51
|
Mukherjee A, Bhowmick AR, Mukherjee J, Moniruzzaman M. Physiological response of fish under variable acidic conditions: a molecular approach through the assessment of an eco-physiological marker in the brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23442-23452. [PMID: 31197674 DOI: 10.1007/s11356-019-05602-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
The current study demonstrates oxidative damage and associated neurotoxicity following pH stress in two freshwater carp Labeo rohita and Cirrhinus cirrhosus. Carp (n = 6, 3 replicates) were exposed to four different pH (5.5, 6, 7.5, and 8) against control (pH 6.8 ± 0.05) for 7 days. After completion of treatment, levels of enzymatic (superoxide dismutase [SOD], catalase [CAT], glutathione reductase [GRd]) and non-enzymatic antioxidants (malondialdehyde [MDA], glutathione [GSH]), brain neurological parameters (Na+-K+ATPase, acetylcholinesterase [AcHE], monoamine oxidase [MAO], and nitric oxide [NO]), xanthine oxidase (XO), heat shock proteins (HSP70 and HSP90), and transcription factor NFkB were measured in carp brain. Variation in the pH caused a significant alteration in the glutathione system (glutathione and glutathione reductase), SOD-CAT system, and stress marker malondialdehyde (MDA). Xanthine oxidase was also induced significantly after pH exposure. Brain neurological parameters (MAO, NO, AChE, and Na+-K+ATPase) were significantly reduced at each pH-treated carp group though inhibition was highest at lower acidic pH (5.5). Cirrhinus cirrhosus was more affected than that of Labeo rohita. Molecular chaperon HSP70 expression was induced in all pH-treated groups though such induction was more in acid-stressed fish. HSP90 was found to increase only in acid-stressed carp brain. Expression of NFkB was elevated significantly at each treatment group except for pH 7.5. Finally, both acidic and alkaline pH in the aquatic system was found to disturb oxidative balance in carp brain which ultimately affects the neurological activity in carp. However, acidic environment in the aquatic system was more detrimental than the alkaline system regarding oxidative damage and subsequent neurotoxicity in carp brain.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, Hiralal Mazumdar Memorial College for Women, Dakshineswar, Kolkata, 700035, India
| | | | - Joyita Mukherjee
- Department of Zoology, Krishna Chandra College, University of Burdwan, Birbhum, West Bengal, 731124, India
| | - Mahammed Moniruzzaman
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
52
|
Gao Y, Zhang Y, Feng J, Zhu L. Toxicokinetic-toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:221-229. [PMID: 31082606 DOI: 10.1016/j.envpol.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Toxicity of hazard materials to organism is different between larvae and adult zebrafish. However, this different effect was seldom considered in toxicological modeling. Here, we measured Cd and Pb toxicity for larvae and adult zebrafish (Danio rerio) and assessed whether metal toxicity can be better simulated by the one-compartment or two-compartment toxicokinetic (TK) and toxicodynamic (TD) models with assumption of stochastic death (SD) and individual tolerance (IT), respectively. Results showed that, for larvae, the one-compartment model generally fitted the observed accumulation and survival better than two-compartment model. In contrast, for adult, the two-compartment model simulation satisfied the observed accumulation and survival better than one-compartment model. In addition, both the SD and the IT models generally described the Cd or Pb toxicity well, although the IT model predictions were slightly better than the SD model in adult fish, the opposite phenomenon was observed in larvae. Our results suggested that variations in both TK and TD parameters might be needed to quantify the toxicity sensitivity in larvae and adult zebrafish, and accounting these variations in mechanistic toxicological effect models (e.g. TK-TD) will allow more accurate predictions of hazard materials effects to organisms.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
53
|
Liu S, Ding R, Nie X. Assessment of oxidative stress of paracetamol to Daphnia magna via determination of Nrf1 and genes related to antioxidant system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:73-80. [PMID: 30954018 DOI: 10.1016/j.aquatox.2019.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Paracetamol (APAP) is one of the most widely used anti-inflammatory and analgesic drugs in human being health care and has been universally detected in various aquatic environments. However, its potential adverse effects and toxic mechanisms on freshwater invertebrates still remain unclear. In the present study, the effects of APAP on the expressions of Nrf1 and the antioxidant related genes including GCLC, GST, GPX, CAT, TRX, TrxR and Prx1 in Daphnia magna (D. magna) were evaluated after 24, 48 and 96 h, and the changes of GPX, GST and CAT enzyme activities, as well as the GSH and MDA content under APAP exposure for 48 h were also determined. Results showed that paracetamol affected the expressions of Nrf1 and antioxidant related genes in D. magna, which were related to the exposure time and concentration of APAP. Nrf1 was inhibited at 48 h, but induced at 96 h under the APAP exposure, being about two fold of the control in 5.0 μg/L. CAT were significantly induced in all treatments. But Prx decreased in an concentration-dependent manner in all treatments. In comparison with the mRNA expression, antioxidant enzymes activity displayed less changes in D. magna. Overall, APAP exposure altered the expression of Nrf1 and genes related to antioxidant system and disturbed the redox homeostasis of D. magna.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Rui Ding
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
54
|
Zhang Y, Feng J, Gao Y, Liu X, Qu L, Zhu L. Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:959-968. [PMID: 30965548 DOI: 10.1016/j.envpol.2019.03.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Accurately predicting the accumulation and toxicity of metals in organisms is a challenging work in ecotoxicology. Here, we developed and validated a physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model for adult zebrafish exposed to Cd and Pb. The model included the gill, liver, intestine, gonad, carcass, and brain, which were linked by blood circulation in the PBTK process and by dynamic relationships between the target organ concentrations and mortality in the TD process. Results showed that the PBTK sub-model can accurately describe and predict the uptake, distribution and disposition kinetics of Cd and Pb in zebrafish. The exchange rates and the accumulation of the metals in the organs were significantly different. For Cd, the highest exchange rate was between blood and liver, and the greatest accumulation of Cd occurred in the liver. For Pb, the greatest accumulation occurred in the gill. The TD sub-model further indicated that metal concentrations in the gill may effectively act as more suitable indicator of Cd and Pb toxic effect than whole body or other organs. The proposed PBTK-TD model is helpful to understanding the fundamental processes by which zebrafish regulate the uptake and disposition of metal and to quantitatively predicting metal toxicity.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinyong Liu
- Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, Tianjin 300380, China
| | - Liang Qu
- Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, Tianjin 300380, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
55
|
Yin Y, Yue X, Zhang D, Zhang P, Abdallah A, Yin Y, Cai Y, Li Y. Study of Bioaccumulation, Hematological Parameters, and Antioxidant Responses of Carassius auratus gibelio Exposed to Dietary Lead and Bacillus subtilis. Biol Trace Elem Res 2019; 189:233-240. [PMID: 30032402 DOI: 10.1007/s12011-018-1447-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 11/29/2022]
Abstract
Lead (Pb) is one of the most ubiquitous and toxic elements in the aquatic environment. Bacillus subtilis (B. subtilis) is a widely used probiotic in aquaculture. The aim of this study was to explore the toxic effects on bioaccumulation, hematological parameters, and antioxidant responses of Carassius auratus gibelio (C. gibelio) exposed to dietary lead at 0, 120, and 240 mg/kg and/or B. subtilis at 109 cfu/g. At 15 and 30 days, the fish were sampled and bioaccumulation, hematological parameters, and antioxidant responses were assessed. The result showed that B. subtilis administration can provide a significant protection against lead toxicity by reducing lead bioaccumulation in tissues, increasing the antioxidant enzymes activity, recovering δ-aminolevulinic acid dehydratase activity and optimizing the hematological parameters. Our results suggested that administration of B. subtilis (109 cfu/g) has the potential to combat dietary lead toxicity in C. gibelio.
Collapse
Affiliation(s)
- Yulin Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyan Yue
- Department of Clinical Laboratory, Attached Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Abedin Abdallah
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuwei Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yanan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
56
|
Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Kim KI, Kim JH. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:101-108. [PMID: 30884452 DOI: 10.1016/j.etap.2019.03.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a highly toxic metal in aquatic environments. Fish are at the top of the food chain in most aquatic environments, and are the most susceptible to the toxic effects of Pb exposure. In addition, fish are one of the most abundant vertebrates, and they can directly affect humans through food intake; therefore, fish can be used to assess the extent of environmental pollution in an aquatic environment. Pb-induced toxicity in fish exposed to toxicants is primarily induced by bioaccumulation in specific tissues, and the accumulation mechanisms vary depending on water habitat (freshwater or seawater) and pathway (waterborne or dietary exposure). Pb accumulation in fish tissues causes oxidative stress due to excessive ROS production. Oxidative stress by Pb exposure induces synaptic damage and neurotransmitter malfunction in fish as neurotoxicity. Moreover, Pb exposure influences immune responses in fish as an immune-toxicant. Therefore, the purpose of this review was to examine the various toxic effects of Pb exposure, including bioaccumulation, oxidative stress, neurotoxicity, and immune responses, and to identify indicators to evaluate the extent of Pb toxicity by based on the level of Pb exposure.
Collapse
Affiliation(s)
- Ju-Wook Lee
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Hoon Choi
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Yue Jai Kang
- Sun Moon University, Department of Aquatic Life and Medical Science, Asan-si, South Korea
| | - Kwang Il Kim
- Pathology Division, National Institute of Fisheries Science, Busan, South Korea
| | - Jun-Hwan Kim
- Fisheries Research & Development Institute, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Taean, South Korea.
| |
Collapse
|
57
|
Drąg-Kozak E, Pawlica-Gosiewska D, Gawlik K, Socha M, Gosiewski G, Łuszczek-Trojnar E, Solnica B, Popek W. Cadmium-induced oxidative stress in Prussian carp (Carassius gibelio Bloch) hepatopancreas: ameliorating effect of melatonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12264-12279. [PMID: 30835065 PMCID: PMC6476825 DOI: 10.1007/s11356-019-04595-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 05/10/2023]
Abstract
The oxidative status of the hepatopancreas of Prussian carp females (Carassius gibelio) co-exposed to sublethal cadmium in water and melatonin was studied. The activities of antioxidant enzymes such as glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as well as the concentration of reduced glutathione (GSH) were measured in homogenates of the hepatopancreas. Furthermore, concentrations of cadmium (Cd), zinc (Zn), copper (Cu), and iron (Fe) in the hepatopancreas were assayed. These females received melatonin implants and were exposed to 0.4 mg/L or 4.0 mg/L Cd in water for either a 13- or a 7-week period, followed by further 6 weeks of purification in clear water. Exposure to Cd influenced the increase in this metal concentration in fish hepatopancreas. In contrast, the fish exposed to cadmium with additional administration of melatonin had a lower accumulation of this metal. Exposure to Cd caused the increase in GSH content and the activity of GR, and a reduction in GPx activity, whereas the SOD activity varies depending on the exposure time on cadmium. In the hepatopancreas of fish treated with Cd alone, the content of Cu and Zn were increased and that of Fe was changed. After melatonin administration to Cd-exposed fish, a decrease in copper and zinc hepatopancreas content was noted. The present findings imply that melatonin co-treatment can effectively protect the fish against the toxic effects of cadmium on endogenous antioxidant status in hepatopancreas tissues and variations in metal concentration, such as Zn, Cu, and Fe.
Collapse
Affiliation(s)
- Ewa Drąg-Kozak
- Department of Ichthyobiology and Fisheries, University of Agriculture in Krakow, ul. Spiczakowa 6,, 30-199, Krakow-Mydlniki, Poland.
| | | | - Katarzyna Gawlik
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Socha
- Department of Ichthyobiology and Fisheries, University of Agriculture in Krakow, ul. Spiczakowa 6,, 30-199, Krakow-Mydlniki, Poland
| | - Grzegorz Gosiewski
- Department of Ichthyobiology and Fisheries, University of Agriculture in Krakow, ul. Spiczakowa 6,, 30-199, Krakow-Mydlniki, Poland
| | - Ewa Łuszczek-Trojnar
- Department of Ichthyobiology and Fisheries, University of Agriculture in Krakow, ul. Spiczakowa 6,, 30-199, Krakow-Mydlniki, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Włodzimierz Popek
- Department of Ichthyobiology and Fisheries, University of Agriculture in Krakow, ul. Spiczakowa 6,, 30-199, Krakow-Mydlniki, Poland
| |
Collapse
|
58
|
Kovacik A, Tvrda E, Miskeje M, Arvay J, Tomka M, Zbynovska K, Andreji J, Hleba L, Kovacikova E, Fik M, Cupka P, Nahacky J, Massanyi P. Trace Metals in the Freshwater Fish Cyprinus carpio: Effect to Serum Biochemistry and Oxidative Status Markers. Biol Trace Elem Res 2019; 188:494-507. [PMID: 29968123 DOI: 10.1007/s12011-018-1415-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 01/27/2023]
Abstract
Interactions between trace metals, serum biochemical parameters, and oxidative status markers were observed. Freshwater fish Cyprinuscarpio blood samples (n = 38) were collected at the beginning of May (n = 19) and at the end of July (n = 19) of 2015. The concentrations of metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, Sr, and Zn) were analyzed in blood serum samples of fishes by inductively coupled plasma optical emission spectrometry (ICP-OES), and Hg was determined by cold-vapor atomic absorption spectroscopy (CV-AAS). The general scheme of descending concentrations of metals in blood serum samples was as follows: Zn > Fe > Cu > Sr > Cr > Ni > Mn > Pb > Se > As > Cd > Hg. Zn was the most accumulated element (4.42-119.64 mg/L) in both seasons. Overall, the trace element content was higher in spring season, except Hg, Ni, Se, and Sr. The seasonal effect was confirmed for Mn, Zn, Mg, Glu, AST, and Chol levels and for most oxidative status markers. The gender effect was confirmed for Sr, GPx, PC, Chol, and CK concentrations. Trace metals (especially Cd, Cr, Cu, Fe, Hg, Mn, Ni, Sr, Zn, As) significantly affected some blood serum chemistry parameters. The correlation analysis between oxidative status markers (ROS, TAC, MDA, SOD, GSH, UA, BHB, and Alb) and trace metal (Cd, Cu, Ni, Sr, Hg, Pb, Fe, Mn) content confirmed statistically significant interactions in both seasons. Obtained results indicate specific actions of trace metals.
Collapse
Affiliation(s)
- Anton Kovacik
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Eva Tvrda
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Michal Miskeje
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Julius Arvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Marian Tomka
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Katarina Zbynovska
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Jaroslav Andreji
- Department of Poultry Science and Small Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Lukas Hleba
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Martin Fik
- Department of Poultry Science and Small Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Peter Cupka
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Jozef Nahacky
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| |
Collapse
|
59
|
Khullar S, Sudhakara Reddy M. Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:53-61. [PMID: 30411517 DOI: 10.1111/1758-2229.12712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/27/2023]
Abstract
Ectomycorrhizal fungi play an important role in protecting their host plant from metal(loid) stresses by synthesizing various thiol rich compounds like metallothioneins and glutathione. We investigated the effect of cadmium (Cd) and arsenic (As) stress with a specific interest on glutathione (GSH) in the ectomycorrhizal fungus Laccaria bicolor. The total GSH levels inside the cell were significantly increased with increase in external metal(loid) stress. An analysis of the transcript levels of genes responsible for GSH synthesis, γ-glutamylcysteine synthetase (Lbγ-GCS) and glutathione synthetase (LbGS), using qPCR revealed that expression of both genes increased as a function of external metal(loid) concentration. The enzyme activity of both Lbγ-GCS and LbGS were increased with increase in external Cd and As concentration. Further, the functional role of Lbγ-GCS and LbGS genes in response to Cd and As stress was studied using their respective yeast mutant strains gsh1 Δ and gsh2 Δ . The mutant strains successfully expressed the two genes resulting in wild-type phenotype restoration of Cd and As tolerance. From these results, it was concluded that GSH act as a core component in the mycorrhizal defence system under Cd and As stress for metal(loid) homeostasis and detoxification.
Collapse
Affiliation(s)
- Shikha Khullar
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| |
Collapse
|
60
|
Gárriz Á, Del Fresno PS, Carriquiriborde P, Miranda LA. Effects of heavy metals identified in Chascomús shallow lake on the endocrine-reproductive axis of pejerrey fish (Odontesthes bonariensis). Gen Comp Endocrinol 2019; 273:152-162. [PMID: 29940183 DOI: 10.1016/j.ygcen.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
Some heavy metals related to human activities were measured in the water of Chascomús lake. The maximum concentrations were: 0.23 μg/L for Cd, 4.28 μg/L for Cr, 22.09 μg/L for Cu, 2.49 μg/L for Ni, 3.24 μg/L for Pb and 210.76 μg/L for Zn. The values of Cd, Cr, Cr, Pb and Zn were above the Argentine National Guidelines for the Protection of the Aquatic life. The analysis of gonadal condition of pejerrey fish (Odontesthes bonariensis) from this lake did not revealed any reproductive damages. However, exposures with environmental concentrations of Cd, Cr, Cu and Zn under laboratory conditions of pejerrey males (14 days), caused a significant increase of the expression of the three variants of gnrh in the brain (within Cd exposure) and a decrease in cyp19a1b mRNA (within Cu exposure). Furthermore, at pituitary level, a decrease in fshb transcript levels was observed in the fish exposed to Cd and Cr and a decrease in the expression of both gonadotropin receptors at gonadal level in Zn exposure. Moreover, the gonads of the fish exposed to all the tested metals suffered structural damages showing shortness of the spermatic lobules, fibrosis, testis ova and the presence of piknotic cells. All these findings alert that heavy metals pollution affects the expression of key reproductive genes and gonadal structure of fish species that represent the predominant group of organisms and are considered sentinel species in the aquatic ecosystems.
Collapse
Affiliation(s)
- Ángela Gárriz
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín", IIB-INTECH (CONICET-UNSAM), Calle Intendente Marino Km. 8.200 (B7130IWA), Chascomús, Buenos Aires, Argentina
| | - Pamela S Del Fresno
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín", IIB-INTECH (CONICET-UNSAM), Calle Intendente Marino Km. 8.200 (B7130IWA), Chascomús, Buenos Aires, Argentina
| | - Pedro Carriquiriborde
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas, UNLP - CONICET, Calle 47 y 115, 1900 La Plata, Buenos Aires, Argentina
| | - Leandro A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín", IIB-INTECH (CONICET-UNSAM), Calle Intendente Marino Km. 8.200 (B7130IWA), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
61
|
Zeng L, Ai C, Zhang J, Zheng J. Essential element Cu and non-essential element Hg exposures have different toxicological effects in the liver of large yellow croaker. MARINE POLLUTION BULLETIN 2019; 139:6-13. [PMID: 30686450 DOI: 10.1016/j.marpolbul.2018.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The objective was to compare the different effects of essential element Cu and non-essential element Hg on antioxidant and inflammatory responses in the liver of large yellow croaker Larimichthys crocea. Fish were exposed to Cu stresses (72 and 288 μg L-1) and Hg stresses (14 and 56 μg L-1) for 96 h. High-dose Cu increased metallothioneins (MTs) levels and immune defenses in response to elevated reactive oxygen species (ROS), but low-dose Cu had no effect on ROS. High-dose Hg reduced antioxidant and inflammatory responses, which contributed to the increment of ROS. MTs may be a suitable biomarker to assess Cu contamination, but no relationship was observed between MTs levels and Hg content. Furthermore, NFE2-related nuclear factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) were positively related to their respective target genes in the Cu-exposed groups. In conclusion, Cu and Hg induced some differences in antioxidant and inflammatory responses, which providing some novel insights into toxicological effects of Cu and Hg stresses.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jialang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
62
|
Dai J, Zhang L, Du X, Zhang P, Li W, Guo X, Li Y. Effect of Lead on Antioxidant Ability and Immune Responses of Crucian Carp. Biol Trace Elem Res 2018; 186:546-553. [PMID: 29594948 DOI: 10.1007/s12011-018-1316-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/20/2018] [Indexed: 02/01/2023]
Abstract
The aim of this study was to explore the effects of lead exposure on the antioxidant and immune responses of Crucian carp. Three hundred sixty healthy Crucian carp were randomly grouped into four groups and exposed to different doses of lead (0, 0.05, 0.5, and 1 mg/L). Fish were sampled at 30 and 60 days, respectively, and antioxidant capability, immune parameters, ALAD activity, and immune-related genes were assessed. The results showed that T-AOC and GSH activities of the liver were significantly increased in 60 days (P < 0.05); the activities of SOD, CAT, T-AOC, and GSH were significantly increased (P < 0.05) compared to the control in the kidney in 60 days. With an increase in Pb dose, the activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to the control. Compared with the control group, the activity of ALAD in the lead-exposed group decreased significantly (P < 0.05). The expression of the HSP70, tumor necrosis factor-α (TNF-α), interleukins (IL-10), and immunoglobulin M genes was all enhanced in lead-exposed group, whereas lysozyme gene expression was decreased. The results indicated that lead induced oxidative stress and had immunotoxic effects on Crucian carp.
Collapse
Affiliation(s)
- Jing Dai
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Linbo Zhang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xiaoyan Du
- Freshwater Fisheries Research Institute of Jilin Province, Changchun, 130000, China
| | - Peijun Zhang
- Health monitoring and inspection center of Jilin Province, Changchun, 130062, China
| | - Wei Li
- China-Japan union Hospital of Jilin University, Jilin University, Changchun, 130000, China
| | - Xiyao Guo
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China.
| |
Collapse
|
63
|
Park HJ, Hwang IK, Kim KW, Kim JH, Kang JC. Toxic Effects and Depuration on the Antioxidant and Neurotransmitter Responses after Dietary Lead Exposure in Starry Flounder. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:245-252. [PMID: 29908042 DOI: 10.1002/aah.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Starry Flounder Platichthys stellatus were exposed to dietary lead (Pb) at concentrations of 0, 30, 60, 120, and 240 mg/kg for 4 weeks. Recover period was conducted for 2 weeks after the exposure. Exposure to Pb concentrations over 60 mg/kg induced significant changes in the antioxidant responses in the liver, kidney, and gill and continued even after the depuration period in the liver (over 120 mg/kg for superoxide dismutase [SOD] activity) and kidney (at 240 mg/kg for glutathione [GSH] levels). Glutathione S-transferase (GST) activity in liver, kidney, and gill were increased by dietary Pb exposure, and recovery was observed in all groups during the recovery period. Acetylcholinesterase (AChE) activity was significantly inhibited in the brain and muscle of flounder at Pb exposure over 120 mg/kg, and no restoration was observed after the depuration period. Lysozyme activity in the plasma was significantly increased at Pb exposures greater than 60 mg kg but was restored after the depuration period. The results of this study indicate that dietary Pb exposure induces toxic effects on antioxidant responses, neurotransmitter, and immune responses of Starry Flounder.
Collapse
Affiliation(s)
- Hee-Ju Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - In-Ki Hwang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Kyeong-Wook Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jun-Hwan Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| |
Collapse
|
64
|
The Role of Oxidative Stress, Selected Metals, and Parameters of the Immune System in Male Fertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6249536. [PMID: 30254715 PMCID: PMC6142782 DOI: 10.1155/2018/6249536] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Abstract
The aim of the study was to investigate the associations between standard semen parameters and the parameters reflecting oxidative stress intensity, antioxidant defense functions, levels of selected macro and trace elements, and parameters characterizing immune system function. The study group consisted of 103 fertile males. Based on semen volume, sperm concentration, total sperm count, and percentage of motile sperm at 1 hour postcollection, the individuals were divided into two equal groups—those with excellent (EX) semen quality and those with mediocre (ME) semen quality. The remaining measured parameters characterizing motility and the percentage of normal morphology were higher in the EX group than in the ME group; however, the seminal plasma pH did not differ between the examined groups. The phosphate level was 31% lower in the EX group than in the ME group, whereas there was a tendency toward a 25% lower level of Fe in the EX group than in the ME group (p = 0.064). The activities of enzymes involved in antioxidant defense, CuZn-SOD, CAT, and G6PD, were 14%, 63%, and 39%, respectively, higher in the EX group than in the ME group. However, the level of alpha-tocopherol was 32% lower in the EX group than in the ME group. The other measured parameters characterizing antioxidant defense and the parameters of oxidative stress intensity and immune system function were not significantly different. The value of seminal plasma pH is not related to the semen quality of fertile males. Higher fertility potential estimated based on standard semen parameters in fertile males is associated with lower levels of Fe and higher activities of some antioxidant enzymes.
Collapse
|
65
|
Kim H, Kim JS, Kim PJ, Won EJ, Lee YM. Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna: Differential metal and age - Specific patterns. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:28-36. [PMID: 29625344 DOI: 10.1016/j.cbpc.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 02/02/2023]
Abstract
To investigate oxidative stress responses to cadmium and lead, the freshwater water flea Daphnia magna was exposed to Cd and Pb for 48 h. Following treatment with sub-lethal concentrations, intracellular reactive oxygen species (ROS) levels, as well as modulation of multiple biomarker, such as superoxide dismutase (SOD) activity, glutathione (GSH) contents, glutathione S-transferase (GST) activity, antioxidant enzyme - coding genes (three GST isoforms, glutaredoxin [GRx], glutathione peroxidase [GPx], and thioredoxin [TRx]), and stress-response proteins (heat shock protein 70 [Hsp70] and Hsp90) were examined. The results showed that intracellular ROS level was not changed at 24 h, but reduced at 48 h. Levels of total GSH content were reduced by Cd, but highly induced by Pb. SOD and GST activities were stimulated 48 h after exposure to Cd and Pb. A significant modulation of oxidative stress marker genes was observed after exposure to each element with different expression patterns depending on the metal and developmental stages. In particular, the expression levels of GST-sigma, HSP70, and HSP90 genes were enhanced in Cd - and Pb - exposed neonates. These findings imply that oxidative stress markers appear to be actively involved in cellular protection against metal-induced oxidative stress in D. magna. This study would facilitate the understanding of the molecular response to Cd and Pb exposure in water fleas.
Collapse
Affiliation(s)
- Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ji-Soo Kim
- Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Pyoung-Joong Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
66
|
Arojojoye OA, Oyagbemi AA, Afolabi JM. Toxicological Assessment of Heavy Metal Bioaccumulation and Oxidative Stress Biomarkers In Clarias gariepinus from Igbokoda River of South Western Nigeria. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:765-771. [PMID: 29700581 DOI: 10.1007/s00128-018-2341-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 04/16/2018] [Indexed: 05/22/2023]
Abstract
This study evaluated the environmental safety of Igbokoda River, a popular fishing hub in an oil producing area in Nigeria. Biomarkers of oxidative stress and heavy metals were determined in the liver and muscle of Clarias gariepinus from Igbokoda River and also in fish samples from a clean fish farm (control). Water samples from both sites were analysed for physicochemical parameters, heavy metals and bacterial contamination. There was significant increase in the level of heavy metals in water samples and in the organs of fish from Igbokoda River. A significant increase in malondialdehyde level as well as alterations in antioxidant status was observed in the organs of fish samples from Igbokoda River compared with control. Coliforms and salmonella were also visible in Igbokoda River alongside particulate matter. These results show that Igbokoda River is polluted; consumption of aquatic organisms from the River may be unsafe for people in that community.
Collapse
Affiliation(s)
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
67
|
Meng J, Wang WX, Li L, Zhang G. Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostrea gigas): mRNA expression and physiological studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:257-268. [PMID: 29562214 DOI: 10.1016/j.aquatox.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
Lead (Pb) is one of the ubiquitous and toxic elements in aquatic environment. In oysters, gills and digestive glands are the main target organs for Pb-induced toxicity, but there is limited information on the molecular mechanisms underlying its toxicity. The present study investigated the Pb-induced toxicity mechanisms in the Pacific oyster (Crassostrea gigas) based on transcriptome, phenotypic anchoring, and validation of targeted gene expression. Gene ontology and pathway enrichment analyses revealed the differential Pb toxicity mechanisms in the tissues. In the gills, Pb disturbed the protein metabolism, with the most significant enrichment of the "protein processing in endoplasmic reticulum" pathway. The main mechanism comprised of a Pb-stimulated calcium (Ca2+) increase by the up-regulation of transporter-Ca-ATPase expression. The disturbed Ca2+ homeostasis then further induced high expressions of endoplasmic reticulum (ER) chaperones, leading to ER stress in the oysters. Unfolded proteins induced ER associated degradation (ERAD), thereby preventing the accumulation of folding-incompetent glycoproteins. However, Pb mainly induced oxidative reduction reactions in the digestive gland with high accumulation of lipid peroxidation products and high expression of antioxidant enzymes. Further, Pb induced fatty acid β-oxidation and CYP450 catalyzed ω-oxidation due to increased metabolic expenditure for detoxification. The increased content of arachidonic acid indicated that Pb exposure might alter unsaturated fatty acid composition and disturb cellular membrane functions. Taken together, our results provided a new insight into the molecular mechanisms underlying Pb toxicity in oysters.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| |
Collapse
|
68
|
Ratn A, Prasad R, Awasthi Y, Kumar M, Misra A, Trivedi SP. Zn 2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:10-20. [PMID: 29304413 DOI: 10.1016/j.ecoenv.2017.12.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Zn2+ is essential for normal physiological functioning of all organisms in small quantities, but when its concentration enhances in surrounding environment it acts as a toxicant to organisms. Common sources of Zn2+ pollution are electroplating, alloying, mining, and allied industrial operations. The present study aims to assess the biochemical, histopathological and genotoxicological implications under Zn2+ intoxication along with its accumulation patterns in prime biotransformation sites-liver and kidney, of a bottom feeder fish, Channa punctatus. Fish were chronically exposed to two different concentrations of Zn2+i.e., 5mg/L (permissible limit, T1) and 10mg/L (twice the permissible limit, T2). Simultaneous control was maintained. A significant (p<0.05) increment in Zn2+ bioaccumulation, antioxidant enzymes activities of SOD, CAT and GR and induction in micronuclei frequencies along with the significant (p<0.05) decrement in total protein and GSH were observed in all the exposed groups after 28 d. Altered biochemical parameters coupled with enhanced induction in micronuclei and accumulation of Zn2+ in liver and kidney of fish can be regarded as sensitive biomarkers of Zn2+ induced toxicological manifestations and thus, they may be effectively utilized for reliable ecotoxicological biomonitoring of aquatic regimes polluted with Zn2+.
Collapse
Affiliation(s)
- Arun Ratn
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Rajesh Prasad
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Yashika Awasthi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Abha Misra
- Department of Zoology, Arya Mahilla P.G. College, (M.J.P. Rohilkhand University), Shahjahanpur-242001
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India.
| |
Collapse
|
69
|
Xu X, Cui Z, Wang X, Wang X, Zhang S. Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:161-169. [PMID: 29353166 DOI: 10.1016/j.ecoenv.2017.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
As the producer of reactive oxygen species (ROS), both lead (Pb) and paraquat (PQ) can generate serious oxidative stress in target organs which result in irreversible toxic effects on organisms. They can disturb the normal catalytic activities of many enzymes by means of different toxicity mechanism. The changed responses of enzymes are frequently used as the biomarkers for indicating the relationship between toxicological effects and exposure levels. In this work, goldfish was exposed to a series of test groups containing lead and paraquat in the range of 0.05-10mg/L, respectively. Four hepatic enzyme activities, including 7-ethoxyresorufinO-deethylase (EROD), 7-benzyloxy-4-trifluoromethyl-coumarin-O-debenzyloxylase (BFCOD), glutathione S-transferase (GST) and UDP-glucuronosyltransferase (UGT) were determined after 1, 7, 14, 28 days exposure. The results showed that the activities of EROD and BFCOD in fish were significantly inhibited in response to paraquat at all exposure levels during the whole experiment. Similarly, the inhibitory effects of lead exposure on BFCOD activity were found in our study, while different responses of lead on EROD were observed. There were no significant differences on EROD activity under lower concentrations of lead (less than 0.1mg/L) before 14 days until an obvious increase was occurred for the 0.5mg/L lead treatment group at day 14. Furthermore, lead showed stronger inhibition on GST activity than paraquat when the concentrations of the two toxicants were more than 0.5mg/L. However, the similar dose and time-dependent manners of UGT activity were found under lead and paraquat exposure. Our results indicated that higher exposure levels and longer accumulations caused inhibitory effects on the four enzymes regardless of lead or paraquat stress. In addition, the responses of phase I enzymes were more sensitive than that of phase II enzymes and they may be served as the acceptable biomarkers for evaluating the toxicity effects of both lead and paraquat.
Collapse
Affiliation(s)
- Xiaoming Xu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Xinlei Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xixin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Su Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
70
|
Santana MS, Yamamoto FY, Sandrini-Neto L, Filipak Neto F, Ortolani-Machado CF, Oliveira Ribeiro CA, Prodocimo MM. Diffuse sources of contamination in freshwater fish: Detecting effects through active biomonitoring and multi-biomarker approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:173-181. [PMID: 29175343 DOI: 10.1016/j.ecoenv.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Aquatic organisms are usually exposed to a mixture of xenobiotics that may exert a large effect even in low concentrations, and when information is obtained exclusively from chemical analyses the prediction of the deleterious effects is potentially hindered. Therefore, the application of complementary monitoring methods is a priority. Here, in addition to chemical analyses, an active biomonitoring study using multiple biomarker responses in Nile tilapia Oreochromis niloticus was conducted to assess the effects of a contamination gradient along four reservoirs in Iguaçu River. Chemical analysis in the muscle showed high levels of metals in fish from the reservoir closest to an industrialized and environmentally degraded area, however fish exposed to all studied reservoirs showed hepatic alterations (necrosis and inflammatory processes). Also, significant variations of biochemical biomarkers were observed with no clear indication of contamination gradient, since an indicative of higher impact was found in an intermediary reservoir, including high concentrations of biliary polycyclic aromatic hydrocarbons (PAHs). However, nuclear morphological alterations (NMA) were less frequent at the same reservoir. Thus, the multi-biomarker approach allied to active biomonitoring is a practical and important tool to assess deleterious effects of contamination in freshwater, providing data for monitoring and conservation protocols.
Collapse
Affiliation(s)
- Manuela S Santana
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil.
| | - Flávia Y Yamamoto
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| | - Leonardo Sandrini-Neto
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Francisco Filipak Neto
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| | - Claudia Feijo Ortolani-Machado
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| | - Ciro A Oliveira Ribeiro
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
71
|
Chen H, Guo Z, Zhou Y, Li D, Mu L, Klerks PL, Luo Y, Xie L. Accumulation, depuration dynamics and effects of dissolved hexavalent chromium in juvenile Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:254-260. [PMID: 29069612 DOI: 10.1016/j.ecoenv.2017.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
We previously demonstrated that chronic exposure to hexavalent chromium (Cr(VI)) causes a variety of adverse effects in the Japanese medaka (Oryzias latipes). The present study investigated the transition of acute to chronic effects by assessing the influences of Cr(VI) exposure concentration and exposure duration on Cr accumulation and their effects on fish growth and antioxidant physiology. Juvenile fish were exposed to 0.05, 0.5, 4 or 8mg/L Cr(VI) for 28 days. Endpoints were evaluated on days 3, 7, 14, 21 and 28. In addition, Cr depuration was examined for fish from two exposure groups (0.5 and 8mg/L). Chromium accumulation was rapid initially, then continued at a slower rate till the end of the exposure period without showing signs of reaching a steady state. Depuration patterns differed between the two exposure groups, but both reached 50% in 14 days. The rapid initial accumulation was accompanied by increased lipid peroxidation and elevated activities of antioxidants (e.g., GST, SOD and CAT). Activities of these enzymes had mostly returned to baseline levels by day 7, but there was no evidence of further cellular damage from ROS. Effects on fish length and weight continued to be evident over the 28-day exposure period. Our study suggest that the initial effects of Cr(VI) exposure may not be a good predictor of more-chronic effects in fish as a consequence of an efficient acclimation response by the antioxidant system that limits ROS-mediated toxicity.
Collapse
Affiliation(s)
- Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Yu Zhou
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Dan Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
| | - Lei Mu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
| | - Paul L Klerks
- Department of Biology, University of Louisiana at Lafayette, P.O. Box 43602, Lafayette, LA 70504-3602, United States
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
72
|
Akbary P, Sartipi Yarahmadi S, Jahanbakhshi A. Hematological, hepatic enzymes' activity and oxidative stress responses of gray mullet (Mugil cephalus) after sub-acute exposure to copper oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1800-1808. [PMID: 29101705 DOI: 10.1007/s11356-017-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Given the importance of assessing potential toxicity of heavy metals in valuable species of aquatic animals, the goal of the present research was to assess the sub-acute effects of copper oxide on hematological, enzymological, and oxidative stress responses of gray mullet to measure toxicity of copper oxide pollution in this significant fish. The median lethal concentration (LC50) value of copper oxide to gray mullet was detected at 3.15 ± 0.039 mg/L for 96 h, and 25 and 50% of the 96-h LC50 values were selected as sub-acute concentrations. The fish were exposed to (0.79 and 1.57 mg/L) copper oxide for 21 days. At the end of 21 days, the results showed that hemoglobin (Hb), hematocrit (Hct), red blood cells (RBC) count, MCV, MCH, and MCHC levels were found to be decreased in copper oxide treated fish, whereas white blood cells (WBC) count increased in copper-treated fish. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activity increased in treated groups; however, copper oxide in both groups of sub-acute exposure significantly decreased plasma alkaline phosphatase (ALP) activity compared to the control group. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels significantly declined in copper oxide-treated fish. These findings indicated the deleterious effects of copper oxide on gray mullet, even at low concentrations, and offered that hematological and hepatic enzyme activity and antioxidants are suitable tools for evaluating heavy metals toxicity.
Collapse
Affiliation(s)
- Paria Akbary
- Department of Marine Sciences, Fisheries Group, Chabahar Maritime University, Chabahar, Iran.
| | - Sahar Sartipi Yarahmadi
- MSc of Environmental Department, Tonekabon Branch, Islamic Azad University (IAU), Tonekabon, Iran
| | - Abdolreza Jahanbakhshi
- Department of Fishery, Faculty of Fisheries and Environment, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
73
|
Naïja A, Kestemont P, Chénais B, Haouas Z, Blust R, Helal AN, Marchand J. Cadmium exposure exerts neurotoxic effects in peacock blennies Salaria pavo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:217-227. [PMID: 28551579 DOI: 10.1016/j.ecoenv.2017.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is considered as an important factor involved in several neurological disturbances. The aim of this study was to assess the effects of Cd in the brain of peacock blennies Salaria pavo, a species used as a bioindicator of water pollution. A sublethal contamination of 2mg CdCl2 L-1 was performed over periods of 1, 4, 10 and 15 days. Total Cd accumulation was measured in brains and displayed low concentrations throughout the experiment. Partial-length cDNA of different ATP-binding cassette transporters (abcb1, abcc1, abcc2, abcg2 proteins) and acetylcholinesterase (ache) were characterized. mRNA expressions profiles displayed an up-regulation of abcc2 mRNA after 4 days of Cd exposure only while abcg2 mRNA was down-regulated after 10 days only. For AChE, the mRNA transcription and the activity of the enzyme were followed and highlighted that Cd exerted an inhibitory effect on the nervous information transmission. At the histological level, fish exhibited pathological symptoms in the optic tectum and the cerebellum and results showed that the cerebellum was the most affected organ.
Collapse
Affiliation(s)
- Azza Naïja
- Bioressources: Integrative Biology and Valuation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Benoit Chénais
- EA2160 Mer Molécules Santé, LUNAM, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France
| | - Zohra Haouas
- Research unit of Genetic, Laboratory of Histology and Cytogenetic, Faculty of Medicine, Avenue Avicenne 5019, Monastir, Tunisia
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Ahmed Noureddine Helal
- Bioressources: Integrative Biology and Valuation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia
| | - Justine Marchand
- EA2160 Mer Molécules Santé, LUNAM, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France.
| |
Collapse
|
74
|
Elia AC, Magara G, Righetti M, Dörr AJM, Scanzio T, Pacini N, Abete MC, Prearo M. Oxidative stress and related biomarkers in cupric and cuprous chloride-treated rainbow trout. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10205-10219. [PMID: 28265874 DOI: 10.1007/s11356-017-8651-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/16/2017] [Indexed: 05/29/2023]
Abstract
We examined the time-course stress responses in the liver of rainbow trout exposed to cuprous chloride (CuCl) and cupric chloride (CuCl2). The treatment groups received a single intraperitoneal injection of CuCl or CuCl2 (both at a dose of 0.01 and 0.05 mg/kg); the control group received only the physiologic solution vehicle. Liver tissue samples were analyzed for total copper, superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase, glutathione S-transferase, glyoxalases, and lactate dehydrogenase at 3, 6, and 9 days post-injection. Total glutathione, metallothionein, and malondialdehyde levels were also measured. The time course of metal accumulation differed between the groups; no dose-response relationship for metal load was found. Both copper species elicited significant changes in oxidative stress markers and in metal trapping. Copper underwent adaptive shifts in glutathione and metallothionein concentrations. The defense strategy primarily versus CuCl2 first involved glutathione, with a peak in metallothionein levels at day 6 for CuCl2 (at both doses) and for CuCl (0.05 mg/kg). Early stimulation of lipid peroxidation was noted after treatment with the higher copper dose and at day 9 after treatment with the lower dose of both CuCl and CuCl2. Antioxidant enzyme activity was impaired due to a more or a less severe oxidative stress condition in relation to the copper species and exposure time. Copper dynamics, in terms of metal accumulation and homeostatic regulation, is noticeably complex. The present findings may advance our understanding of the effects of both copper species on the antioxidant response of rainbow trout.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marzia Righetti
- Fish Disease Laboratory, State Veterinary Institute, 10154, Turin, Italy
| | | | - Tommaso Scanzio
- Fish Disease Laboratory, State Veterinary Institute, 10154, Turin, Italy
| | - Nicole Pacini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Maria Cesarina Abete
- C.Re.A.A. National Reference Centre for the Surveillance and Monitoring of Animal Feed, State Veterinary Institute, 10154, Turin, Italy
| | - Marino Prearo
- Fish Disease Laboratory, State Veterinary Institute, 10154, Turin, Italy
| |
Collapse
|
75
|
Gavrić J, Anđelković M, Tomović L, Prokić M, Despotović S, Gavrilović B, Radovanović T, Borković-Mitić S, Pavlović S, Saičić Z. Oxidative stress biomarkers, cholinesterase activity and biotransformation enzymes in the liver of dice snake (Natrix tessellata Laurenti) during pre-hibernation and post-hibernation: A possible correlation with heavy metals in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:154-162. [PMID: 28043034 DOI: 10.1016/j.ecoenv.2016.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
We investigated in the liver of dice snakes during pre- and post-hibernation changes in the following antioxidant parameters: total, manganese and copper zinc containing superoxide dismutases (Tot SOD, MnSOD, CuZn SOD, respectively), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the concentrations of total glutathione (GSH) and sulfhydryl groups (-SH). In addition, we examined the expression of phase I biotransformation enzyme cytochrome P4501A (CYP1A) and the activity of phase II biotransformation enzyme glutathioneS-transferase (GST), the level of lipid peroxidation (by measuring the thiobarbituric acid-reactive substances (TBARS)), cholinesterase activity (ChE) and metallothionein expression (MT). We also measured the concentrations of heavy metals, including Al, Cd, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn in the water and snake liver during both periods. During the post-hibernation period, the activities of Tot SOD, CuZn SOD and GST and the concentration of GSH were significantly decreased, while GSH-Px and GR activities, the concentrations of -SH groups and TBARS were significantly increased. The activities of Mn SOD, CAT and ChE, and the relative amounts of CYP1A and MT did not significantly change during the investigated periods. The observed differences in the examined parameters probably represent adaptive physiological responses to sudden changes in tissue oxygenation during arousal from hibernation. Our findings also indicate that the accumulated metals modulated the responses of the examined parameters during the investigated periods.
Collapse
Affiliation(s)
- Jelena Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Marko Anđelković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ljiljana Tomović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slavica Borković-Mitić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađan Pavlović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Zorica Saičić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
76
|
Nunes B, Silva V, Campos I, Pereira JL, Pereira P, Keizer JJ, Gonçalves F, Abrantes N. Off-site impacts of wildfires on aquatic systems - Biomarker responses of the mosquitofish Gambusia holbrooki. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:305-313. [PMID: 28088544 DOI: 10.1016/j.scitotenv.2016.12.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 05/21/2023]
Abstract
The number of wildfires has markedly increased in Mediterranean Europe, including in Portugal. Wildfires are environmentally concerning, not only due to the loss of biodiversity and forest area, but also as a consequence of environmental contamination by specific compounds including metals and polycyclic aromatic compounds (PAHs). These contaminants, mostly bound to ashes, can reach downstream water bodies, namely through surface runoff, being ultimately dispersed by vast areas and contacting with aquatic biota. Being toxicologically noteworthy, the potential toxic outcomes of the input of such chemicals across the aquatic compartment must be characterized. In this context, the present study used a biomarker-based approach to find early-warning signals of toxicity triggered by the exposure of the mosquitofish, Gambusia holbrooki, to affected aqueous runoff and stream water samples collected from a forest burnt area. The chemical analysis revealed concerning levels of metals and polycyclic aromatic hydrocarbons in both runoff and stream water samples. Biological responses elicited by the collected samples showed the occurrence of pro-oxidative modifications, specifically driven by enzymatic forms involved in the metabolism of glutathione. Despite these effects, no further signs of involvement of metals and PAHs were elicited in terms of neurotoxicity. The overall set of data implicates chemicals resulting from wildfires in clear deleterious effects in exposed fish.
Collapse
Affiliation(s)
- Bruno Nunes
- Department of Biology, CESAM, University of Aveiro, Portugal
| | - Vera Silva
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal; Department of Biology, CESAM, University of Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal; The Portuguese Sea and Atmosphere Institute, Portugal
| | | | - Patrícia Pereira
- Department of Biology, CESAM, University of Aveiro, Portugal; The Portuguese Sea and Atmosphere Institute, Portugal
| | - Jan Jacob Keizer
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal
| | | | - Nelson Abrantes
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal.
| |
Collapse
|
77
|
Zheng JL, Zeng L, Xu MY, Shen B, Wu CW. Different effects of low- and high-dose waterborne zinc on Zn accumulation, ROS levels, oxidative damage and antioxidant responses in the liver of large yellow croaker Pseudosciaena crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:153-163. [PMID: 27522493 DOI: 10.1007/s10695-016-0275-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to assess survival rate, Zn accumulation, reactive oxygen species (ROS) levels, oxidative damage and antioxidant responses after Zn exposure (2 and 8 mg L-1 Zn) at different exposure times (6, 12, 24, 48 and 96 h) in the liver of large yellow croaker. Survival rate was reduced at 96 h, and hepatic Zn content increased during 24-96 by 8 mg L-1 Zn. In the 2 mg L-1 Zn group, no fish died and the increase in Zn content merely occurred at 96 h. Exposure to 8 mg L-1 Zn induced accumulation of ROS, lipid peroxidation and protein carbonylation during the late stage of exposure. In contrast, exposure to 2 mg L-1 Zn did not result in oxidative damage, which may result from the up-regulation of antioxidant defenses. Although exposure to 8 mg L-1 Zn increased activities and mRNA levels of antioxidant enzymes during the early stage of exposure, including Cu/Zn-SOD, Mn-SOD, CAT, GPx and GR, the activities of these enzymes except Cu/Zn-SOD were inhibited at 96 h. Furthermore, a sharp increase in Nrf2 expression was observed in fish exposed to 8 mg L-1 at 6 and 12 h, and 2 mg L-1 at 12 h and 24 h, suggesting that Nrf2 was required for the protracted induction of these genes. The late increase in Keap1 expression may support its role in switching off the Nrf2 response. In conclusion, the present study demonstrated different effects of low- and high-dose waterborne Zn on antioxidant responses, which could contribute to the understanding of antioxidant and toxic roles of zinc on a molecular level.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Mei-Ying Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
78
|
Moniruzzaman M, Midday P, Dhara A, Das D, Ghosal I, Mukherjee D, Chakraborty SB. Change in redox state and heat shock protein expression in an Indian major carp Cirrhinus cirrhosus exposed to zinc and lead. J Toxicol Sci 2017; 42:731-740. [DOI: 10.2131/jts.42.731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Puja Midday
- Department of Zoology, University of Calcutta, India
| | | | - Debjit Das
- Department of Zoology, University of Calcutta, India
| | | | | | | |
Collapse
|
79
|
Canli EG, Atli G, Canli M. Responses of the Antioxidant and Osmoregulation Systems of Fish Erythrocyte Following Copper Exposures in Differing Calcium Levels. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:601-608. [PMID: 27714403 DOI: 10.1007/s00128-016-1931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Freshwater fish Oreochromis niloticus were exposed to Cu in differing Ca2+ levels (15, 30 and 90 mg/L), using acute (0.3 µM, 3 d) and chronic (0.03 µM, 30 d) exposure protocols and enzyme activities related to the antioxidant (catalase, CAT, EC 1.11.1.6; superoxide dismutase, SOD, EC 1.15.1.1; glutathione peroxidase, GPx, EC 1.11.1.9) and osmoregulation (Total, Na+/K+-ATPase, EC 3.6.3.9, Mg2+-ATPase, EC 3.6.3.2) systems in the erythrocytes were measured. Activities of antioxidant enzymes generally decreased significantly following either Ca2+ alone or Ca2++Cu combinations in both acute and chronic exposures. Na+/K+-ATPase activity significantly decreased in chronic exposures, though there was no clear trend in acute exposures. Mg2+-ATPase activity increased significantly in acute exposures, but not in chronic ones. There were more significant alterations in acute exposure compared to chronic ones. There was no clear trend regarding Cu toxicity and its relationship with Ca2+, which may possibly be prompted by the compensatory mechanisms of the enzymes. It may be concluded that freshwater fish erythrocytes may face different degrees of more physiological stress from different waters.
Collapse
Affiliation(s)
- E G Canli
- Department of Biology, Faculty of Sciences and Letters, University of Cukurova, 01330, Adana, Turkey
| | - G Atli
- Department of Biology, Faculty of Sciences and Letters, University of Cukurova, 01330, Adana, Turkey
| | - M Canli
- Department of Biology, Faculty of Sciences and Letters, University of Cukurova, 01330, Adana, Turkey.
| |
Collapse
|
80
|
Zhang Y, Lu X, Wang N, Xin M, Geng S, Jia J, Meng Q. Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17801-17810. [PMID: 27250089 DOI: 10.1007/s11356-016-6948-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Fourteen aquatic organism samples were collected from Bohai Bay, and concentrations of five heavy metals were measured to evaluate the pollution levels in aquatic organisms and the potential risk to human health. The concentrations of Zn and Cu were much higher than those of Cd, Cr, and Pb in all the organisms. In general, the heavy metal concentration levels were in the order phytoplankton < zooplankton < fish < shrimp < shellfish. Heavy metal concentrations in higher trophic-level aquatic organisms in Bohai Bay were compared to those in the organisms from other worldwide coastal waters. The concentration levels of most heavy metals were higher than the 75th percentile, except that Pb concentration was between the 25th and 50th percentiles. The calculated bioconcentration factors (BCF) of Cr, Cu, and Pb for phytoplankton were less than 100, indicating no accumulation in primary producers. The bioaccumulation factor (BAF) of Pb for zooplankton was the highest, indicating significant Pb accumulation in zooplankton. For higher trophic-level aquatic organisms, the order of BAF values was fish < shrimp < shellfish for most metals except for Pb. The human health risk assessment suggests that strict abatement measures of heavy metals must be taken to decrease the health risk caused by consuming aquatic products.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Xueqiang Lu
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China.
| | - Naili Wang
- Tianjin Huanke Testing Technology Company Limited, Tianjin, 300191, China
| | - Meinan Xin
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Shiwei Geng
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Jing Jia
- Tianjin Huanke Testing Technology Company Limited, Tianjin, 300191, China
| | - Qinghui Meng
- Tianjin Huanke Testing Technology Company Limited, Tianjin, 300191, China
| |
Collapse
|
81
|
Zheng JL, Zeng L, Shen B, Xu MY, Zhu AY, Wu CW. Antioxidant defenses at transcriptional and enzymatic levels and gene expression of Nrf2-Keap1 signaling molecules in response to acute zinc exposure in the spleen of the large yellow croaker Pseudosciaena crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 52:1-8. [PMID: 26940795 DOI: 10.1016/j.fsi.2016.02.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
We evaluated the effects of acute Zn exposure (4 and 8 mg L(-1) Zn) on lipid peroxidation, and activities and mRNA levels of antioxidant enzyme genes (Cu/Zn-SOD, CAT, GPx, and GR), and gene expression of the Nrf2-Keap1 signaling molecule at different exposure times (0, 6, 12, 24, 48, and 96 h) in the spleen of large yellow croaker. Lipid peroxidation remained relatively constant during 6-48 h and 6-24 h and sharply increased at 96 h and during 48-96 h in fish exposed to 4 and 8 mg L(-1) Zn, respectively. Activities of all tested enzymes increased during the early stage of exposure and decreased towards the end of the exposure in both groups. However, mRNA levels of antioxidant enzyme genes were dramatically up-regulated by 4 and 8 mg L(-1) Zn during the late stage of exposure. During the early stage of exposure for 6 h, the 8 mg L(-1) Zn exposure sharply increased mRNA levels of Cu/Zn-SOD, CAT, GPx1b, Nrf2, and Keap1, whereas, the 4 mg L(-1) Zn exposure did not significantly affect the expression of these genes. Our data also showed positive relationships between Nrf2 expression and mRNA levels of its target genes, suggesting that Nrf2 was required for the protracted induction of these genes. Furthermore, a sharp increase in Keap1 expression levels was observed in fish exposed to 4 mg L(-1) at 96 h, and 8 mg L(-1) at 6, 48, and 96 h. In conclusion, the present study demonstrated that Zn-induced antioxidant defenses were involved in modifications at enzymatic and transcriptional levels and the transcriptional regulation of the Nrf2-Keap1 signaling molecule; these results may contribute to the understanding of mechanisms that maintain the correct redox balance in the immune organ of the large yellow croaker.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei-Ying Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ai-Yi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
82
|
Atli G, Canli EG, Eroglu A, Canli M. Characterization of antioxidant system parameters in four freshwater fish species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:30-37. [PMID: 26707186 DOI: 10.1016/j.ecoenv.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The potential use of antioxidant system parameters has gained considerable interest due to their pivotal role of detoxification mechanisms in environmental studies and culture fish point of view. Fish with different ecological needs may have different antioxidant capacity and response to environmental contaminants. Thus, the optimal working conditions and specific enzyme activities (Vmax and Km) of antioxidant system parameters (Superoxide dismutase, SOD; Catalase, CAT; Glutathione peroxidase, GPX; Glutathione reductase, GR and Glutathione S-transferase, GST) and glutathione (GSH) were determined in four commonly cultured freshwater fish species (tilapia; Oreochromis niloticus, carp; Cyprinus carpio, trout; Onchorhynchus mykiss and catfish; Clarias garipienus). Data showed that optimal concentrations of different buffers, pH and specific chemicals for each enzyme and GSH were similar in most cases for all fish species, except a few differences. The highest Vmax and Km values were found in carp for GPX and GST, though these values were the highest in tilapia, catfish and trout for CAT, SOD and GR, respectively. As a conclusion, optimization assays of these parameters in different bioindicator organisms based on their physiological and ecological differences may be useful for the aquatic ecosystem biomonitoring studies and also present fundamental data for utilization in aquaculture.
Collapse
Affiliation(s)
- Gülüzar Atli
- Cukurova University Vocational School of Imamoglu, Adana, Turkey.
| | - Esin G Canli
- Cukurova University Faculty of Science, Department of Biology, Adana, Turkey
| | - Ali Eroglu
- Cukurova University Faculty of Science, Department of Biology, Adana, Turkey
| | - Mustafa Canli
- Cukurova University Faculty of Science, Department of Biology, Adana, Turkey
| |
Collapse
|
83
|
Zheng JL, Zhu QL, Wu CW, Zhu AY, Shen B, Zeng L. Zinc acclimation mitigated high zinc induced oxidative stress by enhancing antioxidant defenses in large yellow croaker Pseudosciaena crocea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:21-29. [PMID: 26765083 DOI: 10.1016/j.aquatox.2015.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The hypothesis tested in the present study was that Zn acclimation will alleviate high Zn induced oxidative stress in large yellow croaker Pseudosciaena crocea. To the end, fish were pre-exposed to 0 and 2mgZnL(-1) for 48h and then exposed to 0 and 10mgZnL(-1) for 48h. Lipid peroxidation, activities and mRNA levels of antioxidant enzyme genes (Cu/Zn-SOD, CAT, GPx and GR), and gene expressions of Nrf2-Keap1 signaling molecules at different exposure time (12h, 24h and 48h) were determined in the liver and spleen of large yellow croaker. 10mgZnL(-1) exposure alone enhanced lipid peroxidation in the liver during 12-48h and in the spleen during 24-48h. Although 2mgZnL(-1) pre-exposure did not affect lipid peroxidation, 2mgZnL(-1) pre-exposure mitigated high Zn induced oxidative stress. The positive effect of Zn acclimation could be attributed to the up-regulated expression and activities of antioxidant enzyme genes under high Zn stress. Obtained results also showed a coordinated transcriptional regulation of antioxidant genes, suggesting that Nrf2 is required for the protracted induction of these genes. Besides, the sharp increase in Keap1 expression levels would support its role in switching off Nrf2 response. In conclusion, Zn acclimation mitigated high Zn-induced oxidative stress in large yellow croker, emphasizing a central role of transcription factor Nrf2 in the process.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ai-Yi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
84
|
Santovito G, Boldrin F, Irato P. Metal and metallothionein distribution in different tissues of the Mediterranean clam Venerupis philippinarum during copper treatment and detoxification. Comp Biochem Physiol C Toxicol Pharmacol 2015; 174-175:46-53. [PMID: 26122313 DOI: 10.1016/j.cbpc.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/23/2022]
Abstract
Filter feeding animals can accumulate large amount of contaminants in their body through particles filtered from seawater. In particular, copper is interesting since it plays important roles as co-factor of numerous proteins but its toxicity is well established, also because it can readily generate free radicals or oxidize cellular components through their redox activity. Its availability is tightly regulated within cells: it is immediately transferred to metallothionein (MT) that in turn provides efficient and specific mechanisms for its intracellular storage and transport. The aim of this study was to evaluate the acute effect of sublethal copper concentrations in Venerupis philippinarum, by studying the kinetics of copper, zinc (for its interactions at the sites of intake or elimination with the accumulation of other essential and not essential trace metals) and metallothionein accumulation under laboratory conditions. The time-course of metal accumulation/elimination is similar in digestive gland and gills and importantly it is dose-dependent. Both copper and zinc increase slowly within cells, reaching a maximum concentration at the end of the exposure period. During the detoxification period, the metal levels in digestive gland and gills rapidly decrease, with different kinetics in the two tissues. Positive correlations between metallothionein accumulation and copper or zinc concentrations have been verified in both treated groups. The obtained data demonstrated the involvement of MTs in detoxification strategies after a recovery period in clean seawater.
Collapse
Affiliation(s)
| | | | - Paola Irato
- Department of Biology, University of Padova, Italy.
| |
Collapse
|