVASP
- peroxisome proliferator receptor α
- peroxynitrite
- phosphate-buffered saline
- phosphorylated vasodilator-stimulated phosphoprotein
- protein kinase C
- superoxide dismutase
- tetrahydrobiopterin, [(6R)-2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-5,6,7,8-tetrahydropteridin-4(1H)-one]
- triacylglycerol
- tumor necrosis factor α
- vasodilator-stimulated phosphoprotein
Collapse
Affiliation(s)
- Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Corresponding author. Tel.: + 43 316 380 5559; fax: + 43 316 380 9890.
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Sarah Winkler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Guenter Haemmerle
- Department of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Rudolf Zechner
- Department of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
73
|
Kumar S, Prasad S, Sitasawad SL. Multiple antioxidants improve cardiac complications and inhibit cardiac cell death in streptozotocin-induced diabetic rats. PLoS One 2013; 8:e67009. [PMID: 23843977 PMCID: PMC3699585 DOI: 10.1371/journal.pone.0067009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 05/17/2013] [Indexed: 12/21/2022] Open
Abstract
Diabetic cardiomyopathy, a disorder of the heart muscle in diabetic patients, is one of the major causes of heart failure. Since diabetic cardiomyopathy is now known to have a high prevalence in the asymptomatic diabetic patient, prevention at the earliest stage of development by existing molecules would be appropriate in order to prevent the progression of heart failure. In this study, we investigated the protective role of multiple antioxidants (MA), on cardiac dysfunction and cardiac cell apoptosis in streptozotocin (STZ)-induced diabetic rat. Diabetic cardiomyopathy in STZ-treated animals was characterized by declined systolic, diastolic myocardial performance, oxidative stress and apoptosis in cardiac cells. Diabetic rats on supplementation with MA showed decreased oxidative stress evaluated by the content of reduced levels of lipid per-oxidation and decreased activity of catalase with down-regulation of heme-oxygenase-1 mRNA. Supplementation with MA also resulted in a normalized lipid profile and decreased levels of pro-inflammatory transcription factor NF-kappaB as well as cytokines such as TNF-α, IFN-γ, TGF-β, and IL-10. MA was found to decrease the expression of ROS-generating enzymes like xanthine oxidase, monoamine oxidase-A along with 5-Lipoxygenase mRNA and/or protein expression. Further, left ventricular function, measured by a microtip pressure transducer, was re-established as evidenced by increase in ±dp/dtmax, heart rate, decreased blood pressure, systolic and diastolic pressure as well as decrease in the TUNEL positive cardiac cells with increased Bcl-2/Bax ratio. In addition, MA supplementation decreased cell death and activation of NF-kappaB in cardiac H9c2 cells. Based on our results, we conclude that MA supplementation significantly attenuated cardiac dysfunction in diabetic rats; hence MA supplementation may have important clinical implications in terms of prevention and management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | - Sahdeo Prasad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | - Sandhya L. Sitasawad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
- * E-mail:
| |
Collapse
|
74
|
Reichelt ME, Mellor KM, Bell JR, Chandramouli C, Headrick JP, Delbridge LMD. Sex, sex steroids, and diabetic cardiomyopathy: making the case for experimental focus. Am J Physiol Heart Circ Physiol 2013; 305:H779-92. [PMID: 23792676 DOI: 10.1152/ajpheart.00141.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than three decades ago, the Framingham study revealed that cardiovascular risk is elevated for all diabetics and that this jeopardy is substantially accentuated for women in particular. Numerous studies have subsequently documented worsened cardiac outcomes for women. Given that estrogen and insulin exert major regulatory effects through common intracellular signaling pathways prominent in maintenance of cardiomyocyte function, a sex-hormone:diabetic-disease interaction is plausible. Underlying aspects of female cardiovascular pathophysiology that exaggerate cardiovascular diabetic risk may be identified, including increased vulnerability to coronary microvascular disease, age-dependent impairment of insulin-sensitivity, and differential susceptibility to hyperglycemia. Since Framingham, considerable progress has been made in the development of experimental models of diabetic disease states, including a diversity of genetic rodent models. Ample evidence indicates that animal models of both type 1 and 2 diabetes variably recapitulate aspects of diabetic cardiomyopathy including diastolic and systolic dysfunction, and cardiac structural pathology including fibrosis, loss of compliance, and in some instances ventricular hypertrophy. Perplexingly, little of this work has explored the relevance and mechanisms of sexual dimorphism in diabetic cardiomyopathy. Only a small number of experimental studies have addressed this question, yet the prospects for gaining important mechanistic insights from further experimental enquiry are considerable. The case for experimental interrogation of sex differences, and of sex steroid influences in the aetiology of diabetic cardiomyopathy, is particularly compelling-providing incentive for future investigation with ultimate therapeutic potential.
Collapse
Affiliation(s)
- Melissa E Reichelt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
75
|
Hua Y, Xu X, Shi GP, Chicco AJ, Ren J, Nair S. Cathepsin K knockout alleviates pressure overload-induced cardiac hypertrophy. Hypertension 2013; 61:1184-92. [PMID: 23529168 DOI: 10.1161/hypertensionaha.111.00947] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence from human and animal studies has documented elevated levels of lysosomal cysteine protease cathepsin K in failing hearts. Here, we hypothesized that ablation of cathepsin K mitigates pressure overload-induced cardiac hypertrophy. Cathepsin K knockout mice and their wild-type littermates were subjected to abdominal aortic constriction, resulting in cardiac remodeling (heart weight, cardiomyocyte size, left ventricular wall thickness, and end diastolic and end systolic dimensions) and decreased fractional shortening, the effects of which were significantly attenuated or ablated by cathepsin K knockout. Pressure overload dampened cardiomyocyte contractile function along with decreased resting Ca2+ levels and delayed Ca2+ clearance, which were partly resolved by cathepsin K knockout. Cardiac mammalian target of rapamycin and extracellular signal-regulated kinases (ERK) signaling cascades were upregulated by pressure overload, the effects of which were attenuated by cathepsin K knockout. In cultured H9c2 myoblast cells, silencing of cathepsin K blunted, whereas cathepsin K transfection mimicked phenylephrine-induced hypertrophic response, along with elevated phosphorylation of mammalian target of rapamycin and ERK. In addition, cathepsin K protein levels were markedly elevated in human hearts of end-stage dilated cardiomyopathy. Collectively, our data suggest that cathepsin K ablation mitigates pressure overload-induced hypertrophy, possibly via inhibition of the mammalian target of rapamycin and ERK pathways.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, 1000 E University Ave, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
76
|
Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1136-48. [PMID: 23524376 DOI: 10.1016/j.bbadis.2013.03.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 01/09/2023]
Abstract
Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22weeks. After 40day feeding, mice were treated with 2mg/kg rapamycin or vehicle every other day for 42days on respective fat diet. Cardiomyocyte contractile and Ca(2+) transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca(2+) derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy.
Collapse
|
77
|
Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal 2013; 18:1024-41. [PMID: 22747566 PMCID: PMC3567780 DOI: 10.1089/ars.2012.4550] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the pathogenesis of heart failure but clinical antioxidant trials have been unsuccessful. This may be because effects of reactive oxygen species (ROS) depend upon their source, location, and concentration. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) proteins generate ROS in a highly regulated fashion and modulate several components of the heart failure phenotype. RECENT ADVANCES Two Nox isoforms, Nox2 and Nox4, are expressed in the heart. Studies using gene-modified mice deficient in Nox2 activity indicate that Nox2 activation contributes to angiotensin II-induced cardiomyocyte hypertrophy, atrial fibrillation, and the development of interstitial fibrosis but may also positively modulate physiological excitation-contraction coupling. Nox2 contributes to myocyte death under stress situations and plays important roles in postmyocardial infarction remodeling, in part by modulating matrix metalloprotease activity. In contrast to Nox2, Nox4 is constitutively active at a low level and induces protective effects in the heart under chronic stress, for example, by maintaining myocardial capillary density. However, high levels of Nox4 could have detrimental effects. CRITICAL ISSUES The effects of Nox proteins during the development of heart failure likely depend upon the isoform, activation level, and cellular distribution, and may include beneficial as well as detrimental effects. More needs to be learnt about the precise regulation of abundance and biochemical activity of these proteins in the heart as well as the downstream signaling pathways that they regulate. FUTURE DIRECTIONS The development of specific approaches to target individual Nox isoforms and/or specific cell types may be important for the achievement of therapeutic efficacy in heart failure.
Collapse
Affiliation(s)
- Min Zhang
- Cardiovascular Division, James Black Centre, King's College London British Heart Foundation Centre of Excellence, London, UK
| | | | | | | | | |
Collapse
|
78
|
Hu N, Han X, Lane EK, Gao F, Zhang Y, Ren J. Cardiac-specific overexpression of metallothionein rescues against cigarette smoking exposure-induced myocardial contractile and mitochondrial damage. PLoS One 2013; 8:e57151. [PMID: 23431404 PMCID: PMC3576371 DOI: 10.1371/journal.pone.0057151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 01/21/2013] [Indexed: 11/24/2022] Open
Abstract
Objectives Second hand cigarette smoke is an independent risk factor for cardiovascular disease. Although a tie between smoking and cardiovascular disease is well established, the underlying mechanisms still remains elusive due to the lack of adequate animal models. This study was designed to use a mouse model of exposure to cigarette smoke, a surrogate of environmental tobacco smoke, to evaluate the impact of cardiac overexpression of heavy metal scavenger metallothionein on myocardial geometry, contractile and intracellular Ca2+ properties and apoptosis following side-stream smoke exposure. Methods Adult male wild-type FVB and metallothionein transgenic mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, fibrosis, apoptosis and mitochondrial damage were examined. Results Our data revealed that smoke exposure enlarged ventricular end systolic and diastolic diameters, reduced myocardial and cardiomyocyte contractile function, disrupted intracellular Ca2+ homeostasis, facilitated fibrosis, apoptosis and mitochondrial damage (cytochrome C release and aconitase activity), the effects of which were attenuated or mitigated by metallothionein. In addition, side-stream smoke expose enhanced phosphorylation of Akt and GSK3β without affecting pan protein expression in the heart, the effect of which was abolished or ameliorated by metallothionein. Cigarette smoke extract interrupted cardiomyocyte contractile function and intracellular Ca2+ properties, the effect of which was mitigated by wortmannin and NAC. Conclusions These data suggest that side-stream smoke exposure led to myocardial dysfunction, intracellular Ca2+ mishandling, apoptosis, fibrosis and mitochondrial damage, indicating the therapeutic potential of antioxidant against in second smoking-induced cardiac defects possibly via mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
| | - Xuefeng Han
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
- Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erin K. Lane
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
| | - Feng Gao
- Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (JR); (YZ)
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (JR); (YZ)
| |
Collapse
|
79
|
Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013; 19:4806-17. [PMID: 23323621 DOI: 10.2174/1381612811319270003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/10/2013] [Indexed: 01/14/2023]
Abstract
The metabolic syndrome (MetS) is a cluster of risk factors including obesity, insulin resistance, dyslipidemia, elevated blood pressure and glucose intolerance. The MetS increases the risk for cardiovascular disease (CVD) and type 2 diabetes. Each component of the MetS causes cardiac dysfunction and their combination carries additional risk. The mechanisms underlying cardiac dysfunction in the MetS are complex and might include lipid accumulation, increased fibrosis and stiffness, altered calcium homeostasis, abnormal autophagy, altered substrate utilization, mitochondrial dysfunction and increased oxidative stress. Mitochondrial and extra-mitochondrial sources of reactive oxygen species (ROS) and reduced antioxidant defense mechanisms characterize the myocardium of humans and animals with the MetS. The mechanisms for increased cardiac oxidative stress in the MetS are not fully understood but include increased fatty acid oxidation, mitochondrial dysfunction and enhanced NADPH oxidase activity. Therapies aimed to reduce oxidative stress and enhance antioxidant defense have been employed to reduce cardiac dysfunction in the MetS in animals. In contrast, large scale clinical trials using antioxidants therapies for the treatment of CVD have been disappointing because of the lack of efficacy and undesired side effects. The focus of this review is to summarize the current knowledge about the mechanisms underlying cardiac dysfunction in the MetS with a special interest in the role of oxidative stress. Finally, we will update the reader on the results obtained with natural antioxidant and mitochondria-targeted antioxidant therapies for the treatment of CVD in the MetS.
Collapse
Affiliation(s)
- Olesya Ilkun
- Division of Endocrinology, Metabolism and Diabetes, Program in Human Molecular Biology & Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
80
|
Turdi S, Ge W, Hu N, Bradley KM, Wang X, Ren J. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects. J Mol Cell Cardiol 2012; 55:117-29. [PMID: 23266593 DOI: 10.1016/j.yjmcc.2012.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/23/2022]
Abstract
Maternal overnutrition is associated with heart diseases in adult offspring. However, combined effect of maternal and postnatal fat intake on cardiac function is unknown. This study was designed to examine the impact of maternal and postnatal fat intake on metabolic, myocardial, insulin and mitochondrial responses in adult offspring. Pregnant FVB mice were fed a low fat (LF) or high fat (HF) diet during gestation and lactation. Weaning male offspring were placed on either LF or HF (calorie-restricted HF-fed mice used as weight control) for 4 months prior to assessment of metabolic indices, myocardial histology, cardiac function, insulin signaling, mitochondrial integrity and reactive oxygen species (ROS) generation. Compared with LF- and HF-fed weight-control mice, postnatal HF intake resulted in obesity, adiposity, dyslipidemia, insulin resistance, cardiac hypertrophy, interrupted cardiac contractile, intracellular Ca(2+) and mitochondrial properties, all of which were significantly accentuated by prenatal fat exposure. Despite the preserved cardiac contractile function, LF offspring from HF-fed dams displayed higher body weights, increased adiposity and glucose intolerance. HF-fed mice with prenatal HF exposure displayed upregulated serine phosphorylation of IRS-1, PTP1B, the rate-limiting fatty acid synthesis enzyme stearoyl-CoA desaturase (SCD1) and hypertrophic markers (calcineurin A, GATA4, ANP, β-MHC and skeletal α-actin), while suppressing AMP-dependent protein kinase, glucose uptake and PGC-1α levels. Importantly, myocardial and mitochondrial ultrastructural abnormalities were more pronounced in HF-fed offspring with prenatal fat exposure, shown as loss of mitochondrial density and membrane potential, increased ROS generation and apoptosis. Our data suggest that prenatal dietary fat exposure predisposes offspring to postnatal dietary fat-induced cardiac hypertrophy and contractile defect possibly via lipotoxicity, glucose intolerance and mitochondrial dysfunction. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
81
|
Evangelista AM, Thompson MD, Bolotina VM, Tong X, Cohen RA. Nox4- and Nox2-dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-glutathiolation and endothelial cell migration. Free Radic Biol Med 2012; 53:2327-34. [PMID: 23089226 PMCID: PMC3568680 DOI: 10.1016/j.freeradbiomed.2012.10.546] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/03/2012] [Accepted: 10/15/2012] [Indexed: 11/22/2022]
Abstract
Endothelial cell (EC) migration in response to vascular endothelial growth factor (VEGF) is a critical step in both physiological and pathological angiogenesis. Although VEGF signaling has been extensively studied, the mechanisms by which VEGF-dependent reactive oxygen species (ROS) production affects EC signaling are not well understood. The aim of this study was to elucidate the involvement of Nox2- and Nox4-dependent ROS in VEGF-mediated EC Ca(2+) regulation and migration. VEGF induced migration of human aortic ECs into a scratch wound over 6 h, which was inhibited by overexpression of either catalase or superoxide dismutase (SOD). EC stimulation by micromolar concentrations of H2O2 was inhibited by catalase, but also unexpectedly by SOD. Both VEGF and H2O2 increased S-glutathiolation of SERCA2b and increased Ca(2+) influx into EC, and these events could be blocked by overexpression of catalase or overexpression of SERCA2b in which the reactive cysteine-674 was mutated to a serine. In determining the source of VEGF-mediated ROS production, our studies show that specific knockdown of either Nox2 or Nox4 inhibited VEGF-induced S-glutathiolation of SERCA, Ca(2+) influx, and EC migration. Treatment with H2O2 induced S-glutathiolation of SERCA and EC Ca(2+) influx, overcoming the knockdown of Nox4, but not Nox2, and Amplex red measurements indicated that Nox4 is the source of H2O2. These results demonstrate that VEGF stimulates EC migration through increased S-glutathiolation of SERCA and Ca(2+) influx in a Nox4- and H2O2-dependent manner, requiring Nox2 downstream.
Collapse
Affiliation(s)
- Alicia M Evangelista
- Vascular Biology Section Boston University School of Medicine, Boston, MA 02118, USA
| | - Melissa D Thompson
- Vascular Biology Section Boston University School of Medicine, Boston, MA 02118, USA
| | - Victoria M Bolotina
- Ion Channel and Calcium Signaling Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaoyong Tong
- Vascular Biology Section Boston University School of Medicine, Boston, MA 02118, USA
| | - Richard A Cohen
- Vascular Biology Section Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
82
|
Li L, Hua Y, Dong M, Li Q, Smith DT, Yuan M, Jones KR, Ren J. Short-term lenalidomide (Revlimid) administration ameliorates cardiomyocyte contractile dysfunction in ob/ob obese mice. Obesity (Silver Spring) 2012; 20:2174-85. [PMID: 22522886 DOI: 10.1038/oby.2012.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lenalidomide is a potent immunomodulatory agent capable of downregulating proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and upregulating anti-inflammatory cytokines. Lenalidomide has been shown to elicit cardiovascular effects, although its impact on cardiac function remains obscure. This study was designed to examine the effect of lenalidomide on cardiac contractile function in ob/ob obese mice. C57BL lean and ob/ob obese mice were given lenalidomide (50 mg/kg/day, p.o.) for 3 days. Body fat composition was assessed by dual-energy X-ray absorptiometry. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated. Expression of TNF-α, interleukin-6 (IL-6), Fas, Fas ligand (FasL), the short-chain fatty acid receptor GPR41, the NFκB regulator IκB, endoplasmic reticulum (ER) stress, the apoptotic protein markers Bax, Bcl-2, caspase-8, tBid, cytosolic cytochrome C, and caspase-12; and the stress signaling molecules p38 and extracellular signal-regulated kinase (ERK) were evaluated by western blot. ob/ob mice displayed elevated serum TNF-α and IL-6 levels, fat composition and glucose intolerance, the effects of which except glucose intolerance and fat composition were attenuated by lenalidomide. Cardiomyocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening, prolonged time-to-PS and time-to-90% relengthening as well as intracellular Ca(2+) mishandling, which were ablated by lenalidomide. Western blot analysis revealed elevated levels of TNF-α, IL-6, Fas, Bip, Bax, caspase-8, tBid, cleaved caspase-3 caspase-12, cytochrome C, phosphorylation of p38, and ERK in ob/ob mouse hearts, the effects of which with the exception of Bip, Bax, and caspase-12 were alleviated by lenalidomide. Taken together, these data suggest that lenalidomide is protective against obesity-induced cardiomyopathy possibly through antagonism of cytokine/Fas-induced activation of stress signaling and apoptosis.
Collapse
Affiliation(s)
- Linlin Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Ca+2/calmodulin-dependent protein kinase mediates glucose toxicity-induced cardiomyocyte contractile dysfunction. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:829758. [PMID: 22745633 PMCID: PMC3382966 DOI: 10.1155/2012/829758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/29/2012] [Indexed: 12/27/2022]
Abstract
(1) Hyperglycemia leads to cytotoxicity in the heart. Although several theories are postulated for glucose toxicity-induced cardiomyocyte dysfunction, the precise mechanism still remains unclear. (2) This study was designed to evaluate the impact of elevated extracellular Ca2+ on glucose toxicity-induced cardiac contractile and intracellular Ca2+ anomalies as well as the mechanism(s) involved with a focus on Ca2+/calmodulin (CaM)-dependent kinase. Isolated adult rat cardiomyocytes were maintained in normal (NG, 5.5 mM) or high glucose (HG, 25.5 mM) media for 6-12 hours. Contractile indices were measured including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), and time-to-90% relengthening (TR90). (3) Cardiomyocytes maintained with HG displayed abnormal mechanical function including reduced PS, ±dL/dt, and prolonged TPS, TR90 and intracellular Ca2+ clearance. Expression of intracellular Ca2+ regulatory proteins including SERCA2a, phospholamban and Na+-Ca2+ exchanger were unaffected whereas SERCA activity was inhibited by HG. Interestingly, the HG-induced mechanical anomalies were abolished by elevated extracellular Ca2+ (from 1.0 to 2.7 mM). Interestingly, the high extracellular Ca2+-induced beneficial effect against HG was abolished by the CaM kinase inhibitor KN93. (4) These data suggest that elevated extracellular Ca2+ protects against glucose toxicity-induced cardiomyocyte contractile defects through a mechanism associated with CaM kinase.
Collapse
|
84
|
Perjés Á, Kubin A, Kónyi A, Szabados S, Cziráki A, Skoumal R, Ruskoaho H, Szokodi I. Physiological regulation of cardiac contractility by endogenous reactive oxygen species. Acta Physiol (Oxf) 2012; 205:26-40. [PMID: 22463609 DOI: 10.1111/j.1748-1716.2012.02391.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Increased production of reactive oxygen species (ROS) has been linked to the pathogenesis of congestive heart failure. However, emerging evidence suggests the involvement of ROS in the regulation of various physiological cellular processes in the myocardium. In this review, we summarize the latest findings regarding the role of ROS in the acute regulation of cardiac contractility. We discuss ROS-dependent modulation of the inotropic responses to G protein-coupled receptor agonists (e.g. β-adrenergic receptor agonists and endothelin-1), the potential cellular sources of ROS (e.g. NAD(P)H oxidases and mitochondria) and the proposed end-targets and signalling pathways by which ROS affect contractility. Accumulating new data supports the fundamental role of endogenously generated ROS to regulate cardiac function under physiological conditions.
Collapse
Affiliation(s)
| | - A.M. Kubin
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - A. Kónyi
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - S. Szabados
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - A. Cziráki
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - R. Skoumal
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - H. Ruskoaho
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - I. Szokodi
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| |
Collapse
|
85
|
Jiang F, Lim HK, Morris MJ, Prior L, Velkoska E, Wu X, Dusting GJ. Systemic upregulation of NADPH oxidase in diet-induced obesity in rats. Redox Rep 2012; 16:223-9. [PMID: 22195989 DOI: 10.1179/174329211x13049558293713] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is upregulated in a variety of tissues in obesity. It is still unclear as to whether NADPH oxidase upregulation in a specific tissue is part of a systemic response. Here we analyzed the expression pattern of NADPH oxidase in vascular, adipose, and kidney tissues in a rat model of diet-induced obesity. After weaning, rats were fed either a normal or high-fat diet for 12 weeks. The high-fat diet resulted in 20% increased body weight. In the aorta, Nox4 expression was increased by three-fold in obese rats. Upregulations of p22phox and p47phox in adipose, and Nox4, p22phox, and p47phox in kidney were observed in obesity. Marked increases in plasma leptin and insulin were observed, with more modest changes in adiponectin in obese rats. The average systolic blood pressure in the obese group was 11 mmHg higher than that of lean rats (P < 0.005). There was a significant correlation between blood pressure and aortic Nox4 expression (P < 0.01). In cultured vascular smooth muscle cells, adiponectin reduced the expression of Nox4 in a protein kinase A-dependent manner. Our results suggest that upregulation of NADPH oxidase in multiple tissues during obesity appears to be a systemic response. At least in vitro, adiponectin may have a protective antioxidant role by suppressing vascular NADPH oxidase expression. The association between NADPH oxidase Nox4 expression in the vasculature and the elevated blood pressure in obesity requires further investigation.
Collapse
Affiliation(s)
- Fan Jiang
- O'Brien Institute and Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
86
|
Rodrigo R. Prevention of postoperative atrial fibrillation: novel and safe strategy based on the modulation of the antioxidant system. Front Physiol 2012; 3:93. [PMID: 22518106 PMCID: PMC3325031 DOI: 10.3389/fphys.2012.00093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/26/2012] [Indexed: 01/15/2023] Open
Abstract
Postoperative atrial fibrillation (AF) is the most common arrhythmia following cardiac surgery with extracorporeal circulation. The pathogenesis of postoperative AF is multifactorial. Oxidative stress, caused by the unavoidable ischemia-reperfusion event occurring in this setting, is a major contributory factor. Reactive oxygen species (ROS)-derived effects could result in lipid peroxidation, protein carbonylation, or DNA oxidation of cardiac tissue, thus leading to functional and structural myocardial remodeling. The vulnerability of myocardial tissue to the oxidative challenge is also dependent on the activity of the antioxidant system. High ROS levels, overwhelming this system, should result in deleterious cellular effects, such as the induction of necrosis, apoptosis, or autophagy. Nevertheless, tissue exposure to low to moderate ROS levels could trigger a survival response with a trend to reinforce the antioxidant defense system. Administration of n-3 polyunsaturated fatty acids (PUFA), known to involve a moderate ROS production, is consistent with a diminished vulnerability to the development of postoperative AF. Accordingly, supplementation of n-3 PUFA successfully reduced the incidence of postoperative AF after coronary bypass grafting. This response is due to an up-regulation of antioxidant enzymes, as shown in experimental models. In turn, non-enzymatic antioxidant reinforcement through vitamin C administration prior to cardiac surgery has also reduced the postoperative AF incidence. Therefore, it should be expected that a mixed therapy result in an improvement of the cardioprotective effect by modulating both components of the antioxidant system. We present novel available evidence supporting the hypothesis of an effective prevention of postoperative AF including a two-step therapeutic strategy: n-3 PUFA followed by vitamin C supplementation to patients scheduled for cardiac surgery with extracorporeal circulation. The present study should encourage the design of clinical trials aimed to test the efficacy of this strategy to offer new therapeutic opportunities to patients challenged by ischemia-reperfusion events not solely in heart, but also in other organs such as kidney or liver in transplantation surgeries.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
87
|
Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F, Weiss JW, Guo QY, Wang JY, Ji ES, Chu L. Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50:1874-82. [PMID: 22429817 DOI: 10.1016/j.fct.2012.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/26/2012] [Accepted: 03/03/2012] [Indexed: 01/02/2023]
Abstract
Inhibition of Rho kinase (ROCK) has been shown to improve diabetic-related disorders. In this study, the cardio-protective effects and potential mechanisms of fasudil, a selective ROCK inhibitor, on diabetic cardiomyopathy were investigated in a streptozotocin (STZ)-induced diabetic rat model. Eight weeks after diabetes was induced by a single tail vein injection of 60 mg/kg STZ, rats were administered long-term fasudil or captopril as a control over a four-week period. Similar to the effect of captopril, fasudil treatment significantly protected against STZ-induced hemodynamic, histopathologic changes and decreased serum lactate dehydrogenase and creatine phosphokinase. Moreover, fasudil significantly down-regulated ROCK I mRNA expression and ROCK activity, reduced cardiac collagen deposition, and decreased the incidence of apoptosis and ratio of Bax/Bcl-2 protein expression. Additionally, fasudil potently elevated superoxide dismutase activity and suppressed the extent of lipid peroxidation in sera and hearts of diabetic rats. Our findings indicated that long-term treatment with fasudil could improve cardiac dysfunction, attenuate myocardial injury and prevent pathological changes in a rat model of diabetic cardiomyopathy. These effects could be attributed to regulation of antioxidative activities, suppression of myocardial hypertrophy, apoptosis, fibrosis and subsequent cardiac remodeling. These results may help to expand the clinical application of fasudil for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sheng-jiang Guan
- Department of Pharmacology, School of Basic Medicine, Hebei Medical University, 326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity. Int J Biochem Cell Biol 2012; 44:801-7. [PMID: 22343412 DOI: 10.1016/j.biocel.2012.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/26/2012] [Accepted: 02/02/2012] [Indexed: 11/23/2022]
Abstract
3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca(2+)-uptake activity was significantly inhibited by 80% with 150 μM 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA.
Collapse
|
89
|
Bugger H, Riehle C, Jaishy B, Wende AR, Tuinei J, Chen D, Soto J, Pires KM, Boudina S, Theobald HA, Luptak I, Wayment B, Wang X, Litwin SE, Weimer BC, Abel ED. Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. J Mol Cell Cardiol 2012; 52:1019-26. [PMID: 22342406 DOI: 10.1016/j.yjmcc.2012.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/07/2023]
Abstract
AIMS To determine the contribution of insulin signaling versus systemic metabolism to metabolic and mitochondrial alterations in type 1 diabetic hearts and test the hypothesis that antecedent mitochondrial dysfunction contributes to impaired cardiac efficiency (CE) in diabetes. METHODS AND RESULTS Control mice (WT) and mice with cardiomyocyte-restricted deletion of insulin receptors (CIRKO) were rendered diabetic with streptozotocin (WT-STZ and CIRKO-STZ, respectively), non-diabetic controls received vehicle (citrate buffer). Cardiac function was determined by echocardiography; myocardial metabolism, oxygen consumption (MVO(2)) and CE were determined in isolated perfused hearts; mitochondrial function was determined in permeabilized cardiac fibers and mitochondrial proteomics by liquid chromatography mass spectrometry. Pyruvate supported respiration and ATP synthesis were equivalently reduced by diabetes and genotype, with synergistic impairment in ATP synthesis in CIRKO-STZ. In contrast, fatty acid delivery and utilization was increased by diabetes irrespective of genotype, but not in non-diabetic CIRKO. Diabetes and genotype synergistically increased MVO(2) in CIRKO-STZ, leading to reduced CE. Irrespective of diabetes, genotype impaired ATP/O ratios in mitochondria exposed to palmitoyl carnitine, consistent with mitochondrial uncoupling. Proteomics revealed reduced content of fatty acid oxidation proteins in CIRKO mitochondria, which were induced by diabetes, whereas tricarboxylic acid cycle and oxidative phosphorylation proteins were reduced both in CIRKO mitochondria and by diabetes. CONCLUSIONS Deficient insulin signaling and diabetes mediate distinct effects on cardiac mitochondria. Antecedent loss of insulin signaling markedly impairs CE when diabetes is induced, via mechanisms that may be secondary to mitochondrial uncoupling and increased FA utilization.
Collapse
Affiliation(s)
- Heiko Bugger
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P, Ren J. Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 2012; 59:680-93. [PMID: 22275536 DOI: 10.1161/hypertensionaha.111.181867] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is often associated with reduced plasma insulin-like growth factor 1 (IGF-1) levels, oxidative stress, mitochondrial damage, and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high-fat diet-induced oxidative, myocardial, geometric, and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low- (10%) or high-fat (45%) diet to induce obesity. High-fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin 6, insulin, and triglyceride, as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end-systolic and end-diastolic diameter, increased wall thickness, and cardiac hypertrophy in high-fat-fed FVB mice. High-fat diet promoted reactive oxygen species generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca(2+) dysregulation (including depressed peak shortening and maximal velocity of shortening/relengthening), prolonged duration of relengthening, and dampened intracellular Ca(2+) rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor and postreceptor signaling molecules insulin receptor substrate 1 (tyrosine/serine phosphorylation), Akt, glycogen synthase kinase 3β, forkhead transcriptional factors, and mammalian target of rapamycin, as well as downregulated expression of mitochondrial proteins peroxisome proliferator-activated receptor-γ coactivator 1α and uncoupling protein 2. Intriguingly, IGF-1 mitigated high-fat-diet feeding-induced alterations in reactive oxygen species, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca(2+) handling, and insulin signaling but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high-fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high-fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly because of preserved cell survival, mitochondrial function, and insulin signaling.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | | | | | | | | | | |
Collapse
|
91
|
Perjés Á, Kubin A, Kónyi A, Szabados S, Cziráki A, Skoumal R, Ruskoaho H, Szokodi I. Physiological regulation of cardiac contractility by endogenous reactive oxygen species. Acta Physiol (Oxf) 2012. [DOI: 10.1111/j.1748-1716.2011.02391.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - A.M. Kubin
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - A. Kónyi
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - S. Szabados
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - A. Cziráki
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - R. Skoumal
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - H. Ruskoaho
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - I. Szokodi
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| |
Collapse
|
92
|
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011; 473:528-31. [PMID: 21532591 PMCID: PMC3102791 DOI: 10.1038/nature09968] [Citation(s) in RCA: 802] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/22/2011] [Indexed: 02/08/2023]
|
93
|
Chemaly ER, Hadri L, Zhang S, Kim M, Kohlbrenner E, Sheng J, Liang L, Chen J, K-Raman P, Hajjar RJ, Lebeche D. Long-term in vivo resistin overexpression induces myocardial dysfunction and remodeling in rats. J Mol Cell Cardiol 2011; 51:144-55. [PMID: 21549710 DOI: 10.1016/j.yjmcc.2011.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/05/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
We have previously reported that resistin induces hypertrophy and impairs contractility in isolated rat cardiomyocytes. To examine the long-term cardiovascular effects of resistin, we induced in vivo overexpression of resistin using adeno-associated virus serotype 9 injected by tail vein in rats and compared to control animals. Ten weeks after viral injection, overexpression of resistin was associated with increased ratio of left ventricular (LV) weight/body weight, increased end-systolic LV volume and significant decrease in LV contractility, measured by the end-systolic pressure volume relationship slope in LV pressure volume loops, compared to controls. At the molecular level, mRNA expression of ANF and β-MHC, and protein levels of phospholamban were increased in the resistin group without a change in the level of SERCA2a protein expression. Increased fibrosis by histology, associated with increased mRNA levels of collagen, fibronectin and connective tissue growth factor were observed in the resistin-overexpressing hearts. Resistin overexpression was also associated with increased apoptosis in vivo, along with an apoptotic molecular phenotype in vivo and in vitro. Resistin-overexpressing LV tissue had higher levels of TNF-α receptor 1 and iNOS, and reduced levels of eNOS. Cardiomyocytes overexpressing resistin in vitro produced larger amounts of TNFα in the medium, had increased phosphorylation of IκBα and displayed increased intracellular reactive oxygen species (ROS) content with increased expression and activity of ROS-producing NADPH oxidases compared to controls. Long-term resistin overexpression is associated with a complex phenotype of oxidative stress, inflammation, fibrosis, apoptosis and myocardial remodeling and dysfunction in rats. This phenotype recapitulates key features of diabetic cardiomyopathy. This article is part of Special Issue Item Group entitled "Possible Editorial".
Collapse
Affiliation(s)
- Elie R Chemaly
- Cardiovascular Research Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011; 50:777-93. [PMID: 21236334 PMCID: PMC3049876 DOI: 10.1016/j.freeradbiomed.2011.01.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
The heart has complex mechanisms that facilitate the maintenance of an oxygen supply-demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation-contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved-where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases.
Collapse
Key Words
- aif, apoptosis-inducing factor
- arc, apoptosis repressor with caspase recruitment domain
- camkii, calmodulin kinase ii
- ctgf, connective tissue growth factor
- eb, embryoid body
- ecc, excitation–contraction coupling
- er, endoplasmic reticulum
- es, embryonic stem
- etc, electron transport chain
- g6pdh, glucose-6-phosphate dehydrogenase
- gpcr, g-protein-coupled receptor
- hdac, histone deacetylase
- hif, hypoxia-inducible factor
- mao-a, monoamine oxidase-a
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mptp, mitochondrial permeability transition pore
- mtdna, mitochondrial dna
- ncx, na/ca exchanger
- nos, nitric oxide synthase
- phd, prolyl hydroxylase dioxygenase
- pka, protein kinase a
- pkc, protein kinase c
- pkg, protein kinase g
- ros, reactive oxygen species
- ryr, ryanodine receptor
- serca, sarcoplasmic reticulum calcium atpase
- sr, sarcoplasmic reticulum
- trx1, thioredoxin1
- tnfα, tumor necrosis factor-α
- vegf, vascular endothelial growth factor
- cardiac myocyte
- reactive oxygen species
- redox signaling
- hypertrophy
- heart failure
- nadph oxidase
- mitochondria
- free radicals
Collapse
|
95
|
Khullar M, Al-Shudiefat AARS, Ludke A, Binepal G, Singal PK. Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 2011; 88:233-40. [PMID: 20393588 DOI: 10.1139/y10-016] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diabetes and its associated complications are major known health disorders. Diabetes mellitus increases the risk of cardiovascular morbidity and mortality by promoting cardiomyopathy. It appears to arise as a result of the diabetic state, at times independent of vascular or valvular pathology. It manifests initially as asymptomatic diastolic dysfunction, which progresses to symptomatic heart failure. The compliance of the heart wall is decreased and contractile function is impaired. The pathophysiology of diabetic cardiomyopathy is incompletely understood but appears to be multifactorial in origin. Several hypotheses have been proposed, including oxidative stress, inflammation, endothelial dysfunction, metabolic derangements, abnormalities in ion homeostasis, alterations in structural proteins, and interstitial fibrosis. Amongst these various mechanisms, an increase in reactive oxygen species, leading to oxidative stress, has received significant experimental support. This review focuses on the role of oxidative stress in the pathogenesis of diabetic cardiomyopathy and the potential of antioxidant therapy.
Collapse
Affiliation(s)
- Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
96
|
Ceylan-Isik AF, Sreejayan N, Ren J. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J Mol Cell Cardiol 2011; 50:107-16. [PMID: 21035453 PMCID: PMC3018539 DOI: 10.1016/j.yjmcc.2010.10.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated with TUDCA (50mg/kg/day, p.o.) or vehicle for 5 weeks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed. Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity and protein expression of intracellular Ca(2+) regulatory proteins were measured using (45)Ca(2+) uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lowered systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca(2+) properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decrease in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
97
|
Liu Y, Huang H, Xia W, Tang Y, Yuan M, Tang Q, Huang C. WITHDRAWN: Inhibition of NADPH oxidase up-regulates connexin 43 and ameliorates electrical remodeling in rabbits with heart failure. Biomed Pharmacother 2010:S0753-3322(10)00134-4. [PMID: 20934846 DOI: 10.1016/j.biopha.2010.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.biomag.2010.08.001. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan city, Hubei province 430060, PR China
| | | | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Abstract
Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the development of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Heiko Bugger
- Department of Cardiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
100
|
Interaction between age and obesity on cardiomyocyte contractile function: role of leptin and stress signaling. PLoS One 2010; 5:e10085. [PMID: 20396382 PMCID: PMC2852499 DOI: 10.1371/journal.pone.0010085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 03/17/2010] [Indexed: 12/31/2022] Open
Abstract
Objectives This study was designed to evaluate the interaction between aging and obesity
on cardiac contractile and intracellular Ca2+
properties. Methods Cardiomyocytes from young (4-mo) and aging (12- and 18-mo) male lean and the
leptin deficient ob/ob obese mice were treated with leptin
(0.5, 1.0 and 50 nM) for 4 hrs in vitro. High fat diet
(45% calorie from fat) and the leptin receptor mutant
db/db obesity models at young and older age were used
for comparison. Cardiomyocyte contractile and intracellular
Ca2+ properties were evaluated including peak
shortening (PS), maximal velocity of shortening/relengthening (±
dL/dt), time-to-PS (TPS), time-to-90% relengthening
(TR90), intracellular Ca2+ levels and
decay. O2− levels were measured by
dihydroethidium fluorescence. Results Our results revealed reduced survival in ob/ob mice. Aging
and obesity reduced PS, ± dL/dt, intracellular
Ca2+ rise, prolonged TR90 and
intracellular Ca2+ decay, enhanced
O2− production and
p47phox expression
without an additive effect of the two, with the exception of intracellular
Ca2+ rise. Western blot analysis exhibited reduced
Ob-R expression and STAT-3 phosphorylation in both young and aging
ob/ob mice, which was restored by leptin. Aging and
obesity reduced phosphorylation of Akt, eNOS and p38 while promoting pJNK
and pIκB. Low levels of leptin reconciled contractile, intracellular
Ca2+ and cell signaling defects as well as
O2− production and
p47phox upregulation in
young but not aging ob/ob mice. High level of leptin (50
nM) compromised contractile and intracellular Ca2+
response as well as O2− production and
stress signaling in all groups. High fat diet-induced and
db/db obesity displayed somewhat comparable
aging-induced mechanical but not leptin response. Conclusions Taken together, our data suggest that aging and obesity compromise cardiac
contractile function possibly via phosphorylation of Akt, eNOS and stress
signaling-associated O2− release.
Collapse
|