51
|
Liao C, Carlson BA, Paulson RF, Prabhu KS. The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic Biol Med 2018; 127:165-171. [PMID: 29719207 PMCID: PMC6168382 DOI: 10.1016/j.freeradbiomed.2018.04.578] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is incorporated as the 21st amino acid selenocysteine (Sec) into the growing polypeptide chain of proteins involved in redox gatekeeper functions. Erythropoiesis presents a particular problem to redox regulation as the presence of iron, heme, and unpaired globin chains lead to high levels of free radical-mediated oxidative stress, which are detrimental to erythroid development and can lead to anemia. Under homeostatic conditions, bone marrow erythropoiesis produces sufficient erythrocytes to maintain homeostasis. In contrast, anemic stress induces an alternative pathway, stress erythropoiesis, which rapidly produces new erythrocytes at extramedullary sites, such as spleen, to alleviate anemia. Previous studies suggest that dietary Se protects erythrocytes from such oxidative damage and the absence of selenoproteins causes hemolysis of erythrocytes due to oxidative stress. Furthermore, Se deficiency or lack of selenoproteins severely impairs stress erythropoiesis exacerbating the anemia in rodent models and human patients. Interestingly, erythroid progenitors develop in close proximity with macrophages in structures referred to as erythroblastic islands (EBIs), where macrophage expression of selenoproteins appears to be critical for the expression of heme transporters to facilitate export of heme from macrophage stores to the developing erythroid cells. Here we review the role of Se and selenoproteins in the intrinsic development of erythroid cells in addition to their role in the development of the erythropoietic niche that supports the functional role of EBIs in erythroid expansion and maturation in the spleen during recovery from anemia.
Collapse
Affiliation(s)
- Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
52
|
Shi H, Yan S, Guo Y, Shi B, Guo X. The pre-protective effect of vitamin A on LPS-induced oxidative stress of bovine mammary epithelial cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1453757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huiyu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongmei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
53
|
Gao Y, Zhang J, Huang X, Zhang G. Glutathione Peroxidase 1, Selenoprotein K, and Selenoprotein H May Play Important Roles in Chicken Testes in Response to Selenium Deficiency. Biol Trace Elem Res 2017; 179:271-276. [PMID: 28190185 DOI: 10.1007/s12011-017-0953-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/25/2017] [Indexed: 01/02/2023]
Abstract
Selenium (Se) deficiency induces testicular functional disturbances, but the molecular mechanism remains unclear. In the present study, 1-day-old broiler chickens were maintained for 55 days with a normal diet (0.2 mg/kg) and a Se-deficient diet (0.033 mg Se/kg). Then, the messenger RNA (mRNA) levels of selenoproteins, heat shock proteins (HSPs), and inflammatory factors were examined. Se deficiency led to decreased selenoproteins (Gpx1, Selk, and Selh) and HSPs (HSP40, HSP60, and HSP90) (P < 0.05). However, the expression levels of Gpx2, Sepn1, Seli, Selpb, Sepx1, HSP27, and inflammatory factors (iNOS, TNF-α, COX-2, and HO-1) were increased by Se deficiency (P < 0.05). Gpx1, Selk, and Selh showed positive correlation with HSP40, HSP60, and HSP90, but negative correlation with HSP27, HSP70, iNOS, TNF-α, COX-2, and HO-1. However, Gpx2, Spen1, Seli, Selpb, and Sepx1 showed positive correlation with inflammatory factors and HSP27 and HSP70. Selenoproteins showed different correlation with HSPs and inflammatory factors and were classified into different groups in response to Se deficiency. The results suggested that selenoproteins play different roles in chicken testes, and we think that Gpx1 and Selk may play a special role in chicken testes.
Collapse
Affiliation(s)
- Yuhong Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Jiuli Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
54
|
Hamieh A, Cartier D, Abid H, Calas A, Burel C, Bucharles C, Jehan C, Grumolato L, Landry M, Lerouge P, Anouar Y, Lihrmann I. Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Rep 2017; 18:1935-1946. [PMID: 28928140 DOI: 10.15252/embr.201643504] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Selenoprotein T (SelT) is a recently characterized thioredoxin-like protein whose expression is very high during development, but is confined to endocrine tissues in adulthood where its function is unknown. We report here that SelT is required for adaptation to the stressful conditions of high hormone level production in endocrine cells. Using immunofluorescence and TEM immunogold approaches, we find that SelT is expressed at the endoplasmic reticulum membrane in all hormone-producing pituitary cell types. SelT knockdown in corticotrope cells promotes unfolded protein response (UPR) and ER stress and lowers endoplasmic reticulum-associated protein degradation (ERAD) and hormone production. Using a screen in yeast for SelT-membrane protein interactions, we sort keratinocyte-associated protein 2 (KCP2), a subunit of the protein complex oligosaccharyltransferase (OST). In fact, SelT interacts not only with KCP2 but also with other subunits of the A-type OST complex which are depleted after SelT knockdown leading to POMC N-glycosylation defects. This study identifies SelT as a novel subunit of the A-type OST complex, indispensable for its integrity and for ER homeostasis, and exerting a pivotal adaptive function that allows endocrine cells to properly achieve the maturation and secretion of hormones.
Collapse
Affiliation(s)
- Abdallah Hamieh
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Houssni Abid
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - André Calas
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Carole Burel
- Institute for Research and Innovation in Biomedicine, Rouen, France.,Glyco-MEV Laboratory, Rouen-Normandie University UNIROUEN, Mont-Saint-Aignan, France
| | - Christine Bucharles
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cedric Jehan
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Luca Grumolato
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Patrice Lerouge
- Institute for Research and Innovation in Biomedicine, Rouen, France.,Glyco-MEV Laboratory, Rouen-Normandie University UNIROUEN, Mont-Saint-Aignan, France
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France .,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
55
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1173] [Impact Index Per Article: 167.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
56
|
Shi L, Song R, Yao X, Ren Y. Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 2017; 93:24-32. [DOI: 10.1016/j.theriogenology.2017.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
|
57
|
Kim S, Pak YN. Improvement of Accuracy for the Quantitation of Selenoproteins in Post-Column Isotope Dilution Technique with HPLC ICP/MS. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soojin Kim
- Department of Chemistry Education; Korea National University of Education; Cheongju 28173 Korea
| | - Yong Nam Pak
- Department of Chemistry Education; Korea National University of Education; Cheongju 28173 Korea
| |
Collapse
|
58
|
Retamal MA, García IE, Pinto BI, Pupo A, Báez D, Stehberg J, Del Rio R, González C. Extracellular Cysteine in Connexins: Role as Redox Sensors. Front Physiol 2016; 7:1. [PMID: 26858649 PMCID: PMC4729916 DOI: 10.3389/fphys.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Isaac E García
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo I Pinto
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Amaury Pupo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - David Báez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center for Biomedical Research, Universidad Autónoma de ChileSantiago, Chile; Dirección de Investigación, Universidad Científica del SurLima, Perú
| | - Carlos González
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
59
|
Park M, Pak YN. A study of relationship between stomach cancer and selenoproteins in Korean human blood serum. ANALYTICAL SCIENCE AND TECHNOLOGY 2015. [DOI: 10.5806/ast.2015.28.6.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
60
|
|
61
|
Evaluation of the selenotranscriptome expression in two hepatocellular carcinoma cell lines. Anal Cell Pathol (Amst) 2015. [PMID: 26199857 PMCID: PMC4493270 DOI: 10.1155/2015/419561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is still one of the most fatal cancers. Hence, it needs to identify always new putative markers to improve its diagnosis and prognosis. Since the selenium is able to fight the oxidative damage which is one of the major origins of cell damage as well as cancer, we have recently focused our attention on selenoprotein family and their involvement in HCC. In the present paper we have carried out a global analysis of the selenotranscriptome expression in HepG2 and Huh7 cells compared to the normal human hepatocytes by reverse transcription-qPCR (RT-qPCR). Our data showed that in both cells there are three downregulated (DIO1, DIO2, and SELO) and ten upregulated (GPX4, GPX7, SELK, SELM, SELN, SELT, SELV, SEP15, SEPW1, and TrxR1) genes. Additionally, interactomic studies were carried out to evaluate the ability of these down- and upregulated genes to interact between them as well as to identify putative HUB nodes representing the centers of correlation able to exercise a direct control over the coordinated genes.
Collapse
|
62
|
Pacitti D, Lawan MM, Sweetman J, Martin SAM, Feldmann J, Secombes CJ. Selenium Supplementation in Fish: A Combined Chemical and Biomolecular Study to Understand Sel-Plex Assimilation and Impact on Selenoproteome Expression in Rainbow Trout (Oncorhynchus mykiss). PLoS One 2015; 10:e0127041. [PMID: 25978314 PMCID: PMC4433249 DOI: 10.1371/journal.pone.0127041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/11/2015] [Indexed: 11/18/2022] Open
Abstract
Background Selenium (Se) is an essential oligonutrient, as a component of several Se-containing proteins (selenoproteins), which exert important biological functions within an organism. In livestock, Se-enriched products have been proposed as dietary supplements to be included into functional feeds for animal preventive health care. To this end, it is important to understand the optimal range of concentrations for supplementation and how long it takes to be assimilated into the organism. Methods In this study, rainbow trout (Oncorhynchus mykiss) were fed a control diet containing 0.9 g Kg-1 Se or the same diet supplemented with a Se-Yeast product (Sel-Plex) to achieve Se concentrations ranging from 1.5–8.9 g Kg-1 for a period of ten weeks. Fish were sampled every two weeks for analysis. The kinetics of Se bioaccumulation and the effects on fish selenoprotein expression was determined in different tissues combining chemical and bimolecular techniques. Results The Sel-Plex enriched diets did not have any effect on survival and growth performance. The highest Se levels were found in liver and kidney followed by muscle and blood cells. Analysis of the Se concentration factor showed that liver is able to initially regulate the amount of Se accumulated. However, with higher dietary Se level (4.8 and 8.9 g Kg-1) and longer times of exposure (10 weeks), regulation is ineffective and the Se tissue concentration increases. The expression of the selected trout selenoprotein transcripts showed an inverse correlation with Sel-Plex augmentation in most cases. In liver, kidney and blood cells the highest up-regulation of the trout selenoprotein genes was seen mostly in the group fed the diet enriched with the lowest concentration of Sel-Plex (0.5 g Kg-1) for 10 weeks. Conclusion Sel-Plex may represent an excellent Se supplement to deliver a high level of Se without provoking harm to the fish and to guarantee the maximal absorption of the element. According to our results, a dietary supplementation of Sel-Plex between 0.5 and 4 g Kg-1 may allow maximal benefits, whereas 8 g Kg-1 may be excessive for the purpose of supplementation.
Collapse
Affiliation(s)
- Davide Pacitti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Muhammad M. Lawan
- Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - John Sweetman
- Alltech Biosciences Centre, Sarney, Summerhill Rd, Dunboyne, Country Meath, Ireland
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jörg Feldmann
- Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Abstract
The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites.
Collapse
Affiliation(s)
- Gerald F Combs
- Grand Forks Human Nutrition Research Center, USDA-ARS, 2420 2nd Ave N Grand Forks, ND 58202, USA.
| |
Collapse
|
64
|
Jablonska E, Vinceti M. Selenium and Human Health: Witnessing a Copernican Revolution? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:328-68. [PMID: 26074278 DOI: 10.1080/10590501.2015.1055163] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.
Collapse
Affiliation(s)
- Ewa Jablonska
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | | |
Collapse
|
65
|
Sun H, Deng T, Fu J. Chicken 15-kDa selenoprotein plays important antioxidative function in splenocytes. Biol Trace Elem Res 2014; 161:288-96. [PMID: 25249069 DOI: 10.1007/s12011-014-0126-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 01/01/2023]
Abstract
The 15-kDa selenoprotein (Sep15) is a thioredoxin-like protein. The expression of Sep15 is regulated by dietary selenium (Se) and plays important roles in mammals. However, the structure and function of chicken Sep15 and its response to Se are still unclear. In the present study, we replicated the chicken Se deficiency models and Sep15 deficiency models in splenocytes. Then, the homology, structure analysis, and levels of Sep15 were analyzed. In addition, the oxidative stress levels were examined in Sep15 deficiency splenocytes. The results indicated that chicken Sep15 preserved high similarity with that of other 14 animals in the coding nucleotide sequences (CDS) and deduced amino acid sequence, which suggested that chicken Sep15 may be derived from the same ancestor with other animals. The predicted structure and function showed that chicken Sep15 preserved the conserved thioredoxin-like fold CxU, which suggested an antioxidative function. Chicken Sep15 was also decreased by Se deficiency in immune organs (P < 0.05). In addition, Sep15 deficiency induced the occurrence of higher oxidative stress and enhanced the sensitivity of cells to H2O2 (P < 0.05). So the in vitro study further verified its antioxidative function. Thus, similar to its mammal homolog, chicken Sep15 preserves the typical characteristic of selenoprotein and may play some roles in the redox regulation.
Collapse
Affiliation(s)
- Huijie Sun
- College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | | | | |
Collapse
|
66
|
Yao H, Zhao W, Zhao X, Fan R, Khoso PA, Zhang Z, Liu W, Xu S. Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biol Trace Elem Res 2014; 161:318-27. [PMID: 25269677 DOI: 10.1007/s12011-014-0125-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022]
Abstract
Dietary selenium (Se) deficiency induces muscular dystrophy in chicken, but the molecular mechanism remains unclear. The aim of the present study was to investigate the effect of dietary Se deficiency on the expressions of 25 selenoproteins. One-day-old broiler chickens were fed either an Se deficiency diet (0.033 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a diet supplemented with Se (as sodium selenite) at 0.2 mg/kg for 55 days. Then, the mRNA levels of 25 selenoproteins in chicken muscles were examined, and the principal component was further analyzed. The results showed that antioxidative selenoproteins especially Gpxs and Sepw1 were highly and extensively expressed than other types of selenoproteins in chicken muscles. In 25 selenoproteins, Gpxs, Txnrd2, Txnrd 3, Dio1, Dio 3, Selk, Sels, Sepw1, Selh, Sep15, Selu, Selpb, Sepp1, Selo, Sepx1, and SPS2 were downregulated (P < 0.05), and other selenoproteins were not influenced (P > 0.05). Se deficiency decreased the expressions of 19 selenoproteins (P < 0.05), 11 of which were antioxidative selenoproteins. And, principal component analysis (PCA) further indicated that antioxidative selenoproteins, especially Gpx3, Gpx4, and Sepw1, may play crucial roles in chicken muscles. However, compared with these antioxidative selenoproteins, some other lower expressed selenoproteins (Dio1, Selu, Selpb, Sepp1) were excessively decreased (more than 60 %, P < 0.05) by Se deficiency. Thus, it may save the limited Se levels and be beneficial to remain the level of some crucial selenoproteins. These results suggested that Se deficiency mainly influenced the expressions of antioxidative selenoproteins in chicken muscles. And, antioxidative selenoproteins especially Gpxs and Sepw1 may play a crucial role in chicken muscles. Thus, it helps us focus on some specific selenoproteins when studying the role of Se in chicken muscles.
Collapse
Affiliation(s)
- Haidong Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhao X, Yao H, Fan R, Zhang Z, Xu S. Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol Trace Elem Res 2014; 161:341-9. [PMID: 25319006 DOI: 10.1007/s12011-014-0139-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/01/2023]
Abstract
Selenium (Se) deficiency induces pancreatic atrophy in chickens, but the molecular mechanism remains unclear. In this study, we investigated the effect of dietary Se deficiency on the expressions of 25 selenoproteins and the content of nitric oxide (NO) and examined the relationship between selenoproteins and NO. Chickens (180; 1 day old) were randomly divided into two groups, low (L) group (fed with Se deficient (Se 0.033 mg/kg) diet) and control (C) group (fed with normal (Se 0.2 mg/kg) diet). Then, pancreas was collected at 15, 25, 35, 45, and 55 days, and the content of NO, the activity of inducible NO synthase (iNOS), and the messenger RNA (mRNA) levels of 25 selenoproteins and iNOS were measured. The results showed that 25 selenoproteins were decreased (P < 0.05) by Se deficiency. Among them, thioredoxin reductase 1 (TXNRD1), selenoprotein S (SELS), selenoprotein U (SELU), selenoprotein X1 (SEPX1), and selenoprotein synthetase 2 (SPS2) were highly and extensively expressed than other types of selenoproteins in pancreas of chickens (P < 0.05). Thioredoxin reductase 2 (TXNRD2), glutathione peroxidase 1 (GPX1), glutathione peroxidase 3 (GPX3), selenoprotein I (SELI), iodothyronine deiodinase 1 (DIO1), selenoprotein P1 (SEPP1), selenoprotein W1 (SEPW1), selenoprotein O (SELO), selenoprotein T (SELT), selenoprotein M (SELM), selenoprotein X1 (SEPX1), and SPS2 were excessively decreased (P < 0.05). Meanwhile, NO content, iNOS activity, and mRNA level were increased strikingly compared with C group (P < 0.05). The correlation analysis suggested that NO had a strong negative correlation with GPX1, glutathione peroxidase 2 (GPX2), GPX3, DIO1, selenoprotein K (SELK), SELI, SEPX1, and SPS2. These results suggested that Se deficiency induced pancreatic injury by influencing NO and selenoproteins in pancreas of chickens. Thus, it offers some information on the mechanism of pancreatic injury induced by Se deficiency.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | |
Collapse
|
68
|
Watts SD, Torres-Salazar D, Divito CB, Amara SG. Cysteine transport through excitatory amino acid transporter 3 (EAAT3). PLoS One 2014; 9:e109245. [PMID: 25275463 PMCID: PMC4183567 DOI: 10.1371/journal.pone.0109245] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1–5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1–3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest that cysteine transport is predominantly unidirectional and that reverse transport does not contribute to depletion of intracellular cysteine pools.
Collapse
Affiliation(s)
- Spencer D. Watts
- Center for Neuroscience, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Delany Torres-Salazar
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher B. Divito
- Center for Neuroscience, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Susan G. Amara
- Center for Neuroscience, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
69
|
Shi L, Zhao H, Ren Y, Yao X, Song R, Yue W. Effects of different levels of dietary selenium on the proliferation of spermatogonial stem cells and antioxidant status in testis of roosters. Anim Reprod Sci 2014; 149:266-72. [PMID: 25115807 DOI: 10.1016/j.anireprosci.2014.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 06/23/2014] [Accepted: 07/11/2014] [Indexed: 01/04/2023]
Abstract
The objective of this study was to investigate the different levels of dietary Se (from sodium selenite) on the proliferation of SSCs (spermatogonial stem cells) in testis of roosters. Also, the antioxidant status and Se content in blood plasma and testis were evaluated. A total of eighty 12-week-old Hy-Line Variety white roosters at an averaged body weight of 1.38 ± 0.2 kg were selected and randomly divided into four experimental groups. They were fed with the basal diet (0.044 mgSe/kg DM) supplemented with 0 (control), 0.5, 1.0 or 2.0 mgSe/kg DM (from sodium selenite). After the feeding experiment, blood and testis samples were collected for analysis of the antioxidant status and Se concentration. The testis samples were also used to examine the Thy-1 and β1-integrin mRNA expression by RT-PCR and detect the population of SSCs by immunofluorescence analysis. The results show that Se concentration in blood and testis of the animals was progressively increased with the increasing Se level in diet. The highest GSH-Px (glutathione peroxidase) activity and lowest MDA content in blood and testis was obtained in the treatment of 0.5mg/kg. RT-PCR analysis showed that mRNA expression of SSCs markers were significantly lower in the control and 1.0mg/kg groups when compared with that in the treatment of 0.5mg/kg. A similar trend was observed in the population of SSCs analyzed by immunofluorescence assay. These data suggest that dietary Se can influence the population of SSCs of roosters during spermatogenesis and that oxidative stress can modulate SSCs behavior through regulating some key factors during spermatogenesis.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, PR China; Lab of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Hui Zhao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Youshe Ren
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, PR China; Lab of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xiaolei Yao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Ruigao Song
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Wenbin Yue
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, PR China; Lab of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| |
Collapse
|
70
|
Mickiewicz B, Villemaire ML, Sandercock LE, Jirik FR, Vogel HJ. Metabolic changes associated with selenium deficiency in mice. Biometals 2014; 27:1137-47. [DOI: 10.1007/s10534-014-9774-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
|
71
|
Forceville X, Touati S, Le Toumelin P, Ducros V, Laporte F, Chancerelle Y, Agay D. Elements of margin of safety, toxicity and action of sodium selenite in a lipopolysaccharide rat model. J Trace Elem Med Biol 2014; 28:303-10. [PMID: 24813451 DOI: 10.1016/j.jtemb.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/20/2014] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
PROJECT Both septic shock and sodium selenite (Na2SeO3) lead to multiple organ failure through oxidation. Na2SeO3 has direct oxidant effects above the nutritional level and indirect anti-oxidant properties. In a lipopolysaccharide (LPS) rat model we assessed margin of safety, toxicity and beneficial effect of pentahydrate Na2SeO3 (5H2O·Na2SeO3) at oxidant doses. PROCEDURE In a three-step study on 204 rats we: (i) observed toxic effects of Na2SeO3 injected intraperitoneously (IP) and determined its Minimum Dose Without Toxic effect (MDWT) 0.25-0.35 mg/kg selenium (Se) content; (ii) injected IP LPS at 70% lethal dose (LD) followed, or not, one hour later by IP Na2SeO3 at MDWT and (iii) by doses>MDWT. At 48 h, in survivors, we measured plasma creatinine, lactate, aspartate and alanine aminotransferase (AST, ALT), nitric oxide (NO) and Se concentrations. RESULTS (i) Na2SeO3 alone did not increase NO and lactate. Encephalopathy appeared at 1mg Se/kg. Creatinine increased at 1-1.75 mg Se/kg, AST, ALT at 3-4.5 mg Se/kg, and the minimum LD was 3 mg Se/kg. (ii) Mortality after LPS was 37/50 (74%, [62-86%]) vs. 20/30 (67%, [50-84%]) when followed by Na2SeO3 at MDWT (p=0.483) with a decreased in NO (-31%, p=0.038) a trend for lactate decrease (-19%, p=0.068) and an increased Se in plasma of survivals. (iii) All rats died at doses ≥0.6 mg/kg (p<0.001). CONCLUSION Mechanisms of LPS and Na2SeO3 toxicity differ (i.e. NO, lactate). In septic shock 5H2O·Na2SeO3 toxicity increased, margin of safety decrease, but IP administration of dose considered as oxidant of 5H2O·Na2SeO3 showed beneficial effects.
Collapse
Affiliation(s)
- Xavier Forceville
- Centre Hospitalier de Meaux, Réanimation Polyvalente, 77104 Meaux, France.
| | - Samia Touati
- Centre Hospitalier de Meaux, Réanimation Polyvalente, 77104 Meaux, France
| | | | - Véronique Ducros
- CHU de Grenoble, Département de Biochimie Toxicologie & Pharmacologie, UF de Biochimie Hormonologie & Nutrition, BP 217, 38043 Grenoble cedex 9, France
| | - François Laporte
- CHU de Grenoble, Département de Biochimie Toxicologie & Pharmacologie, UF de Biochimie Hormonologie & Nutrition, BP 217, 38043 Grenoble cedex 9, France
| | - Yves Chancerelle
- Institut de Recherche Biomédicale des Armées, Département des Effets Biologiques des Rayonnements, 24 avenue des Maquis du Grésivaudan - BP 87, 38702 La Tronche, France
| | - Diane Agay
- Institut de Recherche Biomédicale des Armées, Département des Effets Biologiques des Rayonnements, 24 avenue des Maquis du Grésivaudan - BP 87, 38702 La Tronche, France
| |
Collapse
|
72
|
Han SJ, Lee BC, Yim SH, Gladyshev VN, Lee SR. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein. PLoS One 2014; 9:e95518. [PMID: 24751718 PMCID: PMC3994087 DOI: 10.1371/journal.pone.0095518] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022] Open
Abstract
Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.
Collapse
Affiliation(s)
- Seong-Jeong Han
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
73
|
Selenium suppresses oxidative-stress-enhanced vascular smooth muscle cell calcification by inhibiting the activation of the PI3K/AKT and ERK signaling pathways and endoplasmic reticulum stress. J Biol Inorg Chem 2014; 19:375-88. [DOI: 10.1007/s00775-013-1078-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/11/2013] [Indexed: 12/16/2022]
|
74
|
Yao H, Liu W, Zhao W, Fan R, Zhao X, Khoso PA, Zhang Z, Xu S. Different responses of selenoproteins to the altered expression of selenoprotein W in chicken myoblasts. RSC Adv 2014. [DOI: 10.1039/c4ra11502c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Selenoprotein W could influence certain selenoproteins expression through redox pathway.
Collapse
Affiliation(s)
- Haidong Yao
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| | - Wei Liu
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
- The Key Laboratory of Myocardial Ischemia
- Harbin Medical University
| | - Wenchao Zhao
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| | - Ruifeng Fan
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| | - Xia Zhao
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| | - Pervez Ahmed Khoso
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| | - Ziwei Zhang
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| | - Shiwen Xu
- Department of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030, P. R. China
| |
Collapse
|
75
|
Grosch M, Fuchs J, Bösl M, Winterpacht A, Tagariello A. Selenoprotein M is expressed during bone development. EXCLI JOURNAL 2013; 12:967-79. [PMID: 27298612 PMCID: PMC4904744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 10/29/2022]
Abstract
25 selenoproteins that contain selenium, incorporated as selenocysteine (Sec), have been identified to date. Selenoprotein M (SELM) is one of seven endoplasmic reticulum (ER)-resident, Sec-containing proteins that may be involved in posttranslational processing of proteins and maintenance of ER function. Since SELM was overrepresented in a cartilage- and bone-specific expressed sequence tag (EST) library, we further investigated the expression pattern of Selm and its possible biological function in the skeleton. RNA in situ hybridization of Selm in chicken and mice of different developmental stages revealed prominent expression in bones, specifically in osteoblast, and in tendons. This result suggests that SELM functions during bone development, where it is possibly involved in the processing of secreted proteins.
Collapse
Affiliation(s)
- Melanie Grosch
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer Fuchs
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Bösl
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Andreas Winterpacht
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany,*To whom correspondence should be addressed: Andreas Winterpacht, Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 10, D-91054 Erlangen, Germany; Tel. ++49-9131-852-2019; FAX: ++49-9131-852-3232, E-mail:
| | - Andreas Tagariello
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
76
|
Woolley J, Stanicka J, Cotter T. Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem Sci 2013; 38:556-65. [DOI: 10.1016/j.tibs.2013.08.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/18/2023]
|
77
|
Prevost G, Arabo A, Jian L, Quelennec E, Cartier D, Hassan S, Falluel-Morel A, Tanguy Y, Gargani S, Lihrmann I, Kerr-Conte J, Lefebvre H, Pattou F, Anouar Y. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance. Endocrinology 2013; 154:3796-806. [PMID: 23913443 DOI: 10.1210/en.2013-1167] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Selenoproteins are involved in the regulation of redox status, which affects several cellular processes, including cell survival and homeostasis. Considerable interest has arisen recently concerning the role of selenoproteins in the regulation of glucose metabolism. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein of the endoplasmic reticulum, is present at high levels in human and mouse pancreas as revealed by immunofluorescence and quantitative PCR. Confocal immunohistochemistry studies revealed that SelT is mostly confined to insulin- and somatostatin-producing cells in mouse and human islets. To elucidate the role of SelT in β-cells, we generated, using a Cre-Lox strategy, a conditional pancreatic β-cell SelT-knockout C57BL/6J mice (SelT-insKO) in which SelT gene disruption is under the control of the rat insulin promoter Cre gene. Glucose administration revealed that male SelT-insKO mice display impaired glucose tolerance. Although insulin sensitivity was not modified in the mutant mice, the ratio of glucose to insulin was significantly higher in the SelT-insKO mice compared with wild-type littermates, pointing to a deficit in insulin production/secretion in mutant mice. In addition, morphometric analysis showed that islets from SelT-insKO mice were smaller and that their number was significantly increased compared with islets from their wild-type littermates. Finally, we found that SelT is up-regulated by pituitary adenylate cyclase-activating polypeptide (PACAP) in β-pancreatic cells and that SelT could act by facilitating a feed-forward mechanism to potentiate insulin secretion induced by the neuropeptide. Our findings are the first to show that the PACAP-regulated SelT is localized in pancreatic β- and δ-cells and is involved in the control of glucose homeostasis.
Collapse
Affiliation(s)
- Gaëtan Prevost
- INSERM U982, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Sciences Faculty, University of Rouen, Place Emile Blondel, 76 821 Mont-Saint-Aignan cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Bellinger FP, Berry MJ. Selenoprotein W expression and regulation in mouse brain and neurons. Brain Behav 2013; 3:562-74. [PMID: 24392277 PMCID: PMC3869984 DOI: 10.1002/brb3.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
Background Selenoprotein W (Sepw1) is a selenium-containing protein that is abundant in brain and muscle of vertebrate animals. Muscular expression of Sepw1 is reduced by dietary selenium (Se) deficiency in mammals, whereas brain expression is maintained. However, expression of Sepw1 depends on the Se transporter selenoprotein P (Sepp1). Methods We assessed the regional and cellular expression of Sepw1 in the mouse brain and neuronal cultures. Results We found that Sepw1 is widespread in neurons and neuropil of mouse brain and appears in both the soma and processes of neurons in culture. Pyramidal neurons of cortex and hippocampus express high levels of Sepw1. It is also abundant in Purkinje neurons and their dendritic arbors in the cerebellum. Analysis of synaptosome fractions prepared from mice brains indicated that Sepw1 is present at synapses, as were several proteins involved in selenoprotein synthesis. Synaptic expression of Sepw1 expression is reduced in mice lacking Sepp1 compared with control mice, although selenoprotein synthesis factors were similarly expressed in both genotypes. Lastly, Sepw1 mRNA coimmunoprecipitates with Staufen 2 protein in a human neuronal cell line. Conclusions Our results suggest that Sepw1 may be locally synthesized in distal compartments of neurons including synapses.
Collapse
Affiliation(s)
- Arjun V Raman
- Cell and Molecular Biology Department John A. Burns School of Medicine, University of Hawai'i at Manoa Honolulu, Hawaii
| | - Matthew W Pitts
- Cell and Molecular Biology Department John A. Burns School of Medicine, University of Hawai'i at Manoa Honolulu, Hawaii
| | - Ali Seyedali
- Cell and Molecular Biology Department John A. Burns School of Medicine, University of Hawai'i at Manoa Honolulu, Hawaii
| | - Ann C Hashimoto
- Cell and Molecular Biology Department John A. Burns School of Medicine, University of Hawai'i at Manoa Honolulu, Hawaii
| | - Frederick P Bellinger
- Cell and Molecular Biology Department John A. Burns School of Medicine, University of Hawai'i at Manoa Honolulu, Hawaii
| | - Marla J Berry
- Cell and Molecular Biology Department John A. Burns School of Medicine, University of Hawai'i at Manoa Honolulu, Hawaii
| |
Collapse
|
79
|
Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG. Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr 2013; 143:613-9. [PMID: 23514769 PMCID: PMC3738234 DOI: 10.3945/jn.112.172395] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dietary selenium (Se) deficiency causes muscular dystrophy in various species, but the molecular mechanism remains unclear. Our objectives were to investigate: 1) if dietary Se deficiency induced different amounts of oxidative stress, lipid peroxidation, and cell apoptosis in 3 skeletal muscles; and 2) if the distribution and expression of 4 endoplasmic reticulum (ER) resident selenoprotein genes (Sepn1, Selk, Sels, and Selt) were related to oxidative damages in these muscles. Two groups of day-old layer chicks (n = 60/group) were fed a corn-soy basal diet (33 μg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or the diet supplemented with Se (as sodium selenite) at 0.15 mg/kg for 55 d. Dietary Se deficiency resulted in accelerated (P < 0.05) cell apoptosis that was associated with decreased glutathione peroxidase activity and elevated lipid peroxidation in these muscles. All these responses were stronger in the pectoral muscle than in the thigh and wing muscles (P < 0.05). Relative distribution of the 4 ER resident selenoprotein gene mRNA amounts and their responses to dietary Se deficiency were consistent with the resultant oxidative stress and cell apoptosis in the 3 muscles. Expression of Sepn1, Sels, and Selt in these muscles was correlated with (r > 0.72; P < 0.05) that of Sepsecs encoding a key enzyme for biosynthesis of selenocysteine (selenocysteinyl-tRNA synthase). In conclusion, the pectoral muscle demonstrated unique expression patterns of the ER resident selenoprotein genes and GPx activity, along with elevated susceptibility to oxidative cell death, compared with the other skeletal muscles. These features might help explain why it is a primary target of Se deficiency diseases in chicks.
Collapse
Affiliation(s)
- Hai-Dong Yao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiong Wu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zi-Wei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiu-Li Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shu Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Qiang Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Fa-Zheng Ren
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Shi-Wen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,To whom correspondence may be addressed. E-mail: , , or
| | - Xiao-Long Wang
- Wildlife Resource College and Center of Conservation Medicine and Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang, China; and,To whom correspondence may be addressed. E-mail: , , or
| | - Xin Gen Lei
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China,Department of Animal Science, Cornell University, Ithaca, NY,To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
80
|
Liu J, Li F, Rozovsky S. The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro. Biochemistry 2013; 52:3051-61. [PMID: 23566202 DOI: 10.1021/bi4001358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Selenoprotein S (SelS or VIMP) is an intrinsically disordered membrane enzyme that provides protection against reactive oxidative species. SelS is a member of the endoplasmic reticulum-associated protein degradation pathway, but its precise enzymatic function is unknown. Because it contains the rare amino acid selenocysteine, it belongs to the family of selenoproteins, which are typically oxidoreductases. Its exact enzymatic function is key to understanding how the cell regulates the response to oxidative stress and thus influences human health and aging. To identify its enzymatic function, we have isolated the selenocysteine-containing enzyme by relying on the aggregation of forms that do not have this reactive residue. That allows us to establish that SelS is primarily a thioredoxin-dependent reductase. It is capable of reducing hydrogen peroxide but is not an efficient or broad-spectrum peroxidase. Only the selenocysteine-containing enzyme is active. In addition, the reduction potential of SelS was determined to be -234 mV using electrospray ionization mass spectrometry. This value is consistent with SelS being a partner of thioredoxin. On the basis of this information, SelS can directly combat reactive oxygen species but is also likely to participate in a signaling pathway, via a yet unidentified substrate.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
81
|
Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. Proline editing: a general and practical approach to the synthesis of functionally and structurally diverse peptides. Analysis of steric versus stereoelectronic effects of 4-substituted prolines on conformation within peptides. J Am Chem Soc 2013; 135:4333-63. [PMID: 23402492 PMCID: PMC4209921 DOI: 10.1021/ja3109664] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase peptide synthesis to incorporate Fmoc-hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to "protect" the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR ((19)F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; (77)SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution-phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazine-trans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution.
Collapse
Affiliation(s)
- Anil K. Pandey
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Devan Naduthambi
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Krista M. Thomas
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| |
Collapse
|
82
|
Abstract
The carcinogenicity of cadmium, arsenic, and chromium(VI) compounds has been recognized for some decades. However, the underlying molecular mechanisms seem to be complex and are not completely understood at present. Although, with the exception of chromium(VI), direct DNA damage seems to be of minor importance, interactions with DNA repair processes, tumor suppressor functions, and signal transduction pathways have been described in diverse biological systems. In addition to the induction of damage to cellular macromolecules by reactive oxygen species, the interference with cellular redox regulation by reaction with redox-sensitive protein domains or amino acids may provide one plausible mechanism involved in metal carcinogenicity. Consequences are the distortion of zinc-binding structures and the activation or inactivation of redox-regulated signal transduction pathways, provoking metal-induced genomic instability. Nevertheless, the relevance of the respective mechanisms depends on the actual metal or metal species under consideration and more research is needed to further strengthen this hypothesis.
Collapse
Affiliation(s)
- Andrea Hartwig
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
83
|
Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. Br J Nutr 2013; 110:617-24. [PMID: 23308391 DOI: 10.1017/s0007114512005545] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two experiments were conducted on broiler chickens to compare the effect of a new organic Se source, 2-hydroxy-4-methylselenobutanoic acid (HMSeBA; SO), with two practical Se additives, sodium selenite (SS) and Se yeast (SY). The relative bioavailability of the different Se sources was compared on muscle (pectoralis major) total Se, selenomethionine (SeMet) and selenocysteine (SeCys) concentrations and apparent digestibility of total Se (ADSe). In the first experiment, from day (d) 0 to d21, Se sources were tested at different supplied levels and compared with an unsupplemented diet (NC). No significant effects were observed on growth performance during the experimental period. However, the different Se sources and levels improved muscle Se concentration compared with the NC, with a significant source effect in the following order: SS < SY < SO (P<0·05). Seleno-amino acids speciation results for NC, SY and SO at 0·3 mg Se/kg feed indicated that muscle Se was only present as SeMet or SeCys, showing a full conversion of Se by the bird. The second experiment (d0-d24) compared SS, SY or SO at 0·3 mg Se/kg feed. The ADSe measurements carried out between d20 and d23 were 24, 46 and 49% for SS, SY and SO, respectively, with significant differences between the organic and mineral Se sources (P<0·05). These results confirmed the higher bioavailability of organic Se sources compared with the mineral source and demonstrated a significantly better efficiency of HMSeBA compared with SY for muscle Se enrichment.
Collapse
|
84
|
Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 2013; 5:97-110. [PMID: 23306191 PMCID: PMC3571640 DOI: 10.3390/nu5010097] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.
Collapse
|
85
|
Li C, Wang W, Guo X, Zhang F, Ma W, Zhang Y, Li Y, Bai Y, Lammi MJ. Pathways related to mitochondrial dysfunction in cartilage of endemic osteoarthritis patients in China. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1057-63. [PMID: 23233220 DOI: 10.1007/s11427-012-4418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022]
Abstract
In this paper, we present the first evidence of differences in the mitochondria-related gene expression profiles of adult articular cartilage derived from patients with Kashin-Beck disease and normal controls. The expression of 705 mitochondria-related genes was analyzed by mitochondria-related gene expression analysis and ingenuity pathways analysis. Mitochondria-related gene expression analysis identified 9 up-regulated genes in Kashin-Beck disease based on their average expression ratio. Three canonical pathways involved in oxidative phosphorylation, apoptosis signaling and pyruvate metabolism were identified, which indicate the involvement of mitochondrial dysfunction in the pathogenesis of Kashin-Beck disease.
Collapse
Affiliation(s)
- Chunyan Li
- Faculty of Public Health, Medical College of Xi'an Jiaotong University, Key Laboratory of Environment and Gene Related Diseases of Ministry of Education, Key Laboratory of Trace elements and Endemic Diseases of Ministry of Health, Xi'an 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Gentschew L, Bishop KS, Han DY, Morgan AR, Fraser AG, Lam WJ, Karunasinghe N, Campbell B, Ferguson LR. Selenium, selenoprotein genes and Crohn's disease in a case-control population from Auckland, New Zealand. Nutrients 2012; 4:1247-59. [PMID: 23112913 PMCID: PMC3475235 DOI: 10.3390/nu4091247] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/12/2022] Open
Abstract
New Zealand has one of the highest incidence rates of Crohn’s Disease (CD), whilst the serum selenium status of New Zealanders is amongst the lowest in the world. A prospective case-control study in Auckland, New Zealand considered serum selenium as a potential CD risk factor. Serum selenium levels were significantly lower in CD patients compared to controls (101.8 ± 1.02 vs. 111.1 ± 1.01 ng/mL) (p = 5.91 × 10−8). Recent detailed studies in the United Kingdom have suggested an optimal serum level around 122 ng/mL, making the average CD patient in New Zealand selenium deficient. Of the 29 single nucleotide polymorphisms (SNPs) tested, 13 were found to significantly interact with serum selenium on CD. After adjustment for multiple testing, a significant interaction with serum selenium on CD was found for three SNPs, namely rs17529609 and rs7901303 in the gene SEPHS1, and rs1553153 in the gene SEPSECS. These three SNPs have not been reported elsewhere as being significantly associated with selenium or CD. It is unclear as to whether lower selenium levels are a cause or an effect of the disease.
Collapse
Affiliation(s)
- Liljana Gentschew
- Discipline of Nutrition, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (L.G.); (D.Y.H.); (W.J.L.); (B.C.)
| | - Karen S. Bishop
- Auckland Cancer Society Research Center, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (K.S.B.); (N.K.)
| | - Dug Yeo Han
- Discipline of Nutrition, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (L.G.); (D.Y.H.); (W.J.L.); (B.C.)
- Nutrigenomics New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (A.R.M.); (A.G.F.)
| | - Angharad R. Morgan
- Nutrigenomics New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (A.R.M.); (A.G.F.)
| | - Alan G. Fraser
- Nutrigenomics New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (A.R.M.); (A.G.F.)
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Wen Jiun Lam
- Discipline of Nutrition, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (L.G.); (D.Y.H.); (W.J.L.); (B.C.)
- Nutrigenomics New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (A.R.M.); (A.G.F.)
| | - Nishi Karunasinghe
- Auckland Cancer Society Research Center, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (K.S.B.); (N.K.)
| | - Bobbi Campbell
- Discipline of Nutrition, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (L.G.); (D.Y.H.); (W.J.L.); (B.C.)
| | - Lynnette R. Ferguson
- Discipline of Nutrition, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (L.G.); (D.Y.H.); (W.J.L.); (B.C.)
- Auckland Cancer Society Research Center, FM&HS, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (K.S.B.); (N.K.)
- Nutrigenomics New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; (A.R.M.); (A.G.F.)
- Author to whom correspondence should be addressed; ; Tel.: +64-9-9236372; Fax: +64-9-3035962
| |
Collapse
|
87
|
Röseler A, Prieto JH, Iozef R, Hecker B, Schirmer RH, Külzer S, Przyborski J, Rahlfs S, Becker K. Insight into the selenoproteome of the malaria parasite Plasmodium falciparum. Antioxid Redox Signal 2012; 17:534-43. [PMID: 22229886 DOI: 10.1089/ars.2011.4276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS The malaria parasite Plasmodium falciparum possesses four unique selenoproteins (PfSel1-PfSel4) which are likely to represent important components of the redox-regulatory network of this infectious agent. So far these proteins have only been characterized in silico. The aim of the present study was to gain further insight into the structural, biochemical, and functional properties of P. falciparum selenoproteins. RESULTS Using (75)Se labeling in P. falciparum cell culture, the presence of selenoproteins in the parasite could be verified for the first time. Bioinformatic analyses indicated distant relatedness between the Plasmodium proteins and selenoproteins described in other organisms, namely between PfSel1 and SelK, PfSel2 and SelT, and between PfSel4 and SelS. For PfSel3 no remarkable similarities with proteins from other organisms were identified. All four proteins were recombinantly produced in Escherichia coli as UGA→UGU (selenocysteine→cysteine) mutants. Using green fluorescent protein (GFP)-fusion proteins and immunofluorescence, the subcellular localization of the four selenoprotein mutants was studied. PfSel1, PfSel2, and PfSel4 localized to the endoplasmic reticulum whereas PfSel3 was visualized in the nucleus and/or the apicoplast. Functional assays support the roles of PfSel1 and PfSel4 in cellular redox reactions. Transcriptional profiles of the four selenoproteins, and proteins involved in selenoprotein biosynthesis, indicate that their expression is regulated via the availability of selenium and via oxidative and nitrosative stress. INNOVATION In this study the presence of selenoproteins in Plasmodium has been proven for the first time; the subcellular localization of the proteins and their relatedness to known selenoproteins have been systematically studied, and recombinant proteins as well as information on regulation of transcript levels have been obtained. CONCLUSION Taken together, our data enhance our understanding of the functional role of selenoproteins in Plasmodium.
Collapse
Affiliation(s)
- Anne Röseler
- Interdisciplinary Research Center, Giessen University, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Nyquist NF, Biltvedt LM, Rødbotten R, Mielnik M, Thomassen M, Svihus B, Haug A. Effect of varying ratios of n-6and n-3on selenium content in broiler breast muscle. ACTA AGR SCAND A-AN 2012. [DOI: 10.1080/09064702.2012.740502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
89
|
Selenoproteins in bladder cancer. Clin Chim Acta 2012; 413:847-54. [PMID: 22349600 DOI: 10.1016/j.cca.2012.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/19/2012] [Accepted: 01/31/2012] [Indexed: 12/13/2022]
Abstract
Selenoproteins with genetically encoded selenium (Se) are very important in response to oxidative stress, redox balance and regulation of various metabolic and developmental processes. Although increased circulating Se has been associated with 33% risk reduction of bladder cancer, there are little data on selenoprotein expression at the protein and genetic level from both human and animal studies. Data from the Mammalian Gene Collection (MGC) Project clearly showed that highest mRNA expression in human urinary epithelium for TRXR1 (thioredoxin reductase 1), GPX1 (glutathione peroxidase 1), SEP15 (15 kDa selenoprotein), SELT (selenoprotein T) and SEPW1 (selenoprotein W1). Although bladder tumor has been characterized by increased Se, GPX and TRXR activity, circulating Se and GPX was interestingly decreased in these cancer patients. As such, selenoprotein expression in urinary epithelium may be involved in bladder cancer (development, progression and recurrence) and may play a significant role in chemotherapeutic intervention. Despite these findings, the role of selenoproteins in bladder cancer has rarely been investigated and the significance of selenoproteins in normal and malignant uroepithelium remains poorly understood.
Collapse
|
90
|
de Rosa V, Erkekoğlu P, Forestier A, Favier A, Hincal F, Diamond AM, Douki T, Rachidi W. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radic Res 2012; 46:105-16. [PMID: 22145923 DOI: 10.3109/10715762.2011.647009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiological studies have demonstrated an inverse relationship between selenium (Se) intake and cancer incidence and/or mortality. However, the molecular mechanisms underlying the cancer chemopreventive activity of Se compounds remain largely unknown. The objective of this study was to investigate the effect of low doses of Se on the stimulation of DNA repair systems in response to four different qualities of DNA damage. P53-proficient LNCaP human prostate adenocarcinoma cells were grown either untreated or in the presence of low concentrations of two Se compounds (30° nM sodium selenite, or 10 μM selenomethionine) and exposed to UVA, H2O2, methylmethane sulfonate (MMS) or UVC. Cell viability as well as DNA damage induction and repair were evaluated by the alkaline Comet assay. Overall, Se was shown to be a very potent protector against cell toxicity and genotoxicity induced by oxidative stress (UVA or H2O2) but not from the agents that induce other types of deleterious lesions (MMS or UVC). Furthermore, Se-treated cells exhibited increased oxidative DNA repair activity, indicating a novel mechanism of Se action. Therefore, the benefits of Se could be explained by a combination of antioxidant activity, the reduction in DNA damage and the enhancement of oxidative DNA repair capacity.
Collapse
Affiliation(s)
- Viviana de Rosa
- Laboratoire des Lésions des Acides Nucléiques, SCIB, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Wang HC, Riahi M, Pothen J, Bayse CA, Riggs-Gelasco P, Brumaghim JL. Interactions of Cu(I) with selenium-containing amino acids determined by NMR, XAS, and DFT studies. Inorg Chem 2011; 50:10893-900. [PMID: 21999616 PMCID: PMC3286356 DOI: 10.1021/ic201440j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cu(I) coordination by organoselenium compounds was recently reported as a mechanism for their prevention of copper-mediated DNA damage. To establish whether direct Se-Cu coordination may be involved in selenium antioxidant activity, Cu(I) coordination of the selenoamino acids methyl-Se-cysteine (MeSeCys) and selenomethionine (SeMet) was investigated. NMR results in D(2)O indicate that Cu(I) binds to the Se atom of both MeSeCys and SeMet as well as the carboxylic acid oxygen atom(s) or amine nitrogen atoms. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) results confirm Se-Cu coordination, with the identification of a 2.4 Å Se-Cu vector in both the Se- and Cu-EXAFS data. XAS studies also show Cu(I) in an unusual three-coordinate environment with the additional two ligands arising from O/N (2.0 Å). DFT models of 1:1 Cu-selenoamino acid complexes suggest that both selenoamino acids coordinate Cu(I) through the selenium and amino groups, with the third ligand assumed to be water. These compounds represent the first structurally characterized copper(I) complexes with sulfur- or selenium-containing amino acids.
Collapse
Affiliation(s)
- Hsiao C. Wang
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973
| | - Mindy Riahi
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, VA 23529
| | - Joshua Pothen
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, VA 23529
| | - Craig A. Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, VA 23529
| | - Pamela Riggs-Gelasco
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424
| | | |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW To review recently published research into the use of dietary cysteine and/or its derivatives as functional food supplements that will enhance antioxidant status and improve outcome in certain diseases. RECENT FINDINGS L-cysteine is now widely recognized as a conditionally essential or (indispensible) sulphur amino acid. It plays a key role in the metabolic pathways involving methionine, taurine and glutathione (GSH), and may help fight chronic inflammation by boosting antioxidant status. In stressed and inflammatory states, sulphur amino acid metabolism adapts to meet the increased requirements for cysteine as a rate-limiting substrate for GSH. Critically ill patients receiving enteral or parenteral nutrition, enriched with cysteine, exhibit decreased cysteine catabolism and improved GSH synthesis. The naturally occurring cysteine-rich proteins, whey or keratin, have the potential to be manufactured into high quality, high cysteine-containing functional foods for clinical investigation. SUMMARY Cysteine-rich proteins, such as keratin, may have advantages over the simple amino acid or its derivatives, as nutraceuticals, to safely and beneficially improve antioxidant status in health and disease.
Collapse
|
93
|
Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15:2335-81. [PMID: 21194351 PMCID: PMC3166203 DOI: 10.1089/ars.2010.3534] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O(2)•- and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H(2)O(2), enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | | |
Collapse
|
94
|
Georgieva NV, Stoyanchev K, Bozakova N, Jotova I. Combined effects of muscular dystrophy, ecological stress, and selenium on blood antioxidant status in broiler chickens. Biol Trace Elem Res 2011; 142:532-45. [PMID: 20668960 DOI: 10.1007/s12011-010-8782-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/15/2010] [Indexed: 12/19/2022]
Abstract
The results obtained in this study demonstrated that experimentally induced alimentary muscular dystrophy (MD) in Cobb 500 broiler chickens resulted in increased plasma concentrations of malondialdehyde (MDA), deviations in activities of erythrocyte antioxidant enzymes Cu,Zn-SOD (decrease), and CAT (increase) as well as reduction in plasma concentrations of trace elements Cu, Zn, and Se in affected birds. These data evidenced the presence of oxidative stress in birds with MD, reared both under conditions of ecological comfort and ecological stress. The increased MDA and САТ levels and the reduced Cu,Zn-SOD, Cu, Zn, and Se concentrations in healthy chickens reared under unfavorable microclimatic conditions such as higher air temperature and humidity, higher ammonia concentrations, and lower light intensity were indicative about an induced ecological stress. After the 10-day oral treatment with a selenium-containing preparation, the levels of MDA, Cu,Zn-SOD, CAT, Cu, Zn, and Se attained their normal values in chickens with MD, reared under ecologically comfortable conditions. According to our results, ecological stress was shown to exert independently a significant adverse effect upon the levels of the studied parameters and possibly to be a cause for their slower and not complete normalization despite the selenium therapy in experimental broiler chickens.
Collapse
Affiliation(s)
- Nedyalka V Georgieva
- Department of Pharmacology, Physiology of Animals and Physiologic Chemistry, Faculty of Veterinary Medicine, Trakia University, Student's Campus, 6000 Stara Zagora, Bulgaria.
| | | | | | | |
Collapse
|
95
|
Hawkes WC, Alkan Z. Delayed cell cycle progression from SEPW1 depletion is p53- and p21-dependent in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2011; 413:36-40. [PMID: 21875573 DOI: 10.1016/j.bbrc.2011.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is an essential redox-active trace element with close connections to cancer. Most of Se's biological functions have been attributed to the antioxidant properties of Se-containing proteins. However, the relative contribution of selenoproteins and small Se compounds in cancer protection is still a matter of debate. The tumor suppressor p53 is the most frequently mutated gene in human cancer and is often referred to as the "guardian of the genome". In response to genomic stresses, p53 causes cell cycle arrest to allow time for genomic damage to be repaired before cell division or induces apoptosis to eliminate irreparably damaged cells. Selenoprotein W (SEPW1) is a highly conserved small thioredoxin-like protein required for cell cycle progression. The present work shows that SEPW1 facilitates the G1 to S-phase transition by down-regulating expression of the cyclin-dependent kinase inhibitor p21. SEPW1 controls p21 by modulating levels of the p53 transcription factor, and this is associated with changes in phosphorylation of Ser-33 in p53. More work is needed to identify the mechanism by which SEPW1 regulates phosphorylation of Ser-33 and the kinase or phosphatase enzymes involved.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, 430 West Health Science Drive, Davis, CA 95616, USA.
| | | |
Collapse
|
96
|
Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6837-6846. [PMID: 21627162 DOI: 10.1021/jf2013875] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Antioxidant foods and ingredients are an important component of the food industry. In the past, antioxidants were used primarily to control oxidation and retard spoilage, but today many are used because of putative health benefits. However, the traditional message that oxidative stress, which involves the production of reactive oxygen species (ROS), is the basis for chronic diseases and aging is being reexamined. Accumulating evidence suggests that ROS exert essential metabolic functions and that removal of too many ROS can upset cell signaling pathways and actually increase the risk of chronic disease. It is imperative that the food industry be aware of progress in this field to present the science relative to foods in a forthright and clear manner. This may mean reexamining the health implications of adding large amounts of antioxidants to foods.
Collapse
Affiliation(s)
- John W Finley
- Office of National Programs, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
97
|
Ferguson LR, Karunasinghe N. Nutrigenetics, nutrigenomics, and selenium. Front Genet 2011; 2:15. [PMID: 22303312 PMCID: PMC3268570 DOI: 10.3389/fgene.2011.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 01/01/2023] Open
Abstract
Selenium (Se) is an important micronutrient that, as a component of selenoproteins, influences oxidative and inflammatory processes. Its’ levels vary considerably, with different ethnic and geographic population groups showing varied conditions, ranging from frank Se deficiencies to toxic effects. An optimum Se level is essential for the maintenance of homeostasis, and this optimum may vary according to life stage, general state of health, and genotype. Nutrigenetic studies of different Se levels, in the presence of genetic variants in selenoproteins, suggest that an effective dietary Se intake for one individual may be very different from that for others. However, we are just starting to learn the significance of various genes in selenoprotein pathways, functional variants in these, and how to combine such data from genes into pathways, alongside dietary intake or serum levels of Se. Advances in systems biology, genetics, and genomics technologies, including genetic/genomic, epigenetic/epigenomic, transcriptomic, proteomic, and metabolomic information, start to make it feasible to assess a comprehensive spectrum of the biological activity of Se. Such nutrigenomic approaches may prove very sensitive biomarkers of optimal Se status at the individual or population level. The premature cessation of a major human Se intervention trial has led to considerable controversy as to the value of Se supplementation at the population level. New websites provide convenient links to current information on methodologies available for nutrigenetics and nutrigenomics. These new technologies will increasingly become an essential tool in optimizing the level of Se and other micronutrients for optimal health, in individuals and in population groups. However, definitive proof of such effects will require very large collaborative studies, international agreement on study design, and innovative approaches to data analysis.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland Auckland, New Zealand
| | | |
Collapse
|
98
|
Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R. Selenium in human health and disease. Antioxid Redox Signal 2011; 14:1337-83. [PMID: 20812787 DOI: 10.1089/ars.2010.3275] [Citation(s) in RCA: 782] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review covers current knowledge of selenium in the environment, dietary intakes, metabolism and status, functions in the body, thyroid hormone metabolism, antioxidant defense systems and oxidative metabolism, and the immune system. Selenium toxicity and links between deficiency and Keshan disease and Kashin-Beck disease are described. The relationships between selenium intake/status and various health outcomes, in particular gastrointestinal and prostate cancer, cardiovascular disease, diabetes, and male fertility, are reviewed, and recent developments in genetics of selenoproteins are outlined. The rationale behind current dietary reference intakes of selenium is explained, and examples of differences between countries and/or expert bodies are given. Throughout the review, gaps in knowledge and research requirements are identified. More research is needed to improve our understanding of selenium metabolism and requirements for optimal health. Functions of the majority of the selenoproteins await characterization, the mechanism of absorption has yet to be identified, measures of status need to be developed, and effects of genotype on metabolism require further investigation. The relationships between selenium intake/status and health, or risk of disease, are complex but require elucidation to inform clinical practice, to refine dietary recommendations, and to develop effective public health policies.
Collapse
Affiliation(s)
- Susan J Fairweather-Tait
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
99
|
Singhal J, Yadav S, Nagaprashantha LD, Vatsyayan R, Singhal SS, Awasthi S. Targeting p53-null neuroblastomas through RLIP76. Cancer Prev Res (Phila) 2011; 4:879-89. [PMID: 21411502 DOI: 10.1158/1940-6207.capr-11-0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The search for p53-independent mechanism of cancer cell killing is highly relevant to pediatric neuroblastomas, where successful therapy is limited by its transformation into p53-mutant and a highly drug-resistant neoplasm. Our studies on the drug-resistant p53-mutant as compared with drug-resistant p53 wild-type neuroblastoma revealed a novel mechanism for resistance to apoptosis: a direct role of p53 in regulating the cellular concentration of proapoptotic alkenals by functioning as a specific and saturable allosteric inhibitor of the alkenal-glutathione conjugate transporter, RLIP76. The RLIP76-p53 complex was showed by both immunoprecipitation analyses of purified proteins and immunofluorescence analysis. Drug transport studies revealed that p53 inhibited both basal and PKCα-stimulated transport of glutathione conjugates of 4HNE (GSHNE) and doxorubicin. Drug resistance was significantly greater for p53-mutant as compared with p53 wild-type neuroblastoma cell lines, but both were susceptible to depletion of RLIP76 by antisense alone. In addition, inhibition of RLIP76 significantly enhanced the cytotoxicity of cisplatin. Taken together, these studies provide powerful evidence for a novel mechanism for drug and apoptosis resistance in p53-mutant neuroblastoma, based on a model of regulation of p53-induced apoptosis by RLIP76, where p53 is a saturable and specific allosteric inhibitor of RLIP76, and p53 loss results in overexpression of RLIP76; thus, in the absence of p53, the drug and glutathione-conjugate transport activities of RLIP76 are enhanced. Most importantly, our findings strongly indicate RLIP76 as a novel target for therapy of drug-resistant and p53-mutant neuroblastoma.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
100
|
Atalay M, Bilginoglu A, Kokkola T, Oksala N, Turan B. Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity. Mol Cell Biochem 2011; 351:125-31. [PMID: 21246260 DOI: 10.1007/s11010-011-0719-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/05/2011] [Indexed: 12/12/2022]
Abstract
Diabetes is associated with increased oxidative stress and impaired antioxidant defenses. Thioredoxin-1 (TRX-1) is a cytosolic thiol antioxidant and redox-active protein which plays a vital role in the maintenance of reduced intracellular redox state. In this study, the authors examined whether 4-week treatments with sodium selenate and doxycycline--a metalloproteinase-2 inhibitor which also has antioxidant-like effects--offset perturbations in oxidative stress and antioxidant protection in rat liver and skeletal muscle in streptozotocin-induced diabetes (SID) model. Experimental diabetes decreased TRX-1 levels in skeletal muscle and liver. On the other hand, SID increased oxidative stress marker protein carbonyl levels and decreased oxygen radical absorbance capacity (ORAC), an indicator of antioxidant capacity, in liver. A 4-week treatment of sodium selenate to diabetic rats decreased blood glucose levels moderately, while doxycycline treatment caused a reduction in weight loss of diabetic rats. Both doxycycline and sodium selenate prevented diabetes-induced decrease of TRX-1 levels in skeletal muscle, whereas only doxyxycline was effectively preventing diabetes-induced decrease of TRX-1 in liver. Furthermore, both treatments prevented diabetes-induced altered levels of protein carbonyls and ORAC in liver, and restored free and total protein thiol levels in both skeletal muscle and liver. In conclusion, the data of this study provides further evidence that sodium selenate and doxycycline treatments may control oxidative stress and improve antioxidant defense in diabetes.
Collapse
Affiliation(s)
- Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|