51
|
Chen C, Travis AJ, Hossain M, Islam MR, Price AH, Norton GJ. Genome-wide association mapping of sodium and potassium concentration in rice grains and shoots under alternate wetting and drying and continuously flooded irrigation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2315-2334. [PMID: 33942137 PMCID: PMC8263461 DOI: 10.1007/s00122-021-03828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
Identification of a large number of QTL and candidate genes for sodium accumulation in a field grown population of rice derived from the aus subpopulation. Rice (Oryza sativa L.) is a globally important cereal crop. Sodium (Na+) and potassium (K+) are the major monovalent ions which affect rice growth, and exploring their uptake mechanisms will be useful for understanding rice biology. Since the balance of Na+ and K+ plays a significant role in adaptation of rice to salinity, that biology might inform the search for tolerance. In this study, the Na+ and K+ concentration and Na+/K+ ratio in grains and shoots were analyzed in the Bengal and Assam Aus Panel grown in field conditions under continuously flooded (CF) and alternate wetting and drying (AWD) irrigation. Overall, AWD irrigation significantly reduced the Na+ concentration and increased the K+ concentration in shoots and grains compared to the plants grown under CF. Genome-wide association mapping was conducted on Na+, K+ concentration and Na+/K+ ratio with 2 million SNPs using an efficient mixed model. Only QTLs which contained more than two significant SNPs (p < 0.0001) and where at least one of these significant SNPs passed a 10% false discovery rate were reported. A total of 106 QTLs were identified as being associated with Na+ concentration and Na+/K+ ratio across all traits and field conditions, with 48 QTLs found in multiple traits and/or water conditions. Four notable QTLs (one each on chromosomes 1 and 11, two on chromosome 2) and the haplotype variants of four candidate genes (OsHKT1;5, OsNHX2, LOC_Os02g32490 and OsFAD2_1) are discussed. The QTLs/candidate genes identified here could be useful for breeding rice that accumulates lower concentrations of sodium.
Collapse
Affiliation(s)
- Caijin Chen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Anthony J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Mahmud Hossain
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Rafiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Adam H Price
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Gareth J Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK.
| |
Collapse
|
52
|
Wu L, Wu M, Liu H, Gao Y, Chen F, Xiang Y. Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:205-221. [PMID: 34004558 DOI: 10.1016/j.plaphy.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
Plant monovalent cation/proton antiporters (CPAs), types of transmembrane transporters, play important roles in resistance to salt stress. In this study, 37 CPA genes from moso bamboo (Phyllostachys edulis) were identified and characterised. The expression profiles of 10 CPA1 genes (PheNHXs) of moso bamboo were detected by qRT-PCR, which showed that they were specifically expressed in six tissues. In addition, the expression of 10 PheNHXs in leaves and roots changed significantly under 150/200 mM NaCl and 100 μM ABA treatments. In particular, the expression of PheNHX2 in leaves and roots was significantly upregulated under NaCl treatment, thus, we cloned PheNHX2 and analysed its function. Subcellular localisation analysis showed that PheNHX2 was located on the vacuolar membrane. Overexpression of PheNHX2 reduced seed germination and root growth of Arabidopsis thaliana under salt stress, as well as severely affecting cellular Na+ and K+ content, which in turn reduced the salt tolerance of transgenic Arabidopsis. Measurements of physiological indicators, including chlorophyll content, malondialdehyde content, peroxidase and catalase enzyme activities and relative electrical conductivity, all supported this conclusion. Under salt stress, PheNHX2 also inhibited the expression of some stress-related and ion transport-related genes in transgenic Arabidopsis. Overall, these results indicate that overexpression of PheNHX2 reduces the salt tolerance of transgenic Arabidopsis. This investigation establishes a foundation for subsequent functional studies of moso bamboo CPA genes, and it provides a deeper understanding of PheNHX2 regulation in relation to the salt tolerance of moso bamboo.
Collapse
Affiliation(s)
- Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
53
|
Tekdal D. Characterization of trehalose-6-phosphate synthase and Na+/H+ antiporter genes in Vuralia turcica and expression analysis under salt and cadmium stresses. AN ACAD BRAS CIENC 2021; 93:e20200252. [PMID: 34231757 DOI: 10.1590/0001-3765202120200252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
Vuralia turcica (Fabaceae; Papilionoideae) is a critically endangered endemic plant species in Turkey. This plant grows naturally in saline environments, although the photosynthesis and physiological functions of many plants are affected by salt stress. Molecular control mechanisms and identification of genes involved in these mechanisms constitute the critical field of study in plant science. Trehalose-6-phosphate synthase (TPS) is one of the essential enzyme genes involved in trehalose biosynthesis, which is protective against salt stress. Also, the vacuolar Na+/H+ antiporter gene (NHX) is known to be useful in salt tolerance. In this study, the TPS and NHX-like genes in V. turcica were partially sequenced using degenerate primers for the first time and submitted to the NCBI database (accession numbers MK120983 and MH757417, respectively). Also, the expression levels of the genes encoding TPS and NHX were investigated. The results indicate that the increase in both the level of applied salt and cadmium is coupled with the increase in the expression level of NHX and TPS genes. However, salt exposure significantly affected the expression level of the NHX gene. The findings suggest that the NHX gene might play a crucial role in the salt tolerance ability of V. turcica.
Collapse
Affiliation(s)
- Dilek Tekdal
- Mersin University, Department of Biotechnology, Faculty of Science and Letters, Yenişehir, 33343 Mersin, Turkey
| |
Collapse
|
54
|
Nampei M, Jiadkong K, Chuamnakthong S, Wangsawang T, Sreewongchai T, Ueda A. Different Rhizospheric pH Conditions Affect Nutrient Accumulations in Rice under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071295. [PMID: 34202279 PMCID: PMC8309205 DOI: 10.3390/plants10071295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to determine the responses to saline-alkaline (SA) stress with regard to nutrient accumulation in two rice varieties having different tolerances to salt-stress. A salinity-tolerant landrace, Pokkali, and a salinity-sensitive variety, PTT1, were exposed to three levels of SA conditions, pH 7.0 (mild), pH 8.0 (moderate), and pH 9.0 (severe), under 50 mM Na stress. The results indicated that Pokkali had comparably greater SA tolerance than PTT1 owing to its higher biomass production. The maintenance of the lower Na/K ratio in Pokkali shoots was achieved by the higher expression of OsHKT1;5 encoding a Na+ transporter in the shoots, OsNHX1 encoding a tonoplast-localized Na+/H+ antiporter in the roots, and OsHAK16 encoding a K+ transporter in the roots under SA conditions. We propose that the high expression of Fe deficiency-responsive genes, OsIRT1, OsIRO2, OsYSL15, OsNAS1, and OsNAS2, in both rice varieties under all SA conditions should contribute to Fe homeostasis in the shoots. In addition, SA treatment increased the concentrations of Ca, Mn, Zn, and Cu in the roots but decreased their concentrations in the shoots of both varieties. Overall, the results indicated that high rhizospheric pH influenced nutrient uptake and translocation from the roots to the shoots in rice.
Collapse
Affiliation(s)
- Mami Nampei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan; (M.N.); (K.J.)
| | - Kamonthip Jiadkong
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan; (M.N.); (K.J.)
| | - Sumana Chuamnakthong
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan;
| | - Thanakorn Wangsawang
- Faculty of Agricultural Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage, 1 Moo 20, Phaholyothin Road, Klong Neung, Klong Luang, Pathum Thani 13180, Thailand;
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Tanee Sreewongchai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan; (M.N.); (K.J.)
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan;
| |
Collapse
|
55
|
Khan MA, Hamayun M, Asaf S, Khan M, Yun BW, Kang SM, Lee IJ. Rhizospheric Bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2021; 12:665590. [PMID: 34177981 PMCID: PMC8226221 DOI: 10.3389/fpls.2021.665590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Salinity has drastically reduced crop yields and harmed the global agricultural industry. We isolated 55 bacterial strains from plants inhabiting the coastal sand dunes of Pohang, Korea. A screening bioassay showed that 14 of the bacterial isolates secreted indole-3-acetic acid (IAA), 12 isolates were capable of exopolysaccharide (EPS) production and phosphate solubilization, and 10 isolates secreted siderophores. Based on our preliminary screening, 11 bacterial isolates were tested for salinity tolerance on Luria-Bertani (LB) media supplemented with 0, 50, 100, and 150 mM of NaCl. Three bacterial isolates, ALT11, ALT12, and ALT30, had the best tolerance against elevated NaCl levels and were selected for further study. Inoculation of the selected bacterial isolates significantly enhanced rice growth attributes, viz., shoot length (22.8-42.2%), root length (28.18-59%), fresh biomass (44.7-66.41%), dry biomass (85-90%), chlorophyll content (18.30-36.15%), Chl a (29.02-60.87%), Chl b (30.86-64.51%), and carotenoid content (26.86-70%), under elevated salt stress of 70 and 140 mM. Furthermore, a decrease in the endogenous abscisic acid (ABA) content (27.9-23%) and endogenous salicylic acid (SA) levels (11.70-69.19%) was observed in inoculated plants. Antioxidant analysis revealed an increase in total protein (TP) levels (42.57-68.26%), whereas it revealed a decrease in polyphenol peroxidase (PPO) (24.63-34.57%), glutathione (GSH) (25.53-24.91%), SOA (13.88-18.67%), and LPO levels (15.96-26.06%) of bacterial-inoculated plants. Moreover, an increase in catalase (CAT) (26-33.04%), peroxidase (POD) (59.55-78%), superoxide dismutase (SOD) (13.58-27.77%), and ascorbic peroxidase (APX) (5.76-22.74%) activity was observed. Additionally, inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a decline in Na+ content (24.11 and 30.60%) and an increase in K+ (23.14 and 15.45%) and Mg+ (2.82 and 18.74%) under elevated salt stress. OsNHX1 gene expression was downregulated (0.3 and 4.1-folds), whereas the gene expression of OsPIN1A, OsCATA, and OsAPX1 was upregulated by a 7-17-fold in bacterial-inoculated rice plants. It was concluded that the selected bacterial isolates, ALT11, ALT12, and ALT30, mitigated the adverse effects of salt stress on rice growth and can be used as climate smart agricultural tools in ecofriendly agricultural practices.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Murtaza Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
56
|
The Full-Length Transcriptome Sequencing and Identification of Na +/H + Antiporter Genes in Halophyte Nitraria tangutorum Bobrov. Genes (Basel) 2021; 12:genes12060836. [PMID: 34071650 PMCID: PMC8227117 DOI: 10.3390/genes12060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
Nitraria tangutorum Bobrov is a halophyte that is resistant to salt and alkali and is widely distributed in northwestern China. However, its genome has not been sequenced, thereby limiting studies on this particular species. For species without a reference genome, the full-length transcriptome is a convenient and rapid way to obtain reference gene information. To better study N. tangutorum, we used PacBio single-molecule real-time technology to perform full-length transcriptome analysis of this halophyte. In this study, a total of 21.83 Gb of data were obtained, and 198,300 transcripts, 51,875 SSRs (simple sequence repeats), 55,574 CDS (coding sequence), and 74,913 lncRNAs (long non-coding RNA) were identified. In addition, using this full-length transcriptome, we identified the key Na+/H+ antiporter (NHX) genes that maintain ion balance in plants and found that these are induced to express under salt stress. The results indicate that the full-length transcriptome of N. tangutorum can be used as a database and be utilized in elucidating the salt tolerance mechanism of N. tangutorum.
Collapse
|
57
|
Kong M, Luo M, Li J, Feng Z, Zhang Y, Song W, Zhang R, Wang R, Wang Y, Zhao J, Tao Y, Zhao Y. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics 2021; 113:1940-1951. [PMID: 33895282 DOI: 10.1016/j.ygeno.2021.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Na+, K+ and pH homeostasis are important for plant life and they are controlled by the monovalent cation proton antiporter (CPA) superfamily. The roles of ZmCPAs in salt tolerance are not fully elucidated. In this study, we identified 35 ZmCPAs comprising 13 Na+/H+ exchangers (ZmNHXs), 16 cation/H+ exchanger (ZmCHXs), and 6 K+ efflux antiporters (ZmKEAs). All ZmCPAs have transmembrane domains and most of them were localized to plasma membrane or tonoplast. ZmCHXs were specifically highly expressed in anthers, while ZmNHXs and ZmKEAs showed high expression in various tissues. ZmNHX5 and ZmKEA2 were up-regulated in maize seedlings under both NaCl and KCl stresses. Yeast complementation experiments revealed the roles of ZmNHX5, ZmKEA2 in NaCl tolerance. Analysis of the maize mutants further validated the salt tolerance functions of ZmNHX5 and ZmKEA2. Our study highlights comprehensive information of ZmCPAs and provides new gene targets for salt tolerance maize breeding.
Collapse
Affiliation(s)
- Mengsi Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China; Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Meijie Luo
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Jingna Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Zhen Feng
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Ronghuan Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Yuandong Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China.
| |
Collapse
|
58
|
Zhao C, William D, Sandhu D. Isolation and characterization of Salt Overly Sensitive family genes in spinach. PHYSIOLOGIA PLANTARUM 2021; 171:520-532. [PMID: 32418228 DOI: 10.1111/ppl.13125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 05/24/2023]
Abstract
The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion homeostasis as a salt-stress response in plants. This pathway involves three main genes designated as SOS1, SOS2 and SOS3, which are members of the Na+ /H+ exchanger (NHX), CBL-interacting protein kinase (CIPK) and Calcineurin B-like (CBL) gene families, respectively. To identify and characterize SOS genes in spinach (Spinacia oleracea), a species of the Amaranthaceae family, we conducted genome-wide identification and phylogenetic analyses of NHX, CIPK and CBL genes from four Amaranthaceae species, Arabidopsis and rice. Most Amaranthaceae genes exhibited orthologous relationships with Arabidopsis and/or rice, except a clade of Vac-type Amaranthaceae NHX genes. Phylogenetic analyses also revealed gene gain/loss events in Amaranthaceae species and the intron-less to intron-rich evolution of CIPK genes. A bacterial protein-rooted CIPK tree allowed naming most of the phylogenetic clades based on their evolutionary history. Single S. oleracea (So) SOS1, SOS2 and SOS3 proteins were identified. Direct protein-protein interaction was observed between SoSOS2 and SoSOS3 but not between SoSOS2 and SoSOS1 based on yeast two-hybrid assay. This may suggest distinct modes of action of spinach SOS proteins compared to Arabidopsis SOS proteins. Unlike SoSOS1 and SoSOS2, which were expressed at similar or higher levels in leaves than roots, SoSOS3 expression was significantly higher in roots than leaves, suggesting its greater importance in roots. The expression of SoSOS3 was upregulated in both roots and leaves under salinity compared to the control; however, SoSOS1 was only upregulated in roots. Thus, this study demonstrated the conservation of SOS pathway genes in spinach and also highlighted the complexity of SOS signaling in Amaranthaceae species.
Collapse
Affiliation(s)
- Chaoyang Zhao
- USDA-ARS, US Salinity Lab, 450 W Big Springs Road, Riverside, California, 92507, USA
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California, 92521, USA
| | - David William
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California, 92521, USA
| | - Devinder Sandhu
- USDA-ARS, US Salinity Lab, 450 W Big Springs Road, Riverside, California, 92507, USA
| |
Collapse
|
59
|
Cebrián G, Iglesias-Moya J, García A, Martínez J, Romero J, Regalado JJ, Martínez C, Valenzuela JL, Jamilena M. Involvement of ethylene receptors in the salt tolerance response of Cucurbita pepo. HORTICULTURE RESEARCH 2021; 8:73. [PMID: 33790231 PMCID: PMC8012379 DOI: 10.1038/s41438-021-00508-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 05/07/2023]
Abstract
Abiotic stresses have a negative effect on crop production, affecting both vegetative and reproductive development. Ethylene plays a relevant role in plant response to environmental stresses, but the specific contribution of ethylene biosynthesis and signalling components in the salt stress response differs between Arabidopsis and rice, the two most studied model plants. In this paper, we study the effect of three gain-of-function mutations affecting the ethylene receptors CpETR1B, CpETR1A, and CpETR2B of Cucurbita pepo on salt stress response during germination, seedling establishment, and subsequent vegetative growth of plants. The mutations all reduced ethylene sensitivity, but enhanced salt tolerance, during both germination and vegetative growth, demonstrating that the three ethylene receptors play a positive role in salt tolerance. Under salt stress, etr1b, etr1a, and etr2b germinate earlier than WT, and the root and shoot growth rates of both seedlings and plants were less affected in mutant than in WT. The enhanced salt tolerance response of the etr2b plants was associated with a reduced accumulation of Na+ in shoots and leaves, as well as with a higher accumulation of compatible solutes, including proline and total carbohydrates, and antioxidant compounds, such as anthocyanin. Many membrane monovalent cation transporters, including Na+/H+ and K+/H+ exchangers (NHXs), K+ efflux antiporters (KEAs), high-affinity K+ transporters (HKTs), and K+ uptake transporters (KUPs) were also highly upregulated by salt in etr2b in comparison with WT. In aggregate, these data indicate that the enhanced salt tolerance of the mutant is led by the induction of genes that exclude Na+ in photosynthetic organs, while maintaining K+/Na+ homoeostasis and osmotic adjustment. If the salt response of etr mutants occurs via the ethylene signalling pathway, our data show that ethylene is a negative regulator of salt tolerance during germination and vegetative growth. Nevertheless, the higher upregulation of genes involved in Ca2+ signalling (CpCRCK2A and CpCRCK2B) and ABA biosynthesis (CpNCED3A and CpNCED3B) in etr2b leaves under salt stress likely indicates that the function of ethylene receptors in salt stress response in C. pepo can be mediated by Ca2+ and ABA signalling pathways.
Collapse
Affiliation(s)
- Gustavo Cebrián
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Alicia García
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Javier Martínez
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Jonathan Romero
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - José Javier Regalado
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Juan Luis Valenzuela
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
60
|
Sun T, Ma N, Wang C, Fan H, Wang M, Zhang J, Cao J, Wang D. A Golgi-Localized Sodium/Hydrogen Exchanger Positively Regulates Salt Tolerance by Maintaining Higher K +/Na + Ratio in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:638340. [PMID: 33767722 PMCID: PMC7985447 DOI: 10.3389/fpls.2021.638340] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 05/17/2023]
Abstract
Salt stress caused by soil salinization, is one of the main factors that reduce soybean yield and quality. A large number of genes have been found to be involved in the regulation of salt tolerance. In this study, we characterized a soybean sodium/hydrogen exchanger gene GmNHX5 and revealed its functional mechanism involved in the salt tolerance process in soybean. GmNHX5 responded to salt stress at the transcription level in the salt stress-tolerant soybean plants, but not significantly changed in the salt-sensitive ones. GmNHX5 was located in the Golgi apparatus, and distributed in new leaves and vascular, and was induced by salt treatment. Overexpression of GmNHX5 improved the salt tolerance of hairy roots induced by soybean cotyledons, while the opposite was observed when GmNHX5 was knockout by CRISPR/Cas9. Soybean seedlings overexpressing GmNHX5 also showed an increased expression of GmSOS1, GmSKOR, and GmHKT1, higher K+/Na+ ratio, and higher viability when exposed to salt stress. Our findings provide an effective candidate gene for the cultivation of salt-tolerant germplasm resources and new clues for further understanding of the salt-tolerance mechanism in plants.
Collapse
Affiliation(s)
- Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Nan Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Caiqing Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Huifen Fan
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Mengxuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jinfeng Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
61
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
62
|
Qu M, Essemine J, Xu J, Ablat G, Perveen S, Wang H, Chen K, Zhao Y, Chen G, Chu C, Zhu X. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1334-1347. [PMID: 33015858 DOI: 10.1111/tpj.15004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 05/07/2023]
Abstract
The acceleration of stomatal closure upon high to low light transition could improve plant water use efficiency and drought tolerance. Herein, using genome-wide association study, we showed that the genetic variation in OsNHX1 was strongly associated with the changes in τcl , the time constant of stomatal closure, in 206 rice accessions. OsNHX1 overexpression in rice resulted in a decrease in τcl , and an increase in biomass, grain yield under drought. Conversely, OsNHX1 knockout by CRISPR/CAS9 shows opposite trends for these traits. We further found three haplotypes spanning the OsNHX1 promoter and CDS regions. Two among them, HapII and HapIII, were found to be associated with a high and low τcl , respectively. A near-isogenic line (NIL, S464) was developed through replacing the genomic region harboring HapII (~10 kb) from MH63 (recipient) rice cultivar by the same sized genomic region containing Hap III from 02428 (donor). Compared with MH63, S464 shows a reduction by 35% in τcl and an increase by 40% in the grain yield under drought. However, under normal conditions, S464 maintains closely similar grain yield as MH63. The global distribution of the two OsNHX1 haplotypes is associated with the local precipitation. Taken together, the natural variation in OsNHX1 could be utilized to manipulate the stomatal dynamics for an improved rice drought tolerance.
Collapse
Affiliation(s)
- Mingnan Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guljannat Ablat
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
63
|
Neang S, Goto I, Skoulding NS, Cartagena JA, Kano-Nakata M, Yamauchi A, Mitsuya S. Tissue-specific expression analysis of Na + and Cl - transporter genes associated with salt removal ability in rice leaf sheath. BMC PLANT BIOLOGY 2020; 20:502. [PMID: 33143652 PMCID: PMC7607675 DOI: 10.1186/s12870-020-02718-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/25/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND A significant mechanism of salt-tolerance in rice is the ability to remove Na+ and Cl- in the leaf sheath, which limits the entry of these toxic ions into the leaf blade. The leaf sheath removes Na+ mainly in the basal parts, and Cl- mainly in the apical parts. These ions are unloaded from the xylem vessels in the peripheral part and sequestered into the fundamental parenchyma cells at the central part of the leaf sheath. RESULTS This study aimed to identify associated Na+ and Cl- transporter genes with this salt removal ability in the leaf sheath of rice variety FL 478. From 21 known candidate Na+ and Cl- transporter rice genes, we determined the salt responsiveness of the expression of these genes in the basal and apical parts, where Na+ or Cl- ions were highly accumulated under salinity. We also compared the expression levels of these transporter genes between the peripheral and central parts of leaf sheaths. The expression of 8 Na+ transporter genes and 3 Cl- transporter genes was up-regulated in the basal and apical parts of leaf sheaths under salinity. Within these genes, OsHKT1;5 and OsSLAH1 were expressed highly in the peripheral part, indicating the involvement of these genes in Na+ and Cl- unloading from xylem vessels. OsNHX2, OsNHX3, OsNPF2.4 were expressed highly in the central part, which suggests that these genes may function in sequestration of Na+ and Cl- in fundamental parenchyma cells in the central part of leaf sheaths under salinity. Furthermore, high expression levels of 4 candidate genes under salinity were associated with the genotypic variation of salt removal ability in the leaf sheath. CONCLUSIONS These results indicate that the salt removal ability in rice leaf sheath may be regulated by expressing various Na+ or Cl- transporter genes tissue-specifically in peripheral and central parts. Moreover, some genes were identified as candidates whose expression levels were associated with the genotypic variation of salt removal ability in the leaf sheath. These findings will enhance the understanding of the molecular mechanism of salt removal ability in rice leaf sheath, which is useful for breeding salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Itsuki Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | - Joyce A Cartagena
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
64
|
Theerawitaya C, Samphumphuang T, Tisarum R, Siangliw M, Cha-Um S, Takabe T, Toojinda T. Expression level of Na + homeostasis-related genes and salt-tolerant abilities in backcross introgression lines of rice crop under salt stress at reproductive stage. PROTOPLASMA 2020; 257:1595-1606. [PMID: 32671620 DOI: 10.1007/s00709-020-01533-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Salt stress in the rice field is one of the most common abiotic stresses, reducing crop productivity, especially at reproductive stage, which is very sensitive to salt stress. The aim of this investigation was to study mRNA-related Na+ uptake/translocation and Na+ enrichment in the cellular level, leading to physiological changes, growth characteristics, and yield attributes in FL530 [salt-tolerant genotype; carrying SKC1 (in relation to high-affinity potassium transporters controlling Na+ and K+ translocation) and qSt1b (linking to salt injury score) QTLs] and KDML105 (salt-sensitive cultivar; lacking both QTLs) parental lines and 221-48 (carrying SKC1 and qSt1b QTLs) derived from BILs (backcross introgression lines) at 50% flowering of rice, under 150-mM NaCl until harvesting process. The upregulation of OsHKT1;5 (mediating Na+ exclusion into xylem parenchyma cells) and OsNHX1 (Na+/H+ exchanger to secrete Na+ into vacuole) and downregulation of OsHKT2;1 and OsHKT2;2 (mediating Na+ restriction in the roots, leaf sheath and older leaves) in cvs. FL530 and 221-48 (+ SKC1; + qSt1b) under salt stress were observed. It restricted Na+ level in flag leaf, thereby preventing salt toxicity, as indicated by maintenance of photon yield of PSII (ΦPSII), net photosynthetic rate (Pn), transpiration rate (E) and overall growth performances. In contrast, Na+ enrichment in flag leaf of cv. KDML105 (-SKC1;-qSt1b) caused the reduction in ΦPSII by 30.5% over the control, leading to the reduction in Pn by 62.3%, in seed sterility by 88.2%, and yield loss by 85.1%. Moreover, the negative relationships between Na+ enrichment in flag leaf, physiological changes, and yield traits in rice crop grown under salt stress were demonstrated. Based on this investigation, rice genotype 221-48 was found to possess salt-tolerant traits at reproductive stage and thus could prove to be a potential candidate for future breeding programs.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Meechai Siangliw
- Rice Gene Discovery Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC, NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Teruhiro Takabe
- Research Institute, Meijo University, 1-501 Shiogamagushi, Tenpaku-ku, Nagoya, 468-8502, Japan
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
- Rice Gene Discovery Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC, NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| |
Collapse
|
65
|
Ma W, Ren Z, Zhou Y, Zhao J, Zhang F, Feng J, Liu W, Ma X. Genome-Wide Identification of the Gossypium hirsutum NHX Genes Reveals that the Endosomal-Type GhNHX4A is Critical for the Salt Tolerance of Cotton. Int J Mol Sci 2020; 21:E7712. [PMID: 33081060 PMCID: PMC7589573 DOI: 10.3390/ijms21207712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Soil salinization, which is primarily due to excessive Na+ levels, is a major abiotic stress adversely affecting plant growth and development. The Na+/H+ antiporter (NHX) is a transmembrane protein mediating the transport of Na+ or K+ and H+ across the membrane to modulate the ionic balance of plants in response to salt stress. Research regarding NHXs has mainly focused on the vacuolar-type NHX family members. However, the biological functions of the endosomal-type NHXs remain relatively uncharacterized. In this study, 22 NHX family members were identified in Gossypium hirsutum. A phylogenetic analysis divided the GhNHX genes into two categories, with 18 and 4 in the vacuolar and endosomal groups, respectively. The chromosomal distribution of the NHX genes revealed the significant impact of genome-wide duplication during the polyploidization process on the number of GhNHX genes. Analyses of gene structures and conserved motifs indicated that GhNHX genes in the same phylogenetic cluster are conserved. Additionally, the salt-induced expression patterns confirmed that the expression levels of most of the GhNHX genes are affected by salinity. Specifically, in the endosomal group, GhNHX4A expression was substantially up-regulated by salt stress. A yeast functional complementation test proved that GhNHX4A can partially restore the salt tolerance of the salt-sensitive yeast mutant AXT3. Silencing GhNHX4A expression decreased the resistance of cotton to salt stress because of an increase in the accumulation of Na+ in stems and a decrease in the accumulation of K+ in roots. The results of this study may provide the basis for an in-depth characterization of the regulatory functions of NHX genes related to cotton salt tolerance, especially the endosomal-type GhNHX4A. Furthermore, the presented data may be useful for selecting appropriate candidate genes for the breeding of new salt-tolerant cotton varieties.
Collapse
Affiliation(s)
- Wenyu Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, College of Horticulture, Hainan University, Haikou 570228, China;
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Junping Feng
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China;
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| |
Collapse
|
66
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
67
|
Fu X, Lu Z, Wei H, Zhang J, Yang X, Wu A, Ma L, Kang M, Lu J, Wang H, Yu S. Genome-Wide Identification and Expression Analysis of the NHX (Sodium/Hydrogen Antiporter) Gene Family in Cotton. Front Genet 2020; 11:964. [PMID: 32973884 PMCID: PMC7461838 DOI: 10.3389/fgene.2020.00964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 01/17/2023] Open
Abstract
The sodium/hydrogen antiporter (NHX) gene family with the Na+/H+ exchange protein domain is a transporter of sodium and hydrogen ions and plays an important role in the response of plants to salt stress. Studying the response of cotton to salt stress through comprehensive identification and analysis of NHX genes in several species and their roles in salt tolerance mechanisms is of great significance. In this study, 23, 24, 12, and 12 NHX genes were identified from Gossypium hirsutum (Gh), G. barbadense, G. arboreum and G. raimondii, respectively. Phylogenetic analysis showed that these genes were mainly divided into three clades with significant subcellular localization, namely, endosome (Endo-class), plasma membrane (PM-class) and vacuole (Vac-class). By analyzing the structure of NHX genes and proteins, each branch of the NHX gene family was found to be structurally conserved, and collinearity analysis showed that NHX genes were mainly expressed through whole genome and segmental duplication. The non-synonymous (Ka)/synonymous (Ks) values showed that the NHX gene family experienced strong purifying selection during long-term evolution. Cis-acting element analysis showed that the NHX gene family may be related to the regulation of abscisic acid (ABA) and methyl jasmonate (MeJA) hormones. Additionally, transcriptomic data analysis and qRT-PCR showed that GhNHXs exhibited different expression patterns in each tissue and under different salinities. These results provide an important reference for us to further understand and analyze the molecular regulation mechanism of cotton NHX genes.
Collapse
Affiliation(s)
- Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhengying Lu
- Handan Academy of Agricultural Sciences, Handan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Meng Kang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
68
|
Genome-Wide Characterization and Expression Analysis of NHX Gene Family under Salinity Stress in Gossypium barbadense and Its Comparison with Gossypium hirsutum. Genes (Basel) 2020; 11:genes11070803. [PMID: 32708576 PMCID: PMC7397021 DOI: 10.3390/genes11070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cotton is an important economic crop affected by different abiotic stresses at different developmental stages. Salinity limits the growth and productivity of crops worldwide. Na+/H+ antiporters play a key role during the plant development and in its tolerance to salt stress. The aim of the present study was a genome-wide characterization and expression pattern analysis under the salinity stress of the sodium-proton antiporter (NHX) of Gossypium barbadense in comparison with Gossypium hirsutum. In G. barbadense, 25 NHX genes were identified on the basis of the Na+_H+ exchanger domain. All except one of the G. barbadense NHX transporters have an Amiloride motif that is a known inhibitor of Na+ ions in plants. A phylogenetic analysis inferred three classes of GbNHX genes-viz., Vac (GbNHX1, 2 and 4), Endo (GbNHX6), and PM (GbNHX7). A high number of the stress-related cis-acting elements observed in promoters show their role in tolerance against abiotic stresses. The Ka/Ks values show that the majority of GbNHX genes are subjected to strong purifying selection under the course of evolution. To study the functional divergence of G. barbadense NHX transporters, the real-time gene expression was analyzed under salt stress in the root, stem, and leaf tissues. In G. barbadense, the expression was higher in the stem, while in G. hirsutum the leaf and root showed a high expression. Moreover, our results revealed that NHX2 homologues in both species have a high expression under salinity stress at higher time intervals, followed by NHX7. The protein-protein prediction study revealed that GbNHX7 is involved in the CBL-CIPK protein interaction pathway. Our study also provided valuable information explaining the molecular mechanism of Na+ transport for the further functional study of Gossypium NHX genes.
Collapse
|
69
|
Huang L, Wu DZ, Zhang GP. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B 2020; 21:426-441. [PMID: 32478490 PMCID: PMC7306632 DOI: 10.1631/jzus.b1900510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Abstract
Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na+/K+ homeostasis regulation through controlling Na+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.
Collapse
|
70
|
Long L, Zhao JR, Guo DD, Ma XN, Xu FC, Yang WW, Gao W. Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance. BMC PLANT BIOLOGY 2020; 20:147. [PMID: 32268879 PMCID: PMC7140369 DOI: 10.1186/s12870-020-02345-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant Na+/H+ antiporters (NHXs) are membrane-localized proteins that maintain cellular Na+/K+ and pH homeostasis. Considerable evidence highlighted the critical roles of NHX family in plant development and salt response; however, NHXs in cotton are rarely studied. RESULTS The comprehensive and systematic comparative study of NHXs in three Gossypium species was performed. We identified 12, 12, and 23 putative NHX proteins from G. arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic study revealed that repeated polyploidization of Gossypium spp. contributed to the expansion of NHX family. Gene structure analysis showed that cotton NHXs contain many introns, which will lead to alternative splicing and help plants to adapt to high salt concentrations in soil. The expression changes of NHXs indicate the possible differences in the roles of distinct NHXs in salt response. GhNHX1 was proved to be located in the vacuolar system and intensively induced by salt stress in cotton. Silencing of GhNHX1 resulted in enhanced sensitivity of cotton seedlings to high salt concentrations, which suggests that GhNHX1 positively regulates cotton tolerance to salt stress. CONCLUSION We characterized the gene structure, phylogenetic relationship, chromosomal location, and expression pattern of NHX genes from G. arboreum, G. raimondii, and G. hirsutum. Our findings indicated that the cotton NHX genes are regulated meticulously and differently at the transcription level with possible alternative splicing. The tolerance of plants to salt stress may rely on the expression level of a particular NHX, rather than the number of NHXs in the genome. This study could provide significant insights into the function of plant NHXs, as well as propose promising candidate genes for breeding salt-resistant cotton cultivars.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Xiao-Nan Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| |
Collapse
|
71
|
Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK. Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:265. [PMID: 32269578 PMCID: PMC7109317 DOI: 10.3389/fpls.2020.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 05/15/2023]
Abstract
Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.
Collapse
|
72
|
Solis CA, Yong MT, Vinarao R, Jena K, Holford P, Shabala L, Zhou M, Shabala S, Chen ZH. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:323. [PMID: 32265970 PMCID: PMC7098918 DOI: 10.3389/fpls.2020.00323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
Salinity stress affects global food producing areas by limiting both crop growth and yield. Attempts to develop salinity-tolerant rice varieties have had limited success due to the complexity of the salinity tolerance trait, high variation in the stress response and a lack of available donors for candidate genes for cultivated rice. As a result, finding suitable donors of genes and traits for salinity tolerance has become a major bottleneck in breeding for salinity tolerant crops. Twenty-two wild Oryza relatives have been recognized as important genetic resources for quantitatively inherited traits such as resistance and/or tolerance to abiotic and biotic stresses. In this review, we discuss the challenges and opportunities of such an approach by critically analyzing evolutionary, ecological, genetic, and physiological aspects of Oryza species. We argue that the strategy of rice breeding for better Na+ exclusion employed for the last few decades has reached a plateau and cannot deliver any further improvement in salinity tolerance in this species. This calls for a paradigm shift in rice breeding and more efforts toward targeting mechanisms of the tissue tolerance and a better utilization of the potential of wild rice where such traits are already present. We summarize the differences in salinity stress adaptation amongst cultivated and wild Oryza relatives and identify several key traits that should be targeted in future breeding programs. This includes: (1) efficient sequestration of Na+ in mesophyll cell vacuoles, with a strong emphasis on control of tonoplast leak channels; (2) more efficient control of xylem ion loading; (3) efficient cytosolic K+ retention in both root and leaf mesophyll cells; and (4) incorporating Na+ sequestration in trichrome. We conclude that while amongst all wild relatives, O. rufipogon is arguably a best source of germplasm at the moment, genes and traits from the wild relatives, O. coarctata, O. latifolia, and O. alta, should be targeted in future genetic programs to develop salt tolerant cultivated rice.
Collapse
Affiliation(s)
- Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Miing T. Yong
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Ricky Vinarao
- International Rice Research Institute, Metro Manila, Philippines
| | - Kshirod Jena
- International Rice Research Institute, Metro Manila, Philippines
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
73
|
Sellamuthu G, Jegadeeson V, Sajeevan RS, Rajakani R, Parthasarathy P, Raju K, Shabala L, Chen ZH, Zhou M, Sowdhamini R, Shabala S, Venkataraman G. Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species. FRONTIERS IN PLANT SCIENCE 2020; 11:267. [PMID: 32218795 PMCID: PMC7078337 DOI: 10.3389/fpls.2020.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/20/2020] [Indexed: 05/30/2023]
Abstract
The genome of Asian cultivated rice (Oryza sativa L.) shows the presence of six organelle-specific and one plasma membrane (OsNHX1-7) NHX-type cation proton antiporters. Of these, vacuolar-localized OsNHX1 is extensively characterized. The genus Oryza consists of 27 species and 11 genome-types, with cultivated rice, diploid O. sativa, having an AA-type genome. Oryza NHX1 orthologous regions (gene organization, 5' upstream cis elements, amino acid residues/motifs) from closely related Oryza AA genomes cluster distinctly from NHX1 regions from more ancestral Oryza BB, FF and KKLL genomes. These sequence-specific distinctions also extend to two separate intron retention (IR) events involving Oryza NHX1 transcripts that occur at the 5' and 3' ends of the NHX1 transcripts. We demonstrate that the IR event involving the 5' UTR is present only in more recently evolved Oryza AA genomes while the IR event governing retention of the 13th intron of Oryza NHX1 (terminal intron) is more ancient in origin, also occurring in halophytic wild rice, Oryza coarctata (KKLL). We also report presence of a retro-copy of the OcNHX1 cDNA in the genome of O. coarctata (rOcNHX1). Preferential species and tissue specific up- or down-regulation of the correctly spliced NHX1 transcript/5' UTR/13th intron-retaining splice variants under salinity was observed. The implications of IR on NHX1 mRNA stability and ORF diversity in Oryza spp. is discussed.
Collapse
Affiliation(s)
| | - Vidya Jegadeeson
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Radha Sivarajan Sajeevan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Pavithra Parthasarathy
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Kalaimani Raju
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
74
|
Song Liu X, Feng SJ, Wang MQ, Zhao YN, Cao HW, Rono JK, Yang ZM. OsNHAD is a chloroplast membrane-located transporter required for resistance to salt stress in rice (Oryza sativa). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110359. [PMID: 31928685 DOI: 10.1016/j.plantsci.2019.110359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/11/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Salt stress is one of the major environmental factors limiting crop productivity. Although physiological and molecular characterization of salt stress response in plants has been the focus for many years, research on transporters for sodium ion (Na+) uptake, translocation and accumulation in plants, particularly in food crops like rice is limited. In this study, we functionally identified an uncharacterized sodium ion transporter named OsNHAD which encodes a putative Na+ ⁄ H+ antiporter in rice. Homology search shows its close relation to the Arabidopsis Na+/H+ antiporter AtNHD1 with 72.74% identity of amino acids. OsNHAD transcripts mainly express in leaves and are induced by Na+ stress. Confocal laser scanning microscopy analysis of OsNHAD::GFP fusion in tobacco leaves shows that OsNHAD resides in the chloroplast envelop. Knock-down of OsNHAD by RNA interference led to increased rice sensitivity to Na+, manifested by stunted plant growth, enhanced cellular damage, reduced PSII activity and changed chloroplast morphology. Mutation of OsNHAD also resulted in accumulation of more Na+ in chloroplasts and in shoots as well, suggesting that OsNHAD is involved in mediating efflux and detoxification of Na+ but does not affect K+ accumulation in plant cells. Complementation test reveals that OsNHAD was able to functionally restore the Arabidopsis mutant atnhd1-1 growth phenotype. These results suggest that OsNHAD possibly mediates homeostasis of sodium ions in the subcellular compartments and tissues of the plants when challenged to salt stress.
Collapse
Affiliation(s)
- Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Justice Kipkoir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
75
|
Cheng YW, Kong XW, Wang N, Wang TT, Chen J, Shi ZQ. Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na + homeostasis in rice root. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109894. [PMID: 31706239 DOI: 10.1016/j.ecoenv.2019.109894] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 05/21/2023]
Abstract
Modulation of plant salt tolerance has been drawing great attention. Thymol is a kind of natural chemical that has been developed as anti-microbial reagent and medicine. To date, we still have limited knowledge about thymol-modulated plant physiology. In this work, physiological, histochemical, and biochemical methods were adopted to study thymol-conferred salt resistance in the root of rice (Oryza sativa). Thymol significantly rescued root growth under salt stress. Thymol ameliorated cell membrane damage, oxidative stress, ROS accumulation, and cell death in roots under salt stress. Thymol-attenuated oxidative stress may be resulted from the activation of anti-oxidative capacity, including both enzymatic and non-enzymatic system. Thymol treatment significantly decreased Na+ content in root cells upon salt stress, which might be ascribed to the upregulation of OsSOS1 (salt overly sensitive 1) facilitating Na+ exclusion. In addition, thymol stimulated the expression of genes encoding tonoplast OsNHX (Na+/H+antiporter), which may help root cells to compartmentalize Na+ in vacuole. The results of these works evidenced that thymol was capable of inducing salt tolerance by reestablishing ROS homeostasis and modulating cellular Na+ flux in rice roots. These findings may be applicable to improve crop growth in salinity area.
Collapse
Affiliation(s)
- Yan-Wei Cheng
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Xian-Wang Kong
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, 223001, China
| | - Ning Wang
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ting-Ting Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhi Qi Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
76
|
Jadamba C, Kang K, Paek NC, Lee SI, Yoo SC. Overexpression of Rice Expansin7 ( Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int J Mol Sci 2020; 21:ijms21020454. [PMID: 31936829 PMCID: PMC7013816 DOI: 10.3390/ijms21020454] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.
Collapse
Affiliation(s)
- Chuluuntsetseg Jadamba
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea
- Correspondence: (S.I.L.); (S.-C.Y.)
| | - Soo-Cheul Yoo
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
- Correspondence: (S.I.L.); (S.-C.Y.)
| |
Collapse
|
77
|
Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize ( Zea mays. L) via Enhancing Vacuolar Na + Sequestration and Maintaining ROS Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:457. [PMID: 32477376 PMCID: PMC7237720 DOI: 10.3389/fpls.2020.00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiachi Wan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xilei Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Juan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
78
|
Liu C, Chen K, Zhao X, Wang X, Shen C, Zhu Y, Dai M, Qiu X, Yang R, Xing D, Pang Y, Xu J. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. RICE (NEW YORK, N.Y.) 2019; 12:88. [PMID: 31792643 PMCID: PMC6889114 DOI: 10.1186/s12284-019-0349-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/08/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinity is one of the main environmental conditions that affects rice production. Identifying the genetic loci that affect rice salt tolerance (ST)-related traits at the seedling stage, especially under saline field conditions, is crucial for ST rice breeding by pyramiding ST genes that act at different developmental stages. RESULTS Large phenotypic variations were observed in 708 rice accessions, and yield and its related traits were considerably limited when exposed to salt stress. In a genome-wide association study (GWAS), 2255 marker-trait association signals were detected for all measured traits, and the significant SNPs were distributed in 903 genes. Of these, 43 genes processed same functional annotation, and the gene ontology terms "biological processes" and "molecular function" with the known genes responsive to salt stress in rice. Further haplotype analysis detected 15 promising candidates significantly associated with the target traits, including five known genes and 10 novel genes. We identified seven accessions carrying favorable haplotypes of four genes significantly associated with grain yield that performed well under saline stress conditions. CONCLUSIONS Using high density SNPs within genes to conduct GWAS is an effective way to identify candidate genes for salt tolerance in rice. Five known genes (OsMYB6, OsGAMYB, OsHKT1;4, OsCTR3, and OsSUT1) and two newly identified genes (LOC_Os02g49700, LOC_Os03g28300) significantly associated with grain yield and its related traits under saline stress conditions were identified. These promising candidates provide valuable resources for validating potential ST-related genes and will facilitate rice breeding for salt tolerance through marker-assisted selection.
Collapse
Affiliation(s)
- Chen Liu
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Laboratory of Lingnan Modern Agriculture/ Agricultural Genomics Institute at Shenzhen, Shenzhen, 518120, China
| | - Kai Chen
- Laboratory of Lingnan Modern Agriculture/ Agricultural Genomics Institute at Shenzhen, Shenzhen, 518120, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Congcong Shen
- Laboratory of Lingnan Modern Agriculture/ Agricultural Genomics Institute at Shenzhen, Shenzhen, 518120, China
| | - Yajun Zhu
- Laboratory of Lingnan Modern Agriculture/ Agricultural Genomics Institute at Shenzhen, Shenzhen, 518120, China
| | - Mingli Dai
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Rongwei Yang
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Danying Xing
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
79
|
Fu S, Fu L, Zhang X, Huang J, Yang G, Wang Z, Liu YG, Zhang G, Wu D, Xia J. OsC2DP, a Novel C2 Domain-Containing Protein Is Required for Salt Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2220-2230. [PMID: 31198970 DOI: 10.1093/pcp/pcz115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/31/2019] [Indexed: 05/27/2023]
Abstract
Salt stress is one of the major factors limiting crop production globally, including rice (Oryza sativa). Although a number of genes involved in salt tolerance have been functionally identified, the mechanism underlying salt tolerance in rice is still poorly understood. Here, we reported a novel C2 domain-containing protein, OsC2DP required for salt tolerance in rice. OsC2DP was predominately expressed in the roots and its expression was repressed by salt stress. Transient expression of OsC2DP in rice protoplast cells showed that it was localized in the cytosol. Immunostaining further showed that OsC2DP was able to translocate from the cytosol to plasma membrane under salt conditions. Knockout of OsC2DP did not affect Na+ concentration in the roots, but increased shoot Na+ concentration, resulting in a significant sensitivity of rice to salt stress. Furthermore, the quantitative Real-time PCR and transcriptomic analysis showed that the expression level of some genes related to salt tolerance were indirectly regulated by OsC2DP, especially OsSOS1 and OsNHX4. These results indicate that OsC2DP has an important role in salt tolerance and these findings provide new insights into the regulation of OsC2DP gene for rice breeding with high salt tolerance.
Collapse
Affiliation(s)
- Shan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guangzhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
80
|
Krishnamurthy P, Vishal B, Khoo K, Rajappa S, Loh CS, Kumar PP. Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. PLANT CELL REPORTS 2019; 38:1299-1315. [PMID: 31350571 DOI: 10.1007/s00299-019-02450-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Expression of AoNHX1 from the mangrove Avicennia increases salt tolerance of rice and Arabidopsis, and specific bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis to mediate the salinity response. Improving crop plants to better tolerate soil salinity is a challenging task. Mangrove trees such as Avicennia officinalis have special adaptations to thrive in high salt conditions, which include subcellular compartmentalization of ions facilitated by specialized ion transporters. We identified and characterized two genes encoding Na+/H+ exchangers AoNHX1 and AoNHX6 from Avicennia. AoNHX1 was present in the tonoplast, while, AoNHX6 was localized to the ER and Golgi. Both NHXs were induced by NaCl treatment, with AoNHX1 showing high expression levels in the leaves and AoNHX6 in the seedling roots. Yeast deletion mutants (ena1-5Δ nha1Δ nhx1Δ and ena1-5Δ nha1Δ vnx1Δ) complemented with AoNHX1 and AoNHX6 showed increased tolerance to both NaCl and KCl. Expression of AoNHX1 and AoNHX6 in the corresponding Arabidopsis mutants conferred enhanced NaCl tolerance. The underlying molecular regulatory mechanism was investigated using AtNHX1 and AtNHX6 in Arabidopsis. We identified two basic helix-loop-helix (bHLH) transcription factors AtMYC2 and AtbHLH122 as the ABA-mediated upstream regulators of AtNHX1 and AtNHX6 by chromatin immunoprecipitation. Furthermore, expression of AtNHX1 and AtNHX6 transcripts was reduced in the atmyc2 and atbhlh122 mutants. Lastly, transgenic rice seedlings harboring pUBI::AoNHX1 showed enhanced salt tolerance, suggesting that this gene can be exploited for developing salt-tolerant crops.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Bhushan Vishal
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Kaijie Khoo
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Sivamathini Rajappa
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Chiang-Shiong Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
81
|
Tsai YC, Chen KC, Cheng TS, Lee C, Lin SH, Tung CW. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC PLANT BIOLOGY 2019; 19:403. [PMID: 31519149 PMCID: PMC6743182 DOI: 10.1186/s12870-019-1983-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses. Plants can sense when growing conditions are not favorable and trigger an internal response at an early stage before showing external symptoms. When a high amount of salt enters the plant cell, the membrane system and function of thylakoids in chloroplasts could be destroyed and affect photosynthetic performance if the salt concentration is not regulated to optimal values. Oryza species have salt-tolerant and salt-sensitive genotypes; however, very few studies have investigated the genetic architecture responsible for photosynthetic efficiency under salinity stress in cultivated rice. RESULTS We used an imaging-based chlorophyll fluorometer to monitor eight rice varieties that showed different salt tolerance levels for four consecutive days under control and salt conditions. An analysis of the changes in chlorophyll fluorescence parameters clearly showed the maximum quantum efficiency of PSII in sensitive varieties was significantly reduced after NaCl treatment when compared to tolerant varieties. A panel of 232 diverse rice accessions was then analyzed for chlorophyll fluorescence under salt conditions, the results showed that chlorophyll fluorescence parameters such as F0 and NPQ were higher in Japonica subspecies, ΦPSII of Indica varieties was higher than that in other subgroups, which suggested that the variation in photosynthetic efficiency was extensively regulated under salt treatment in diverse cultivated rice. Two significant regions on chromosome 5 were identified to associate with the fraction of open PSII centers (qL) and the minimum chlorophyll fluorescence (F0). These regions harbored genes related to senescence, chloroplast biogenesis and response to salt stress are of interest for future functional characterization to determine their roles in regulating photosynthesis. CONCLUSIONS Rice plant is very sensitive to salinity stress, especially at young seedling stage. Our work identified the distribution pattern of chlorophyll fluorescence parameters in seedlings leaf and their correlations with salt tolerance level in a diverse gene pool. We also revealed the complexity of the genetic architecture regulating rice seedling photosynthetic performance under salinity stress, the germplasm analyzed in this study and the associated genetic information could be utilized in rice breeding program.
Collapse
Affiliation(s)
- Yu-Chang Tsai
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Kuan-Chuan Chen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Tung-Shan Cheng
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Chuan Lee
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Shih-Hung Lin
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| |
Collapse
|
82
|
Zhu J, Ren Y, Wang Y, Liu F, Teng X, Zhang Y, Duan E, Wu M, Zhong M, Hao Y, Zhu X, Lei J, Wang Y, Yu Y, Pan T, Bao Y, Wang Y, Wan J. OsNHX5-mediated pH homeostasis is required for post-Golgi trafficking of seed storage proteins in rice endosperm cells. BMC PLANT BIOLOGY 2019; 19:295. [PMID: 31277576 PMCID: PMC6612104 DOI: 10.1186/s12870-019-1911-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND As the major storage protein in rice seeds, glutelins are synthesized at the endoplasmic reticulum (ER) as proglutelins and transported to protein storage vacuoles (PSVs) called PBIIs (Protein body IIs), where they are cleaved into mature forms by the vacuolar processing enzymes. However, the molecular mechanisms underlying glutelin trafficking are largely unknown. RESULTS In this study, we report a rice mutant, named glutelin precursor accumulation6 (gpa6), which abnormally accumulates massive proglutelins. Cytological analyses revealed that in gpa6 endosperm cells, proglutelins were mis-sorted, leading to the presence of dense vesicles (DVs) and the formation paramural bodies (PMBs) at the apoplast, consequently, smaller PBII were observed. Mutated gene in gpa6 was found to encode a Na+/H+ antiporter, OsNHX5. OsNHX5 is expressed in all tissues analyzed, and its expression level is much higher than its closest paralog OsNHX6. The OsNHX5 protein colocalizes to the Golgi, the trans-Golgi network (TGN) and the pre-vacuolar compartment (PVC) in tobacco leaf epidermal cells. In vivo pH measurements indicated that the lumens of Golgi, TGN and PVC became more acidic in gpa6. CONCLUSIONS Our results demonstrated an important role of OsNHX5 in regulating endomembrane luminal pH, which is essential for seed storage protein trafficking in rice.
Collapse
Affiliation(s)
- Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mingsheng Zhong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanfang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tian Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
- National Key Facility for Crop Resources and Genetic Improvement Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| |
Collapse
|
83
|
Neang S, de Ocampo M, Egdane JA, Platten JD, Ismail AM, Skoulding NS, Kano-Nakata M, Yamauchi A, Mitsuya S. Fundamental parenchyma cells are involved in Na + and Cl - removal ability in rice leaf sheath. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:743-755. [PMID: 31046903 DOI: 10.1071/fp18318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Salt sensitivity in rice plants is associated with the accumulated amount of Na+ and Cl- in shoots and, more significantly, in photosynthetic tissues. Therefore, salt removal ability at the leaf sheath level is an important mechanism of salt tolerance. In the present study we attempted to determine whether rice leaf sheaths excluded Cl- as well as Na+, and to identify the tissues that were involved in the removal ability of both ions. In two rice genotypes, salt-tolerant FL478 and -sensitive IR29, leaf sheaths excluded Na+ and Cl- under NaCl treatment as estimated using their sheath:blade ratios. The sheath:blade ratio of Na+ but not of Cl-, was increased by NaCl treatment. Under NaCl treatment, Na+ concentration was higher in the basal leaf sheath, whereas Cl- concentration was higher in the middle and tip parts. At the tissue level, fundamental parenchyma cells of leaf sheaths retained the highest amounts of Na and Cl when treated with high amount of NaCl. These results imply that the leaf sheath potentially functions to remove excess Na+ and Cl- from xylem vessels in different locations along the axis, with the fundamental parenchyma cells of leaf sheaths being involved in over-accumulation of both Na+ and Cl-.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Marjorie de Ocampo
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - James A Egdane
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - John D Platten
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Abdelbagi M Ismail
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Nicola S Skoulding
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Mana Kano-Nakata
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; and Corresponding author.
| |
Collapse
|
84
|
Wang J, Qiu N, Wang P, Zhang W, Yang X, Chen M, Wang B, Sun J. Na + compartmentation strategy of Chinese cabbage in response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:151-157. [PMID: 31103797 DOI: 10.1016/j.plaphy.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/03/2023]
Abstract
Na+/H+ antiporter (NHX), responsible for counter-transport of Na+ and H+ across membranes (Na+ compartmentalization), plays a central role in plant salt-tolerance. In order to explore the Na+ compartmentalization modes and salt tolerance strategy in Chinese cabbage (Brassica rapa L. ssp. pekinensis), the seedlings of a salt-susceptible cabbage cultivar (Kuaicai 38) and a salt-tolerant cabbage cultivar (Qingmaye) were exposed to 100-400 mM NaCl for 30 days. Both of these cultivars showed a gradual decrease in fresh weight and water content and an increase in root-shoot ratio with the increasing NaCl-treatment concentration. The distribution of Na+ in these two cultivars was similar, with the green leaves showing the highest Na+ content, followed by inflated midribs, stems, and roots. The Na+ concentration in the apoplast was higher than that in the protoplast of the leaves. The expression levels of BrNHX1-1 and BrNHX1-2 in the leaves of Qingmaye were the highest among all BrNHX members, and increased after salt treatment. However, only BrNHX1-1 was expressed in Kuaicai 38. These results indicate that Na+ compartmentation into vacuoles is the major salt-adaptation strategy in Chinese cabbage. Coordinated overexpression of BrNHX1-1 and BrNHX1-2 may confer greater salt-tolerance for Chinese cabbage.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Ping Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Weirong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xiaoying Yang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, Shandong Normal University, Jinan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, Shandong Normal University, Jinan, 250014, China
| | - Jingkuan Sun
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China.
| |
Collapse
|
85
|
Jegadeeson V, Kumari K, Pulipati S, Parida A, Venkataraman G. Expression of wild rice Porteresia coarctata PcNHX1 antiporter gene (PcNHX1) in tobacco controlled by PcNHX1 promoter (PcNHX1p) confers Na +-specific hypocotyl elongation and stem-specific Na + accumulation in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:161-170. [PMID: 30897507 DOI: 10.1016/j.plaphy.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/01/2023]
Abstract
Soil salinization is a major abiotic stress condition that affects about half of global agricultural lands. Salinity leads to osmotic shock, ionic imbalance and/or toxicity and build-up of reactive oxygen species. Na⁺/H⁺ antiporters (NHXs) are integral membrane transporters that catalyze the electro-neutral exchange of K⁺/Na⁺ for H⁺ and are implicated in cell expansion, development, pH/ion homeostasis and salt tolerance. Porteresia coarctata is a salt secreting halophytic wild rice that thrives in the coastal-riverine interface. P. coarctata NHX1 (PcNHXI) expression is induced by salinity in P. coarctata roots and shows high sequence identity to Oryza sativa NHX1. PcNHX1 confers hygromycin and Li+ sensitivity and Na+ tolerance transport in a yeast strain lacking sodium transport systems. Additionally, transgenic PcNHX1 expressing tobacco seedlings (PcNHX1 promoter) show significant growth advantage under increasing concentrations of NaCl and MS salts. Etiolated PcNHX1 seedlings also exhibit significantly elongated hypocotyl lengths in 100 mM NaCl. PcNHX1 expression in transgenic tobacco roots increases under salinity, similar to expression in P. coarctata roots. Under incremental salinity, transgenic lines show reduction in leaf Na+, stem specific accumulation of Na+ and K+ (unaltered Na+/K+ ratios). PcNHX1 transgenic plants also show enhanced chlorophyll content and reduced malondialdehyde (MDA) production in leaves under salinity. The above data suggests that PcNHX1 overexpression (controlled by PcNHX1p) enhances stem specific accumulation of Na+, thereby protecting leaf tissues from salt induced injury.
Collapse
Affiliation(s)
- Vidya Jegadeeson
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Ajay Parida
- Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India.
| |
Collapse
|
86
|
Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. Int J Mol Sci 2019; 20:ijms20030709. [PMID: 30736409 PMCID: PMC6387279 DOI: 10.3390/ijms20030709] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress. These functions improve photosynthesis, ion homeostasis, and activate a series of downstream signals, such as hormones, nitric oxide (NO) and polyamine metabolism. Melatonin also regulates gene expression responses to salt stress. In this study, we review recent literature and summarize the regulatory roles and signaling networks involving melatonin in response to salt stress in plants. We also discuss genes and gene families involved in the melatonin-mediated salt stress tolerance.
Collapse
|
87
|
Singh J, Singh V, Vineeth TV, Kumar P, Kumar N, Sharma PC. Differential response of Indian mustard ( Brassica juncea L., Czern and Coss) under salinity: photosynthetic traits and gene expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:71-83. [PMID: 30804631 PMCID: PMC6352536 DOI: 10.1007/s12298-018-0631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 05/28/2023]
Abstract
To explore the effect of salt stress on photosynthetic traits and gene expression in Indian mustard, four genotypes CS 54 (national check for salinity), CS 52-SPS-1-2012 (salt tolerant mutant), CS 614-4-1-4-100-13 (salt sensitive mutant) and Pusa bold (high yielding variety) were evaluated under irrigation water salinity (ECiw 12, and 15 dS m-1). Results suggest genotype CS 52-SPS-1-2012 followed by CS 54 performed better under imposed salt stress due to differential regulation of Na+ accumulation in the roots and main stem, restriction of Na+ influx from root to shoot, maintaining higher net photosynthetic traits under saline stress compared to CS 614-4-1-4-100-13 and Pusa bold. Further, overexpression of antiporters (SOS1, SOS2, SOS3, ENH1 and NHX1) and antioxidant (APX1, APX4, DHAR1 and MDHAR) genes in salt tolerant genotypes CS 52-SPS-1-2012 and CS 54 demonstrated their significant role in imparting salt tolerance in Indian mustard.
Collapse
Affiliation(s)
- Jogendra Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Vijayata Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - T. V. Vineeth
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Parveen Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Neeraj Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Parbodh C. Sharma
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
88
|
Zhang Y, Fang J, Wu X, Dong L. Na +/K + Balance and Transport Regulatory Mechanisms in Weedy and Cultivated Rice (Oryza sativa L.) Under Salt Stress. BMC PLANT BIOLOGY 2018; 18:375. [PMID: 30594151 PMCID: PMC6311050 DOI: 10.1186/s12870-018-1586-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 12/03/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinization is a primary abiotic stress constraining global plant growth and production. Weedy rice, though highly homologous to cultivated rice, is more salt tolerant during seed germination and seedling growth; we hypothesize that this is owing to ionic homeostasis and changes in the expression of genes encoding ion transport regulators. RESULTS The four different genotypes of weedy (JYGY-1 and JYFN-4) and cultivated (Nipponbare and 9311) rice have different salt-tolerance during seed germination and seedling vegetative growth under salt stress. In this study, Na+ and Ca2+content increased in weedy and cultivated rice genotypes under salt stress while K+ and Mg2+decreased; however, JYGY-1 had the lowest Na+/K+ ratio of assessed genotypes. Genes in the high-affinity K+ transporter (HKT) and tonoplast sodium-hydrogen exchanger (NHX) families, and salt overly sensitive 1 (OsSOS1) have more than 98% homology in amino acid sequences between weedy and cultivated rice genotypes. Under salt stress, the HKT family members were differentially expressed in the roots and shoots of four different genotypes. However, the NHX family transcripts were markedly up-regulated in all genotypes, but there are significant differences between different genotypes. OsSOS1 was significantly up-regulated in roots, especially in JYGY-1genotype. CONCLUSIONS The results showed that different genotypes had different germination and nutrient survival under salt stress, which was related to the difference of ion content and the difference of a series of ion transport gene expression. At the same time this study will provide new insight into the similarities and differences in ion homeostasis and gene regulatory mechanisms between weedy and cultivated rice under salt stress, which can aid in novel rice breeding and growth strategies.
Collapse
Affiliation(s)
- Yuhua Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiapeng Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xibao Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
89
|
Fu L, Shen Q, Kuang L, Yu J, Wu D, Zhang G. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:248-257. [PMID: 30021179 DOI: 10.1016/j.plaphy.2018.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 05/21/2023]
Abstract
Barley (Hordeum vulgare) and rice (Oryza sativa) differ greatly in their salt tolerance, although both species belong to the Poaceae family. To understand the mechanisms in the difference of salt tolerance between the two species, the responses of ionome, metabolome and gene expression of Na and K transporters to the different salt treatments were analyzed using 4 barley and 4 rice genotypes differing in salt tolerance. In comparison with 4 rice genotypes, four barley genotypes showed better plant growth, lower shoot Na concentration and higher K concentration at the 9 day after salt treatments. There was a dramatic difference in absolute expression levels of SOS, HKT and NHX family genes between barley and rice, which might account for their difference in Na/K homeostasis and salt tolerance. Moreover, rice leaves accumulated excess Na under salt treatments, which caused serious damages to physiological metabolisms based on metabolomic analysis, but barley leaves had lower Na concentration and small changes in the most metabolites. These results provide useful insights into the molecular mechanism in the difference of salt tolerance between rice and barley.
Collapse
Affiliation(s)
- Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiahua Yu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
90
|
Huang Y, Cui X, Cen H, Wang K, Zhang Y. Transcriptomic analysis reveals vacuolar Na + (K +)/H + antiporter gene contributing to growth, development, and defense in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2018; 18:57. [PMID: 29631566 PMCID: PMC5892015 DOI: 10.1186/s12870-018-1278-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Intracellular Na+ (K+)/H+ antiporters (NHXs) have pivotal functions in regulating plant growth, development, and resistance to a range of stresses. To gain insight into the molecular events underlying their actions in switchgrass (Panicum virgatum L.), we analyzed transcriptomic changes between PvNHX1-overexpression transgenic lines and wild-type (WT) plants using RNA sequencing (RNA-seq) technology. RESULTS The comparison of transcriptomic data from the WT and transgenic plants revealed a large number of differentially expressed genes (DEGs) in the latter. Gene ontology (GO) and KEGG pathway analyses showed that these DEGs were associated with a wide range of functions, and participated in many biological processes. For example, we found that PvNHX1 had an important role in plant growth through its regulation of photosynthetic activity and cell expansion. In addition, PvNHX1 regulated K+ homeostasis, cell expansion and pollen development, indicating that it has unique and specific roles in flower development. We also found that transgenic switchgrass exhibited a higher level of transcription of defense-related genes, especially those involved in disease resistance. CONCLUSION We showed that PvNHX1 had an important role in plant growth and development through its regulation of photosynthetic activity, cell expansion, K+ homeostasis, and pollen development. Additionally, PvNHX1 overexpression activated a complex signal transduction network in response to various biotic and abiotic stresses. In relation to plant growth, development, and defense responses, PvNHX1 also had a vital regulatory role in the formation of a series of plant hormones and transcription factors (TFs). The reliability of the RNA-seq data was confirmed by quantitative real-time PCR. Our data provide a valuable foundation for further research into the molecular mechanisms and physiological roles of NHXs in plants.
Collapse
Affiliation(s)
- Yanhua Huang
- College of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Huifang Cen
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Kehua Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Yunwei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
- National Energy R&D Center for Biomass (NECB), Beijing Sure Academy of Biosciences, Beijing, People’s Republic of China
| |
Collapse
|
91
|
Frouin J, Languillaume A, Mas J, Mieulet D, Boisnard A, Labeyrie A, Bettembourg M, Bureau C, Lorenzini E, Portefaix M, Turquay P, Vernet A, Périn C, Ahmadi N, Courtois B. Tolerance to mild salinity stress in japonica rice: A genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS One 2018; 13:e0190964. [PMID: 29342194 PMCID: PMC5771603 DOI: 10.1371/journal.pone.0190964] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Salinity tolerance is an important quality for European rice grown in river deltas. We evaluated the salinity tolerance of a panel of 235 temperate japonica rice accessions genotyped with 30,000 SNP markers. The panel was exposed to mild salt stress (50 mM NaCl; conductivity of 6 dS m-1) at the seedling stage. Eight different root and shoot growth parameters were measured for both the control and stressed treatments. The Na+ and K+ mass fractions of the stressed plants were measured using atomic absorption spectroscopy. The salt treatment affected plant growth, particularly the shoot parameters. The panel showed a wide range of Na+/K+ ratio and the temperate accessions were distributed over an increasing axis, from the most resistant to the most susceptible checks. We conducted a genome-wide association study on indices of stress response and ion mass fractions in the leaves using a classical mixed model controlling structure and kinship. A total of 27 QTLs validated by sub-sampling were identified. For indices of stress responses, we also used another model that focused on marker × treatment interactions and detected 50 QTLs, three of which were also identified using the classical method. We compared the positions of the significant QTLs to those of approximately 300 genes that play a role in rice salt tolerance. The positions of several QTLs were close to those of genes involved in calcium signaling and metabolism, while other QTLs were close to those of kinases. These results reveal the salinity tolerance of accessions with a temperate japonica background. Although the detected QTLs must be confirmed by other approaches, the number of associations linked to candidate genes involved in calcium-mediated ion homeostasis highlights pathways to explore in priority to understand the salinity tolerance of temperate rice.
Collapse
Affiliation(s)
- Julien Frouin
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Antoine Languillaume
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Justine Mas
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Delphine Mieulet
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | | | - Axel Labeyrie
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Mathilde Bettembourg
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Charlotte Bureau
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Eve Lorenzini
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Muriel Portefaix
- Institut National de la Recherche Agronomique, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Patricia Turquay
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Aurore Vernet
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Christophe Périn
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Nourollah Ahmadi
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Brigitte Courtois
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
- * E-mail:
| |
Collapse
|
92
|
Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G. Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:310-321. [PMID: 28627026 PMCID: PMC5785360 DOI: 10.1111/pbi.12773] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
The NHX-type cation/H+ transporters in plants have been shown to mediate Na+ (K+ )/H+ exchange for salinity tolerance and K+ homoeostasis. In this study, we identified and characterized two NHX homologues, HtNHX1 and HtNHX2 from an infertile and salinity tolerant species Helianthus tuberosus (cv. Nanyu No. 1). HtNHX1 and HtNHX2 share identical 5'- and 3'-UTR and coding regions, except for a 342-bp segment encoding 114 amino acids (L272 to Q385 ) which is absent in HtNHX2. Both hydroponics and soil culture experiments showed that the expression of HtNHX1 or HtNHX2 improved the rice tolerance to salinity. Expression of HtNHX2, but not HtNHX1, increased rice grain yield, harvest index, total nutrient uptake under K+ -limited salt-stress or general nutrient deficiency conditions. The results provide a novel insight into NHX function in plant mineral nutrition.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Qing Li
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Haiya Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jianliang Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jia Du
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | | | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
93
|
Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F. Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:204. [PMID: 29556243 PMCID: PMC5844958 DOI: 10.3389/fpls.2018.00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/02/2018] [Indexed: 05/20/2023]
Abstract
Salinity tolerance has been extensively investigated in recent years due to its agricultural importance. Several features, such as the regulation of ionic transporters and metabolic adjustments, have been identified as salt tolerance hallmarks. Nevertheless, due to the complexity of the trait, the results achieved to date have met with limited success in improving the salt tolerance of rice plants when tested in the field, thus suggesting that a better understanding of the tolerance mechanisms is still required. In this work, differences between two varieties of rice with contrasting salt sensitivities were revealed by the imaging of photosynthetic parameters, ion content analysis and a transcriptomic approach. The transcriptomic analysis conducted on tolerant plants supported the setting up of an adaptive program consisting of sodium distribution preferentially limited to the roots and older leaves, and in the activation of regulatory mechanisms of photosynthesis in the new leaves. As a result, plants resumed grow even under prolonged saline stress. In contrast, in the sensitive variety, RNA-seq analysis revealed a misleading response, ending in senescence and cell death. The physiological response at the cellular level was investigated by measuring the intracellular profile of H2O2 in the roots, using a fluorescent probe. In the roots of tolerant plants, a quick response was observed with an increase in H2O2 production within 5 min after salt treatment. The expression analysis of some of the genes involved in perception, signal transduction and salt stress response confirmed their early induction in the roots of tolerant plants compared to sensitive ones. By inhibiting the synthesis of apoplastic H2O2, a reduction in the expression of these genes was detected. Our results indicate that quick H2O2 signaling in the roots is part of a coordinated response that leads to adaptation instead of senescence in salt-treated rice plants.
Collapse
Affiliation(s)
- Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- *Correspondence: Elide Formentin,
| | | | - Giorgio Perin
- Department of Biology, University of Padova, Padova, Italy
| | - Samantha Riccadonna
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, Italy
| | | | - Elena Baldoni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Paolo Fontana
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
94
|
Islam F, Farooq MA, Gill RA, Wang J, Yang C, Ali B, Wang GX, Zhou W. 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci Rep 2017; 7:10443. [PMID: 28874677 PMCID: PMC5585390 DOI: 10.1038/s41598-017-09708-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
Growth regulator herbicides are widely used in paddy fields to control weeds, however their role in conferring environmental stress tolerance in the crop plants are still elusive. In this study, the effects of recommended dose of 2,4-dichlorophenoxyacetic acid (2,4-D) on growth, oxidative damage, antioxidant defense, regulation of cation transporter genes and anatomical changes in the roots of rice cultivars XS 134 (salt resistant) and ZJ 88 (salt sensitive) were investigated under different levels of saline stress. Individual treatments of saline stress and 2,4-D application induced oxidative damage as evidenced by decreased root growth, enhanced ROS production, more membrane damage and Na+ accumulation in sensitive cultivar compared to the tolerant cultivar. Conversely, combined treatments of 2,4-D and saline stress significantly alleviated the growth inhibition and oxidative stress in roots of rice cultivars by modulating lignin and callose deposition, redox states of AsA, GSH, and related enzyme activities involved in the antioxidant defense system. The expression analysis of nine cation transporter genes showed altered and differential gene expression in salt-stressed roots of sensitive and resistant cultivars. Together, these results suggest that 2,4-D differentially regulates the Na+ and K+ levels, ROS production, antioxidant defense, anatomical changes and cation transporters/genes in roots of rice cultivars.
Collapse
Affiliation(s)
- Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.,Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Chong Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.,Institute of Crop Science and Resource Conservation, University of Bonn, 53115, Bonn, Germany
| | - Guang-Xi Wang
- Department of Environmental Bioscience, Meijo University, Nagoya City, Aichi, 468-8502, Japan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
95
|
Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. FRONTIERS IN PLANT SCIENCE 2017; 8:1143. [PMID: 28706529 PMCID: PMC5489591 DOI: 10.3389/fpls.2017.01143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/14/2017] [Indexed: 05/04/2023]
Abstract
Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Lin Zhu
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Yue Xie
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Feiyue Li
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Xin Xiao
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| |
Collapse
|
96
|
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 2017; 40:326-345. [PMID: 28350038 PMCID: PMC5452131 DOI: 10.1590/1678-4685-gmb-2016-0106] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
97
|
Zhang X, Li K, Liu S, Zou P, Xing R, Yu H, Chen X, Qin Y, Li P. Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:501-509. [PMID: 28005356 DOI: 10.1021/acs.jafc.6b03665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Seven chitooligomers (COSs) with determined degrees of polymerization (DPs) (chitotetraose to chitooctaose, DP 8-10, DP 10-12) and a heterogeneous COS with various DPs were first applied to explore the relationship between the DP of COSs and their effect on the growth of wheat seedlings under salt stress. The results showed that COS could promote the growth of wheat seedlings under salt stress. Moreover, chitohexaose, chitoheptaose, and chitooctaose exhibited stronger activity compared with other COS samples, which suggested that their activity had a close relationship with the DP. After 10 days of treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were obviously improved. The soluble sugar and proline contents were improved by 26.7-53.3 and 43.6-70.2%, respectively, whereas the concentration of malondialdehyde (MDA) was reduced by 36.8-49.6%. In addition, the antioxidant enzyme activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kecheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
- Nantong Marine Science and Technology R&D Center, IOCAS , Jiangsu 226006, China
| | - Song Liu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Ping Zou
- Institute of Tobacco Research of CAAS , Qingdao 266101, China
| | - Ronge Xing
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Huahua Yu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Xiaolin Chen
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Yukun Qin
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Pengcheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| |
Collapse
|
98
|
Huang Y, Guan C, Liu Y, Chen B, Yuan S, Cui X, Zhang Y, Yang F. Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na + (K +)/H + Antiporter Gene ( PvNHX1). FRONTIERS IN PLANT SCIENCE 2017; 8:458. [PMID: 28421093 PMCID: PMC5376569 DOI: 10.3389/fpls.2017.00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/15/2017] [Indexed: 05/20/2023]
Abstract
Switchgrass (Panicum virgatum L.) has been increasingly recognized as one of the most valuable perennial bioenergy crop. To improve its biomass production, especially under salt stress, we isolated a putative vacuolar Na+ (K+)/H+ antiporter gene from switchgrass and designated as PvNHX1. Subcellular localization revealed that this protein was localized mainly on the vacuole membrane. The PvNHX1 was found to be expressed throughout the entire growth period of switchgrass, exhibited preferentially expressed in the leaf tissue, and highly induced by salt stress. Transgenic switchgrass overexpressing PvNHX1 showed obvious advantages with respect to plant height and leaf development compared to the wild-type (WT) and transgenic control (EV, expressing the empty vector only) plants, suggesting PvNHX1 may serve as a promoter in switchgrass growth and development. Moreover, transgenic switchgrass were more tolerant than control plants with better growth-related phenotypes (higher shoot height, larger stem diameter, longer leaf length, and width) and physiological capacities (increased proline accumulation, reduced malondialdehyde production, preserved cell membrane integrity, etc.) under high salinity stress. Furthermore, the genes related to cell growth, flowering, and potassium transporters in transgenic switchgrass exhibited a different expression profiles when compared to the control plants, indicating a pivotal function of PvNHX1 in cell expansion and K+ homeostasis. Taken together, PvNHX1 is essential for normal plant growth and development, and play an important role in the response to salt stress by improving K+ accumulation. Our data provide a valuable foundation for further researches on the molecular mechanism and physiological roles of NHXs in plants.
Collapse
Affiliation(s)
- Yanhua Huang
- Department of Crop Ecology and Farming, College of Agriculture and Biotechnology, China Agricultural UniversityBeijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Cong Guan
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yanrong Liu
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Baoyue Chen
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Shan Yuan
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Xin Cui
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yunwei Zhang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for BiomassBeijing, China
- *Correspondence: Yunwei Zhang
| | - Fuyu Yang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Sure Academy of BiosciencesBeijing, China
- Fuyu Yang
| |
Collapse
|
99
|
Almeida DM, Gregorio GB, Oliveira MM, Saibo NJM. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. PLANT MOLECULAR BIOLOGY 2017; 93:61-77. [PMID: 27766460 DOI: 10.1007/s11103-016-0547-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions. OsNHX1 is the most abundant K+-Na+/H+ antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) were identified as binding to OsNHX1 promoter. Transactivation activity assays performed in Arabidopsis and rice protoplasts showed that OsPCF2 and OsNIN-like4 are activators of the OsNHX1 gene expression, while OsCPP5 and OsNIN-like2 act as repressors. The transactivation activity of OsNIN-like3 needs to be further investigated. Gene expression studies showed that OsNHX1 transcript level is highly induced by salt and PEG-induced drought stress in both shoots and roots in both Nipponbare and Hasawi rice genotypes. Nevertheless, OsNHX1 seems to play a particular role in shoots in response to drought. Most of the TFs binding to OsNHX1 promoter showed a modest transcriptional regulation under stress conditions, however, in response to most of the conditions studied, the OsPCF2 was induced earlier than OsNHX1, indicating that OsPCF2 may activate OsNHX1 gene expression. In addition, although the OsNHX1 response to salt and PEG-induced drought stress in either shoots or roots was quite similar in both rice genotypes, the expression of OsPCF2 in roots under salt stress and the OsNIN-like4 in roots subjected to PEG was mainly up-regulated in Hasawi, indicating that these TFs may be associated with the salt and drought stress tolerance observed for this genotype.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Glenn B Gregorio
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- East-West Seed Company (EWS), Km. 54 Cagayan Valley Road, San Rafael, 3008, Bulacan, Philippines
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
100
|
Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. RICE (NEW YORK, N.Y.) 2016; 35:2295-2308. [PMID: 27025598 DOI: 10.1007/s00299-016-2035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice is one of the most important crops for global food security but its productivity is adversely affected by salt stress prevalent in about 30 % of the cultivated land. For developing salt-tolerant rice varieties through conventional breeding or biotechnological interventions, there is an urgent need to identify natural allelic variants that may confer salt tolerance. Here, 299 wild rice accessions collected from different agro-climatic regions of India were evaluated during growth under salt stress. Of these 95 representative accessions were sequenced for members of HKT ion transporter family genes by employing Ion Torrent PGM sequencing platform. RESULTS Haplotype analysis revealed haplotypes H5 and H1 of HKT1;5 and HKT2;3, respectively associated with high salinity tolerance. This is the first study of allele mining of eight members of HKT gene family from Indian wild rice reporting a salt tolerant allele of HKT2;3. HKT1;5 also showed a salt tolerant allele from wild rice. Phylogenetic analysis based on the nucleotide sequences showed different grouping of the HKT family genes as compared to the prevailing protein sequence based classification. CONCLUSIONS The salt tolerant alleles of the HKT genes from wild rice may be introgressed into modern high yielding cultivars to widen the existing gene pool and enhance rice production in the salt affected areas.
Collapse
Affiliation(s)
- Shefali Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kabita Panda
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pragati Misra
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|