51
|
Mork-Jansson AE, Eichacker LA. A strategy to characterize chlorophyll protein interaction in LIL3. PLANT METHODS 2019; 15:1. [PMID: 30622623 PMCID: PMC6320596 DOI: 10.1186/s13007-018-0385-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/09/2018] [Accepted: 12/26/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The function of proteins is at large determined by cofactors selectively bound to protein structure. Without chlorophyll specifically bound to protein, light harvesting and photosynthesis would not be possible. The binding of chlorophyll to light harvesting proteins has been extensively studied in reconstitution assays using proteins expressed in vitro; however, the mechanism of the reconstitution reaction remained unclear. We have shown that membrane integral light-harvesting-like protein, LIL3, binds chlorophyll a with a Kd of 146 nM in vitro by thermophoresis. Here, reconstitution of chlorophyll binding to LIL3 has been characterized by four different methods. RESULTS Structural changes in the reconstitution process have been investigated by light-scattering and differential Trp-fluorescence. For characterization of the chlorophyll binding site at LIL3, the analysis of LIL3 mutants has been conducted using native PAGE and thermophoresis. We find that the oxidized state of dithiothreitol is the essential component for reconstitution of chlorophyll binding to LIL3 in n-Dodecyl β-d-maltoside micelles at RT. Chlorophyll increased the polydispersity of the micellar states while dithiothreitol maintained LIL3 in a partially unfolded state at RT. Dimerization of LIL3 was abolished if amino acids N174, R176, and E171 were mutated to Ala; while, chlorophyll binding to LIL3 was abolished in mutant N174A, but retained in E171A, and R176A albeit at an about six- and five-fold decreased dissociation constant. Results show that N174 of LIL3 is essential for binding chlorophyll a. CONCLUSIONS Chlorophyll binding to LIL3 can be shown by thermophoresis, and native gel electrophoresis, while analysis of reconstitution conditions by dynamic light scattering and differential scanning fluorometry are of critical importance for method optimization.
Collapse
Affiliation(s)
| | - Lutz Andreas Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
52
|
Is the protection of photosynthesis related to the mechanism of quinclorac resistance in Echinochloa crus-galli var. zelayensis? Gene 2019; 683:133-148. [DOI: 10.1016/j.gene.2018.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 10/09/2018] [Indexed: 01/16/2023]
|
53
|
Kume A, Akitsu T, Nasahara KN. Why is chlorophyll b only used in light-harvesting systems? JOURNAL OF PLANT RESEARCH 2018; 131:961-972. [PMID: 29992395 PMCID: PMC6459968 DOI: 10.1007/s10265-018-1052-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 05/09/2023]
Abstract
Chlorophylls (Chl) are important pigments in plants that are used to absorb photons and release electrons. There are several types of Chls but terrestrial plants only possess two of these: Chls a and b. The two pigments form light-harvesting Chl a/b-binding protein complexes (LHC), which absorb most of the light. The peak wavelengths of the absorption spectra of Chls a and b differ by c. 20 nm, and the ratio between them (the a/b ratio) is an important determinant of the light absorption efficiency of photosynthesis (i.e., the antenna size). Here, we investigated why Chl b is used in LHCs rather than other light-absorbing pigments that can be used for photosynthesis by considering the solar radiation spectrum under field conditions. We found that direct and diffuse solar radiation (PARdir and PARdiff, respectively) have different spectral distributions, showing maximum spectral photon flux densities (SPFD) at c. 680 and 460 nm, respectively, during the daytime. The spectral absorbance spectra of Chls a and b functioned complementary to each other, and the absorbance peaks of Chl b were nested within those of Chl a. The absorption peak in the short wavelength region of Chl b in the proteinaceous environment occurred at c. 460 nm, making it suitable for absorbing the PARdiff, but not suitable for avoiding the high spectral irradiance (SIR) waveband of PARdir. In contrast, Chl a effectively avoided the high SPFD and/or high SIR waveband. The absorption spectra of photosynthetic complexes were negatively correlated with SPFD spectra, but LHCs with low a/b ratios were more positively correlated with SIR spectra. These findings indicate that the spectra of the photosynthetic pigments and constructed photosystems and antenna proteins significantly align with the terrestrial solar spectra to allow the safe and efficient use of solar radiation.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Tomoko Akitsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Kenlo Nishida Nasahara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| |
Collapse
|
54
|
Adams PG, Vasilev C, Hunter CN, Johnson MP. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1075-1085. [PMID: 29928860 PMCID: PMC6135645 DOI: 10.1016/j.bbabio.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/27/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25-150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2-3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6-0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.
Collapse
Affiliation(s)
- Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
55
|
Nováková S, Danchenko M, Skultety L, Fialová I, Lešková A, Beke G, Flores-Ramírez G, Glasa M. Photosynthetic and Stress Responsive Proteins Are Altered More Effectively in Nicotiana benthamiana Infected with Plum pox virus Aggressive PPV-CR versus Mild PPV-C Cherry-Adapted Isolates. J Proteome Res 2018; 17:3114-3127. [PMID: 30084641 DOI: 10.1021/acs.jproteome.8b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Plum pox virus (PPV, family Potyviridae) is one of the most important viral pathogens of Prunus spp. causing considerable damage to stone-fruit industry worldwide. Among the PPV strains identified so far, only PPV-C, PPV-CR, and PPV-CV are able to infect cherries under natural conditions. Herein, we evaluated the pathogenic potential of two viral isolates in herbaceous host Nicotiana benthamiana. Significantly higher accumulation of PPV capsid protein in tobacco leaves infected with PPV-CR (RU-30sc isolate) was detected in contrast to PPV-C (BY-101 isolate). This result correlated well with the symptoms observed in the infected plants. To further explore the host response upon viral infection at the molecular level, a comprehensive proteomic profiling was performed. Using reverse-phase ultra-high-performance liquid chromatography followed by label-free mass spectrometry quantification, we identified 38 unique plant proteins as significantly altered due to the infection. Notably, the abundances of photosynthesis-related proteins, mainly from the Calvin-Benson cycle, were found more aggressively affected in plants infected with PPV-CR isolate than those of PPV-C. This observation was accompanied by a significant reduction in the amount of photosynthetic pigments extracted from the leaves of PPV-CR infected plants. Shifts in the abundance of proteins that are involved in stimulation of photosynthetic capacity, modification of amino acid, and carbohydrate metabolism may affect plant growth and initiate energy formation via gluconeogenesis in PPV infected N. benthamiana. Furthermore, we suggest that the higher accumulation of H2O2 in PPV-CR infected leaves plays a crucial role in plant defense and development by activating the glutathione synthesis.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Maksym Danchenko
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Ludovit Skultety
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
- Institute of Microbiology , The Czech Academy of Sciences , Videnska 1083 , 142 20 Prague , Czech Republic
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Alexandra Lešková
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Gábor Beke
- Institute of Molecular Biology , Slovak Academy of Sciences , Dúbravská cesta 21 , 845 51 Bratislava , Slovak Republic
| | - Gabriela Flores-Ramírez
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Miroslav Glasa
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| |
Collapse
|
56
|
Chen YE, Ma J, Wu N, Su YQ, Zhang ZW, Yuan M, Zhang HY, Zeng XY, Yuan S. The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:267-276. [PMID: 30032070 DOI: 10.1016/j.plaphy.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/19/2018] [Revised: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 05/28/2023]
Abstract
Under light conditions, highly reactive oxygen species (ROS) can be generated in the antenna systems and the reaction center of photosystems (PS). The protective roles of Lhcb4 (CP29), Lhcb5 (CP26) and Lhcb6 (CP24), three minor chlorophyll binding antenna proteins during photoinhibition have been well studied. However, their regulatory mechanisms against oxidative damages under natural light conditions remain unknown. Here we investigated their specific roles in oxidative stress responses and photosynthetic adaptation by using the Arabidopsis thaliana knockout lines grown in the field condition. All three mutant lines exhibited decreased energy-transfer efficiency from the LHCII (light-harvesting complex II) to the PSII reaction center. Oxygen evolution capacity decreased slightly in the plants lacking Lhcb4 (koLHCB4) and Lhcb6 (koLHCB6). Photosynthetic rates and fitness for the plants lacking Lhcb5 (koLHCB5) or koLHCB6 grown in the field were affected, but not in the plants lacking Lhcb4. Antioxidant analysis indicated the lowest antioxidant enzyme activities and the lowest levels of non-enzymatic antioxidants in koLHCB6 plants. In addition, koLHCB6 plants accumulated much higher levels of superoxide and hydrogen, and suffered more severe oxidative-damages in the field. Our results clearly demonstrate that Lhcb6 may be involved in alleviating oxidative stress and photoprotection under natural conditions.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jie Ma
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Nan Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xian-Yin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
57
|
Structure, assembly and energy transfer of plant photosystem II supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:633-644. [DOI: 10.1016/j.bbabio.2018.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
|
58
|
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P. Organization of Plant Photosystem II and Photosystem I Supercomplexes. Subcell Biochem 2018; 87:259-286. [PMID: 29464563 DOI: 10.1007/978-981-10-7757-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/20/2023]
Abstract
In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b 6 f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.
Collapse
Affiliation(s)
- Roman Kouřil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic.
| | - Lukáš Nosek
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Dmitry Semchonok
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
59
|
Qu J, Shen L, Zhao M, Li W, Jia C, Zhu H, Zhang Q. Determination of the Role of Microcystis aeruginosa in Toxin Generation Based on Phosphoproteomic Profiles. Toxins (Basel) 2018; 10:toxins10070304. [PMID: 30041444 PMCID: PMC6070999 DOI: 10.3390/toxins10070304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Microcystis aeruginosa is the most common species responsible for toxic cyanobacterial blooms and is considered a significant contributor to the production of cyanotoxins, particularly the potent liver toxins called microcystins. Numerous studies investigating Microcystis spp. blooms have revealed their deleterious effects in freshwater environments. However, the available knowledge regarding the global phosphoproteomics of M. aeruginosa and their regulatory roles in toxin generation is limited. In this study, we conducted comparative phosphoproteomic profiling of non-toxic and toxin-producing strains of M. aeruginosa. We identified 59 phosphorylation sites in 37 proteins in a non-toxic strain and 26 phosphorylation sites in 18 proteins in a toxin-producing strain. The analysis of protein phosphorylation abundances and functions in redox homeostasis, energy metabolism, light absorption and photosynthesis showed marked differences between the non-toxic and toxin-producing strains of M. aeruginosa, indicating that these processes are strongly related to toxin generation. Moreover, the protein-protein interaction results indicated that BJ0JVG8 can directly interact with the PemK-like toxin protein B0JQN8. Thus, the phosphorylation of B0JQN8 appears to be associated with the regulatory roles of toxins in physiological activity.
Collapse
Affiliation(s)
- Jiangqi Qu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Liping Shen
- State key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Meng Zhao
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Wentong Li
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Chengxia Jia
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| |
Collapse
|
60
|
Kirst H, Shen Y, Vamvaka E, Betterle N, Xu D, Warek U, Strickland JA, Melis A. Downregulation of the CpSRP43 gene expression confers a truncated light-harvesting antenna (TLA) and enhances biomass and leaf-to-stem ratio in Nicotiana tabacum canopies. PLANTA 2018; 248:139-154. [PMID: 29623472 DOI: 10.1007/s00425-018-2889-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Downregulation in the expression of the signal recognition particle 43 (SRP43) gene in tobacco conferred a truncated photosynthetic light-harvesting antenna (TLA property), and resulted in plants with a greater leaf-to-stem ratio, improved photosynthetic productivity and canopy biomass accumulation under high-density cultivation conditions. Evolution of sizable arrays of light-harvesting antennae in all photosynthetic systems confers a survival advantage for the organism in the wild, where sunlight is often the growth-limiting factor. In crop monocultures, however, this property is strongly counterproductive, when growth takes place under direct and excess sunlight. The large arrays of light-harvesting antennae in crop plants cause the surface of the canopies to over-absorb solar irradiance, far in excess of what is needed to saturate photosynthesis and forcing them to engage in wasteful dissipation of the excess energy. Evidence in this work showed that downregulation by RNA-interference approaches of the Nicotiana tabacum signal recognition particle 43 (SRP43), a nuclear gene encoding a chloroplast-localized component of the photosynthetic light-harvesting assembly pathway, caused a decrease in the light-harvesting antenna size of the photosystems, a corresponding increase in the photosynthetic productivity of chlorophyll in the leaves, and improved tobacco plant canopy biomass accumulation under high-density cultivation conditions. Importantly, the resulting TLA transgenic plants had a substantially greater leaf-to-stem biomass ratio, compared to those of the wild type, grown under identical agronomic conditions. The results are discussed in terms of the potential benefit that could accrue to agriculture upon application of the TLA-technology to crop plants, entailing higher density planting with plants having a greater biomass and leaf-to-stem ratio, translating into greater crop yields per plant with canopies in a novel agronomic configuration.
Collapse
Affiliation(s)
- Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Yanxin Shen
- Biotechnology Division, Altria Client Services, Richmond, VA, 23219, USA
| | - Evangelia Vamvaka
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Nico Betterle
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Dongmei Xu
- Biotechnology Division, Altria Client Services, Richmond, VA, 23219, USA
| | - Ujwala Warek
- Biotechnology Division, Altria Client Services, Richmond, VA, 23219, USA
| | - James A Strickland
- Biotechnology Division, Altria Client Services, Richmond, VA, 23219, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
61
|
Meng L, Fan Z, Zhang Q, Wang C, Gao Y, Deng Y, Zhu B, Zhu H, Chen J, Shan W, Yin X, Zhong S, Grierson D, Jiang CZ, Luo Y, Fu DQ. BEL1-LIKE HOMEODOMAIN 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1126-1140. [PMID: 29659108 DOI: 10.1111/tpj.13924] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2018] [Revised: 03/23/2018] [Accepted: 04/05/2018] [Indexed: 05/21/2023]
Abstract
Chloroplast development and chlorophyll(Chl)metabolism in unripe tomato contribute to the growth and quality of the fruit, however these mechanisms are poorly understood. In this study, we initially investigated seven homeobox-containing transcription factors (TFs) with specific ripening-associated expression patterns using virus-induced gene silencing (VIGS) technology and found that inhibiting the expression of one of these TFs, BEL1-LIKE HOMEODOMAIN11 (SlBEL11), significantly increased Chl levels in unripe tomato fruit. This enhanced Chl accumulation was further validated by generating stable RNA interference (RNAi) transgenic lines. RNA sequencing (RNA-seq) of RNAi-SlBEL11 fruit at the mature green (MG) stage showed that 48 genes involved in Chl biosynthesis, photosynthesis and chloroplast development were significantly upregulated compared with the wild type (WT) fruit. Genomic global scanning for Homeobox TF binding sites combined with RNA-seq differential gene expression analysis showed that 22 of these 48 genes were potential target genes of SlBEL11 protein. These genes included Chl biosynthesis-related genes encoding for protochlorophyllide reductase (POR), magnesium chelatase H subunit (CHLH) and chlorophyllide a oxygenase (CAO), and chloroplast development-related genes encoding for chlorophyll a/b binding protein (CAB), homeobox protein knotted 2 (TKN2) and ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (APRR2-like). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation quantitative polymerase chain reaction (PCR) (ChIP-qPCR) assays were employed to verify that SlBEL11 protein could bind to the promoters for TKN2, CAB and POR. Taken together, our findings demonstrated that SlBEL11 plays an important role in chloroplast development and Chl synthesis in tomato fruit.
Collapse
Affiliation(s)
- Lanhuan Meng
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhongqi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiang Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Cuicui Wang
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ying Gao
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yikang Deng
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310007, China
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology, The School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Donald Grierson
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, 95616, USA
| | - Yunbo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
62
|
Abstract
The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3.
Collapse
Affiliation(s)
| | - Lutz Andreas Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|
63
|
Cui Y, Zhao W, Ogasawara S, Wang XF, Tamiaki H. Fabrication and performance of all-solid-state dye-sensitized solar cells using synthetic carboxylated and pyridylated chlorophyll derivatives. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
64
|
Rantala S, Tikkanen M. Phosphorylation-induced lateral rearrangements of thylakoid protein complexes upon light acclimation. PLANT DIRECT 2018; 2:e00039. [PMID: 31245706 PMCID: PMC6508491 DOI: 10.1002/pld3.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/10/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 05/22/2023]
Abstract
Understanding the mechanistic basis of balanced excitation energy distribution between photosystem II and photosystem I (PSII and PSI) requires detailed investigation of the thylakoid light-harvesting system composed of energetically connected LHCII trimers. The exact mechanisms controlling the excitation energy distribution remain elusive, but reversible phosphorylation is known to be one important component. Here, we addressed the role of grana margins in regulation of excitation energy distribution, as these thylakoid domains host all the complexes of photosynthetic light reactions with dynamic response to environmental cues. First, the effect of detergents for the thylakoid membrane connectivity is explained. We show that a specific interaction between the separate LHCII trimers as well as between the LHCII trimers and the PSII and PSI-LHCI complexes is a prerequisite for energetically connected and functional thylakoid membrane. Second, we demonstrate that the optimization of light reactions under changing light conditions takes place in energetically connected LHCII lake and is attained by lateral rearrangements of the PSII-LHCII and PSI-LHCI-LHCII complexes depending especially on the phosphorylation status of the LHCII protein isoform LHCB2.
Collapse
Affiliation(s)
- Sanna Rantala
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
65
|
Khokhlov DV, Belov AS, Eremin VV. Exciton states and optical properties of the CP26 photosynthetic protein. Comput Biol Chem 2017; 72:105-112. [PMID: 29277259 DOI: 10.1016/j.compbiolchem.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
The photosynthetic complex CP26, one of the minor antennae of the photosystem II, plays an important role in regulation of the excitation energy transfer in the PSII. Due to instability during isolation and purification, it remained poorly studied from the viewpoint of theoretical chemistry because of the absence of X-ray crystallography data. In this work, using the recently determined three-dimensional structure of the complex we apply the quantum chemical approach to study the properties of exciton states in it. Spectral properties, structure of exciton states and roles of the pigments in the complex and photosystem II are discussed.
Collapse
Affiliation(s)
- Daniil V Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Aleksandr S Belov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Vadim V Eremin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
66
|
Us-Camas R, Castillo-Castro E, Aguilar-Espinosa M, Limones-Briones V, Rivera-Madrid R, Robert-Díaz ML, De-la-Peña C. Assessment of molecular and epigenetic changes in the albinism of Agave angustifolia Haw. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:156-167. [PMID: 28818371 DOI: 10.1016/j.plantsci.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2016] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Albinism in plants is a rare phenomenon that occurs in nature and is characterized by the total or partial loss of photosynthetic pigments. Although progress has been made in understanding the nature of this phenomenon, the precise causes and biological basis are still unexplored. Here, we study the genetic and epigenetic differences between green (G), variegated (V) and albino (A) A. angustifolia Haw. plantlets obtained by in vitro propagation in order to present new insights into albinism from a plant system that offers a unique set of biological phenotypic characteristics. Low transcript levels of genes involved in carotenoids and photosynthesis such as PSY, PDS, LCYƐ, rubS, PEPCase and LHCP suggest a disruption in these processes in albino plants. Due to a high level of genetic similarity being found between the three phenotypes, we analyzed global DNA methylation and different histone marks (H3K4me2, H3K36me2, H3K9ac, H3K9me2 and H3K27me3). Although no significant differences in global 5-methyl deoxicytidine were found, almost a 2-4.5-fold increase in H3K9ac was observed in albino plants in comparison with variegated or green plants, suggesting a change in chromatin compaction related to A. angustifolia albinism.
Collapse
Affiliation(s)
- Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Eduardo Castillo-Castro
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Margarita Aguilar-Espinosa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Verónica Limones-Briones
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Renata Rivera-Madrid
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Manuel L Robert-Díaz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico.
| |
Collapse
|
67
|
Li R, Xie X, Ma F, Wang D, Wang L, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. Resveratrol accumulation and its involvement in stilbene synthetic pathway of Chinese wild grapes during berry development using quantitative proteome analysis. Sci Rep 2017; 7:9295. [PMID: 28839259 PMCID: PMC5571159 DOI: 10.1038/s41598-017-10171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Attention has become focused on resveratrol not only because of its role in grapevine fungal resistance but also because of its benefits in human health. This report describes the Chinese wild grapevine Vitis quinquangularis accession Danfeng-2 in relation to the high resveratrol content of its ripe berries. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) tandem mass spectrometry strategy to quantify and identify proteome changes, resulting in the detection of a total of 3,751 proteins produced under natural conditions. Among the proteins quantified, a total of 578 differentially expressed proteins were detected between Danfeng-2 and Cabernet Sauvignon during berry development. Differentially expressed proteins are involved in secondary metabolism, biotic stress, abiotic stress and transport activity and indicate novel biological processes in Chinese wild grapevine. Eleven proteins involved in phenylpropanoid metabolism and stilbene synthesis were differently expressed between Danfeng-2 and Cabernet Sauvignon at the veraison stage of berry development. These findings suggest that Chinese wild V. quinquangularis accession Danfeng-2 is an extremely important genetic resource for grape breeding and especially for increasing the resveratrol content of European grape cultivars for disease resistance and for improved human nutritional benefits.
Collapse
Affiliation(s)
- Ruimin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Lan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| |
Collapse
|
68
|
Lee S, Jeong H, Lee S, Lee J, Kim SJ, Park JW, Woo HR, Lim PO, An G, Nam HG, Hwang D. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci Rep 2017; 7:8792. [PMID: 28821707 PMCID: PMC5562787 DOI: 10.1038/s41598-017-07035-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2017] [Accepted: 06/21/2017] [Indexed: 01/31/2023] Open
Abstract
Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during grain-filling and identified four molecular bases for differential aging programs between FL and SL: phenylpropanoid biosynthesis, photosynthesis, amino acid (AA) transport, and hormone response. Of them, photosynthesis (carbon assimilation) and AA transport (nitrogen remobilization) predominantly occurred in FL and SL, respectively, during grain-filling. Unlike other molecular bases, AA transport showed consistent differential expression patterns between FL and SL in independent samples. Moreover, long-distance AA transporters showed invariant differential expression patterns between FL and SL after panicle removal, which was consistent to invariant differential nitrogen contents between FL and SL after panicle removal. Therefore, our results suggest that the supplies of carbon and nitrogen to seeds is functionally segregated between FL and SL and that long-distance AA transport is an invariant core program for high nitrogen remobilization in SL.
Collapse
Affiliation(s)
- Shinyoung Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hyobin Jeong
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sichul Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Jinwon Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sun-Ji Kim
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Ji-Won Park
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| | - Daehee Hwang
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| |
Collapse
|
69
|
Chen ZC, Peng WT, Li J, Liao H. Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol 2017; 74:142-152. [PMID: 28822768 DOI: 10.1016/j.semcdb.2017.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Magnesium (Mg) is the second most abundant cation in plants, and, as such, is involved in numerous physiological and biochemical processes, including photosynthesis, enzyme activation, and synthesis of nucleic acids and proteins. Due to its relatively small ionic radius and large hydrated radius, Mg binds weakly to soil and root surfaces, and thereby is easily leached from soil. Mg deficiency not only affects crop productivity and quality, but also contributes to numerous chronic human diseases. Therefore, Mg nutrition in plants is an important issue in nutrition and food security. To acquire and maintain high concentrations of Mg, plants have evolved highly-efficient systems for Mg uptake, storage and translocation. Advances in the understanding of fundamental principles of Mg nutrition and physiology are required in order to improve Mg nutrient management, Mg stress diagnosis, and genetic marker assisted breeding efforts. The aims of this review are to highlight physiological and molecular mechanisms underlying Mg biological functions and to summarize recent developments in the elucidation of Mg transport systems in plants.
Collapse
Affiliation(s)
- Zhi Chang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China.
| | - Wen Ting Peng
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Jian Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| |
Collapse
|
70
|
Joo Y, Fragoso V, Yon F, Baldwin IT, Kim SG. Circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:572-587. [PMID: 28429400 DOI: 10.1111/jipb.12547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 05/14/2023]
Abstract
The circadian clock is known to increase plant growth and fitness, and is thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light- and dark-adapted photosynthetic rates (Ac ) throughout a 24 h day in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA- and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field. irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac . Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-dependent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.
Collapse
Affiliation(s)
- Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
71
|
Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. PLANT MOLECULAR BIOLOGY 2017; 93:579-592. [PMID: 28108964 DOI: 10.1007/s11103-017-0583-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/27/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.
Collapse
Affiliation(s)
- Lixia Zhu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Yang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Oil Crops Research the Chinese Institute of Academy of Agricultural Sciences,, Ministry of Agriculture, Wuhan, 430062, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
72
|
Wang L, Li H, Zhao C, Li S, Kong L, Wu W, Kong W, Liu Y, Wei Y, Zhu JK, Zhang H. The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:56-68. [PMID: 27577186 PMCID: PMC5508579 DOI: 10.1111/pce.12826] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/11/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 05/12/2023]
Abstract
In yeast, the interaction of General Control Non-derepressible 1 (GCN1) with GCN2 enables GCN2 to phosphorylate eIF2α (the alpha subunit of eukaryotic translation initiation factor 2) under a variety of stresses. Here, we cloned AtGCN1, an Arabidopsis homologue of GCN1. We show that AtGCN1 directly interacts with GCN2 and is essential for the phosphorylation of eIF2α under salicylic acid (SA), ultraviolet (UV), cold stress and amino acid deprivation conditions. Two mutant alleles, atgcn1-1 and atgcn1-2, which are defective in the phosphorylation of eIF2α, showed increased sensitivity to cold stress, compared with the wild type. Ribosome-bound RNA profiles showed that the translational state of mRNA was higher in atgcn1-1 than in the wild type. Our result also showed that cold treatment reduced the tendency of the tor mutant seedlings to produce purple hypocotyls. In addition, the kinase activity of TOR was transiently inhibited when plants were exposed to cold stress, suggesting that the inhibition of TOR is another pathway important for plants to respond to cold stress. In conclusion, our results indicate that the AtGCN1-mediated phosphorylation of eIF2α, which is required for inhibiting the initiation of protein translation, is essential for cold tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Linjuan Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Houhua Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chunzhao Zhao
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Shengfei Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingyao Kong
- School of Sciences, Northeast of Normal University, Changchun, 130024, China
| | - Wenwu Wu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Weisheng Kong
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuanyuan Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Hairong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| |
Collapse
|
73
|
Albanese P, Nield J, Tabares JAM, Chiodoni A, Manfredi M, Gosetti F, Marengo E, Saracco G, Barber J, Pagliano C. Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy. PHOTOSYNTHESIS RESEARCH 2016; 130:19-31. [PMID: 26749480 DOI: 10.1007/s11120-016-0216-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/04/2015] [Accepted: 12/30/2015] [Indexed: 05/10/2023]
Abstract
In higher plants, photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, where it is present mostly in dimeric form within the grana. Its light-harvesting antenna system, LHCII, is composed of trimeric and monomeric complexes, which can associate in variable number with the dimeric PSII core complex in order to form different types of PSII-LHCII supercomplexes. Moreover, PSII-LHCII supercomplexes can laterally associate within the thylakoid membrane plane, thus forming higher molecular mass complexes, termed PSII-LHCII megacomplexes (Boekema et al. 1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452). In this study, pure PSII-LHCII megacomplexes were directly isolated from stacked pea thylakoid membranes by a rapid single-step solubilization, using the detergent n-dodecyl-α-D-maltoside, followed by sucrose gradient ultracentrifugation. The megacomplexes were subjected to biochemical and structural analyses. Transmission electron microscopy on negatively stained samples, followed by single-particle analyses, revealed a novel form of PSII-LHCII megacomplexes, as compared to previous studies (Boekema et al.1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452), consisting of two PSII-LHCII supercomplexes sitting side-by-side in the membrane plane, sandwiched together with a second copy. This second copy of the megacomplex is most likely derived from the opposite membrane of a granal stack. Two predominant forms of intact sandwiched megacomplexes were observed and termed, according to (Dekker and Boekema 2005 Biochim Biophys Acta 1706:12-39), as (C2S2)4 and (C2S2 + C2S2M2)2 megacomplexes. By applying a gel-based proteomic approach, the protein composition of the isolated megacomplexes was fully characterized. In summary, the new structural forms of isolated megacomplexes and the related modeling performed provide novel insights into how PSII-LHCII supercomplexes may bind to each other, not only in the membrane plane, but also between granal stacks within the chloroplast.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department - BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Alessandria, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Jose Alejandro Muñoz Tabares
- Center for Space Human Robotics IIT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - Angelica Chiodoni
- Center for Space Human Robotics IIT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Fabio Gosetti
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department - BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Alessandria, Italy
| | - James Barber
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Cristina Pagliano
- Applied Science and Technology Department - BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Alessandria, Italy.
| |
Collapse
|
74
|
Nwugo CC, Doud MS, Duan YP, Lin H. Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of 'Ca. Liberibacter asiaticus'-infected citrus plants. BMC PLANT BIOLOGY 2016; 16:253. [PMID: 27842496 PMCID: PMC5109811 DOI: 10.1186/s12870-016-0942-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/20/2016] [Accepted: 11/02/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Citrus Huanglongbing (HLB), which is linked to the bacterial pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days. RESULTS An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase. CONCLUSIONS The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.
Collapse
Affiliation(s)
- Chika C. Nwugo
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| | - Melissa S. Doud
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Yong-ping Duan
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Hong Lin
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| |
Collapse
|
75
|
Fracasso A, Trindade LM, Amaducci S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC PLANT BIOLOGY 2016; 16:115. [PMID: 27208977 PMCID: PMC4875703 DOI: 10.1186/s12870-016-0800-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/12/2016] [Accepted: 05/05/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Drought stress is the major environmental stress that affects plant growth and productivity. It triggers a wide range of responses detectable at molecular, biochemical and physiological levels. At the molecular level the response to drought stress results in the differential expression of several metabolic pathways. For this reason, exploring the subtle differences in gene expression of drought sensitive and drought tolerant genotypes enables the identification of drought-related genes that could be used for selection of drought tolerance traits. Genome-wide RNA-Seq technology was used to compare the drought response of two sorghum genotypes characterized by contrasting water use efficiency. RESULTS The physiological measurements carried out confirmed the drought sensitivity of IS20351 and the drought tolerance of IS22330 genotypes, as previously studied. The expression of drought-related genes was more abundant in the drought sensitive genotype IS20351 compared to the tolerant genotype IS22330. Under drought stress Gene Ontology enrichment highlighted a massive increase in transcript abundance in the sensitive genotype IS20351 in "response to stress" and "abiotic stimulus", as well as for "oxidation-reduction reaction". "Antioxidant" and "secondary metabolism", "photosynthesis and carbon fixation process", "lipids" and "carbon metabolism" were the pathways most affected by drought in the sensitive genotype IS20351. In addition, genotype IS20351 showed a lower constitutive expression level of "secondary metabolic process" (GO:0019748) and "glutathione transferase activity" (GO:000004364) under well-watered conditions. CONCLUSIONS RNA-Seq analysis proved to be a very useful tool to explore differences between sensitive and tolerant sorghum genotypes. Transcriptomics analysis results supported all the physiological measurements and were essential to clarify the tolerance of the two genotypes studied. The connection between differential gene expression and physiological response to drought unequivocally revealed the drought tolerance of genotype IS22330 and the strategy adopted to cope with drought stress.
Collapse
Affiliation(s)
- Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Luisa M Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, 6708 PD, Wageningen, The Netherlands
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy
| |
Collapse
|
76
|
Liu W, Tu W, Liu Y, Sun R, Liu C, Yang C. The N-terminal domain of Lhcb proteins is critical for recognition of the LHCII kinase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:79-88. [DOI: 10.1016/j.bbabio.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022]
|
77
|
Holmes GD, Hall NE, Gendall AR, Boon PI, James EA. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones. FRONTIERS IN PLANT SCIENCE 2016; 7:432. [PMID: 27148279 PMCID: PMC4829608 DOI: 10.3389/fpls.2016.00432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/15/2016] [Accepted: 03/21/2016] [Indexed: 05/22/2023]
Abstract
Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L(-1) TDS) and three from low salinity sites (<6 g L(-1)) were grown in containers irrigated with either fresh (<0.1 g L(-1)) or saline water (16 g L(-1)). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to salinity and provides a basis for more detailed studies.
Collapse
Affiliation(s)
| | - Nathan E. Hall
- La Trobe Institute for Molecular Science, La Trobe University, BundooraVIC, Australia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, BundooraVIC, Australia
| | - Anthony R. Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, BundooraVIC, Australia
| | - Paul I. Boon
- Institute for Sustainability and Innovation, Victoria University, Footscray ParkVIC, Australia
| | - Elizabeth A. James
- Royal Botanic Gardens Victoria, MelbourneVIC, Australia
- *Correspondence: Elizabeth A. James,
| |
Collapse
|
78
|
Li J, Yang P, Kang J, Gan Y, Yu J, Calderón-Urrea A, Lyu J, Zhang G, Feng Z, Xie J. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling. FRONTIERS IN PLANT SCIENCE 2016; 7:1281. [PMID: 27621739 PMCID: PMC5002408 DOI: 10.3389/fpls.2016.01281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/10/2016] [Accepted: 08/11/2016] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the transcriptional activities, signaling transduction, and metabolic homeostasis.
Collapse
Affiliation(s)
- Jie Li
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Ping Yang
- Department of Crop Cultivation and Farming System, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Jungen Kang
- Department of Vegetable Genetics and Breeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yantai Gan
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food CanadaSwift Current, SK, Canada
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural UniversityLanzhou, China
| | - Jihua Yu
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | | | - Jian Lyu
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Guobin Zhang
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Zhi Feng
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Jianming Xie
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
- *Correspondence: Jianming Xie
| |
Collapse
|
79
|
Wang P, Grimm B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. PHOTOSYNTHESIS RESEARCH 2015; 126:189-202. [PMID: 25957270 DOI: 10.1007/s11120-015-0154-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
80
|
Zhang SF, Zhang Y, Xie ZX, Zhang H, Lin L, Wang DZ. iTRAQ-based quantitative proteomic analysis of a toxigenic dinoflagellate Alexandrium catenella and its non-toxic mutant. Proteomics 2015; 15:4041-50. [PMID: 26417864 DOI: 10.1002/pmic.201500156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 11/06/2022]
Abstract
Paralytic shellfish toxins (PSTs) are a group of potent neurotoxic alkaloids produced by cyanobacteria and dinoflagellates. The PST biosynthesis gene cluster and several toxin-related proteins have been unveiled in cyanobacteria, yet little is known about dinoflagellates. Here, we compared the protein profiles of a toxin-producing dinoflagellate Alexandrium catenella (ACHK-T) and its non-toxic mutant (ACHK-NT), and characterized differentially displayed proteins using a combination of the iTRAQ-based proteomic approach and the transcriptomic database. Totally 3488 proteins were identified from A. catenella, and proteins involved in carbohydrate, amino acid and energy metabolism were the most abundant. Among them, 185 proteins were differentially displayed: proteins involved in amino acid biosynthesis, protein and carbohydrate metabolism and bioluminescence were more abundant in ACHK-T, while proteins participating in photosynthesis, fatty acid biosynthesis, and the processes occurring in peroxisome displayed higher abundances in ACHK-NT. Seven toxin-related proteins were identified but they varied insignificantly between the two strains. Different carbon and energy utilization strategies were potentially related to the toxin producing ability, and the regulation mechanism of PST biosynthesis was more complex in dinoflagellates. Our study provides the first comprehensive dataset on the dinoflagellate proteome and lays the groundwork for future proteomic study.
Collapse
Affiliation(s)
- Shu-Fei Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
81
|
Andreeva TD, Castano S, Krumova S, Lecomte S, Taneva SG. Effect of Protonation on the Secondary Structure and Orientation of Plant Light-Harvesting Complex II Studied by PM-IRRAS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11583-11590. [PMID: 26473578 DOI: 10.1021/acs.langmuir.5b02653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
The major light-harvesting pigment-protein complex of photosystem II, LHCII, has a crucial role in the distribution of the light energy between the two photosystems, the efficient light capturing and protection of the reaction centers and antennae from overexcitation. In this work direct structural information on the effect of LHCII protonation, which mimics the switch from light-harvesting to photoprotective state of the protein, was revealed by polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). PM-IRRAS on LHCII monolayers verified that the native helical structure of the protein is preserved in both partly deprotonated (pH 7.8, LHCII) and protonated (pH 5.2, p-LHCII) states. At low surface pressure, 10 mN/m, the orientation of the α-helices in these two LHCII states is different-tilted (θ ≈ 40°) in LHCII and nearly vertical (θ ≈ 90°) in p-LHCII monolayers; the partly deprotonated complex is more hydrophilic than the protonated one and exhibits stronger intertrimer interactions. At higher surface pressure, 30 mN/m, which is typical for biological membranes, the protonation affects neither the secondary structure nor the orientation of the transmembrane α-helices (tilted ∼45° relative to the membrane surface in both LHCII states) but weakens the intermolecular interactions within and/or between the trimers.
Collapse
Affiliation(s)
- Tonya D Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Sabine Castano
- CBMN-Univ. Bordeaux, UMR 5248 , Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Sophie Lecomte
- CBMN-Univ. Bordeaux, UMR 5248 , Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
82
|
Kurth F, Feldhahn L, Bönn M, Herrmann S, Buscot F, Tarkka MT. Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics 2015; 16:658. [PMID: 26328611 PMCID: PMC4557895 DOI: 10.1186/s12864-015-1856-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pedunculate oak, Quercus robur is an abundant forest tree species that hosts a large and diverse community of beneficial ectomycorrhizal fungi (EMFs), whereby ectomycorrhiza (EM) formation is stimulated by mycorrhiza helper bacteria such as Streptomyces sp. AcH 505. Oaks typically grow rhythmically, with alternating root flushes (RFs) and shoot flushes (SFs). We explored the poorly understood mechanisms by which oaks integrate signals induced by their beneficial microbes and endogenous rhythmic growth at the level of gene expression. To this end, we compared transcript profiles of oak microcuttings at RF and SF during interactions with AcH 505 alone and in combination with the basidiomycetous EMF Piloderma croceum. RESULTS The local root and distal leaf responses to the microorganisms differed substantially. More genes involved in the recognition of bacteria and fungi, defence and cell wall remodelling related transcription factors (TFs) were differentially expressed in the roots than in the leaves of oaks. In addition, interaction with AcH 505 and P. croceum affected the expression of a higher number of genes during SF than during RF, including AcH 505 elicited defence response, which was attenuated by co-inoculation with P. croceum in the roots during SF. Genes encoding leucine-rich receptor-like kinases (LRR-RLKs) and proteins (LRR-RLPs), LRR containing defence response regulators, TFs from bZIP, ERF and WRKY families, xyloglucan cell wall transglycolases/hydrolases and exordium proteins were differentially expressed in both roots and leaves of plants treated with AcH 505. Only few genes, including specific RLKs and TFs, were induced in both AcH 505 and co-inoculation treatments. CONCLUSION Treatment with AcH 505 induces and maintains the expression levels of signalling genes encoding candidate receptor protein kinases and TFs and leads to differential expression of cell wall modification related genes in pedunculate oak microcuttings. Local gene expression response to AcH 505 alone and in combination with P. croceum are more pronounced when roots are in resting stages, possibly due to the fact that non growing roots re-direct their activity towards plant defence rather than growth.
Collapse
Affiliation(s)
- Florence Kurth
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
| | - Lasse Feldhahn
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
| | - Markus Bönn
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| | - Sylvie Herrmann
- UFZ - Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| | - François Buscot
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| | - Mika T Tarkka
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
83
|
Mork-Jansson AE, Gargano D, Kmiec K, Furnes C, Shevela D, Eichacker LA. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana. FEBS Lett 2015; 589:3064-70. [PMID: 26320415 DOI: 10.1016/j.febslet.2015.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/15/2022]
Abstract
The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | - Daniela Gargano
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Karol Kmiec
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Clemens Furnes
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Dmitriy Shevela
- Center for Organelle Research, University of Stavanger, Stavanger, Norway; Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Sweden
| | | |
Collapse
|
84
|
Ibarra-Laclette E, Méndez-Bravo A, Pérez-Torres CA, Albert VA, Mockaitis K, Kilaru A, López-Gómez R, Cervantes-Luevano JI, Herrera-Estrella L. Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids. BMC Genomics 2015; 16:599. [PMID: 26268848 PMCID: PMC4533766 DOI: 10.1186/s12864-015-1775-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. RESULTS The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. CONCLUSIONS A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico
| | - Claudia Anahí Pérez-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.,Investigador Cátedra CONACyT en el Instituto de Ecología A.C., Veracruz, Mexico
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Keithanne Mockaitis
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.,Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Rodolfo López-Gómez
- Instituto de Investigaciones Químico-Biológicas (IIQB), Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Jacob Israel Cervantes-Luevano
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
85
|
Sawyer AL, Hankamer BD, Ross IL. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. PLANTA 2015; 241:1287-1302. [PMID: 25672503 DOI: 10.1007/s00425-015-2249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/26/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.
Collapse
Affiliation(s)
- Anne L Sawyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
86
|
Nováková S, Flores-Ramírez G, Glasa M, Danchenko M, Fiala R, Skultety L. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. FRONTIERS IN PLANT SCIENCE 2015; 6:263. [PMID: 25972878 PMCID: PMC4411989 DOI: 10.3389/fpls.2015.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis.
Collapse
Affiliation(s)
| | | | - Miroslav Glasa
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Roderik Fiala
- Institute of Botany, Slovak Academy of SciencesBratislava, Slovakia
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of Czech RepublicPrague, Czech Republic
| |
Collapse
|
87
|
Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 2015; 72:39-51. [PMID: 25841081 DOI: 10.1016/j.micron.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Bioenergetic reactions in chloroplasts and mitochondria are catalyzed by large multi-subunit membrane proteins. About two decades ago it became clear that several of these large membrane proteins further associate into supercomplexes and since then a number of new ones have been described. In this review we focus on supercomplexes involved in light harvesting and electron transfer in the primary reactions of oxygenic photosynthesis and on the mitochondrial supercomplexes that catalyze electron transfer and ATP synthesis in oxidative phosphorylation. Functional and structural aspects are overviewed. In addition, several relevant technical aspects are discussed, including membrane solubilization with suitable detergents and methods of purification. Some open questions are addressed, such as the lack of high-resolution structures, the outstanding gaps in the knowledge about supercomplexes involved in cyclic electron transport in photosynthesis and the unusual mitochondrial protein complexes of protists and in particular of ciliates.
Collapse
|
88
|
Qin X, Wang W, Chang L, Chen J, Wang P, Zhang J, He Y, Kuang T, Shen JR. Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans. PHOTOSYNTHESIS RESEARCH 2015; 123:61-76. [PMID: 25214185 DOI: 10.1007/s11120-014-0039-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/26/2014] [Accepted: 09/03/2014] [Indexed: 05/24/2023]
Abstract
A novel super-complex of photosystem I (PSI)-light-harvesting complex I (LHCI) was isolated from a siphonaceous marine green alga, Bryopsis corticulans. The super-complex contained 9-10 Lhca antennas as external LHCI bound to the core complex. The super-complex was further disintegrated into PSI core and LHCI sub-complexes, and analysis of the pigment compositions by high-performance liquid chromatography revealed unique characteristics of the B. corticulans PSI in that one PSI core contained around 14 α-carotenes and 1-2 ε-carotenes. This is in sharp contrast to the PSI core from higher plants and most cyanobacteria where only β-carotenes were present, and is the first report for an α-carotene-type PSI core complex among photosynthetic eukaryotes, suggesting a structural flexibility of the PSI core. Lhca antennas from B. corticulans contained seven kinds of carotenoids (siphonaxanthin, all-trans neoxanthin, 9'-cis neoxanthin, violaxanthin, siphonein, ε-carotene, and α-carotene) and showed a high carotenoid:chlorophyll ratio of around 7.5:13. PSI-LHCI super-complex and PSI core showed fluorescence emission peaks at 716 and 718 nm at 77 K, respectively; whereas two Lhca oligomers had fluorescence peaks at 681 and 684 nm, respectively. By comparison with spinach PSI preparations, it was found that B. corticulans PSI had less red chlorophylls, most of them are present in the core complex but not in the outer light-harvesting systems. These characteristics may contribute to the fine tuning of the energy transfer network, and to acclimate to the ever-changing light conditions under which the unique green alga inhabits.
Collapse
Affiliation(s)
- Xiaochun Qin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Andreeva TD, Krumova SB, Minkov IL, Busheva M, Lalchev Z, Taneva SG. Protonation-induced changes in the macroorganization of LHCII monolayers. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
90
|
Chen X, Chan WL, Zhu FY, Lo C. Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii. Proteome Sci 2014; 12:16. [PMID: 24628833 PMCID: PMC4022089 DOI: 10.1186/1477-5956-12-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Selaginella (Selaginella moellendorffii) is a lycophyte which diverged from other vascular plants approximately 410 million years ago. As the first reported non-seed vascular plant genome, Selaginella genome data allow comparative analysis of genetic changes that may be associated with land plant evolution. Proteomics investigations on this lycophyte model have not been extensively reported. Phosphorylation represents the most common post-translational modifications and it is a ubiquitous regulatory mechanism controlling the functional expression of proteins inside living organisms. RESULTS In this study, polyethylene glycol fractionation and immobilized metal ion affinity chromatography were employed to isolate phosphopeptides from wild-growing Selaginella. Using liquid chromatography-tandem mass spectrometry analysis, 1593 unique phosphopeptides spanning 1104 non-redundant phosphosites with confirmed localization on 716 phosphoproteins were identified. Analysis of the Selaginella dataset revealed features that are consistent with other plant phosphoproteomes, such as the relative proportions of phosphorylated Ser, Thr, and Tyr residues, the highest occurrence of phosphosites in the C-terminal regions of proteins, and the localization of phosphorylation events outside protein domains. In addition, a total of 97 highly conserved phosphosites in evolutionary conserved proteins were identified, indicating the conservation of phosphorylation-dependent regulatory mechanisms in phylogenetically distinct plant species. On the other hand, close examination of proteins involved in photosynthesis revealed phosphorylation events which may be unique to Selaginella evolution. Furthermore, phosphorylation motif analyses identified Pro-directed, acidic, and basic signatures which are recognized by typical protein kinases in plants. A group of Selaginella-specific phosphoproteins were found to be enriched in the Pro-directed motif class. CONCLUSIONS Our work provides the first large-scale atlas of phosphoproteins in Selaginella which occupies a unique position in the evolution of terrestrial plants. Future research into the functional roles of Selaginella-specific phosphorylation events in photosynthesis and other processes may offer insight into the molecular mechanisms leading to the distinct evolution of lycophytes.
Collapse
Affiliation(s)
- Xi Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China.,Wuhan Institute of Biotechnology, Wuhan, Hubei, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Fu-Yuan Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| |
Collapse
|
91
|
Schaller S, Richter K, Wilhelm C, Goss R. Influence of pH, Mg²⁺, and lipid composition on the aggregation state of the diatom FCP in comparison to the LHCII of vascular plants. PHOTOSYNTHESIS RESEARCH 2014; 119:305-17. [PMID: 24197266 DOI: 10.1007/s11120-013-9951-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/02/2013] [Accepted: 10/29/2013] [Indexed: 05/25/2023]
Abstract
In the present study, the influence of Mg²⁺ ions and low pH values on the aggregation state of the diatom FCP and the LHCII of vascular plants was studied. In addition, the concentration of thylakoid membrane lipids associated with the complexes was determined. The results demonstrate that the FCP, which contained a significantly higher concentration of the negatively charged lipids SQDG and PG, was less sensitive to Mg²⁺ and low pH values than the LHCII which was characterized by lower amounts of SQDG and a higher concentration of MGDG. High MgCl₂ concentrations and pH values below pH 6 induced significant changes of the absorption and 77K fluorescence emission spectra of the LHCII, indicating a strong aggregation of the light-harvesting complex. This aggregation was also visible as a pellet after centrifugation on a sucrose cushion. Although the FCP responded with changes of the absorption and fluorescence spectra to low pH and Mg²⁺ incubation, these spectral changes were less pronounced than those observed for the LHCII. In addition, the FCP complexes did not show a visible pellet after incubation with either low pH values or high Mg²⁺ concentrations. Only the combined action of Mg²⁺ and pH 5 led to FCP aggregates of a size that could be pelleted by centrifugation. The decreased sensitivity of FCP aggregation to Mg²⁺ and low pH is discussed with respect to the differences in the concentration of the lipids surrounding the FCP and LHCII and the different thylakoid membrane organizations of diatoms and vascular plants.
Collapse
Affiliation(s)
- Susann Schaller
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
92
|
Rhiel E, Marquardt J, Eppard M, Mörschel E, Krumbein WE. The Light Harvesting System of the DiatomCyclotella cryptica. Isolation and Characterization of the Main Light Harvesting Complex and Evidence for the Existence of Minor Pigment Proteins*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1997.tb00617.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
93
|
Alterations in Structural Organization Affect the Functional Ability of Photosynthetic Apparatus. ACTA ACUST UNITED AC 2014. [DOI: 10.1201/b16675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register]
|
94
|
Rizzo F, Zucchelli G, Jennings R, Santabarbara S. Wavelength dependence of the fluorescence emission under conditions of open and closed Photosystem II reaction centres in the green alga Chlorella sorokiniana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:726-33. [PMID: 24561096 DOI: 10.1016/j.bbabio.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022]
Abstract
The fluorescence emission characteristics of the photosynthetic apparatus under conditions of open (F0) and closed (FM) Photosystem II reaction centres have been investigated under steady state conditions and by monitoring the decay lifetimes of the excited state, in vivo, in the green alga Chlorella sorokiniana. The results indicate a marked wavelength dependence of the ratio of the variable fluorescence, FV=FM-F0, over FM, a parameter that is often employed to estimate the maximal quantum efficiency of Photosystem II. The maximal value of the FV/FM ratio is observed between 660 and 680nm and the minimal in the 690-730nm region. It is possible to attribute the spectral variation of FV/FM principally to the contribution of Photosystem I fluorescence emission at room temperature. Moreover, the analysis of the excited state lifetime at F0 and FM indicates only a small wavelength dependence of Photosystem II trapping efficiency in vivo.
Collapse
Affiliation(s)
- Federico Rizzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy
| | - Robert Jennings
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy
| | - Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
95
|
Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:734-43. [PMID: 24480388 DOI: 10.1016/j.bbabio.2014.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/12/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 02/04/2023]
Abstract
Chromera velia is an alveolate alga associated with scleractinian corals. Here we present detailed work on chromatic adaptation in C. velia cultured under either blue or red light. Growth of C. velia under red light induced the accumulation of a light harvesting antenna complex exhibiting unusual spectroscopic properties with red-shifted absorption and atypical 710nm fluorescence emission at room temperature. Due to these characteristic features the complex was designated "Red-shifted Chromera light harvesting complex" (Red-CLH complex). Its detailed biochemical survey is described in the accompanying paper (Bina et al. 2013, this issue). Here, we show that the accumulation of Red-CLH complex under red light represents a slow acclimation process (days) that is reversible with much faster kinetics (hours) under blue light. This chromatic adaptation allows C. velia to maintain all important parameters of photosynthesis constant under both light colors. We further demonstrated that the C. velia Red-CLH complex is assembled from a 17kDa antenna protein and is functionally connected to photosystem II as it shows variability of chlorophyll fluorescence. Red-CLH also serves as an additional locus for non-photochemical quenching. Although overall rates of oxygen evolution and carbon fixation were similar for both blue and red light conditions, the presence of Red-CLH in C. velia cells increases the light harvesting potential of photosystem II, which manifested as a doubled oxygen evolution rate at illumination above 695nm. This data demonstrates a remarkable long-term remodeling of C. velia light-harvesting system according to light quality and suggests physiological significance of 'red' antenna complexes.
Collapse
Affiliation(s)
- Eva Kotabová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Jana Jarešová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Radek Kaňa
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Roman Sobotka
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ondřej Prášil
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
96
|
Liu R, Xu YH, Jiang SC, Lu K, Lu YF, Feng XJ, Wu Z, Liang S, Yu YT, Wang XF, Zhang DP. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5443-56. [PMID: 24078667 PMCID: PMC3871805 DOI: 10.1093/jxb/ert307] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/18/2023]
Abstract
The light-harvesting chlorophyll a/b-binding (LHCB) proteins are the apoproteins of the light-harvesting complex of photosystem II. In the present study, we observed that downregulation of any of the six LHCB genes resulted in abscisic acid (ABA)-insensitive phenotypes in seed germination and post-germination growth, demonstrating that LHCB proteins are positively involved in these developmental processes in response to ABA. ABA was required for full expression of different LHCB members and physiologically high levels of ABA enhanced LHCB expression. The LHCB members were shown to be targets of an ABA-responsive WRKY-domain transcription factor, WRKY40, which represses LHCB expression to balance the positive function of the LHCBs in ABA signalling. These findings revealed that ABA is an inducer that fine-tunes LHCB expression at least partly through repressing the WRKY40 transcription repressor in stressful conditions in co-operation with light, which allows plants to adapt to environmental challenges.
Collapse
Affiliation(s)
- Rui Liu
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
- * These authors contributed equally to this work
| | - Yan-Hong Xu
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
- * These authors contributed equally to this work
| | - Shang-Chuan Jiang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
- * These authors contributed equally to this work
| | - Kai Lu
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Yan-Fen Lu
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Xiu-Jing Feng
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Zhen Wu
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Shan Liang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Yong-Tao Yu
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Xiao-Fang Wang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
- To whom correspondence should be addressed. E-mail: @biomed.tsinghua.edu.cn
| | - Da-Peng Zhang
- Bioinformatics and Systems Biology Laboratory of the Ministry of Education, Scholl of Life Sciences, Tsinghua University, Beijing 100084, PR China
- To whom correspondence should be addressed. E-mail: @biomed.tsinghua.edu.cn
| |
Collapse
|
97
|
Proteomic characterization and three-dimensional electron microscopy study of PSII-LHCII supercomplexes from higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1454-62. [PMID: 24246636 DOI: 10.1016/j.bbabio.2013.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/23/2013] [Revised: 10/24/2013] [Accepted: 11/05/2013] [Indexed: 11/22/2022]
Abstract
In higher plants a variable number of peripheral LHCII trimers can strongly (S), moderately (M) or loosely (L) associate with the dimeric PSII core (C2) complex via monomeric Lhcb proteins to form PSII-LHCII supercomplexes with different structural organizations. By solubilizing isolated stacked pea thylakoid membranes either with the α or β isomeric forms of the detergent n-dodecyl-D-maltoside, followed by sucrose density ultracentrifugation, we previously showed that PSII-LHCII supercomplexes of types C2S2M2 and C2S2, respectively, can be isolated [S. Barera et al., Phil. Trans. R Soc. B 67 (2012) 3389-3399]. Here we analysed their protein composition by applying extensive bottom-up and top-down mass spectrometry on the two forms of the isolated supercomplexes. In this way, we revealed the presence of the antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and C2S2 supercomplexes, including the low molecular mass subunits, were also detected and characterized. To complement the proteomic study with structural information, we performed negative stain transmission electron microscopy and single particle analysis on the PSII-LHCII supercomplexes isolated from pea thylakoid membranes solubilized with n-dodecyl-α-D-maltoside. We observed the C2S2M2 supercomplex in its intact form as the largest PSII complex in our preparations. Its dataset was further analysed in silico, together with that of the second largest identified sub-population, corresponding to its C2S2 subcomplex. In this way, we calculated 3D electron density maps for the C2S2M2 and C2S2 supercomplexes, approaching respectively 30 and 28Å resolution, extended by molecular modelling towards the atomic level. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
|
98
|
Iwai M, Pack CG, Takenaka Y, Sako Y, Nakano A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci Rep 2013; 3:2833. [PMID: 24088948 PMCID: PMC3789154 DOI: 10.1038/srep02833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022] Open
Abstract
Flexibility of chloroplast thylakoid membrane proteins is essential for plant fitness and survival under fluctuating light environments. Phosphorylation of light-harvesting antenna complex II (LHCII) is known to induce dynamic protein reorganization that fine-tunes the rate of energy conversion in each photosystem. However, molecular details of how LHCII phosphorylation causes light energy redistribution throughout thylakoid membranes still remain unclear. By using fluorescence correlation spectroscopy, we here determined the LHCII phosphorylation-dependent protein diffusion in thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. As compared to the LHCII dephosphorylation-induced condition, the diffusion coefficient of LHCII increased nearly twofold under the LHCII phosphorylation-induced condition. We also verified the results by using the LHCII phosphorylation-deficient mutant. Our observation suggests that LHCII phosphorylation-dependent protein reorganization occurs along with the changes in the rate of protein diffusion, which would have an important role in mediating light energy redistribution throughout thylakoid membranes.
Collapse
Affiliation(s)
- Masakazu Iwai
- 1] Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan [2] PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
99
|
Leoni C, Pietrzykowska M, Kiss AZ, Suorsa M, Ceci LR, Aro EM, Jansson S. Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:236-46. [PMID: 23888908 PMCID: PMC4223382 DOI: 10.1111/tpj.12297] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/31/2012] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 05/18/2023]
Abstract
Light-harvesting complex II (LHCII) contains three highly homologous chlorophyll-a/b-binding proteins (Lhcb1, Lhcb2 and Lhcb3), which can be assembled into both homo- and heterotrimers. Lhcb1 and Lhcb2 are reversibly phosphorylated by the action of STN7 kinase and PPH1/TAP38 phosphatase in the so-called state-transition process. We have developed antibodies that are specific for the phosphorylated forms of Lhcb1 and Lhcb2. We found that Lhcb2 is more rapidly phosphorylated than Lhcb1: 10 sec of 'state 2 light' results in Lhcb2 phosphorylation to 30% of the maximum level. Phosphorylated and non-phosphorylated forms of the proteins showed no difference in electrophoretic mobility and dephosphorylation kinetics did not differ between the two proteins. In state 2, most of the phosphorylated forms of Lhcb1 and Lhcb2 were present in super- and mega-complexes that comprised both photosystem (PS)I and PSII, and the state 2-specific PSI-LHCII complex was highly enriched in the phosphorylated forms of Lhcb2. Our results imply distinct and specific roles for Lhcb1 and Lhcb2 in the regulation of photosynthetic light harvesting.
Collapse
Affiliation(s)
- Claudia Leoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
- Department of Biosciences Biotechnologies and Pharmacology Sciences, Bari UniversityVia Amendola 165/A, 70126, Bari, Italy
| | | | - Anett Z Kiss
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| | - Marjaana Suorsa
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of TurkuFI-20014, Turku, Finland
| | - Luigi R Ceci
- Institute of Biomembranes and Bioenergetics, CNRVia Amendola 165/A, 70126, Bari, Italy
| | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of TurkuFI-20014, Turku, Finland
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
- *For correspondence (e-mail )
| |
Collapse
|
100
|
Yendrek CR, Leisner CP, Ainsworth EA. Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris. GLOBAL CHANGE BIOLOGY 2013; 19:3155-66. [PMID: 23625780 DOI: 10.1111/gcb.12237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/11/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Both elevated ozone (O(3)) and limiting soil nitrogen (N) availability negatively affect crop performance. However, less is known about how the combination of elevated O(3) and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O(3) at two N levels (limiting and sufficient). Results at the whole plant, leaf, and cellular level showed that primary metabolism was reduced by growth in limiting N, and that reduction was exacerbated by exposure to elevated O(3). Limiting N reduced the rates of photosynthetic CO(2) uptake by 40.8% in ambient O(3)-exposed plants, and by 58.6% in elevated O(3)-exposed plants, compared with plants grown with sufficient N. Reductions in photosynthesis compounded to cause large differences in leaf and whole plant parameters including leaf number, leaf area, and leaf and root biomass. These results were consistent with our meta-analysis of all published studies of plant responses to elevated O(3) and N availability. In tobacco, N uptake and allocation was also affected by growth in limiting N and elevated O(3), and there was an O(3)-induced compensatory response that resulted in increased N recycling from senescing leaves. In addition, transcript-based markers were used to track the progress through senescence, and indicated that limiting N and elevated O(3), separately and in combination, caused an acceleration of senescence. These results suggest that reductions in crop productivity in growing regions with poor soil fertility will be exacerbated by rising background O(3).
Collapse
Affiliation(s)
- Craig R Yendrek
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | | | | |
Collapse
|