51
|
Alavilli H, Lee H, Park M, Yun DJ, Lee BH. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. PLANT CELL REPORTS 2018; 37:453-465. [PMID: 29247292 DOI: 10.1007/s00299-017-2242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P. alpinum collected in the Antarctic and its functional implications in development and stress responses in plants. In P. alpinum, PaFKBP12 expression was induced by heat and ABA. Overexpression of PaFKBP12 in Arabidopsis increased the plant size, which appeared to result from increased rates of cell cycle. Under heat stress conditions, PaFKBP12-overexpressing lines (PaFKBP12-OE) showed better growth and survival than the wild type. PaFKBP12-OE also showed higher root elongation rates, better shoot growth and enhanced survival at higher concentrations of ABA in comparison to the wild type. In addition, PaFKBP12-OE were more tolerant to drought and salt stress than the wild type. All these phenotypes were accompanied with higher induction of the stress responsive genes in PaFKBP12-OE than in the wild type. Taken together, our findings revealed important functions of PaFKBP12 in plant development and abiotic stress responses.
Collapse
Affiliation(s)
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Mira Park
- Department of Life Science, Sogang University, Seoul, 04107, South Korea
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul, 04107, South Korea.
| |
Collapse
|
52
|
Chen M, Xie S, Ouyang Y, Yao J. Rice PcG gene OsEMF2b controls seed dormancy and seedling growth by regulating the expression of OsVP1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:80-89. [PMID: 28554479 DOI: 10.1016/j.plantsci.2017.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/01/2017] [Accepted: 04/07/2017] [Indexed: 05/06/2023]
Abstract
The induction and release of seed dormancy are a precisely regulated process that influences seed germination. ABA promotes seed dormancy but suppresses seed germination and seedling growth. However, how chromatin and epigenetic mechanisms regulate the expression of ABA related genes during these processes remains unclear. Polycomb gene OsEMF2b was required for regulation of seed dormancy and seedling growth by dynamically activating and repressing ABA signal response genes. Downregulation of OsEMF2b led to vivipary and decreased expression level of OsVP1, which was involved in ABA signal pathway in seed dormancy. While, the seedlings with downregulation of OsEMF2b exhibited hyper-sensitive response to ABA and the expression of OsVP1 is upregulated. Yeast one-hybrid assay and ChIP analyses proved that OsEMF2b could bind to the promoter of OsVP1 directly and affected H3K27me3 enrichments of OsVP1 in seedling. Interestingly, both H3K27me3 and H3K4me3 enrichments of OsVP1 were changed with OsEMF2b mis-expression in seed and seedling. We proposed that OsEMF2b may play a pivotal role in seed dormancy and seedling growth by regulating the expression of OsVP1 indirectly or directly.
Collapse
Affiliation(s)
- Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
53
|
Ruan MB, Guo X, Wang B, Yang YL, Li WQ, Yu XL, Zhang P, Peng M. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3657-3672. [PMID: 28637218 DOI: 10.1093/jxb/erx202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava.
Collapse
Affiliation(s)
- Meng-Bin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
| | - Xin Guo
- Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Wang
- Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Ling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen-Qi Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xiao-Ling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai 200032, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
| |
Collapse
|
54
|
Guo H, Wang Y, Wang L, Hu P, Wang Y, Jia Y, Zhang C, Zhang Y, Zhang Y, Wang C, Yang C. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:107-121. [PMID: 27368149 PMCID: PMC5253473 DOI: 10.1111/pbi.12595] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/12/2016] [Accepted: 06/23/2016] [Indexed: 05/18/2023]
Abstract
Plant MYB transcription factors control diverse biological processes, such as differentiation, development and abiotic stress responses. In this study, we characterized BplMYB46, an MYB gene from Betula platyphylla (birch) that is involved in both abiotic stress tolerance and secondary wall biosynthesis. BplMYB46 can act as a transcriptional activator in yeast and tobacco. We generated transgenic birch plants with overexpressing or silencing of BplMYB46 and subjected them to gain- or loss-of-function analysis. The results suggest that BplMYB46 improves salt and osmotic tolerance by affecting the expression of genes including SOD, POD and P5CS to increase both reactive oxygen species scavenging and proline levels. In addition, BplMYB46 appears to be involved in controlling stomatal aperture to reduce water loss. Overexpression of BplMYB46 increases lignin deposition, secondary cell wall thickness and the expression of genes in secondary cell wall formation. Further analysis indicated that BplMYB46 binds to MYBCORE and AC-box motifs and may directly activate the expression of genes involved in abiotic stress responses and secondary cell wall biosynthesis whose promoters contain these motifs. The transgenic BplMYB46-overexpressing birch plants, which have improved salt and osmotic stress tolerance, higher lignin and cellulose content and lower hemicellulose content than the control, have potential applications in the forestry industry.
Collapse
Affiliation(s)
- Huiyan Guo
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Department of Life Science and TechnologyMudanjiang Normal CollegeMudanjiangChina
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Liuqiang Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Ping Hu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yanmin Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Key Laboratory of Fast‐Growing Tree Cultivating of Heilongjiang ProvinceForestry Science Research Institute of Heilongjiang ProvinceHarbinChina
| | - Yuanyuan Jia
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chunrui Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yiming Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chao Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
55
|
Sagawa JM, Stanley LE, LaFountain AM, Frank HA, Liu C, Yuan YW. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. THE NEW PHYTOLOGIST 2016; 209:1049-57. [PMID: 26377817 DOI: 10.1111/nph.13647] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering.
Collapse
Affiliation(s)
- Janelle M Sagawa
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Lauren E Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Chang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
56
|
Yu YT, Wu Z, Lu K, Bi C, Liang S, Wang XF, Zhang DP. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 90:267-79. [PMID: 26646286 PMCID: PMC4717180 DOI: 10.1007/s11103-015-0411-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
Although a lot of genes have been revealed to participate in abscisic acid (ABA) signaling, many of the additional components involved in ABA signaling remain to be discovered. Here we report that overexpression of MYB37, a R2R3 MYB subgroup 14 transcription factor in Arabidopsis thaliana, confers hypersensitive phenotypes to exogenous ABA in all the major ABA responses, including ABA-induced inhibition of seed germination, cotyledon greening and early seedling growth, and ABA-induced stomatal closure and inhibition of stomatal opening. Interestingly and importantly, MYB37-overexpression improves plant tolerance to drought, enhances growth of mature plants and seed productivity, thought it delays flowering, which suggests that this gene may be used for improving crop adaptability to drought environment and productivity. However, a myb37-1 knockout mutant displays wild-type ABA responses most likely due to a functional redundancy of the multiple MYB members. Real-time PCR analysis shows that upregulation of the MYB37 expression changes expression of a subset of ABA-responsive genes. Together, these findings suggest that the MYB37 transcription factor plays an important, positive role in plant response to ABA and drought stress, and meanwhile, it plays a positive role in the regulation of seed production.
Collapse
Affiliation(s)
- Yong-Tao Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kai Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chao Bi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shan Liang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Fang Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Da-Peng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
57
|
Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:180. [PMID: 26941754 PMCID: PMC4763085 DOI: 10.3389/fpls.2016.00180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots vs. shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance.
Collapse
Affiliation(s)
- Sultana Rasheed
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
- *Correspondence: Motoaki Seki
| |
Collapse
|
58
|
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int J Mol Sci 2015; 16:15811-51. [PMID: 26184177 PMCID: PMC4519927 DOI: 10.3390/ijms160715811] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022] Open
Abstract
Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.
Collapse
|
59
|
Park MY, Kim SY. The Arabidopsis J Protein AtJ1 is Essential for Seedling Growth, Flowering Time Control and ABA Response. ACTA ACUST UNITED AC 2014; 55:2152-63. [DOI: 10.1093/pcp/pcu145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
60
|
Sun L, Zhang Q, Wu J, Zhang L, Jiao X, Zhang S, Zhang Z, Sun D, Lu T, Sun Y. Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. PLANT PHYSIOLOGY 2014; 165:335-45. [PMID: 24578505 PMCID: PMC4012592 DOI: 10.1104/pp.113.232629] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cytokinin plays an important role in plant development and stress tolerance. Studies of Arabidopsis (Arabidopsis thaliana) have demonstrated that cytokinin acts through a two-component system that includes a histidine (His) kinase, a His phosphotransfer protein (HP), and a response regulator. Phylogenetic analyses have revealed the conservation of His kinases but lineage-specific expansion of HPs and response regulators in rice (Oryza sativa). However, whether the functions of rice HPs have diverged remains unknown. In this study, two rice authentic HPs (OsAHP1 and OsAHP2) were knocked down simultaneously via RNA interference (RNAi), and the transgenic OsAHP-RNAi plants exhibited phenotypes expected for a deficiency in cytokinin signaling, including dwarfism with reduced internode lengths, enhanced lateral root growth, early leaf senescence, and reduced tiller numbers and fertility under natural conditions. The OsAHP-RNAi seedlings were also hyposensitive to exogenous cytokinin. Furthermore, OsAHP-RNAi seedlings were hypersensitive to salt treatment but resistant to osmotic stress relative to wild-type plants. These results indicate that OsAHPs function as positive regulators of the cytokinin signaling pathway and play different roles in salt and drought tolerance in rice.
Collapse
|
61
|
Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G, Li B, Qin J, Xia M, Zhou J, Liu J, Jiang S, Mo H, Cui J, Nagasawa N, Sivasankar S, Albertsen MC, Sakai H, Mazur BJ, Lassner MW, Broglie RM. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. PLANT CELL REPORTS 2014; 33:617-31. [PMID: 24682459 DOI: 10.1007/s00299-014-1586-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/26/2023]
Abstract
A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis. Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.
Collapse
Affiliation(s)
- Guihua Lu
- Beijing Kaituo DNA Biotech Research Center, Co., Ltd., Beijing, 102206, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Agarwal PK, Shukla PS, Gupta K, Jha B. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 2013; 54:102-23. [PMID: 22539206 DOI: 10.1007/s12033-012-9538-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genetic engineering of plants for abiotic stress tolerance is a challenging task because of its multifarious nature. Comprehensive studies for developing abiotic stress tolerance are in progress, involving genes from different pathways including osmolyte synthesis, ion homeostasis, antioxidative pathways, and regulatory genes. In the last decade, several attempts have been made to substantiate the role of "single-function" gene(s) as well as transcription factor(s) for abiotic stress tolerance. Since, the abiotic stress tolerance is multigenic in nature, therefore, the recent trend is shifting towards genetic transformation of multiple genes or transcription factors. A large number of crop plants are being engineered by abiotic stress tolerant genes and have shown the stress tolerance mostly at laboratory level. This review presents a mechanistic view of different pathways and emphasizes the function of different genes in conferring salt tolerance by genetic engineering approach. It also highlights the details of successes achieved in developing salt tolerance in plants thus far.
Collapse
Affiliation(s)
- Pradeep K Agarwal
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, 364021 Gujarat, India.
| | | | | | | |
Collapse
|
63
|
Hussey SG, Mizrachi E, Creux NM, Myburg AA. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. FRONTIERS IN PLANT SCIENCE 2013; 4:325. [PMID: 24009617 PMCID: PMC3756741 DOI: 10.3389/fpls.2013.00325] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/31/2013] [Indexed: 05/17/2023]
Abstract
The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
64
|
Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics 2013; 13:75-98. [PMID: 23184474 DOI: 10.1007/s10142-012-0301-304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 05/25/2023]
Abstract
R2R3-MYB, bHLH, and WD40 proteins have been shown to control multiple enzymatic steps in the biosynthetic pathway responsible for the production of flavonoids, important secondary metabolites in Camellia sinensis. Few related transcription factor genes have been documented. The presence of R2R3-MYB, bHLH, and WD40 were statistically and bioinformatically analyzed on 127,094 C. sinensis transcriptome unigenes, resulting in identification of 73, 49, and 134 genes, respectively. C. sinensis phylogenetic trees were constructed for R2R3-MYB and bHLH proteins using previous Arabidopsis data and further divided into 27 subgroups (Sg) and 32 subfamilies. Motifs in some R2R3-MYB subgroups were redefined. Furthermore, Sg26 and Sg27 were expanded compared to Arabidopsis data, and bHLH proteins in C. sinensis were grouped into nine subfamilies. According to the functional annotation of Arabidopsis, flavonoid biosynthesis in C. sinensis was predicted to include R2R3-MYB genes in Sg4 (6), Sg5 (2), and Sg7 (1), as well as bHLH genes in subfamily 2 (2) and subfamily 24 (5). The wide evolutionary gap prevented phylogenetic analysis of WD40s; however, a single gene, CsWD40-1, was observed to share 80.4 % sequence homogeny with AtTTG1. Analysis of CsMYB4-1, CsMYB4-2, CsMYB4-3, CsMYB4-4, CsMYB5-1, and CsMYB5-2 revealed the interaction motif [DE]Lx2[RK]x3Lx6Lx3R, potentially contributing to the specificity of the bHLH partner in the stable MYB-bHLH complex. Full-length end-to-end polymerase chain reaction (PCR) and quantitative reverse transcriptase (qRT)-PCR were used to validate selected genes and generate relative expression ratio profiles in C. sinensis leaves by developmental stage and treatment conditions, including hormone and wound treatments. Potential target binding sites were predicted.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Agriculture & Ministry of Education, Anhui Agricultural University, Hefei, Anhui 230036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Park MY, Kim SA, Lee SJ, Kim SY. ATHB17 is a positive regulator of abscisic acid response during early seedling growth. Mol Cells 2013; 35:125-33. [PMID: 23456334 PMCID: PMC3887901 DOI: 10.1007/s10059-013-2245-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 01/02/2023] Open
Abstract
We performed activation tagging screen to isolate abscisic acid (ABA) response mutants. One of the mutants, designated ahs10 (ABA-hypersensitive 10), exhibited ABA-hypersensitive phenotypes. TAIL-PCR analysis of the mutant revealed that T-DNA was inserted in the promoter region of the Arabidopsis gene, At2g01430, which encodes a homeodomain-leucine zipper protein ATHB17. Subsequent expression analysis indicated that ATHB17 was activated in ahs10. To recapitulate the mutant phenotypes, we prepared ATHB17 OX lines and investigated their phenotypes. The results showed that ATHB17 confers ABA-hypersensitivity and drought tolerance. On the contrary, ATHB17 knockout lines were ABA-insensitive and drought-sensitive, further demonstrating that ATHB17 is involved in ABA and water-stress responses. Interestingly, the ATHB17 effect on seedling growth in the presence of ABA was observed only during the postgermination seedling establishment stage, suggesting that it functions during a narrow developmental window of early seedling growth.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Sung-ah Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Sun-ji Lee
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
66
|
Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics 2012. [PMID: 23184474 DOI: 10.1007/s10142-012-0301-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
R2R3-MYB, bHLH, and WD40 proteins have been shown to control multiple enzymatic steps in the biosynthetic pathway responsible for the production of flavonoids, important secondary metabolites in Camellia sinensis. Few related transcription factor genes have been documented. The presence of R2R3-MYB, bHLH, and WD40 were statistically and bioinformatically analyzed on 127,094 C. sinensis transcriptome unigenes, resulting in identification of 73, 49, and 134 genes, respectively. C. sinensis phylogenetic trees were constructed for R2R3-MYB and bHLH proteins using previous Arabidopsis data and further divided into 27 subgroups (Sg) and 32 subfamilies. Motifs in some R2R3-MYB subgroups were redefined. Furthermore, Sg26 and Sg27 were expanded compared to Arabidopsis data, and bHLH proteins in C. sinensis were grouped into nine subfamilies. According to the functional annotation of Arabidopsis, flavonoid biosynthesis in C. sinensis was predicted to include R2R3-MYB genes in Sg4 (6), Sg5 (2), and Sg7 (1), as well as bHLH genes in subfamily 2 (2) and subfamily 24 (5). The wide evolutionary gap prevented phylogenetic analysis of WD40s; however, a single gene, CsWD40-1, was observed to share 80.4 % sequence homogeny with AtTTG1. Analysis of CsMYB4-1, CsMYB4-2, CsMYB4-3, CsMYB4-4, CsMYB5-1, and CsMYB5-2 revealed the interaction motif [DE]Lx2[RK]x3Lx6Lx3R, potentially contributing to the specificity of the bHLH partner in the stable MYB-bHLH complex. Full-length end-to-end polymerase chain reaction (PCR) and quantitative reverse transcriptase (qRT)-PCR were used to validate selected genes and generate relative expression ratio profiles in C. sinensis leaves by developmental stage and treatment conditions, including hormone and wound treatments. Potential target binding sites were predicted.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Agriculture & Ministry of Education, Anhui Agricultural University, Hefei, Anhui 230036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee SJ, Jung HJ, Kang H, Kim SY. Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. PLANT & CELL PHYSIOLOGY 2012; 53:673-86. [PMID: 22383628 DOI: 10.1093/pcp/pcs023] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There are 68 CCCH zinc finger protein genes in the Arabidopsis genome. However, only a few of them have been characerized functionally. In this paper, we report the function of two Arabidopsis CCCH zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2. To investigate their functions, we examined their expression patterns and analyzed their overexpression and knockout(KO)/RNA interference (RNAi) phenotypes. Both AtC3H49/AtTZF3 and AtC3H20/AtTZF2 genes were expressed in various vegetative tissues and in flowers, and their encoded proteins were localized in the cytoplasm. Overexpression of AtC3H49/AtTZF3 or AtC3H20/AtTZF2 conferred ABA hypersensitivity, reduced transpiration and enhanced drought tolerance. Their overexpression also altered the plant growth pattern. The transgenic plants grew slowly during the early stage of growth, but their growth rates were accelerated at later stages, and mature plants were larger than the wild-type plants. Moreover, the transgenic plants displayed delayed senescence and enhanced longevity. Subsequent experiments showed that jasmonic acid (JA)-induced senescence was also delayed. Microarray and quantitative reverse transcription-PCR analyses indicated that the expression of a number of genes involved in JA, ABA and biotic/abiotic stress responses was altered in the transgenic lines. Recombinant AtC3H49/AtTZF3 and AtC3H20/AtTZF2 proteins displayed RNase activity in vitro, suggesting that they may be involved in mRNA turnover process. The knockout/RNAi lines of AtC3H49/AtTZF3 and AtC3H20/AtTZF2 exhibited weak phenotypes, presumably because of their functional redundancy.
Collapse
Affiliation(s)
- Sun-ji Lee
- Departments of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | | | | | | |
Collapse
|