51
|
Zheng L, Pang Q, Xu H, Guo H, Liu R, Wang T. The Neurobiological Links between Stress and Traumatic Brain Injury: A Review of Research to Date. Int J Mol Sci 2022; 23:ijms23179519. [PMID: 36076917 PMCID: PMC9455169 DOI: 10.3390/ijms23179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Neurological dysfunctions commonly occur after mild or moderate traumatic brain injury (TBI). Although most TBI patients recover from such a dysfunction in a short period of time, some present with persistent neurological deficits. Stress is a potential factor that is involved in recovery from neurological dysfunction after TBI. However, there has been limited research on the effects and mechanisms of stress on neurological dysfunctions due to TBI. In this review, we first investigate the effects of TBI and stress on neurological dysfunctions and different brain regions, such as the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We then explore the neurobiological links and mechanisms between stress and TBI. Finally, we summarize the findings related to stress biomarkers and probe the possible diagnostic and therapeutic significance of stress combined with mild or moderate TBI.
Collapse
Affiliation(s)
- Lexin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qiuyu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China
- Correspondence:
| |
Collapse
|
52
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
53
|
Liu Y, Liu X, Chen Z, Wang Y, Li J, Gong J, He A, Zhao M, Yang C, Yang W, Wang Z. Evaluation of decompressive craniectomy in mice after severe traumatic brain injury. Front Neurol 2022; 13:898813. [PMID: 35959411 PMCID: PMC9360741 DOI: 10.3389/fneur.2022.898813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Decompressive craniectomy (DC) is of great significance for relieving acute intracranial hypertension and saving lives after traumatic brain injury (TBI). In this study, a severe TBI mouse model was created using controlled cortical impact (CCI), and a surgical model of DC was established. Furthermore, a series of neurological function assessments were performed to better understand the pathophysiological changes after DC. In this study, mice were randomly allocated into three groups, namely, CCI group, CCI+DC group, and Sham group. The mice in the CCI and CCI+DC groups received CCI after opening a bone window, and after brain injury, immediately returned the bone window to simulate skull condition after a TBI. The CCI+DC group underwent DC and contused tissue removal 6 h after CCI. The mice in the CCI group underwent the same anesthesia process; however, no further treatment of the bone window and trauma was performed. The mice in the Sham group underwent anesthesia and the process of opening the skin and bone window, but not in the CCI group. Changes in Modified Neurological Severity Score, rotarod performance, Morris water maze, intracranial pressure (ICP), cerebral blood flow (CBF), brain edema, blood–brain barrier (BBB), inflammatory factors, neuronal apoptosis, and glial cell expression were evaluated. Compared with the CCI group, the CCI+DC group had significantly lower ICP, superior neurological and motor function at 24 h after injury, and less severe BBB damage after injury. Most inflammatory cytokine expressions and the number of apoptotic cells in the brain tissue of mice in the CCI+DC group were lower than in the CCI group at 3 days after injury, with markedly reduced astrocyte and microglia expression. However, the degree of brain edema in the CCI+DC group was greater than in the CCI group, and neurological and motor functions, as well as spatial cognitive and learning ability, were significantly poorer at 14 days after injury.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanzhi Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Weidong Yang
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- *Correspondence: Zengguang Wang
| |
Collapse
|
54
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
55
|
Xing J, Ren L, Xu H, Zhao L, Wang ZH, Hu GD, Wei ZL. Single-Cell RNA Sequencing Reveals Cellular and Transcriptional Changes Associated With Traumatic Brain Injury. Front Genet 2022; 13:861428. [PMID: 35846152 PMCID: PMC9282873 DOI: 10.3389/fgene.2022.861428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is currently a substantial public health problem and one of the leading causes of morbidity and mortality worldwide. However, the cellular and transcriptional changes in TBI at single-cell level have not been well characterized. In this study, we reanalyzed a single-cell RNA sequencing (scRNA-seq) dataset of mouse hippocampus to identify the key cellular and transcriptional changes associated with TBI. Specifically, we found that oligodendrocytes were the most abundant cell type in mouse hippocampus, and detected an expanded astrocyte population, which was significantly activated in TBI. The enhanced activity of inflammatory response-related pathways in the astrocytes of TBI samples suggested that the astrocytes, along with microglia, which were the major brain-resident immune cells, were responsible for inflammation in the acute phase of TBI. Hormone secretion, transport, and exocytosis were found upregulated in the excitatory neurons of TBI, which gave us a hint that excitatory neurons might excessively transport and excrete glutamate in response to TBI. Moreover, the ependymal subpopulation C0 was TBI-specific and characterized by downregulated cilium movement, indicating that the attenuated activity of cilium movement following TBI might decrease cerebrospinal fluid flow. Furthermore, we observed that downregulated genes in response to candesartan treatment were preferentially expressed in excitatory neurons and were related to pathways like neuronal systems and neuroactive ligand-receptor interaction, indicating that candesartan might promote recovery of neurons after traumatic brain injury via mediating neuroactive ligand-receptor interactions and reducing excitotoxicity. In conclusion, our study identified key cell types in TBI, which improved our understanding of the cellular and transcriptional changes after TBI and offered an insight into the molecular mechanisms that could serve as therapeutic targets.
Collapse
|
56
|
Lui A, Kumar KK, Grant GA. Management of Severe Traumatic Brain Injury in Pediatric Patients. FRONTIERS IN TOXICOLOGY 2022; 4:910972. [PMID: 35812167 PMCID: PMC9263560 DOI: 10.3389/ftox.2022.910972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The optimal management of severe traumatic brain injury (TBI) in the pediatric population has not been well studied. There are a limited number of research articles studying the management of TBI in children. Given the prevalence of severe TBI in the pediatric population, it is crucial to develop a reference TBI management plan for this vulnerable population. In this review, we seek to delineate the differences between severe TBI management in adults and children. Additionally, we also discuss the known molecular pathogenesis of TBI. A better understanding of the pathophysiology of TBI will inform clinical management and development of therapeutics. Finally, we propose a clinical algorithm for the management and treatment of severe TBI in children using published data.
Collapse
Affiliation(s)
- Austin Lui
- Touro University College of Osteopathic Medicine, Vallejo, CA, United States
| | - Kevin K. Kumar
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| |
Collapse
|
57
|
Gao Y, Wang C, Jin F, Han G, Cui C. Therapeutic effect of extracellular vesicles from different cell sources in traumatic brain injury. Tissue Cell 2022; 76:101772. [DOI: 10.1016/j.tice.2022.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
58
|
Construction and Evaluation of Prognosis Prediction Model for Patients with Brain Contusion and Laceration Based on Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4311434. [PMID: 35602351 PMCID: PMC9119748 DOI: 10.1155/2022/4311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Objective Finding valuable risk factors for the prognosis of brain contusion and laceration can help patients understand the condition and improve the prognosis. This study is aimed at analyzing the risk factors of poor prognosis in patients with brain contusion after the operation. Methods A total of 136 patients with cerebral contusion and laceration combined with cerebral hernia treated by neurosurgical craniotomy in our hospital were retrospectively selected and divided into a training set (n = 95) and a test set (n = 41) by the 10-fold crossover method. Logistic regression and back-propagation neural network prediction models were established to predict poor prognosis factors. The receiver operating characteristic curve (ROC) and the calibration curve were used to verify the differentiation and consistency of the prediction model. Results Based on logistic regression and back-propagation neural network prediction models, GCS score ≤ 8 on admission, blood loss ≥ 30 ml, mannitol ≥ 2 weeks, anticoagulants before admission, and surgical treatment are the risk factors that affect the poor prognosis of patients with a cerebral contusion after the operation. The area under the ROC was 0.816 (95% CI 0.705~0.926) and 0.819 (95% CI 0.708~0.931), respectively. Conclusion The prediction model based on the risk factors that affect the poor prognosis of patients with brain contusion and laceration has good discrimination and accuracy.
Collapse
|
59
|
Abstract
Research into TBI biomarkers has accelerated rapidly in the past decade owing to the heterogeneous nature of TBI pathologies and management, which pose challenges to TBI evaluation, management, and prognosis. TBI biomarker proteins resulting from axonal, neuronal, or glial cell injuries are widely used and have been extensively studied. However, they might not pass the blood-brain barrier with sufficient amounts to be detected in peripheral blood specimens, and further might not be detectable in the cerebrospinal fluid owing to flow limitations triggered by the injury itself. Despite the advances in TBI research, there is an unmet clinical need to develop and identify novel TBI biomarkers that entirely correlate with TBI pathologies on the molecular level, including mild TBI, and further enable physicians to predict patient outcomes and allow researchers to test neuroprotective agents to limit the extents of injury. Although the extracellular vesicles have been identified and studied long ago, they have recently been revisited and repurposed as potential TBI biomarkers that overcome the many limitations of the traditional blood and CSF assays. Animal and human experiments demonstrated the accuracy of several types of exosomes and miRNAs in detecting mild, moderate, and severe TBI. In this paper, we provide a comprehensive review of the traditional TBI biomarkers that are helpful in clinical practice. Also, we highlight the emerging roles of exosomes and miRNA being the promising candidates under investigation of current research.
Collapse
|
60
|
Xu M, Li L, Liu H, Lu W, Ling X, Gong M. Rutaecarpine Attenuates Oxidative Stress-Induced Traumatic Brain Injury and Reduces Secondary Injury via the PGK1/KEAP1/NFR2 Signaling Pathway. Front Pharmacol 2022; 13:807125. [PMID: 35529443 PMCID: PMC9070303 DOI: 10.3389/fphar.2022.807125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/22/2022] [Indexed: 01/17/2023] Open
Abstract
The oxidative stress response caused by traumatic brain injury (TBI) leads to secondary damage in the form of tissue damage and cell death. Nuclear transcription-related factor 2 (NRF2) is a key factor in the body against oxidative stress and has an important role in combating oxidative damage in TBI neurons. In the present study, we investigated whether rutaecarpine could activate the PGK1/KEAP1/NRF2 pathway to antagonize oxidative damage in TBI neurons. We performed controlled cortical impact (CCI) surgery on mice and taken H2O2 treatment on PC12 cells to construct TBI models. The results of western blot showed that the expression of PGK1, KEAP and NRF2 was regulated and accompanied by altered levels of oxidative stress, and the use of rutaecarpine in the TBI model mice significantly improved cognitive dysfunction, increased antioxidant capacity and reduced apoptosis in brain tissue. Similar antioxidant damage results were obtained using rutaecarpine in a PC12 cell model. Furthermore, through the use of the protein synthesis inhibitor CHX and the proteasome synthesis inhibitor MG-132, rutaecarpine was found to promote the expreesions of PGK1 and NRF2 by accelerating PGK1 ubiquitination to reduce PGK1 expression. Therefore, rutaecarpine may be a promising therapeutic agent for the treatment of TBI-related neuro-oxidative damage.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Liu Li
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Liu
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Wei Lu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Xiaoyang Ling
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Mingjie Gong
- Department of Neurosurgery, Changshu No.2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
- *Correspondence: Mingjie Gong,
| |
Collapse
|
61
|
Chen JQ, Gao SQ, Luo L, Jiang ZY, Liang CF, He HY, Guo Y. Nonoxid-HMGB1 Attenuates Cognitive Impairment After Traumatic Brain Injury in Rats. Front Med (Lausanne) 2022; 9:827585. [PMID: 35479959 PMCID: PMC9035677 DOI: 10.3389/fmed.2022.827585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global burden of health. As an accepted inflammatory mediator, high mobility group box 1 (HMGB1) is found to be effective in facilitating neurogenesis and axonal regeneration. SH3RF2 (also known as POSHER), an E3 ligase SH3 domain-containing ring finger 2, belongs to the SH3RF family of proteins. Here, we aimed to investigate the role of redox states of HMGB1 on neurite outgrowth and regeneration both in vitro and in vivo. In this study, distinct recombinant HMGB1 redox isoforms were used. Sequencing for RNA-seq and data analysis were performed to find the potential downstream target of nonoxid-HMGB1 (3S-HMGB1). Protein changes and distribution of SH3RF2 were evaluated by western blot assays and immunofluorescence. Lentivirus and adeno-associated virus were used to regulate the expression of genes. Nonoxid-HMGB1-enriched exosomes were constructed and used to treat TBI rats. Neurological function was evaluated by OF test and NOR test. Results demonstrated that nonoxid-HMGB1 and fr-HMGB1, but not ds-HMGB1, promoted neurite outgrowth and axon elongation. RNA-seq and western blot assay indicated a significant increase of SH3RF2 in neurons after treated with nonoxid-HMGB1 or fr-HMGB1. Notably, the beneficial effects of nonoxid-HMGB1 were attenuated by downregulation of SH3RF2. Furthermore, nonoxid-HMGB1 ameliorated cognitive impairment in rats post-TBI via SH3RF2. Altogether, our experimental results suggest that one of the promoting neurite outgrowth and regeneration mechanisms of nonoxid-HMGB1 is mediated through the upregulated expression of SH3RF2. Nonoxid-HMGB1 is an attractive therapeutic candidate for the treatment of TBI.
Collapse
|
62
|
A novel simple traumatic brain injury mouse model. Chin Neurosurg J 2022; 8:8. [PMID: 35361274 PMCID: PMC8974042 DOI: 10.1186/s41016-022-00273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traumatic brain injury, one of the leading causes of death in adults under 40 years of age in the world, is frequently caused by mechanical shock, resulting in diffuse neuronal damage and long-term cognitive dysfunction. Many existing TBI animal models revival with expensive equipment or special room are needed or the processes of operations are complex and not easy to be widely used. Therefore, a simpler TBI model needs to be designed. Methods Our TBI model is an innovation of the modeling method through air guns shutting rubber bullets. A core facet is the application of our designed rubber bullet impact device. It could focus the hitting power to the fixed site of the brain, thus triggering a mild closed head injury. Moreover, the degree of damage can be adjusted by the times of shots. Results Our model induced blood-brain barrier leakage and diffused neuronal damage. Besides, it led to an increased level of Tau phosphorylation and resulted in cognitive dysfunction within several weeks post-injury. Conclusion Our TBI model is not only simple and time-saving but also can simulate mild brain injuries in clinical. It is suitable for exploring pathobiological mechanisms as well as a screening of potential therapies for TBI. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00273-5.
Collapse
|
63
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
64
|
Harch PG. Systematic Review and Dosage Analysis: Hyperbaric Oxygen Therapy Efficacy in Mild Traumatic Brain Injury Persistent Postconcussion Syndrome. Front Neurol 2022; 13:815056. [PMID: 35370898 PMCID: PMC8968958 DOI: 10.3389/fneur.2022.815056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mild traumatic brain injury results in over 15% of patients progressing to Persistent Postconcussion Syndrome, a condition with significant consequences and limited treatment options. Hyperbaric oxygen therapy has been applied to Persistent Postconcussion Syndrome with conflicting results based on its historical understanding/definition as a disease-specific therapy. This is a systematic review of the evidence for hyperbaric oxygen therapy (HBOT) in Persistent Postconcussion Syndrome using a dose-analysis that is based on the scientific definition of hyperbaric oxygen therapy as a dual-component drug composed of increased barometric pressure and hyperoxia. Methods In this review, PubMed, CINAHL, and the Cochrane Systematic Review Database were searched from August 8–22, 2021 for all adult clinical studies published in English on hyperbaric oxygen therapy in mild traumatic brain injury Persistent Postconcussion Syndrome (symptoms present at least 3 months). Randomized trials and studies with symptomatic and/or cognitive outcomes were selected for final analysis. Randomized trials included those with no-treatment control groups or control groups defined by either the historical or scientific definition. Studies were analyzed according to the dose of oxygen and barometric pressure and classified as Levels 1–5 based on significant immediate post-treatment symptoms or cognitive outcomes compared to control groups. Levels of evidence classifications were made according to the Centre for Evidence-Based Medicine and a practice recommendation according to the American Society of Plastic Surgeons. Methodologic quality and bias were assessed according to the PEDro Scale. Results Eleven studies were included: six randomized trials, one case-controlled study, one case series, and three case reports. Whether analyzed by oxygen, pressure, or composite oxygen and pressure dose of hyperbaric therapy statistically significant symptomatic and cognitive improvements or cognitive improvements alone were achieved for patients treated with 40 HBOTS at 1.5 atmospheres absolute (ATA) (four randomized trials). Symptoms were also improved with 30 treatments at 1.3 ATA air (one study), positive and negative results were obtained at 1.2 ATA air (one positive and one negative study), and negative results in one study at 2.4 ATA oxygen. All studies involved <75 subjects/study. Minimal bias was present in four randomized trials and greater bias in 2. Conclusion In multiple randomized and randomized controlled studies HBOT at 1.5 ATA oxygen demonstrated statistically significant symptomatic and cognitive or cognitive improvements alone in patients with mild traumatic brain injury Persistent Postconcussion Syndrome. Positive and negative results occurred at lower and higher doses of oxygen and pressure. Increased pressure within a narrow range appears to be the more important effect than increased oxygen which is effective over a broad range. Improvements were greater when patients had comorbid Post Traumatic Stress Disorder. Despite small sample sizes, the 1.5 ATA HBOT studies meet the Centre for Evidence-Based Medicine Level 1 criteria and an American Society of Plastic Surgeons Class A Recommendation for HBOT treatment of mild traumatic brain injury persistent postconcussion syndrome.
Collapse
|
65
|
Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci Rep 2022; 12:3572. [PMID: 35246564 PMCID: PMC8897489 DOI: 10.1038/s41598-022-07367-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite a great amount of effort, there is still a need for reliable treatments of traumatic brain injury (TBI). Recently, stem cell therapy has emerged as a new avenue to address neuronal regeneration after TBI. However, the environment of TBI lesions exerts negative effects on the stem cells efficacy. Therefore, to maximize the beneficial effects of stem cells in the course of TBI, we evaluated the effect of human neural stem/progenitor cells (hNS/PCs) and curcumin-loaded niosome nanoparticles (CM-NPs) on behavioral changes, brain edema, gliosis, and inflammatory responses in a rat model of TBI. After TBI, hNS/PCs were transplanted within the injury site and CM-NPs were orally administered for 10 days. Finally, the effect of combination therapy was compared to several control groups. Our results indicated a significant improvement of general locomotor activity in the hNS/PCs + CM-NPs treatment group compared to the control groups. We also observed a significant improvement in brain edema in the hNS/PCs + CM-NPs treatment group compared to the other groups. Furthermore, a significant decrease in astrogliosis was seen in the combined treatment group. Moreover, TLR4-, NF-κB-, and TNF-α- positive cells were significantly decreased in hNS/PCs + CM-NPs group compared to the control groups. Taken together, this study indicated that combination therapy of stem cells with CM-NPs can be an effective therapy for TBI.
Collapse
|
66
|
Yang Z, Li X, Luo W, Wu Y, Tang T, Wang Y. The Involvement of Long Non-coding RNA and Messenger RNA Based Molecular Networks and Pathways in the Subacute Phase of Traumatic Brain Injury in Adult Mice. Front Neuroinform 2022; 16:794342. [PMID: 35311004 PMCID: PMC8931714 DOI: 10.3389/fninf.2022.794342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex injury with a multi-faceted recovery process. Long non-coding RNAs (lncRNAs) are demonstrated to be involved in central nervous system (CNS) disorders. However, the roles of lncRNAs in long-term neurological deficits post-TBI are poorly understood. The present study depicted the microarray’s lncRNA and messenger RNA (mRNA) profiles at 14 days in TBI mice hippocampi. LncRNA and mRNA microarray was used to identify differentially expressed genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the microarray results. Bioinformatics analysis [including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, lncRNA-mRNA co-expression network, and lncRNA-miRNA-mRNA network] were applied to explore the underlying mechanism. A total of 264 differentially expressed lncRNAs and 232 expressed mRNAs were identified (fold change > 1.5 and P-value < 0.05). Altered genes were enriched in inflammation, immune response, blood–brain barrier, glutamatergic neurological effects, and neuroactive ligand-receptor, which may be associated with TBI-induced pathophysiologic changes in the long-term neurological deficits. The lncRNAs-mRNAs co-expression network was generated for 74 lncRNA-mRNA pairs, most of which are positive correlations. The lncRNA-miRNA-mRNA interaction network included 12 lncRNAs, 59 miRNAs, and 25 mRNAs. Numerous significantly altered lncRNAs and mRNAs in mice hippocampi were enriched in inflammation and immune response. Furthermore, these dysregulated lncRNAs and mRNAs may be promising therapeutic targets to overcome obstacles in long-term recovery following TBI.
Collapse
Affiliation(s)
- Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Tao Tang,
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
67
|
Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol Psychiatry 2022; 91:498-507. [PMID: 34364650 PMCID: PMC8636548 DOI: 10.1016/j.biopsych.2021.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI), particularly of greater severity (i.e., moderate to severe), has been identified as a risk factor for all-cause dementia and Parkinson's disease, with risk for specific dementia subtypes being more variable. Among the limited studies involving neuropathological (postmortem) confirmation, the association between TBI and risk for neurodegenerative disease increases in complexity, with polypathology often reported on examination. The heterogeneous clinical and neuropathological outcomes associated with TBI are likely reflective of the multifaceted postinjury acute and chronic processes that may contribute to neurodegeneration. Acutely in TBI, axonal injury and disrupted transport influences molecular mechanisms fundamental to the formation of pathological proteins, such as amyloid-β peptide and hyperphosphorylated tau. These protein deposits may develop into amyloid-β plaques, hyperphosphorylated tau-positive neurofibrillary tangles, and dystrophic neurites. These and other characteristic neurodegenerative disease pathologies may then spread across brain regions. The acute immune and neuroinflammatory response involves alteration of microglia, astrocytes, oligodendrocytes, and endothelial cells; release of downstream pro- and anti-inflammatory cytokines and chemokines; and recruitment of peripheral immune cells. Although thought to be neuroprotective and reparative initially, prolongation of these processes may promote neurodegeneration. We review the evidence for TBI as a risk factor for neurodegenerative disorders, including Alzheimer's dementia and Parkinson's disease, in clinical and neuropathological studies. Further, we describe the dynamic interactions between acute response to injury and chronic processes that may be involved in TBI-related pathogenesis and progression of neurodegeneration.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Medical College of
Wisconsin,Corresponding author: Benjamin L.
Brett, 414-955-7316, , Medical College of
Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Raquel C. Gardner
- Department of Neurology, Memory and Aging Center, Weill
Institute for Neurosciences, University of California San Francisco and the San
Francisco Veterans Affairs Medical Center
| | - Jonathan Godbout
- Department of Neuroscience, Chronic Brain Injury Program,
The Ohio State Wexner Medical Center, Columbus, OH
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance,
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University
of Washington School of Medicine, Seattle, WA
| |
Collapse
|
68
|
Olsen CM, Corrigan JD. Does Traumatic Brain Injury Cause Risky Substance Use or Substance Use Disorder? Biol Psychiatry 2022; 91:421-437. [PMID: 34561027 PMCID: PMC8776913 DOI: 10.1016/j.biopsych.2021.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023]
Abstract
There is a high co-occurrence of risky substance use among adults with traumatic brain injury (TBI), although it is unknown if the neurologic sequelae of TBI can promote this behavior. We propose that to conclude that TBI can cause risky substance use, it must be determined that TBI precedes risky substance use, that confounders with the potential to increase the likelihood of both TBI and risky substance use must be ruled out, and that there must be a plausible mechanism of action. In this review, we address these factors by providing an overview of key clinical and preclinical studies and list plausible mechanisms by which TBI could increase risky substance use. Human and animal studies have identified an association between TBI and risky substance use, although the strength of this association varies. Factors that may limit detection of this relationship include differential variability due to substance, sex, age of injury, and confounders that may influence the likelihood of both TBI and risky substance use. We propose possible mechanisms by which TBI could increase substance use that include damage-associated neuroplasticity, chronic changes in neuroimmune signaling, and TBI-associated alterations in brain networks.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - John D Corrigan
- Department of Physical Medicine & Rehabilitation, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
69
|
Macks C, Jeong D, Lee JS. Therapeutic efficacy of rolipram delivered by PgP nanocarrier on secondary injury and motor function in a rat TBI model. Nanomedicine (Lond) 2022; 17:431-445. [PMID: 35184609 PMCID: PMC8905552 DOI: 10.2217/nnm-2021-0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop poly(lactide-co-glycolide)-graft-polyethylenimine (PgP) as a nanocarrier for the delivery of rolipram (Rm) and evaluate the therapeutic efficacy of Rm-loaded PgP (Rm-PgP) on secondary injury and motor function in a rat traumatic brain injury (TBI) model. Materials & methods: Rm-PgP was injected in the injured brain lesion immediately after TBI using a microinjection pump. Secondary injury pathologies such as inflammatory response, apoptosis and astrogliosis were assessed by histological analysis and functional recovery was assessed by assorted motor function tests. Results: Rm-PgP restored cyclic adenosine monophosphate level in the injured brain close to the sham level and Rm-PgP treatment reduced lesion volume, neuroinflammation and apoptosis and improved motor function at 7 days post-TBI. Conclusion: One single injection of Rm-PgP can be effective for acute mild TBI treatment.
Collapse
Affiliation(s)
- Christian Macks
- Department of Bioengineering, Drug Design, Development, & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Daun Jeong
- Department of Bioengineering, Drug Design, Development, & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Jeoung Soo Lee
- Department of Bioengineering, Drug Design, Development, & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
70
|
Wang Z, Wang Z, Wang A, Li J, Wang J, Yuan J, Wei X, Xing F, Zhang W, Xing N. The neuroprotective mechanism of sevoflurane in rats with traumatic brain injury via FGF2. J Neuroinflammation 2022; 19:51. [PMID: 35177106 PMCID: PMC8855620 DOI: 10.1186/s12974-021-02348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a kind of acquired brain injury, which is caused by external mechanical forces. Moreover, the neuroprotective role of sevoflurane (Sevo) has been identified in TBI. Therefore, this research was conducted to figure out the mechanism of Sevo in TBI via FGF2. Methods The key factors of neuroprotective effects of Sevo in TBI rats were predicted by bioinformatics analysis. A TBI model was induced on rats that then inhaled Sevo for 1 h and grouped via lentivirus injection. Modified Neurological Severity Score was adopted to evaluate neuronal damage in rats, followed by motor function and brain water content measurement. FGF2, EZH2, and HES1 expression in brain tissues was evaluated by immunofluorescence staining, and expression of related genes and autophagy factors by RT-qPCR and Western blot analysis. Methylation-specific PCR was performed to assess HES1 promoter methylation level, and ChIP assay to detect the enrichment of EZH2 in the HES1 promoter. Neuronal damage was assessed by cell immunofluorescence staining, and neuronal apoptosis by Nissl staining, TUNEL staining, and flow cytometry. Results Sevo diminished brain edema, improved neurological scores, and decreased neuronal apoptosis and autophagy in TBI rats. Sevo preconditioning could upregulate FGF2 that elevated EZH2 expression, and EZH2 bound to the HES1 promoter to downregulate HES1 in TBI rats. Also, FGF2 or EZH2 overexpression or HES silencing decreased brain edema, neurological deficits, and neuronal autophagy and apoptosis in Sevo-treated TBI rats. Conclusions Our results provided a novel insight to the neuroprotective mechanism of Sevo in TBI rats by downregulating HES1 via FGF2/EZH2 axis activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02348-z.
Collapse
Affiliation(s)
- Zhongyu Wang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China. .,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| | - Zhaoyang Wang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Anqi Wang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Juan Li
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Junmin Wang
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Jingjing Yuan
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Xin Wei
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Fei Xing
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Na Xing
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China. .,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
71
|
Yang Q, Zhang S, Xu Z, Liu L, Fan S, Wu S, Ma C. The Effectiveness of Trigeminal Nerve Stimulation on Traumatic Brain Injury. Neuromodulation 2022; 25:1330-1337. [PMID: 35088758 DOI: 10.1016/j.neurom.2021.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Trigeminal nerve stimulation (TNS) is a promising strategy in treating diseases of the nervous system. In this study, the effects of TNS on traumatic brain injury (TBI) were investigated in a mouse model. MATERIALS AND METHODS TBI was induced using a weight-drop device, and TNS treatment was delivered in the first hour after the TBI. Twenty-four hours later, the mice's behavior, brain edema, and expression of inflammatory factors were tested. Functional magnetic resonance imaging also was used to explore the possible effects of TNS on brain activity. RESULTS TNS alleviates TBI-induced neurological dysfunction in animal behavior tests, besides protecting the blood-brain barrier and reducing the level of brain edema. TNS also effectively reduces the level of tumor necrosis factor-α and interleukin 6 and downregulates the cleaved caspase-3 signaling pathway. A series of brain areas was found to be possibly regulated by TNS, thus affecting the neural functions of animals. CONCLUSION This study elucidates the role of TNS as an effective treatment for TBI by inhibiting the occurrence of a secondary brain injury.
Collapse
Affiliation(s)
- Qian Yang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengnuo Fan
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
72
|
Zhang Y, Huang Z, Xia H, Xiong J, Ma X, Liu C. The benefits of exercise for outcome improvement following traumatic brain injury: Evidence, pitfalls and future perspectives. Exp Neurol 2021; 349:113958. [PMID: 34951984 DOI: 10.1016/j.expneurol.2021.113958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI), also known as a silent epidemic, is currently a substantial public health problem worldwide. Given the increased energy demands following brain injury, relevant guidelines tend to recommend absolute physical and cognitive rest for patients post-TBI. Nevertheless, recent evidence suggests that strict rest does not provide additional benefits to patients' recovery. By contrast, as a cost-effective non-pharmacological therapy, exercise has shown promise for enhancing functional outcomes after injury. This article summarizes the most recent evidence supporting the beneficial effects of exercise on TBI outcomes, focusing on the efficacy of exercise for cognitive recovery after injury and its potential mechanisms. Available evidence demonstrates the potential of exercise in improving cognitive impairment, mood disorders, and post-concussion syndrome following TBI. However, the clinical application for exercise rehabilitation in TBI remains challenging, particularly due to the inadequacy of the existing clinical evaluation system. Also, a better understanding of the underlying mechanisms whereby exercise promotes its most beneficial effects post-TBI will aid in the development of new clinical strategies to best benefit of these patients.
Collapse
Affiliation(s)
- Yulan Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhihai Huang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Honglin Xia
- Laboratory of Regenerative Medicine in Sports Science, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
73
|
Im SJ, Suh JY, Shim JH, Baek HM. Deterministic Tractography Analysis of Rat Brain Using SIGMA Atlas in 9.4T MRI. Brain Sci 2021; 11:brainsci11121656. [PMID: 34942958 PMCID: PMC8699268 DOI: 10.3390/brainsci11121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Preclinical studies using rodents have been the choice for many neuroscience researchers due totheir close reflection of human biology. In particular, research involving rodents has utilized MRI to accurately identify brain regions and characteristics by acquiring high resolution cavity images with different contrasts non-invasively, and this has resulted in high reproducibility and throughput. In addition, tractographic analysis using diffusion tensor imaging to obtain information on the neural structure of white matter has emerged as a major methodology in the field of neuroscience due to its contribution in discovering significant correlations between altered neural connections and various neurological and psychiatric diseases. However, unlike image analysis studies with human subjects where a myriad of human image analysis programs and procedures have been thoroughly developed and validated, methods for analyzing rat image data using MRI in preclinical research settings have seen significantly less developed. Therefore, in this study, we present a deterministic tractographic analysis pipeline using the SIGMA atlas for a detailed structural segmentation and structural connectivity analysis of the rat brain’s structural connectivity. In addition, the structural connectivity analysis pipeline presented in this study was preliminarily tested on normal and stroke rat models for initial observation.
Collapse
Affiliation(s)
- Sang-Jin Im
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
| | - Ji-Yeon Suh
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
| | - Jae-Hyuk Shim
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - Hyeon-Man Baek
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6678
| |
Collapse
|
74
|
Selvaraj P, Tanaka M, Wen J, Zhang Y. The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model. Cells 2021; 10:cells10123454. [PMID: 34943962 PMCID: PMC8700188 DOI: 10.3390/cells10123454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3212
| |
Collapse
|
75
|
Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6338722. [PMID: 34853630 PMCID: PMC8629662 DOI: 10.1155/2021/6338722] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) causes a high rate of mortality and disability, and its treatment is still limited. Loss of neurons in damaged area is hardly rescued by relative molecular therapies. Based on its disease characteristics, we transplanted human embryonic stem cell- (hESC-) derived cerebral organoids in the brain lesions of controlled cortical impact- (CCI-) modeled severe combined immunodeficient (SCID) mice. Grafted organoids survived and differentiated in CCI-induced lesion pools in mouse cortical tissue. Implanted cerebral organoids differentiated into various types of neuronal cells, extended long projections, and showed spontaneous action, as indicated by electromyographic activity in the grafts. Induced vascularization and reduced glial scar were also found after organoid implantation, suggesting grafting could improve local situation and promote neural repair. More importantly, the CCI mice's spatial learning and memory improved after organoid grafting. These findings suggest that cerebral organoid implanted in lesion sites differentiates into cortical neurons, forms long projections, and reverses deficits in spatial learning and memory, a potential therapeutic avenue for TBI.
Collapse
|
76
|
Animal model of repeated low-level blast traumatic brain injury displays acute and chronic neurobehavioral and neuropathological changes. Exp Neurol 2021; 349:113938. [PMID: 34863680 DOI: 10.1016/j.expneurol.2021.113938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022]
Abstract
Blast-induced neurotrauma (BINT) is not only a signature injury to soldiers in combat field and training facilities but may also a growing concern in civilian population due to recent increases in the use of improvised explosives by insurgent groups. Unlike moderate or severe BINT, repeated low-level blast (rLLB) is different in its etiology as well as pathology. Due to the constant use of heavy weaponry as part of combat readiness, rLLB usually occurs in service members undergoing training as part of combat readiness. rLLB does not display overt pathological symptoms; however, earlier studies report chronic neurocognitive changes such as altered mood, irritability, and aggressive behavior, all of which may be caused by subtle neuropathological manifestations. Current animal models of rLLB for investigation of neurobehavioral and neuropathological alterations have not been adequate and do not sufficiently represent rLLB conditions. Here, we developed a rat model of rLLB by applying controlled low-level blast pressures (<10 psi) repeated successively five times to mimic the pressures experienced by service members. Using this model, we assessed anxiety-like symptoms, motor coordination, and short-term memory as a function of time. We also examined levels of superoxide-producing enzyme NADPH oxidase, microglial activation, and reactive astrocytosis as factors likely contributing to these neurobehavioral changes. Animals exposed to rLLB displayed acute and chronic anxiety-like symptoms, motor and short-term memory impairments. These changes were paralleled by increased microglial activation and reactive astrocytosis. Conversely, animals exposed to a single low-level blast did not display significant changes. Collectively, this study demonstrates that, unlike a single low-level blast, rLLB exerts a cumulative impact on different brain regions and produces chronic neuropathological changes in so doing, may be responsible for neurobehavioral alterations.
Collapse
|
77
|
The Regulation Effect of α7nAChRs and M1AChRs on Inflammation and Immunity in Sepsis. Mediators Inflamm 2021; 2021:9059601. [PMID: 34776789 PMCID: PMC8580654 DOI: 10.1155/2021/9059601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
The inflammatory storm in the early stage and immunosuppression in the late stage are responsible for the high mortality rates and multiple organ dysfunction in sepsis. In recent years, studies have found that the body's cholinergic system can spontaneously and dynamically regulate inflammation and immunity in sepsis according to the needs of the body. Firstly, the vagus nerve senses and regulates local or systemic inflammation by means of the Cholinergic Anti-inflammatory Pathway (CAP) and activation of α7-nicotinic acetylcholine receptors (α7nAChRs); thus, α7nAChRs play important roles for the central nervous system (CNS) to modulate peripheral inflammation; secondly, the activation of muscarinic acetylcholine receptors 1 (M1AChRs) in the forebrain can affect the neurons of the Medullary Visceral Zone (MVZ), the core of CAP, to regulate systemic inflammation and immunity. Based on the critical role of these two cholinergic receptor systems in sepsis, it is necessary to collect and analyze the related findings in recent years to provide ideas for further research studies and clinical applications. By consulting the related literature, we draw some conclusions: MVZ is the primary center for the nervous system to regulate inflammation and immunity. It coordinates not only the sympathetic system and vagus system but also the autonomic nervous system and neuroendocrine system to regulate inflammation and immunity; α7nAChRs are widely expressed in immune cells, neurons, and muscle cells; the activation of α7nAChRs can suppress local and systemic inflammation; the expression of α7nAChRs represents the acute or chronic inflammatory state to a certain extent; M1AChRs are mainly expressed in the advanced centers of the brain and regulate systemic inflammation; neuroinflammation of the MVZ, hypothalamus, and forebrain induced by sepsis not only leads to their dysfunctions but also underlies the regulatory dysfunction on systemic inflammation and immunity. Correcting the neuroinflammation of these regulatory centers and adjusting the function of α7nAChRs and M1AChRs may be two key strategies for the treatment of sepsis in the future.
Collapse
|
78
|
Karakaya D, Cakir-Aktas C, Uzun S, Soylemezoglu F, Mut M. Tailored Therapeutic Doses of Dexmedetomidine in Evolving Neuroinflammation after Traumatic Brain Injury. Neurocrit Care 2021; 36:802-814. [PMID: 34782991 DOI: 10.1007/s12028-021-01381-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Understanding the secondary damage mechanisms of traumatic brain injury (TBI) is essential for developing new therapeutic approaches. Neuroinflammation has a pivotal role in secondary brain injury after TBI. Activation of NLRP3 inflammasome complexes results in the secretion of proinflammatory mediators and, in addition, later in the response, microglial activation and migration of the peripheral immune cells into the injured brain are observed. Therefore, these components involved in the inflammatory process are becoming a new treatment target in TBI. Dexmedetomidine (Dex) is an effective drug, widely used over the past few years in neurocritical care units and during surgical operations for sedation and analgesia, and has anti-inflammatory effects, which are shown in in vivo studies. The aim of this original research is to discuss the anti-inflammatory effects of different Dex doses over time in TBI. METHODS Brain injury was performed by using a weight-drop model. Half an hour after the trauma, intraperitoneal saline was injected into the control groups and 40 and 200 μg/kg of Dex were given to the drug groups. Neurological evaluations were performed with the modified Neurological Severity Score before being killed. Then, the mice were killed on the first or the third day after TBI and histopathologic (hematoxylin-eosin) and immunofluorescent (Iba1, NLRP3, interleukin-1β, and CD3) findings of the brain tissues were examined. Nonparametric data were analyzed by using the Kruskal-Wallis test for multiple comparisons, and the Mann-Whitney U-test was done for comparing two groups. The results are presented as mean ± standard error of mean. RESULTS The results showed that low doses of Dex suppress NLRP3 and interleukin-1β in both terms. Additionally, high doses of Dex cause a remarkable decrease in the migration and motility of microglial cells and T cells in the late phase following TBI. Interestingly, the immune cells were influenced by only high-dose Dex in the late phase of TBI and it also improves neurologic outcome in the same period. CONCLUSIONS In the mice head trauma model, different doses of Dex attenuate neuroinflammation by suppressing distinct components of the neuroinflammatory process in a different timecourse that contributes to neurologic recovery. These results suggest that Dex may be an appropriate choice for sedation and analgesia in patients with TBI.
Collapse
Affiliation(s)
- Dicle Karakaya
- Faculty of Medicine, Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Canan Cakir-Aktas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Sennur Uzun
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Hacettepe University, Ankara, Turkey
| | - Figen Soylemezoglu
- Faculty of Medicine, Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Melike Mut
- Faculty of Medicine, Department of Neurosurgery, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
79
|
Acevedo-Aguilar L, Gaitán-Herrera G, Reina-Rivero R, Lozada-Martínez ID, Bohorquez-Caballero A, Paéz-Escallón N, Del Pilar Zambrano-Arenas MD, Ortega-Sierra MG, Moscote-Salazar LR, Janjua T. Pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury: from physiology to physiopathology. J Neurosurg Sci 2021; 66:251-257. [PMID: 34763389 DOI: 10.23736/s0390-5616.21.05468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury is caused by mechanical forces impacting the skull and its internal structures and constitutes one of the main causes of morbidity and mortality in the world. Clinically, severe traumatic brain injury is associated with the development of acute lung injury and so far, few studies have evaluated the cellular, molecular and immunological mechanisms involved in this pathophysiological process. Knowing and investigating these mechanisms allows us to correlate pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury and to use this finding in decision making during clinical practice. This review aims to provide evidence on the importance of the pathophysiology of traumatic brain injury-acute lung injury, and thus confirm its role as a predictor of cerebral hypoxia, helping to establish an appropriate therapeutic strategy to improve functional outcomes and reduce mortality.
Collapse
Affiliation(s)
- Laura Acevedo-Aguilar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Gustavo Gaitán-Herrera
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Randy Reina-Rivero
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ivan D Lozada-Martínez
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia - .,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia.,Future Surgeons Chapter, Colombian Surgery Association, Bogotá, Colombia
| | | | | | | | - Michael G Ortega-Sierra
- Medical and Surgical Research Center, School of Medicine, Corporación Universitaria Rafael Nuñez, Cartagena, Colombia
| | - Luis R Moscote-Salazar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia.,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia
| | - Tariq Janjua
- Intensive Care, Regions Hospital, Saint Paul, MN, USA
| |
Collapse
|
80
|
Jiang Q, Wei D, He X, Gan C, Long X, Zhang H. Phillyrin Prevents Neuroinflammation-Induced Blood-Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Front Pharmacol 2021; 12:719823. [PMID: 34744713 PMCID: PMC8565465 DOI: 10.3389/fphar.2021.719823] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Phillyrin (Phi) is the main polyphenolic compound found in Forsythia suspensa. Recent studies have revealed that Phi has potent antioxidative and anti-inflammatory effects. However, whether Phi could relieve blood-brain barrier (BBB) damage following traumatic brain injury (TBI) remains unknown. Materials and Methods: Lipopolysaccharide (LPS) was used to activate primary microglia, which were then treated with different doses of Phi or the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist (GW9662). CCK-8 assay was used for evaluating cell viability, and the cytokines (including IL-1β, IL-6, TNFα, IL-4, IL-10, and TGFβ), microglial phenotypic markers (iNOS, COX2, and CD86 for "M1" polarization; Arg1, Ym1, and CD206 for "M2" polarization), PPARγ, and NF-κB were determined by RT-PCR, Western blot, or cellular immunofluorescence. Primary cultured mouse brain microvascular endothelial cells (BMECs) were stimulated by the condition medium (CM) from microglia. The cell viability, angiogenesis, and tight junction of BMECs were determined via CCK-8 assay, tube formation assay, and Western blot (for detecting MMP3, MMP9, ZO1, claudin-5, and occludin). Furthermore, the mouse TBI model was constructed and treated with Phi and/or GW9662. The BBB integrity was evaluated by H&E staining, Evans blue staining, and tissue immunofluorescence. Results: Phi markedly restrained the pro-inflammatory ("M1" state) cytokines and promoted anti-inflammatory ("M2" polarization) cytokines in LPS-mediated microglia. Phi mitigated "M1" polarization and promoted "M2" polarization of microglia via enhancing PPARγ and inhibiting the NF-κB pathway. The PPARγ antagonist GW9662 significantly repressed Phi-mediated anti-inflammatory effects. Meanwhile, Phi enhanced the viability, tube formation ability, and cell junction of BMECs. In the TBI mouse model, Phi promoted "M2" polarization, whereas it repressed the "M1" polarization of microglia. In addition, Phi reduced TBI-mediated BBB damage. However, the protective effects of Phi were reversed mainly by GW9662 treatment. Conclusion: Phi prevents BBB damage via inhibiting the neuroinflammation of microglia through the PPARγ/NF-κB pathway, which provides a potential therapeutic drug against TBI.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Wei
- Department of Neurosurgery, Tianyou Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Long
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
81
|
Kim HJ, Eun S, Yoon SH, Kim MK, Chung HS, Koo C. Paediatric Trauma Score as a non-imaging tool for predicting intracranial haemorrhage in patients with traumatic brain injury. Sci Rep 2021; 11:20911. [PMID: 34686729 PMCID: PMC8536669 DOI: 10.1038/s41598-021-00419-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
To identify a useful non-imaging tool to screen paediatric patients with traumatic brain injury for intracranial haemorrhage (ICH). We retrospectively analysed patients aged < 15 years who visited the emergency department with head trauma between January 2015 and September 2020. We divided patients into two groups (ICH and non-ICH) and compared their demographic and clinical factors. Among 85 patients, 21 and 64 were in the ICH and non-ICH groups, respectively. Age (p = 0.002), Pediatric trauma score (PTS; p < 0.001), seizure (p = 0.042), and fracture (p < 0.001) differed significantly between the two groups. Factors differing significantly between the groups were as follows: age (odds ratio, 0.84, p = 0.004), seizure (4.83, p = 0.013), PTS (0.15, p < 0.001), and fracture (69.3, p < 0.001). Factors with meaningful cut-off values were age (cut-off [sensitivity, specificity], 6.5 [0.688, 0.714], p = 0.003) and PTS [10.5 (0.906, 0.81), p < 0.001]. Based on the previously known value for critical injury (≤ 8 points) and the cut-off value of the PTS identified in this study (≤ 10 points), we divided patients into low-risk, medium-risk, and high-risk groups; their probabilities of ICH (95% confidence intervals) were 0.16-12.74%, 35.86-89.14%, and 100%, respectively. PTS was the only factor that differed significantly between mild and severe ICH cases (p = 0.012). PTS is a useful screening tool with a high predictability for ICH and can help reduce radiation exposure when used to screen patient groups before performing imaging studies.
Collapse
Affiliation(s)
- Heoung Jin Kim
- Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Division of Pediatric Emergency Medicine, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyun Eun
- Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Division of Pediatric Emergency Medicine, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seo Hee Yoon
- Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Division of Pediatric Emergency Medicine, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moon Kyu Kim
- Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Division of Pediatric Emergency Medicine, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Soo Chung
- Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Emergency Medicine, Severance Hospital, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Chungmo Koo
- Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Division of Pediatric Emergency Medicine, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
82
|
Natakusuma TISD, Mahadewa TGB, Mardhika PE, Maliawan S, Senapathi TGA, Ryalino C. Role of Monocyte-to-lymphocyte Ratio, Mean Platelet Volume-to-Platelet Count Ratio, C-Reactive Protein and Erythrocyte Sedimentation Rate as Predictor of Severity in Secondary Traumatic Brain Injury: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Secondary traumatic brain injury (TBI) is injury to the brain following primary TBI because of neuroinflammation as consequences of neuronal and glial cell injury which cause release of various inflammation cytokine and chemokine. Biomarker examination to predict the severity of secondary TBI is important to provide appropriate treatment to the patient. This article reviews possibility several common laboratory parameter such as monocyte-to-lymphocyte ratio (MLR), mean platelet volume-to-platelet count (PC) ratio (MPV-PCR), c-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) to predict severity of secondary TBI.
LITERATURE REVIEW: TBI activates microglia which increase infiltration and proliferation of monocyte. Neuroinflammation also increases thrombopoiesis which leads to increase megakaryocytes production. In the other hand, due to disruption of brain blood vessels because of trauma, coagulation cascade is also activated and leads to consumptive coagulopathy. These are reflected as high monocyte count, low PC, and high MPV. Lymphocyte count is reported low in TBI especially in poor outcome patients. CRP is an acute phase reactant that increased in inflammation condition. In TBI, increased production of Interleukin-6 leads to increase CRP production. In head injured patients, ESR level does not increase significantly in the acute phase of inflammation but last longer when compared to CRP.
CONCLUSION: MLR, MPV-PCR, CRP, and ESR could be predictor of severity in secondary TBI.
Collapse
|
83
|
Biofluid Biomarkers in Traumatic Brain Injury: A Systematic Scoping Review. Neurocrit Care 2021; 35:559-572. [PMID: 33403583 DOI: 10.1007/s12028-020-01173-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023]
Abstract
Emerging evidence suggests that biofluid-based biomarkers have diagnostic and prognostic potential in traumatic brain injuries (TBI). However, owing to the lack of a conceptual framework or comprehensive review, it is difficult to visualize the breadth of materials that might be available. We conducted a systematic scoping review to map and categorize the evidence regarding biofluid-based biochemical markers of TBI. A comprehensive search was undertaken in January 2019. Of 25,354 records identified through the literature search, 1036 original human studies were included. Five hundred forty biofluid biomarkers were extracted from included studies and classified into 19 distinct categories. Three categories of biomarkers including cytokines, coagulation tests, and nerve tissue proteins were investigated more than others and assessed in almost half of the studies (560, 515, and 502 from 1036 studies, respectively). S100 beta as the most common biomarker for TBI was tested in 21.2% of studies (220 articles). Cortisol was the only biomarker measured in blood, cerebrospinal fluid, urine, and saliva. The most common sampling time was at admission and within 24 h of injury. The included studies focused mainly on biomarkers from blood and central nervous system sources, the adult population, and severe and blunt injuries. The most common outcome measures used in studies were changes in biomarker concentration level, Glasgow coma scale, Glasgow outcome scale, brain computed tomography scan, and mortality rate. Biofluid biomarkers could be clinically helpful in the diagnosis and prognosis of TBI. However, there was no single definitive biomarker with accurate characteristics. The present categorization would be a road map to investigate the biomarkers of the brain injury cascade separately and detect the most representative biomarker of each category. Also, this comprehensive categorization could provide a guiding framework to design combined panels of multiple biomarkers.
Collapse
|
84
|
Kyyriäinen J, Kajevu N, Bañuelos I, Lara L, Lipponen A, Balosso S, Hämäläinen E, Das Gupta S, Puhakka N, Natunen T, Ravizza T, Vezzani A, Hiltunen M, Pitkänen A. Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. Int J Mol Sci 2021; 22:10555. [PMID: 34638900 PMCID: PMC8508668 DOI: 10.3390/ijms221910555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to -29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.
Collapse
Affiliation(s)
- Jenni Kyyriäinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Leonardo Lara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701 Kuopio, Finland
| | - Silvia Balosso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (T.N.); (M.H.)
| | - Teresa Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (T.N.); (M.H.)
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| |
Collapse
|
85
|
Dhote VV, Raja MKMM, Samundre P, Sharma S, Anwikar S, Upaganlawar AB. Sports Related Brain Injury and Neurodegeneration in Athletes. Curr Mol Pharmacol 2021; 15:51-76. [PMID: 34515018 DOI: 10.2174/1874467214666210910114324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | | | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Supriya Sharma
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Shraddha Anwikar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Aman B Upaganlawar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| |
Collapse
|
86
|
Lv X, Lv F, Yin G, Yi J, Liu Y, Tian Y. Curative Effect of Early Full Nursing Combined with Postdischarge Continuation Nursing on Patients after Craniocerebral Trauma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7424855. [PMID: 34527065 PMCID: PMC8437603 DOI: 10.1155/2021/7424855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Early full nursing helps patients with some dysfunctions speed up the reorganization of central nervous system functions and coordinate muscle and limb activities. Postdischarge continuation nursing for patients who have not fully recovered after being discharged from the hospital can transfer nursing work from the hospital to the family to meet their nursing needs. In this study, early full nursing combined with postdischarge continuation nursing was used for patients with traumatic brain injury to explore its efficacy and its impact on patients' motor function, quality of life, and complications. The results of the study show that the total effective rate of the observation group (95.92%) was higher than that of the control group (85.71%). At discharge and 1 month, 3 months, and 6 months after discharge, the upper limb Fugl-Meyer score, lower limb Fugl-Meyer score, ARAT score, FIM score, 4 dimensions of GQOLI-74 score, and Barthel index scores of the observation group were higher than those of the control group in the same period. The postoperative complication rate (10.20%) of the observation group was lower than that of the control group (26.53%). Early full nursing combined with postdischarge continuation nursing can improve the rehabilitation effect, effectively promote the recovery of motor function in patients with traumatic brain injury, improve the quality of life, and reduce postoperative complications.
Collapse
Affiliation(s)
- Xiaodan Lv
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Fengxia Lv
- Panzhihua Center for Disease Control and Prevention, Panzhihua 617099, Sichuan, China
| | - Guimei Yin
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Ju Yi
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Yi Liu
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Ying Tian
- Department of Nursing, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| |
Collapse
|
87
|
Kousi C, Lampri E, Voulgaris S, Vougiouklakis T, Galani V, Mitselou A. Expression of orexin-A (hypocretin-A) in the hypothalamus after traumatic brain injury: A postmortem evaluation. Forensic Sci Int 2021; 327:110961. [PMID: 34454377 DOI: 10.1016/j.forsciint.2021.110961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity. The key component of TBI pathophysiology is traumatic axonal injury (TAI), commonly referred to as diffuse axonal injury (DAI). Coma is a serious complication which can occur following traumatic brain injury (TBI). Recently, studies have shown that the central orexinergic/ hypocretinergic system exhibit prominent arousal promoting actions. Therefore, the purpose of this study is to investigate by immunohistochemistry the expression of beta-amyloid precursor protein (β-APP) in white matter of parasagittal region, corpus callosum and brainstem and the expression of orexin-A (ORXA) in the hypothalamus after traumatic brain injury. RESULTS: DAI was found in 26 (53.06%) cases, assessed with β-APP immunohistochemical staining in parasagittal white matter, corpus callosum and brainstem. Orexin-A immunoreactivity in hypothalamus was completely absent in 5 (10.2%) of the cases; moderate reduction of ORXA was observed in 9 (18.4%) of the cases; and severe reduction was observed in 7 (14.3%) of the cases. A statistically significant correlation was found between β-APP immunostaining in white matter, corpus callosum and brainstem in relation to survival time (p < 0.002, p < 0.003 and p < 0.005 respectively). A statistically positive correlation was noted between ORX-A immunoreactivity in hypothalamus to survival time (p < 0.003). An inverse correlation was noted between the expression of β-APP in the regions of brain studied to the expression of ORX-A in the hypothalamus of the cases studied (p < 0.005). CONCLUSIONS: The present study demonstrated by immunohistochemistry that reduction of orexin-A neurons in the hypothalamus, involved in coma status and arousal, enhanced the immunoexpression of β-APP in parasagital white matter, corpus callosum and brainstem.
Collapse
Affiliation(s)
- Chrysavgi Kousi
- Department of Forensic Medicine and Toxicology Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Evangeli Lampri
- Department of Pathology Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Spyridon Voulgaris
- Department of Neurosurgery, Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Theodoros Vougiouklakis
- Department of Forensic Medicine and Toxicology Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Vassiliki Galani
- Department of Anatomy-Histology-Embryology, University of Ioannina, Greece.
| | - Antigony Mitselou
- Department of Forensic Medicine and Toxicology Health Sciences, School of Medicine, University of Ioannina, Greece
| |
Collapse
|
88
|
Feng Y, Li K, Roth E, Chao D, Mecca CM, Hogan QH, Pawela C, Kwok WM, Camara AKS, Pan B. Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Front Cell Neurosci 2021; 15:689334. [PMID: 34447298 PMCID: PMC8383341 DOI: 10.3389/fncel.2021.689334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
A major hurdle preventing effective interventions for patients with mild traumatic brain injury (mTBI) is the lack of known mechanisms for the long-term cognitive impairment that follows mTBI. The closed head impact model of repeated engineered rotational acceleration (rCHIMERA), a non-surgical animal model of repeated mTBI (rmTBI), mimics key features of rmTBI in humans. Using the rCHIMERA in rats, this study was designed to characterize rmTBI-induced behavioral disruption, underlying electrophysiological changes in the medial prefrontal cortex (mPFC), and associated mitochondrial dysfunction. Rats received 6 closed-head impacts over 2 days at 2 Joules of energy. Behavioral testing included automated analysis of behavior in open field and home-cage environments, rotarod test for motor skills, novel object recognition, and fear conditioning. Following rmTBI, rats spent less time grooming and less time in the center of the open field arena. Rats in their home cage had reduced inactivity time 1 week after mTBI and increased exploration time 1 month after injury. Impaired associative fear learning and memory in fear conditioning test, and reduced short-term memory in novel object recognition test were found 4 weeks after rmTBI. Single-unit in vivo recordings showed increased neuronal activity in the mPFC after rmTBI, partially attributable to neuronal disinhibition from reduced inhibitory synaptic transmission, possibly secondary to impaired mitochondrial function. These findings help validate this rat rmTBI model as replicating clinical features, and point to impaired mitochondrial functions after injury as causing imbalanced synaptic transmission and consequent impaired long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Keguo Li
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth Roth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christina M Mecca
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher Pawela
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
89
|
Wang Z, Li J, Wang A, Wang Z, Wang J, Yuan J, Wei X, Xing F, Zhang W, Xing N. Sevoflurane Inhibits Traumatic Brain Injury-Induced Neuron Apoptosis via EZH2-Downregulated KLF4/p38 Axis. Front Cell Dev Biol 2021; 9:658720. [PMID: 34422795 PMCID: PMC8371463 DOI: 10.3389/fcell.2021.658720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by physical damage to the brain tissues, ensuing transitory or permanent neurological dysfunction featured with neuronal loss and subsequent brain damage. Sevoflurane, a widely used halogenated anesthetic in clinical settings, has been reported to alleviate neuron apoptosis in TBI. Nevertheless, the underlying mechanism behind this alleviation remains unknown, and thus was the focus of the current study. First, Feeney models were established to induce TBI in rats. Subsequently, evaluation of the modified neurological severity scores, measurement of brain water content, Nissl staining, and TUNEL assay were employed to investigate the neuroprotective effects of sevoflurane. Immunofluorescence and Western blot analysis were further applied to detect the expression patterns of apoptosis-related proteins as well as the activation of the p38-mitogen-activated protein kinase (MAPK) signaling pathway within the lesioned cortex. Additionally, a stretch injury model comprising cultured neurons was established, followed by neuron-specific enolase staining and Sholl analysis. Mechanistic analyses were performed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. The results demonstrated sevoflurane treatment brought about a decrease blood-brain barrier (BBB) permeability, brain water content, brain injury and neuron apoptosis, to improve neurological function. The neuroprotective action of sevoflurane could be attenuated by inactivation of the p38-MAPK signaling pathway. Mechanistically, sevoflurane exerted an inhibitory effect on neuron apoptosis by up-regulating enhancer of zeste homolog 2 (EZH2), which targeted Krüppel-like factor 4 (KLF4) and inhibited KLF4 transcription. Collectively, our findings indicate that sevoflurane suppresses neuron apoptosis induced by TBI through activation of the p38-MAPK signaling pathway via the EZH2/KLF4 axis, providing a novel mechanistic explanation for neuroprotection of sevoflurane in TBI.
Collapse
Affiliation(s)
- Zhongyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Li
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anqi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoyang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Jingjing Yuan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wei
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Xing
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Xing
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
90
|
Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK. Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Karthikeya P. Deshmukh
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
| | - Savas Tasoglu
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
- Boğaziçi Institute of Biomedical Engineering Boğaziçi University Istanbul 34684 Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| |
Collapse
|
91
|
Marjani S, Zirh S, Sever-Bahcekapili M, Cakir-Aktas C, Muftuoglu SF, Mut M. Doxycycline alleviates acute traumatic brain injury by suppressing neuroinflammation and apoptosis in a mouse model. J Neuroimmunol 2021; 359:577672. [PMID: 34364104 DOI: 10.1016/j.jneuroim.2021.577672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023]
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death among young people worldwide. Doxycycline (DOX), an antibiotic with anti-inflammatory effects, has not been used as a therapeutic agent to modify the inflammatory response after the traumatic brain injury. In this study, intraperitoneal administration of DOX reduced significantly the acute inflammatory markers like IL-6 and CD3, microglial migration to the damaged area marked with Iba-1, and neuronal apoptosis assessed with TUNEL assay at 72 h after the trauma. The low dose, 10 mg/kg of DOX had a dominant anti-inflammatory effect; while the high dose, 100 mg/kg of DOX, was more effective in decreasing neuronal apoptosis. In early hours after the head trauma, use of a low dose (10 mg/kg) of DOX for decreasing the acute form of inflammation followed by a high dose (100 mg/kg) for the anti-apoptotic effects particularly in severe head traumas, would be a promising approach to alleviate the brain injury.
Collapse
Affiliation(s)
- Saeid Marjani
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Selim Zirh
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Canan Cakir-Aktas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Sevda Fatma Muftuoglu
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melike Mut
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey; Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
92
|
Shafiee S, Zali A, Shafizad M, Emami Zeydi A, Ehteshami S, Rezaii F, Tafakhori A, Ertiaei A, Darvishi-Khezri H, Khademloo M, Khoshnood RJ. The Effect of Oral Simvastatin on the Clinical Outcome of Patients with Severe Traumatic Brain Injury: A Randomized Clinical Trial. Ethiop J Health Sci 2021; 31:807-816. [PMID: 34703180 PMCID: PMC8512953 DOI: 10.4314/ejhs.v31i4.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 01/08/2023] Open
Abstract
Background Despite recent promising pharmacological and technological advances in neurosurgical intensive care, the overall TBI-related mortality and morbidity remain high and still pose a major clinical problem. The aim of this study was to evaluate the effect of oral simvastatin on the clinical outcome of patients with severe TBI. Methods In a double-blind placebo-controlled randomized clinical trial a total of 98 patients with severe TBI in Imam Khomeini Hospital in Sari, Iran, were evaluated. Patients who meet the inclusion criteria were randomly allocated into two groups (n=49). In addition to supportive therapies, the intervention group received oral simvastatin (40 mg, daily) for 10 days, and the control group received the placebo (10 days). Patients' Glasgow coma scale (GCS) score, in hospital mortality, duration of mechanical ventilation and length of ICU and neurosurgery ward stay were evaluated during three-time intervals (T1: admission, T2: discharge and T3: one month after discharge). Results The percentage of conscious patients was 18.9% (7 cases) in the simvastatin group and 3.1% (1 case) in controls (P=0.06) at T2. One month after discharge (T3) the proportion of conscious patients significantly increased in the simvastatin group compared to control group (64.9 % versus 28.1 %; P=0.002). There was no significant difference for the mean of GCS score between the simvastatin group and control group at T1 (6.41 ± 1.30 versus 6.41 ± 1.28, respectively; P = 0.98). However, the mean score of GCS in patients who received simvastatin was significantly greater than controls at T2 and T3 (p<0.05). There was no significant differences between two group in-terms of length of mechanical ventilation, ICU and neurosurgery ward stay. Conclusion According to the results of this study it seems that using simvastatin may be an effective and promising therapeutic modality for improving GCS score during TBI recovery.
Collapse
Affiliation(s)
- Sajad Shafiee
- Department of Neurosurgery, Orthopedics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohadaye Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Misagh Shafizad
- Department of Neurosurgery, Orthopedics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Emami Zeydi
- Department of Medical-Surgical Nursing, Nasibeh School of Nursing and Midwifery, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Ehteshami
- Department of Neurosurgery, Orthopedics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Rezaii
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhasan Ertiaei
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Khademloo
- Department of Community Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Jalili Khoshnood
- Functional Neurosurgery Research Center, Shohadaye Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
93
|
Farkhondeh T, Samarghandian S, Roshanravan B, Peivasteh-Roudsari L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat Food Nutr Agric 2021; 11:137-144. [PMID: 31288732 DOI: 10.2174/2212798410666190617161523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury (TBI) is one of the main causes of mortality and morbidity worldwide with no suitable treatment. The present study was designed to review the present literature about the protective effects of curcumin and the underlying mechanism against TBI. All published English language papers from beginning to 2019 were selected in this study. The findings indicate that curcumin may be effective against TBI outcomes by modulating the molecular signaling pathways involved in oxidative stress, inflammation, apoptosis, and autophagy. However, more experimental studies should be done to identify all mechanisms involved in the pathogenesis of TBI. Patents for Curcumin and chronic inflammation and traumatic brain injury management (WO2017097805A1 and US9101580B2) were published. In conclusion, the present study confirmed the potential therapeutic impact of curcumin for treating TBI.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Peivasteh-Roudsari
- Devision of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
94
|
Mansour NO, Shama MA, Werida RH. The effect of doxycycline on neuron-specific enolase in patients with traumatic brain injury: a randomized controlled trial. Ther Adv Chronic Dis 2021; 12:20406223211024362. [PMID: 34262678 PMCID: PMC8246481 DOI: 10.1177/20406223211024362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: We aimed to examine the effect of doxycycline on serum levels of neuron-specific enolase (NSE), a marker of neuronal damage in traumatic brain injury (TBI) patients. Methods: Patients were randomly assigned into two groups (n = 25 each) to receive either placebo or doxycycline (200 mg daily), with their standard management for 7 days. Results: NSE serum levels in the doxycycline and control groups on day 3 were 14.66 ± 1.78 versus 18.09 ± 4.38 ng/mL, respectively (p = 0.008), and on day 7 were 12.3 ± 2.0 versus 16.43 ± 3.85 ng/mL, respectively (p = 0.003). Glasgow Coma Scale (GCS) on day 7 was 11.90 ± 2.83 versus 9.65 ± 3.44 in the doxycycline and control groups, respectively (p = 0.031). NSE serum levels and GCS scores were negatively correlated (r = −0.569, p < 0.001). Conclusion: Adjunctive early use of doxycycline might be a novel option that halts the ongoing secondary brain injury in patients with moderate to severe TBI. Future larger clinical trials are warranted to confirm these findings.
Collapse
Affiliation(s)
- Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, El-Dakahelia, Egypt
| | - Mohamed A Shama
- Emergency Medicine and Traumatology Department, Faculty of Medicine, Tanta University, Tanta, El-Gharbia, Egypt
| | - Rehab H Werida
- Clinical Pharmacy and Pharmacy Practice Department - Faculty of Pharmacy, Damanhour University, Elchorniash Street, Damanhour, Elbehairah 31527, Egypt
| |
Collapse
|
95
|
Montivero AJ, Ghersi MS, Silvero C MJ, Artur de la Villarmois E, Catalan-Figueroa J, Herrera M, Becerra MC, Hereñú CB, Pérez MF. Early IGF-1 Gene Therapy Prevented Oxidative Stress and Cognitive Deficits Induced by Traumatic Brain Injury. Front Pharmacol 2021; 12:672392. [PMID: 34234671 PMCID: PMC8255687 DOI: 10.3389/fphar.2021.672392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality in adults under 40 years old. Once primary injury occurs after TBI, neuroinflammation and oxidative stress (OS) are triggered, contributing to the development of many TBI-induced neurological deficits, and reducing the probability of critical trauma patients´ survival. Regardless the research investment on the development of anti-inflammatory and neuroprotective treatments, most pre-clinical studies have failed to report significant effects, probably because of the limited blood brain barrier permeability of no-steroidal or steroidal anti-inflammatory drugs. Lately, neurotrophic factors, such as the insulin-like growth factor 1 (IGF-1), are considered attractive therapeutic alternatives for diverse neurological pathologies, as they are neuromodulators linked to neuroprotection and anti-inflammatory effects. Considering this background, the aim of the present investigation is to test early IGF-1 gene therapy in both OS markers and cognitive deficits induced by TBI. Male Wistar rats were injected via Cisterna Magna with recombinant adenoviral vectors containing the IGF-1 gene cDNA 15 min post-TBI. Animals were sacrificed after 60 min, 24 h or 7 days to study the advanced oxidation protein products (AOPP) and malondialdehyde (MDA) levels, to recognize the protein oxidation damage and lipid peroxidation respectively, in the TBI neighboring brain areas. Cognitive deficits were assessed by evaluating working memory 7 days after TBI. The results reported significant increases of AOPP and MDA levels at 60 min, 24 h, and 7 days after TBI in the prefrontal cortex, motor cortex and hippocampus. In addition, at day 7, TBI also reduced working memory performance. Interestingly, AOPP, and MDA levels in the studied brain areas were significantly reduced after IGF-1 gene therapy that in turn prevented cognitive deficits, restoring TBI-animals working memory performance to similar values regarding control. In conclusion, early IGF-1 gene therapy could be considered a novel therapeutic approach to targeting neuroinflammation as well as to preventing some behavioral deficits related to TBI.
Collapse
Affiliation(s)
- Agustín J Montivero
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - M Jazmín Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Emilce Artur de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Johanna Catalan-Figueroa
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina.,Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Macarena Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| |
Collapse
|
96
|
Yang Y, Shen L, Xu M, Chen L, Lu W, Wang W. Serum calprotectin as a prognostic predictor in severe traumatic brain injury. Clin Chim Acta 2021; 520:101-107. [PMID: 34102135 DOI: 10.1016/j.cca.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Calprotectin plays an important role during inflammation. We intended to explore the prognostic value of serum calprotectin levels in patients with severe traumatic brain injury (sTBI). METHODS In this prospective cohort study of 149 sTBI patients, we determined the relationship between serum calprotectin levels and 90-day overall survival plus poor outcome (Glasgow outcome scale score of 1-3) after sTBI, and analyzed its associations with Rotterdam computerized tomography (CT) scores, Glasgow coma scale (GCS) scores and two markers of inflammatory reaction including serum C-reactive protein levels and blood leucocyte count. RESULTS Serum calprotectin levels were significantly correlated with Rotterdam CT scores, GCS scores, serum C-reactive protein levels and blood leucocyte count. Patients with poor outcome at 90 days displayed higher serum calprotectin levels than the other remainders. Serum calprotectin appeared as an independent predictor for 90-day overall survival and poor outcome. Under receiver operating characteristic curve, serum calprotectin levels exhibited an efficient discrimination capacity for 90-day poor outcome. CONCLUSIONS Serum calprotectin levels are significantly correlated with inflammation, trauma severity and poor outcome at 90 days in sTBI patients, suggesting that serum calprotectin may be a biomarker for providing complementary prognostic information to identify patients at risk of poor outcome after sTBI.
Collapse
Affiliation(s)
- Yan Yang
- Department of Critical Care Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Likui Shen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 266021, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Long Chen
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Wei Lu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China.
| |
Collapse
|
97
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
98
|
Mete M, Alpay S, Aydemir I, Unsal UU, Collu F, Özel HF, Duransoy YK, Kutlu N, Tuglu Mİ. Therapeutic effects of Lacosamide in a rat model of traumatic brain injury: A histological, biochemical and electroencephalography monitoring study. Injury 2021; 52:713-723. [PMID: 33714548 DOI: 10.1016/j.injury.2021.02.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide, especially in children and young adults. TBI can be classified based on severity, mechanism or other features. Inflammation, apoptosis, oxidative stress, and ischemia are some of the important pathophys-iological mechanisms underlying neuronal loss after TBI. Lacosamide (LCM) is an anticonvulsant compound approved for the adjunctive treatment of partial-onset seizures and neuropathic pain. This study aimed to investigate possible neuroprotective effects of LCM in a rat model of TBI. MATERIAL AND METHODS Twenty-eight adult male, Wistar albino rats were used. The rats were divided into 4 groups. Group 1 was the control group (n=7). Group 2 was the trauma group (n=7) where rats were treated with 100 mg/kg saline intraperitoneally (IP) twice a day. Groups 3 and 4, rats were treated with 6 (group 3, n=7) or 20 (group 4, n=7) mg/kg Lacosamide IP twice a day. For each group, brain samples were collected 72 hours after injury. Brain samples and blood were evaluated with histopathological and biochemical methods. In addition, electroencephalograpy monitoring results were compared. RESULTS The immunoreactivity of both iNOS and eNOS (oxidative stress markers) were decreased with LCM treatment compared to trauma group. The results were statistically significant (***P<0.001). The treatments of low (56,17±9,69) and high-dose LCM (43,91±9,09) were decreased the distribution of HIF-1α compared to trauma group (P<0.01). The number of apoptotic cells were decreased with LCM treatment the difference between the trauma group and 20mg/kg LCM treated group (9,55±1,02) was statistically significant (***P<0.001). Malondialdehyde level was reduced with LCM treatment. MDA level was significantly higher in trauma group compared to LCM treated groups (***P<0.001). The level of Superoxide dismutase in the trauma group was 1,86 U/ml, whereas it was 36,85 U/ml in 20mg/kg LCM treated group (***P<0.001). Delta strength of EEG in 20mg/kg LCM treated group were similar to control group values after LCM treatment. CONCLUSION No existing study has produced results suggesting that different doses of LCM has therapeutic effect against TBI, using EEG recording in addition to histological and biochemical evaluations in rats.
Collapse
Affiliation(s)
- Mesut Mete
- Celal Bayar University School of Medicine Neurosurgery Department/Turkey.
| | - Suheda Alpay
- Manisa Celal Bayar University School of Medicine Physiology Department/Turkey.
| | - Isıl Aydemir
- Niğde Ömer Halisdemir University School of Medicine Histology and Embryology Department/Turkey.
| | | | - Fatih Collu
- Manisa Celal Bayar University Department of Biology, Faculty of Science and Letters Zoology Section, Manisa/Turkey.
| | - Hasan Fehmi Özel
- Manisa Celal Bayar University Health Services Vocational School, Manisa/Turkey.
| | | | - Necip Kutlu
- Manisa Celal Bayar University School of Medicine Physiology Department/Turkey.
| | - Mehmet İbrahim Tuglu
- Manisa Celal Bayar University School of Medicine Histology and Embryology Department/Turkey.
| |
Collapse
|
99
|
George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Mol Neurobiol 2021; 58:3614-3627. [PMID: 33774742 PMCID: PMC8003896 DOI: 10.1007/s12035-021-02357-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA. .,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
100
|
Ghiam MK, Patel SD, Hoffer A, Selman WR, Hoffer BJ, Hoffer ME. Drug Repurposing in the Treatment of Traumatic Brain Injury. Front Neurosci 2021; 15:635483. [PMID: 33833663 PMCID: PMC8021906 DOI: 10.3389/fnins.2021.635483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is the most common cause of morbidity among trauma patients; however, an effective pharmacological treatment has not yet been approved. Individuals with TBI are at greater risk of developing neurological illnesses such as Alzheimer's disease (AD) and Parkinson's disease (PD). The approval process for treatments can be accelerated by repurposing known drugs to treat the growing number of patients with TBI. This review focuses on the repurposing of N-acetyl cysteine (NAC), a drug currently approved to treat hepatotoxic overdose of acetaminophen. NAC also has antioxidant and anti-inflammatory properties that may be suitable for use in therapeutic treatments for TBI. Minocycline (MINO), a tetracycline antibiotic, has been shown to be effective in combination with NAC in preventing oligodendrocyte damage. (-)-phenserine (PHEN), an anti-acetylcholinesterase agent with additional non-cholinergic neuroprotective/neurotrophic properties initially developed to treat AD, has demonstrated efficacy in treating TBI. Recent literature indicates that NAC, MINO, and PHEN may serve as worthwhile repositioned therapeutics in treating TBI.
Collapse
Affiliation(s)
- Michael K. Ghiam
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shrey D. Patel
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alan Hoffer
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|