51
|
Triarhou LC. Histochemical properties of intrastriatal mesencephalic grafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 517:43-61. [PMID: 12580306 DOI: 10.1007/978-1-4615-0699-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lazaros C Triarhou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Medical Science Building A142, Indiana University Medical Center, 635 Barnhill Drive, Indianapolis, Indiana 46202-5120, USA
| |
Collapse
|
52
|
Triarhou LC. Structural correlates of process outgrowth and circuit reconstruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 517:63-88. [PMID: 12580307 DOI: 10.1007/978-1-4615-0699-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Lazaros C Triarhou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Medical Science Building A142, Indiana University Medical Center, 635 Barnhill Drive, Indianapolis, Indiana 46202-5120, USA
| |
Collapse
|
53
|
Jinno S, Jeromin A, Roder J, Kosaka T. Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. J Comp Neurol 2003; 458:412-24. [PMID: 12619075 DOI: 10.1002/cne.10585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuronal calcium sensor-1 (NCS-1) is a member of the EF-hand calcium-binding protein superfamily, which is considered to modulate synaptic transmission and plasticity. The detailed distribution of NCS-1 was analyzed in the mouse cerebellar cortex. In coronal sections, the NCS-1 immunostaining displayed characteristic parasagittal banding pattern in the Purkinje cell layer and molecular layer, while there were no apparent bands in the granule cell layer. The alternating positively and negatively NCS-1-labeled Purkinje cell clusters contributed to this cerebellar compartmentation. In contrast, stellate-basket cells were uniformly NCS-1-positive throughout the cerebellum. Immunofluorescent double staining showed that NCS-1 and zebrin II exhibited a similar parasagittal banding pattern. Then, we performed mapping of NCS-1- and/or zebrin II-labeled Purkinje cell somata using seven sequential coronal sections. NCS-1-positive/zebrin II-positive Purkinje cell clusters were seen throughout the cerebellum, but NCS-1-positive/zebrin II-negative Purkinje cells were exceedingly rare. On the other hand, NCS-1-negative/zebrin II-positive Purkinje cell clusters were found in anterior lobule vermis and paraflocculus, whereas they were rarely seen in posterior lobules. The digitized quantitative analysis showed close relationship between NCS-1 and zebrin II immunoreactivity in the molecular layer. The correspondence between NCS-1 and zebrin II demonstrated here indicates a novel anteroposterior difference of cerebellar compartmentation and provides fundamental information of cerebellar organization.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
54
|
Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2003; 2:242-62. [PMID: 14964684 DOI: 10.1080/14734220310022289] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calcium plays a fundamental role in the cell as second messenger and is principally regulated by calcium-binding proteins. Although these proteins share in common their ability to bind calcium, they belong to different subfamilies. They present, in general, specific developmental and distribution patterns. Most Purkinje cells express the fast and slow calcium buffer proteins calbindin-D28k and parvalbumin, whereas basket, stellate and Golgi cells the slow buffer parvalbumin only. They are, almost all, calretinin negative. Granule, Lugaro and unipolar brush cells present an opposite immunoreactivity profile, most of them being calretinin positive while lacking calbindin-D28k and parvalbumin. The developmental pattern of appearance of these proteins seems to follow the maturation of neurons. Calbindin-D28k appears early, shortly after cessation of mitosis when neurons become ready to start migration and differentiation while parvalbumin is expressed later in parallel with an increase in neuronal activity. The other proteins are generally detected later. During development, some of these proteins, like calretinin, are transiently expressed in specific cellular subpopulations. The function of these proteins is not fully understood, although strong evidence supports a prominent role in physiological settings with altered calcium concentrations. These proteins regulate and are regulated by intracellular calcium level. For example, they may directly or indirectly enable sensitization or desensitization of calcium channels, and may further block calcium entry into the cells, like the calcium-sensor proteins, that have been shown to be potent and specific modulators of ion channels, which may allow for feedback control of current function and hence signaling. The absence of calcium buffer proteins results in marked abnormalities in cell firing; with alterations in simple and complex spikes or transformation of depressing synapses into facilitating synapses. Calcium-binding protein implication in resistance to degeneration is still a controversial issue. Neurons rich in calcium-binding proteins, especially calbindin-D28k and parvalbumin, seem to be relatively resistant to degeneration in a variety of acute and chronic disorders. However other data support that an absence of calcium-binding proteins may also have a neuroprotective effect. It is not unlikely that neurons may face a dual action mechanism where a decrease in calcium-binding proteins has a first short-term beneficial effect while it becomes detrimental for the cell over the long term.
Collapse
|
55
|
Antonini A, Shatz CJ. Relation Between Putative Transmitter Phenotypes and Connectivity of Subplate Neurons During Cerebral Cortical Development. Eur J Neurosci 2002; 2:744-761. [PMID: 12106275 DOI: 10.1111/j.1460-9568.1990.tb00465.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During development, the earliest generated neurons of the mammalian telencephalon reside in a region of the white matter, the subplate, just beneath the cortical plate. Neurons in the subplate are only transiently present in the telencephalon: shortly after birth in the cat the majority have disappeared. During their brief life, however, subplate neurons mature; they extend long-distance and local projections, and express immunoreactivity for GABA and several neuropeptides. In the present study we examined the relation between possible transmitter phenotypes of subplate neurons and their connectivity. To do so, we used a double-label technique in which immunohistochemistry for neuropeptide Y (NPY), somatostatin (SRIF) or calbindin (CaBP) was combined with retrograde tracing. Experiments were performed in neonatal cats and in ferret kits at equivalent postconceptional ages, times when subplate neurons are numerous. Subplate neurons immunoreactive for neuropeptides and CaBP could be double-labelled by an injection of retrograde tracer either into the cortical plate or the white matter, indicating that this particular subset of subplate neurons can make local circuit projections. In contrast, peptide or CaBP immunoreactive subplate neurons could never be retrogradely labelled from a tracer injection into the thalamus. Taken together, these observations indicate that subplate neurons immunoreactive for NPY, SRIF and CaBP are likely to be interneurons exclusively. On the other hand, subplate neurons with long-distance projections to the thalamus or the contralateral hemisphere could be labelled by the retrograde transport of d-[3H]aspartate, suggesting that at least some projection subplate neurons might use an excitatory amino acid as a neurotransmitter. These results indicate that there is a defined relationship between the putative transmitter phenotypes of subplate neurons and their patterns of projection. Interneurons of the subplate express peptidergic properties while projection neurons to the thalamus may use an excitatory amino acid. Thus, these basic organizational features of the transient subplate are reminiscent of those found in the adult cortical layers.
Collapse
Affiliation(s)
- A. Antonini
- Department of Neurobiology, Stanford University Medical School, Stanford, CA 94305, USA
| | | |
Collapse
|
56
|
Dutar P, Potier B, Lamour Y, Emson PC, Senut MC. Loss of Calbindin-28K Immunoreactivity in Hippocampal Slices from Aged Rats: a Role for Calcium? Eur J Neurosci 2002; 3:839-849. [PMID: 12106450 DOI: 10.1111/j.1460-9568.1991.tb00095.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Calbindin-28K (CaBP) is a calcium-binding protein widely distributed in the brain. This protein appears to be involved in the sequestration and the translocation of intracellular free calcium. In this study, we have examined the distribution pattern of the structures immunoreactive for CaBP in the hippocampal formation from slices of young (4 months) and aged (24 - 27 months) rats previously submitted to electrophysiological measurements. We demonstrated a marked loss in the number of pyramidal cells immunoreactive for CaBP in aged rats as compared to young rats. A consistent decrease in the staining intensity was also revealed by optical density measurements. Some experiments have suggested that calcium homeostasis is modified in hippocampal neurons of aged rats. The loss of CaBP-like immunoreactivity (CaBP-LI) labelling could result from an increase in intracellular calcium concentrations. To support this hypothesis, we showed that in young rats (i) the CaBP-LI was enhanced in pyramidal neurons when the slice was preincubated in a calcium-free medium, and (ii) CaBP-LI was strongly decreased when the slice was preincubated in a high-calcium medium (5 mM) and when the entry of calcium into the cell was increased by a short application of an excitatory amino acid in the medium. Our results suggest that the loss of CaBP-LI in the hippocampus of aged rats could be due to an increase in intracellular calcium concentration. Preliminary observations of hippocampal slices at different times after induction of long-term potentiation (LTP) failed to show significant changes in CaBP immunoreactivity, suggesting that this calcium-binding protein is not directly involved in LTP processes.
Collapse
Affiliation(s)
- P. Dutar
- Laboratoire de Physiopharmacologie du Système Nerveux, INSERM U 161, 2, rue d'Alésia, 75014 Paris, France
| | | | | | | | | |
Collapse
|
57
|
Séquier JM, Hunziker W, Andressen C, Celio MR. Calbindin D-28k Protein and mRNA Localization in the Rat Brain. Eur J Neurosci 2002; 2:1118-1126. [PMID: 12106072 DOI: 10.1111/j.1460-9568.1990.tb00023.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
After the discovery of calretinin, a protein with high sequence homology to calbindin D-28k, the validity of immunohistochemical results obtained using polyclonal antibodies for this protein, was in question. In order to validate the previous results on the localization of calbindin D-28k in the brain, we localized the protein by highly specific monoclonal antibodies and revealed its mRNA histochemically by in situ hybridization. In general there was good agreement between the results obtained using these two different techniques and those reported in previous publications. The concordance was particularly impressive for the cerebral cortex, basal ganglia, basal nucleus of Meynert, hippocampus, thalamus, cerebellum and superior colliculus. In the amygdala and hypothalamus the low spatial resolution of in situ hybridization did not allow precise definition of some nuclei displaying a positive reaction for the protein. In the rhombencephalon, cells of the parabrachial nuclei and the dorsal raphe nucleus expressed calbindin D-28k. Neurons in the dorsal horn of the spinal cord and some horizontal cells of the retina were tagged with both methods. The only discrepancy was the presence of immunoreactive ependymal cells, whereas mRNA never occurred in cells lining the ventricles. Thus, the combined approach has established the widespread distribution of cells expressing calbindin D-28k in the rat brain.
Collapse
Affiliation(s)
- J. M. Séquier
- Central and Pharmaceutical Research Department, F. Hoffmann-La Roche and Co. Ltd, CH-4002 Basle, Switzerland
| | | | | | | |
Collapse
|
58
|
Côté PY, Sadikot AF, Parent A. Complementary Distribution of Calbindin D-28k and Parvalbumin in the Basal Forebrain and Midbrain of the Squirrel Monkey. Eur J Neurosci 2002; 3:1316-1329. [PMID: 12106229 DOI: 10.1111/j.1460-9568.1991.tb00064.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The distribution of cell bodies expressing either calbindin D-28k or parvalbumin immunoreactivity in the basal forebrain and midbrain of squirrel monkeys (Saimiri sciureus) was studied on contiguous sections incubated with monoclonal antibodies raised against calbindin or parvalbumin. In the nucleus accumbens, medium-sized calbindin-positive neurons formed two cell bridges joining the ventral part of the striatum to the olfactory tubercle, whereas medium-sized parvalbumin-positive cells in the same area were much less numerous and more uniformly distributed. The medial and dorsal septal nuclei contained a small number of elongated calbindin-positive neurons and only a few parvalbumin-immunoreactive cells. In the nucleus of the diagonal band of Broca, calbindin and parvalbumin were found to label two distinct but closely intermingled neuronal populations. In the striatum, medium-sized calbindin-immunoreactive cells occurred in very large numbers and appeared to be confined to the extrastriosomal matrix. Medium-sized, parvalbumin-immunoreactive neurons were also present in the striatum but they were less numerous than the calbindin-positive cells. The calbindin-positive neurons in the dorsal portion of the striatum were less intensely stained than those in the ventral portion, whereas this pattern did not occur for neurons expressing parvalbumin immunoreactivity. At the pallidal level, neurons in both segments were devoid of calbindin but displayed a very strong parvalbumin immunoreactivity. Most of the large neurons of the nucleus basalis of Meynert were strongly calbindin-immunoreactive and many of them invaded dorsally the medullary laminae of the pallidal complex. The neurons of the subthalamic nucleus were markedly enriched with parvalbumin but displayed only light calbindin staining. In the substantia nigra/ventral tegmental area complex, calbindin-immunoreactive cells abounded in the ventral tegmental area and in the dorsal tier of the pars compacta of the substantia nigra, but were absent in the ventral tier of the pars compacta and in the entire pars reticulata of the substantia nigra. In contrast, numerous parvalbumin-immunoreactive neurons occurred in the pars reticulata and pars lateralis, but none were found in the pars compacta and ventral tegmental area. These findings reveal that the patterns of calbindin and parvalbumin distribution in primate basal forebrain and midbrain are strikingly complementary, suggesting a synergistic role for these calcium-binding proteins in basal forebrain and midbrain function.
Collapse
Affiliation(s)
- Pierre-Yves Côté
- Centre de recherche en neurobiologie, Hôpital de l'Enfant-Jésus, 1401, 18e Rue, Québec G1J 1Z4, Canada
| | | | | |
Collapse
|
59
|
Csáki A, Kocsis K, Kiss J, Halász B. Localization of putative glutamatergic/aspartatergic neurons projecting to the supraoptic nucleus area of the rat hypothalamus. Eur J Neurosci 2002; 16:55-68. [PMID: 12153531 DOI: 10.1046/j.1460-9568.2002.02059.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxytocin and vasopressin neurosecretory neurons of the supraoptic nucleus receive a rich glutamatergic innervation. The nerve cells of this prominent structure express various ionotropic and metabotropic glutamate receptor subtypes and there is converging evidence that glutamate acts as an excitatory transmitter in the control of release of oxytocin and vasopressin synthesized in this cell group. The location of the glutamatergic neurons projecting to this hypothalamic region is unknown. The aim of the present investigation was to study this question. [(3)H]D-aspartate, which is selectively taken up by high-affinity uptake sites at presynaptic endings that use glutamate as a transmitter, and is transported back to the cell body, was injected into the supraoptic nucleus area. The neurons retrogradely labelled with [(3)H]D-aspartate were detected autoradiographically. Labelled nerve cells were found in several diencephalic and telencephalic structures, but not in the brainstem. Diencephalic cell groups included the supraoptic nucleus itself, its perinuclear area, hypothalamic paraventricular, suprachiasmatic, ventromedial, dorsomedial, ventral premammillary, supramammillary and thalamic paraventricular nuclei. Within the telencephalon, labelled neurons were detected in the septum, amygdala, bed nucleus of the stria terminalis and preoptic area. The findings provide neuromorphological data on the location of putative glutamatergic neurons projecting to the supraoptic nucleus and its perinuclear area. Furthermore, they indicate that local putative glutamatergic neurons as well as several diencephalic and telencephalic structures contribute to the glutamatergic innervation of the cell group and thus are involved in the control of oxytocin and vasopressin release by neurosecretory neurons of the nucleus.
Collapse
Affiliation(s)
- A Csáki
- Neuroendocrine Research Laboratory, Department of Human Morphology & Developmental Biology, Semmelweis University, Tüzoltó u. 58. H-1094 Budapest, Hungary
| | | | | | | |
Collapse
|
60
|
Nelson TE, Ur CL, Gruol DL. Chronic interleukin-6 exposure alters electrophysiological properties and calcium signaling in developing cerebellar purkinje neurons in culture. J Neurophysiol 2002; 88:475-86. [PMID: 12091569 DOI: 10.1152/jn.2002.88.1.475] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cytokine interleukin-6 (IL-6) is chronically expressed at elevated levels within the CNS in many neurological disorders and may contribute to the histopathological, pathophysiological, and cognitive deficits associated with such disorders. However, the effects of chronic IL-6 exposure on neuronal function in the CNS are largely unknown. Therefore using intracellular recording and calcium imaging techniques, we investigated the effects of chronic IL-6 exposure on the physiological properties of cerebellar Purkinje neurons in primary culture. Two weeks of exposure to 1,000 units/ml (U/ml) IL-6 resulted in altered electrophysiological properties of Purkinje neurons, including a significant reduction in action potential generation, an increase in input resistance, and an enhanced electrical response to the ionotropic glutamate receptor agonist, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) compared with untreated neurons. Lower concentrations of IL-6 (100 and 500 U/ml) had no effects on these electrophysiological parameters. However, neurons exposed to 500 U/ml chronic IL-6 resulted in significantly elevated resting levels of intracellular calcium as well as an increase in the intracellular calcium signal of Purkinje neurons in response to AMPA, effects not observed in neurons exposed to 1,000 U/ml chronic IL-6. Morphometric analysis revealed a lack of gross structural changes following chronic IL-6 treatment, such as in the number, size, and extent of dendritic arborization of Purkinje neurons in culture. Using immunohistochemistry, we found that cultured Purkinje neurons express both the IL-6 receptor and its intracellular signaling subunit, gp130, indicating that IL-6 may act directly on Purkinje neurons to alter their physiological properties. The present data show that chronic exposure to elevated levels of IL-6, such as occurs in various neurological diseases, produces alterations in several important physiological properties of Purkinje neurons and that these changes occur in the absence of neuronal toxicity, damage, or death. The results support the hypothesis that chronic IL-6 exposure can disrupt normal CNS function and thereby contribute to the pathophysiology associated with many neurological diseases.
Collapse
Affiliation(s)
- Thomas E Nelson
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
61
|
Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002; 66:19-59. [PMID: 11897404 DOI: 10.1016/s0301-0082(01)00021-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy, Faculty of Medicine, Thracian University, 11 Armejska Street, BG-6003 Stara Zagora, Bulgaria.
| |
Collapse
|
62
|
Toba Y, Ajiki K, Horie M, Sango K, Kawano H. Immunohistochemical localization of calbindin D-28k in the migratory pathway from the rat olfactory placode. J Neuroendocrinol 2001; 13:683-94. [PMID: 11489085 DOI: 10.1046/j.1365-2826.2001.00685.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatiotemporal localization of calbindin D-28k (Calb), a calcium-binding protein, was examined immunohistochemically in the developing rat olfactory system with special reference to cell migration from the olfactory placode. Calb immunoreactivity was first detected at embryonic day 12 (E12) in a few cells just outside the olfactory epithelium, and at E13, Calb-immunoreactive cells were found scattered in the laminin-rich mesenchyme. By E14, Calb-immunoreactive cells had increased in number and were seen along the entire migratory route between the vomeronasal organ, a derivative of the medial olfactory pit, and the ventromedial surface of the telencephalic vesicle. Calb neurones were not seen in the olfactory epithelium, a derivative of the lateral olfactory pit. Although the distribution pattern of Calb-immunoreactive cells was similar to that of luteinizing hormone releasing hormone (LHRH)-producing neurones, which are known to originate in the vomeronasal organ and migrate into the forebrain, Calb and LHRH immunoreactivities were contained in separate neuronal populations. Calb-immunoreactive cells were localized along the vomeronasal nerves, identified by labelling the vomeronasal organ with the lipophilic dye, DiI, and strongly immunoreactive for neural cell adhesion molecule (NCAM). These data strongly suggest that, in addition to LHRH neurones, the rat vomeronasal organ generates Calb-immunoreactive neurones which migrate along the vomeronasal nerves to enter the forebrain. The final fate and functional importance of these cells remains to be determined.
Collapse
Affiliation(s)
- Y Toba
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan
| | | | | | | | | |
Collapse
|
63
|
García-Lecea M, Sen RP, Soto F, Miras-Portugal MT, Castro E. P2 receptors in cerebellar neurons: Molecular diversity of ionotropic ATP receptors in Purkinje cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
64
|
Pons S, Trejo JL, Martínez-Morales JR, Martí E. Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 2001; 128:1481-92. [PMID: 11290288 DOI: 10.1242/dev.128.9.1481] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development of the cerebellum, Sonic hedgehog (SHH) is expressed in migrating and settled Purkinje neurons and is directly responsible for proliferation of granule cell precursors in the external germinal layer. We have previously demonstrated that SHH interacts with vitronectin in the differentiation of spinal motor neurons. Here, we analysed whether similar interactions between SHH and extracellular matrix glycoproteins regulate subsequent steps of granule cell development. Laminins and their integrin receptor subunit alpha6 accumulate in the outer most external germinal layer where proliferation of granule cell precursors is maximal. Consistent with this expression pattern, laminin significantly increases SHH-induced proliferation in primary cultures of cerebellar granule cells. Vitronectin and its integrin receptor subunits alpha(v) are expressed in the inner part of the external germinal layer where granule cell precursors exit the cell cycle and commence differentiation. In cultures, vitronectin is able to overcome SHH-induced proliferation, thus allowing granule cell differentiation. Our studies indicate that the pathway in granule cell precursors responsible for the conversion of a proliferative SHH-mediated response to a differentiation signal depends on CREB. Vitronectin stimulates phosphorylation of cyclic-AMP responsive element-binding protein (CREB), and over-expression of CREB is sufficient to induce granule cell differentiation in the presence of SHH. Taken together, these data suggest that granule neuron differentiation is regulated by the vitronectin-induced phosphorylation of CREB, a critical event that terminates SHH-mediated proliferation and permits the differentiation program to proceed in these cells.
Collapse
Affiliation(s)
- S Pons
- Instituto Cajal de Neurobiología, CSIC, Av. Doctor Arce 37, Madrid E28002, Spain
| | | | | | | |
Collapse
|
65
|
Alonso JR, Briñón JG, Crespo C, Bravo IG, Arévalo R, Aijón J. Chemical organization of the macaque monkey olfactory bulb: II. Calretinin, calbindin D-28k, parvalbumin, and neurocalcin immunoreactivity. J Comp Neurol 2001; 432:389-407. [PMID: 11246215 DOI: 10.1002/cne.1110] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The distribution and morphologic features of calcium-binding protein- (calbindin D-28k, calretinin, neurocalcin, and parvalbumin) immunoreactive elements were studied in the macaque monkey olfactory bulb by using specific antibodies and the avidin-biotin-immunoperoxidase method. A characteristic laminar pattern of stained elements was observed for each marker. Scarce superficial short-axon cells and superficial stellate cells demonstrated calbindin D-28k immunoreactivity in the outer layers, whereas a moderate number of calbindin D-28k-immunoreactive granule cells and scarce deep short-axon cells were observed in the inner layers. Calretinin-staining demonstrated abundant periglomerular cells and granule cells and a scarce number of other interneuronal populations. Most neurocalcin-immunopositive elements were external and medial tufted cells and periglomerular cells, although other scarcer interneuronal populations were also immunostained. A few superficial and deep short-axon cells as well as small interneurons in the external plexiform layer were the only elements immunoreactive to parvalbumin. The distribution of the immunoreactive elements in the olfactory bulb of the macaque monkey showed a high similarity to that reported in the human, whereas it demonstrated a different and simpler pattern to what has been reported in the olfactory bulb of macrosmatic animals. It suggests more homogeneous calcium-mediated cell responses after stimulation that could be correlated to the lower capability to modulate olfactory signals in microsmatic animals. In addition, these results indicate that experimental models in rodents do not provide an accurate estimation of calcium-binding protein-immunoreactive neuronal populations in the primate olfactory system.
Collapse
Affiliation(s)
- J R Alonso
- Departamento de Biología Celular y Patología, Facultad de Medicina. Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca E-37007, Spain.
| | | | | | | | | | | |
Collapse
|
66
|
Trejo JL, Pons S. Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellum. JOURNAL OF NEUROBIOLOGY 2001; 47:39-50. [PMID: 11257612 DOI: 10.1002/neu.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110alpha or beta) associated with one of a large family of regulatory subunits (p85alpha, p85beta, p55gamma, p55alpha, and p50alpha). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55gamma regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55gamma is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR.
Collapse
Affiliation(s)
- J L Trejo
- Cellular and Molecular Neuroendocrinology Laboratory, Instituto Cajal de Neurobiología, C.S.I.C., Av. Doctor Arce 37, Madrid E28002, Spain
| | | |
Collapse
|
67
|
Trejo JL, Cuchillo I, Machín C, Rúa C. Maternal adrenalectomy at the early onset of gestation impairs the postnatal development of the rat hippocampal formation: effects on cell numbers and differentiation, connectivity and calbindin-D28k immunoreactivity. J Neurosci Res 2000; 62:644-67. [PMID: 11104503 DOI: 10.1002/1097-4547(20001201)62:5<644::aid-jnr4>3.0.co;2-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The possible role of the maternal glucocorticoids on the postnatal development of the hippocampus was tested with bilateral adrenalectomy of pregnant rats. Surgery was performed 24 hr after sperm-positiveness was determined. The offspring from adrenalectomized mothers, compared with animals from control sham-operated mothers, showed decreased body weight and increased brain weight. The CA1 field of the hippocampus of these animals showed lower number of both Nissl-stained and Calbindin-immunoreactive cells, whereas the granule cell layer of the dentate gyrus showed higher number of both populations. Both types of cell numbers were statistically similar from postnatal Day 21, however, suggesting some compensatory mechanism. The neuronal populations of adrenalectomized animals appeared with a delay in the development of their dendritic trees, cytoplasmic differentiation, and synaptic connections. In the same way, both septohippocampal and hippocamposeptal projections appeared delayed in the adrenalectomized animals with respect to control ones by several days, mainly with regard to regressive events typical of the first 8 days of age. The ultrastructural study showed that every ADX postnatal group appeared more immature than the corresponding control group. These results suggest that gestational levels of maternal glucocorticoids (that were removed by adrenalectomy) influence the normal postnatal development of the hippocampus as reflected in neuron numbers and cell maturation, as well as in the developmental timing of the pattern of connectivity, and that this effect must be accomplished both in neuroepithelium and post-mitotic cells before the endogenous fetal hormones are secreted and reach concentrations capable to produce a response.
Collapse
Affiliation(s)
- J L Trejo
- Department of Cell Biology, Complutense University of Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
68
|
Díaz-Regueira S, Anadón R. Calretinin expression in specific neuronal systems in the brain of an advanced teleost, the grey mullet (Chelon labrosus). J Comp Neurol 2000; 426:81-105. [PMID: 10980485 DOI: 10.1002/1096-9861(20001009)426:1<81::aid-cne6>3.0.co;2-e] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of calretinin (CR) in the brain of an "advanced" teleost, the grey mullet, was studied by using immunoblotting and immunocytochemical techniques. In immunoblots of protein extracts of rat and mullet brains, the CR antibody stained a single band of about 29 kDa. CR immunoreactivity was observed in specific neuronal populations of all brain regions. The primary olfactory system, the optic nerve fibers, and some sensory fibers of other cranial nerves exhibited strong CR immunoreactivity. In the forebrain, the CR-immunoreactive (CR-ir) populations were scarce in the telencephalon and hypophysiotrofic hypothalamus, but numerous in many specialized nuclei of the diencephalon (preglomerulosus complex, nucleus glomerulosus, anterior glomerular nucleus, nucleus diffusus) and pretectum (parvocellular and magnocellular superficial pretectal nuclei, central pretectal nucleus), which are related to sensory systems. The two main forebrain bundles, medial and lateral, contained numerous CR-ir fibers. The midbrain sensory centers (optic tectum and torus semicircularis) exhibited numerous CR-ir cells and fibers. Likewise, the secondary gustatory nucleus of the isthmus is one of the nuclei exhibiting more intense CR immunoreactivity. Characteristically, the efferent cerebellar system (eurydendroid cells and brachium conjunctivum) and some afferent cerebellar fibers were CR-ir. In the medulla oblongata, a number of reticular cells, the inferior olive, and the magnocellular octaval nucleus exhibited CR immunoreactivity. CR-ir motoneurons were also observed in the spinal cord and in the oculomotor nucleus. Together with results obtained in other vertebrates, present results suggest that neural systems using calretinin to maintain intracellular calcium concentration have been rather well conserved during vertebrate evolution.
Collapse
Affiliation(s)
- S Díaz-Regueira
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | |
Collapse
|
69
|
Mil�n FJ, Puelles L. Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000327)419:1<96::aid-cne6>3.0.co;2-v] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Abstract
Calbindin (CALB), a calcium-binding protein, is known to be expressed in the embryonic nervous system. In this study, we have examined its distribution in the cerebellum of human fetuses (11-25 weeks of gestation) and adult by immunohistochemistry. At the gestational age of 11-12 weeks. CALB immunoreactivity was present in granule and Purkinje cells throughout the cerebellum. By 16-21 weeks of gestation, immunoreactive Purkinje cells were well-differentiated in the vermis and flocculus, and their axons ran towards the deep cerebellar nuclei area, while the axon collaterals were seen to be distributed into adjacent folia. At the gestational period of 24-25 weeks, most Purkinje cells of the flocculus and vermis were arranged in one to two rows, while those of the hemispheres were still undifferentiated. A few Golgi cells of the vermis showed immunoreactivity. The neurons of the deep nuclei were immunonegative right from the gestational age of 11 weeks although a fine stippled staining of fibers was present throughout the body of all nuclei. The fibers lying close to the hilum of the dentate nucleus were strongly CALB-positive. The vestibulocerebellar fibers, being traced at the level of lower pons and upper medulla oblongata were stained as early as 11 weeks of gestation, whereas the olivocerebellar fibers were stained from 16 weeks onward. In the adult cerebellum, Purkinje cells were moderately immunopositive while granule cells were faintly stained; no other cells, including those of the deep nuclei were stained. In the medulla oblongata, the inferior olivary nucleus and olivocerebellar fibers were strongly CALB-positive. Our results indicate that CALB is expressed in early migratory Purkinje cells, and their maturation occurs in a vermal-to-hemisphere gradient. It is likely that CALB plays a significant role in the regulation of Ca2+-dependent activities in the developing cerebellum.
Collapse
Affiliation(s)
- T C Nag
- Department Anatomy, All India Institute of Medical Sciences, New Delhi
| | | |
Collapse
|
71
|
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Germany.
| | | |
Collapse
|
72
|
Necchi D, Soldani C, Pisu MB, Bernocchi G, Scherini E. Distribution of calretinin-like immunoreactivity in the brain of Rana esculenta. J Chem Neuroanat 1999; 16:233-43. [PMID: 10450872 DOI: 10.1016/s0891-0618(99)00004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of calretinin-like immunoreactivity has been analyzed in the brain of Rana esculenta. Several neurons of nuclei belonging to sensory pathways, subhabenular area and left habenula were immunopositive. Immunoreactivity was present in fibers of motor and sensory pathways, thalamus, tegmentum and isthmus. The immunolabeling pattern partially overlapped that previously described in the rat. However, in comparison with the rat, fewer cells and fibers were immunoreactive and there were less positive brain nuclei. especially in the pallium, septum and striatum, that were totally negative. Taking into consideration that these regions are rather simple in the frog, the presence of calretinin seems to be consistent with the degree of complexity of brain areas and segregation of different nuclei.
Collapse
Affiliation(s)
- D Necchi
- Dipartimento di Biologia Animale, Università di Pavia and Centro di Studio per l'Istochimica, C.N.R., Italy.
| | | | | | | | | |
Collapse
|
73
|
Briñón JG, Martínez-Guijarro FJ, Bravo IG, Arévalo R, Crespo C, Okazaki K, Hidaka H, Aijón J, Alonso JR. Coexpression of neurocalcin with other calcium-binding proteins in the rat main olfactory bulb. J Comp Neurol 1999; 407:404-14. [PMID: 10320220 DOI: 10.1002/(sici)1096-9861(19990510)407:3<404::aid-cne8>3.0.co;2-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The distribution patterns of four calcium-binding proteins (CaBPs)-calbindin D-28k (CB), calretinin (CR), neurocalcin (NC), and parvalbumin (PV)-in the rat main olfactory bulb were compared, and the degrees ofcolocalization of NC with the other CaBPs were determined by using double immunocytochemical techniques. All investigated CaBPs were detected in groups of periglomerular cells and Van Gehuchten cells, whereas other cell types expressed some of the investigated proteins but not all four. Double-labeling techniques demonstrated the colocalization of NC with CB, CR, or PV in periglomerular cells, whereas each neurochemical group constituted entirely segregated populations in the remaining neuronal types. This is evident in granule cells that demonstrated large but segregated populations immunoreactive to either NC or CR. This study provides a further biochemical characterization of interneuronal types in the rat main olfactory bulb. On the basis of the distinct calcium-binding affinities, each neurochemically defined population may have different responses to calcium influx that would result in the existence of distinct functional subgroups within morphologically defined neuronal types. The expression of the investigated CaBPs in periglomerular cells with both single and colocalized patterns suggests that the local circuits in the glomerular layer are constituted by a complex network of elements with particular calcium requirements.
Collapse
Affiliation(s)
- J G Briñón
- Departamento de Biología Celular y Patología, Universidad de Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Youn SH, Maeda T, Kurisu K, Wakisaka S. Alteration in the expression level of calbindin D28k in the periodontal ligament of the rat molar during experimental tooth movement. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:139-47. [PMID: 10399538 DOI: 10.1679/aohc.62.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present immunohistochemical study was designed to investigate changes in the distribution and expression level of calbindin D28k in the periodontal ligament during experimental tooth movement in the rat molar to clarify the physiological role of this protein in the ligament. In normal animals, calbindin D28k-like immunoreactivity appeared sparsely in spindle-shaped cells in the alveolar half of the periodontal ligament. Electron microscopic observations showed that these immunoreactive cells were characterized by well-developed rough-surfaced endoplasmic reticulum and phagosomes--which often contained collagen fibers--suggesting that these cells could be categorized as periodontal fibroblasts. Twelve hours following the onset of the experimental tooth movement, cells positive for calbindin D28k increased in number in the periodontal ligament, especially in the alveolar half of the pressured side. Immunoelectron microscopy showed that the calbindin D28k-immunopositive cells had morphological features similar to those of fibroblasts in the normal ligament, and that these cells occasionally made contact with immunonegative macrophage-like cells. Immunopositive cells gradually decreased in number, and the distribution of the cells and intensity of the immunoreactivity returned to normal levels by 14 days following the induction of the experimental tooth movement. The present results suggest that calbindin D28k plays an important role in the homeostasis and cyto-protection of fibroblasts in the periodontal ligament at the initial phase of experimental tooth movement.
Collapse
Affiliation(s)
- S H Youn
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Japan
| | | | | | | |
Collapse
|
75
|
Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol 1998; 154:336-52. [PMID: 9878172 DOI: 10.1006/exnr.1998.6960] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic cerebellar, neocortical, and striatal tissues derived from NSE-LacZ transgenic mice were transplanted into the right cerebellar hemisphere of 8- to 10-day-old Lurcher or wild-type mice. Host mice survived for 30-90 days and the transplanted tissue was examined by light microscopy using Nissl staining, X-gal histochemistry, and immunohistochemistry for calcium binding protein and glutamic acid decarboxylase. Transplantation of cerebellar tissue, but not neocortical or striatal progenitors, resulted in robust infiltration of the lurcher mutant host cerebellar cortex by transgenic Purkinje neurons. Deep to the infiltrated molecular layer, the host granular layer was thicker and denser than the mutant granular layer, but transgenic cells did not contribute to the spared granular layer. The host inferior olivary complex consistently exhibited a noticeable bilateral asymmetry in Nissl-stained sections. A quantitative analysis of the olivary complex was performed in 10 90-day-old host mice. The results indicate that the left inferior olivary complex of 90-day-old host mice contained more neurons than the right inferior olive of the host mice and contained more neurons than was observed in 90-day-old Lurcher control mice. Analysis by olivary subdivision indicates that increased neuron numbers were present in all subdivisions of the host left inferior olive. These studies confirm the specific attractive effect of the mutant cerebellar cortex on transplanted Purkinje neuron progenitors and indicate that neural transplants may survive the neurodegenerative period to interact with developing host neural systems. The unilateral rescue of Lurcher inferior olivary neurons in cerebellar transplant hosts indicates that transplanted neurons may interact with diseased host neural circuits to reduce transneuronal degeneration in the course of a neurodegenerative disease.
Collapse
Affiliation(s)
- J A Heckroth
- Department of Anatomy and Neurobiology, St. Louis University Medical School, 1402 South Grand Boulevard, St. Louis, Missouri, 63104-1028, USA
| | | | | |
Collapse
|
76
|
Lazarov N, Dandov A, Stoyanova I, Chouchkov C. Calcium-binding proteins in the mesencephalic trigeminal nucleus of the cat. Arch Physiol Biochem 1998; 106:370-7. [PMID: 10896453 DOI: 10.1076/apab.106.5.370.4366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- N Lazarov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Thracian University, Stara Zagora, Bulgaria.
| | | | | | | |
Collapse
|
77
|
Hontanilla B, Parent A, de las Heras S, Giménez-Amaya JM. Distribution of calbindin D-28k and parvalbumin neurons and fibers in the rat basal ganglia. Brain Res Bull 1998; 47:107-16. [PMID: 9820727 DOI: 10.1016/s0361-9230(98)00035-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This review deals with the distribution of immunoreactivity for calbindin D-28k (CB) and parvalbumin (PV) in the different nuclei of the rodent basal ganglia analyzed with the data available after the use of single and double antigen procedures applied to single sections. These findings reveal that CB and PV are distributed according to a highly heterogeneous pattern in the caudate putamen complex (CPu), globus pallidus (GP), entopeduncular nucleus (EP), subthalamic nucleus (STh) and substantia nigra (SN) of the rat. In each basal ganglia structure, the two calcium-binding proteins label different neuronal subsets. Therefore, the use of CB and PV immunohistochemistry may be considered as an excellent tool to define distinct chemoarchitectonic and functional domains within the complex organization of the basal ganglia. Double immunohistochemical methods are also useful to illustrate the relationships between the different chemical subdivisions of the CPu, GP, EP, STh and SN and the chemically characterized connections with each other and with other forebrain and brainstem structures. However, specific rules should be followed when combining single and double immunostaining procedures, and the results of such studies must be evaluated with caution. When they are used properly, these methods can reveal hitherto unknown principles of organization of the basal ganglia and thus shed new light on the anatomical and functional organization of this set of subcortical structures involved in the control of motor behavior.
Collapse
Affiliation(s)
- B Hontanilla
- Departamento de Cirugía Plástica y Reparadora, Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
78
|
Morrison BM, Janssen WG, Gordon JW, Morrison JH. Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980615)395:4<523::aid-cne8>3.0.co;2-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
79
|
Nakagawa S, Watanabe M, Isobe T, Kondo H, Inoue Y. Cytological compartmentalization in the staggerer cerebellum, as revealed by calbindin immunohistochemistry for Purkinje cells. J Comp Neurol 1998; 395:112-20. [PMID: 9590549 DOI: 10.1002/(sici)1096-9861(19980525)395:1<112::aid-cne8>3.0.co;2-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The staggerer mouse carries a deletion in a gene encoding the nuclear hormone receptor RORalpha, which leads to severe impairments in phenotypic differentiation of cerebellar Purkinje cells. We previously found parasagittal compartments in the mature staggerer cerebellum, as defined by different transcription levels of Purkinje cell-specific molecules including calbindin. In the present study, we developed a hightiter anti-calbindin antibody to examine morphological features of the staggerer Purkinje cells. Immunohistochemistry for calbindin revealed compartmentalized Purkinje cell populations with different cell sizes, alignments, cell densities, and dendritic arborization, as well as different immunoreactivities, corresponding to the "transcriptional" compartments. Based on these immunohistochemical and cytological characteristics, the rostral cerebellum was clearly subdivided into three to seven parasagittal zones (Zones I-VII). Purkinje cells in Zones I and III were associated with the strongest calbindin immunoreactivities and exhibited morphological features reminiscent of the wild-type cells, i.e., large flask-shaped cell bodies, monolayer alignment, and arborized dendrites. Purkinje cells in Zone V were also labeled strongly, but they were small in cell size, ectopic and possessed long unbranched dendrites. On the other hand, Purkinje cells in Zones II, IV, and VI were very low in calbindin immunoreactivity and marked by small cell size, ectopia, poorly-developed dendrites and low cell density. Considering that this unique cytological compartmentalization emerges as the result of RORalpha gene mutation, it is suggested that normal cytodifferentiation of Purkinje cells is governed by both RORalpha-dependent and -independent mechanisms, and further that the latter mechanism might exert unevenly along the mediolateral cerebellar axis.
Collapse
Affiliation(s)
- S Nakagawa
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
80
|
Shetty AK, Turner DA. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980504)394:2<252::aid-cne9>3.0.co;2-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
81
|
Abstract
We have studied [Ca2+]i signals elicited by extracellular ATP in cultured cells from postnatal day 7-8 rat cerebellum using single-cell fluorescence microscopy and fura-2. Putative Purkinje cells selected under phase contrast by size and characteristic cytoplasm appearance were uniquely identified by selective labeling with anti-calbindin antibodies. Extracellularly applied ATP (50 microM) evoked fast [Ca2+]i rises revealed by a rapid and transient increase in fura-2 F340/F380 ratio in all Purkinje cells tested, whereas granule cells failed to show a response to ATP. The mean [Ca2+]i increase was approximately 400 nM, comparable to that obtained after glutamate stimulation. The response to ATP was completely abolished by removal of extracellular Ca2+ with EGTA. Conversely, an increased extracellular Mn2+ entry pathway was activated by ATP stimulation. These results indicate that the effect of ATP is mediated by an ionotropic P2X receptor. The action of ATP was mimicked by the analog 2-methylthio-adenosine 5'-triphosphate with similar efficacy but almost half its potency (EC50, 10.6 +/- 0.7 vs 21.7 +/- 1.9 microM). Other purinergic compounds tested, such as adenosine(5')-tetraphospho-(5')adenosine, adenosine(5')pentaphospho-(5')adenosine, adenosine 5'-(alpha, beta-methylene) triphosphate, UTP, and adenosine, were completely inactive in eliciting [Ca2+]i responses. The purinoceptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2', 4'disulphonic acid effectively blocked the responses elicited by ATP. Our results demonstrate for the first time the presence of functional ionotropic P2X purinoceptors in the cerebellar Purkinje cells and indicate that their pharmacology is similar to receptors formed by P2X2 subunit oligomers.
Collapse
|
82
|
Abstract
We applied antiserum to PEP-19, a presumptive calcium-binding polypeptide, to the auditory brainstem of cats to determine whether this antiserum would selectively reveal cochlear nucleus neurons and their projections. We report that the entire populations of ventral cochlear nucleus bushy and multipolar cells, but not octopus cells, express this peptide in their somata and dendrites. Presumed axons of spherical bushy cells located dorsally and thicker globular bushy cell fibers located ventrally in the trapezoid body are immunostained, as are thin fibers presumed to represent the axons of multipolar cells. Large calyceal endings in the medial nucleus of the trapezoid body are densely immunoreactive as are smaller punctate profiles that outline immunonegative neuronal profiles in the medial and lateral superior olives. These features of immunolabeling indicate that PEP-19 is expressed in all neuronal compartments. Within the entire superior olivary complex, relatively few neurons are immunolabeled, and the vast majority of these are found in the periolivary nuclei. There are many more immunostained neurons in lateral than in medial periolivary cell groups, but their combined numbers are dwarfed by the numbers of immunolabeled cells in the ventral cochlear nucleus. The borders of the principal nuclei and some of the periolivary cell groups are well defined by the distribution of PEP-19-immunoreactive fibers and puncta. Since ventral cochlear nucleus bushy cells comprise the predominant input to principal nuclei of the superior olive, and the entire bushy cell population is immunolabeled by PEP-19 antiserum, the numbers and distribution of their inputs can be quantified. In this study we report that immunoreactive puncta apposed to the cell bodies and proximal dendrites of neurons in the medial superior olive occur at a density of 20/100 microns2. Moreover, we demonstrate by pre-embedding immunoelectron microscopy that the PEP-19-immunoreactive punctate profiles observed in the medial superior olive by light microscopy represent presynaptic terminal boutons that contain round synaptic vesicles and form asymmetric synaptic junctions, features traditionally associated with excitatory synapses. Thus, this antiserum represents a useful tool for investigating the distribution of ventral cochlear nucleus fibers and synaptic terminals within their target nuclei in the superior olive.
Collapse
Affiliation(s)
- A S Berrebi
- Department of Otolaryngology-HNS, West Virginia University School of Medicine, Morgantown 26506, USA
| | | |
Collapse
|
83
|
Miyata S, Khan AM, Hatton GI. Colocalization of calretinin and calbindin-D28k with oxytocin and vasopressin in rat supraoptic nucleus neurons: a quantitative study. Brain Res 1998; 785:178-82. [PMID: 9526078 DOI: 10.1016/s0006-8993(97)01375-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent electrophysiological experiments, in which purified calbindin-D28k (calbindin) and calretinin antibodies were diffused into these neurons, showed that Ca2+-dependent membrane potentials and firing patterns were profoundly and predictably affected by Ca2+-binding proteins (CaBPs). The present study used quantitative analyses of a dual-labeling immunofluorescence method to investigate the colocalization of the CaBPs, calbindin and calretinin in oxytocin (OT)- and (VP)-containing neurons of the supraoptic nucleus. Analyses of tissue immunostained with two different dilutions of each CaBP antibody used, revealed that 84% and 72% of the OT neurons were positive for calbindin immunoreactivity (-ir) at the higher and lower antibody concentrations, respectively. 52% and 50% of OT neurons were positive for calretinin-ir; thus, many OT neurons express both calbindin and calretinin. In contrast, only 25% and 18% of VP neurons showed calbindin-ir, and they were virtually devoid of calretinin-ir. These results provide evidence that CaBP expression in OT neurons is both greater and more diverse than in VP neurons, and are consistent with the hypothesis that Ca2+ buffering capacity contributes to the control of intrinsic firing patterns.
Collapse
Affiliation(s)
- S Miyata
- Department of Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
84
|
Abstract
Single and double antigen localization procedures were used to study the distribution of the calcium-binding proteins calretinin, calbindin and parvalbumin in the cerebellum of the squirrel monkey (Saimiri sciureus). The immunostaining experiments have revealed that each of the three calcium-binding proteins occurred, either alone or in various combinations, in many neuronal types of the monkey cerebellum, including the Purkinje cells. Immunoreactivity for calbindin was detected in virtually all Purkinje cells, whereas immunoreactivity for calretinin and parvalbumin was encountered only in some subpopulations of Purkinje cells. In the vermal region, parvalbumin immunostaining appeared in the form of typical weak and strong alternating parasagittal bands. Calretinin immunoreactivity was found in virtually all neurons and fiber systems related to the granular layer, including the monodendritic cells, the granule cells and their parallel fibers, the Golgi and Lugaro cells and the mossy fibers. The Golgi cells also displayed calbindin and parvalbumin immunoreactivity. Parvalbumin was found to labeled both the climbing and mossy fibers, as well as the basket and stellate cells lying in the molecular layer. These results reveal that virtually all the different neuronal types in the primate cerebellum contain at least one of three calcium-binding proteins investigated in the present study. Furthermore, calretinin appears to be a particularly reliable molecular maker for all the neuronal elements associated with the granular layer in the primate cerebellum.
Collapse
Affiliation(s)
- M Fortin
- Laboratoire de neurobiologie, Centre de recherche Université Laval Robert-Giffard, Beauport, Québec, Canada
| | | | | |
Collapse
|
85
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3%3c377::aid-cne6%3e3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
86
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998; 390:377-91. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3<377::aid-cne6>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
87
|
Abstract
Androgens can rescue axotomized motor neurons from cell death. Here we examine a possible mechanism for this trophic action in juvenile Xenopus laevis: regulation of a calcium-binding protein, calbindin, after axotomy. Western analysis revealed that a monoclonal antibody to calbindin D specifically recognizes a single approximately 28 kDa band in X. laevis CNS and rat cerebellum. Retrograde transport of peroxidase combined with immunohistochemistry demonstrated that somata, axons, and synaptic terminals of laryngeal motor neurons in nucleus (N.) IX-X of X. laevis are calbindin-positive. The number of calbindin-positive cells was compared in the intact and axotomized sides of N.IX-X of gonadectomized males that were either hormonally untreated or DHT-treated for 1 month. Although axotomy decreased the number of calbindin-positive cells by 86% in hormonally untreated males, the decrease was only 56% in DHT-treated animals. Compared with hormonally untreated animals, the number of calbindin-labeled cells in N.IX-X of DHT-treated males was increased in both the intact (14%) and axotomized sides (75%). We conclude that axotomy decreases and that DHT enhances calbindin immunoreactivity in N.IX-X. Axotomy-induced decrease in calbindin immunoreactivity precedes cell loss in N.IX-X and may impair the capacity of motor neurons to regulate cytoplasmic calcium. Androgen-mediated maintenance of calbindin expression is thus a candidate cellular mechanism for trophic maintenance of hormone target neurons.
Collapse
|
88
|
Briñón JG, Alonso JR, García-Ojeda E, Crespo C, Arévalo R, Aijón J. Calretinin- and parvalbumin-immunoreactive neurons in the rat main olfactory bulb do not express NADPH-diaphorase activity. J Chem Neuroanat 1997; 13:253-64. [PMID: 9412907 DOI: 10.1016/s0891-0618(97)10003-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of nitric oxide synthase (NOS) in neuronal elements expressing the calcium-binding proteins calretinin (CR) and parvalbumin (PV) was studied in the rat main olfactory bulb. CR and PV were detected by using immunocytochemistry and the nitric oxide (NO) -synthesizing cells were identified by means of the reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) direct histochemical method. The possible coexistence of NADPH-diaphorase and each calcium-binding protein marker was determined by sequential histochemical-immunohistochemical double-labeling of the same sections. Specific neuronal populations were positive for these three markers. A subpopulation of olfactory fibers and olfactory glomeruli were positive for either NADPH-diaphorase or CR. In the most superficial layers, groups of juxtaglomerular cells, superficial short-axon cells and Van Gehuchten cells demonstrated staining for all three markers. In the deep regions, abundant granule cells were NADPH-diaphorase- and CR-positive and a few were PV-immunoreactive. Scarce deep short-axon cells demonstrated either CR-, PV-, or NADPH-diaphorase staining. Among all these labeled elements, no neuron expressing CR or PV colocalized NADPH-diaphorase staining. The present data contribute to a more detailed classification of the chemically- and morphologically-defined neuronal types in the rodent olfactory bulb. The neurochemical differences support the existence of physiologically distinct groups within morphologically homogeneous populations. Each of these groups would be involved in different modulatory mechanisms of the olfactory information. In addition, the absence of CR and PV in neuronal groups displaying NADPH-diaphorase, which moreover are calmodulin-negative, indicate that the regulation of NOS activity in calmodulin-negative neurons of the rat olfactory bulb is not mediated by CR or PV.
Collapse
Affiliation(s)
- J G Briñón
- Departamento de Biología Celular y Patología, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
89
|
Risold PY, Swanson LW. Chemoarchitecture of the rat lateral septal nucleus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:91-113. [PMID: 9385453 DOI: 10.1016/s0165-0173(97)00008-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of neurons and terminal fields that contain a variety of neurotransmitters and steroid hormone receptors has been examined with in situ hybridization and immunohistochemistry in closely spaced series of sections throughout the rostrocaudal extent of the rat lateral septal nucleus, as well as the adjacent septohippocampal and septofimbrial nuclei. The results indicate that the lateral septal nucleus is divided into major rostral, caudal, and ventral parts that differ from the widely used cytoarchitectonic parcellation into dorsal, intermediate, and ventral parts. Furthermore, the rostral, caudal, and ventral parts are turn divided into about 20 zones, regions, and domains on the basis of differential terminal fields and neurons that express particular neuropeptides and steroid hormone receptors. In general, the small zones and regions form dorsoventrally oriented sheets or bands that are arranged in a complex way. Differential connections of these lateral septal components are analyzed in the accompanying paper (Risold, P. Y. and Swanson, L. W., Connections of the rat lateral septal complex, Brain Res. Rev., 24 (1997) 115-195).
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
90
|
Arnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A 1997; 94:8842-7. [PMID: 9238065 PMCID: PMC23159 DOI: 10.1073/pnas.94.16.8842] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calbindin D28 encodes a calcium binding protein that is expressed in the cerebellum exclusively in Purkinje cells. We have used biolistic transfection of organotypic slices of P12 cerebellum to identify a 40-bp element from the calbindin promoter that is necessary and sufficient for Purkinje cell specific expression in this transient in situ assay. This element (PCE1) is also present in the calmodulin II promoter, which regulates expression of a second Purkinje cell Ca2+ binding protein. Expression of high levels of exogenous calbindin or calretinin decreased transcription mediated by PCE1 in Purkinje cells 2.5- to 3-fold, whereas the presence of 1 microM ionomycin in the extracellular medium increased expression. These results demonstrate that PCE1 is a component of a cell-specific and Ca2+-sensitive transcriptional regulatory mechanism that may play a key role in setting the Ca2+ buffering capacity of Purkinje cells.
Collapse
Affiliation(s)
- D B Arnold
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
91
|
Spatz WB. Differences between guinea pig and rat in the dorsal cochlear nucleus: expression of calcium-binding proteins by cartwheel and Purkinje-like cells. Hear Res 1997; 107:136-46. [PMID: 9165354 DOI: 10.1016/s0378-5955(97)00029-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study describes differences between guinea pig and rat in the immunoreactivities for calbindin (CB-IR) and parvalbumin (PV-IR) in cartwheel (CWC) and Purkinje-like (PLC) cells of the dorsal cochlear nucleus (DCN). CWCs are the most important inhibitory interneurons of the DCN. Their soma and dendrites stain intensely for CB-IR in guinea pigs but only weakly and incompletely in rats. In both species, the CWCs do not show PV-IR. PLCs, a rare type of DCN cells often interpreted as displaced cerebellar Purkinje cells misrouted during migration, are known from rat and mouse and are here described for guinea pig DCN. PLCs are intensely and completely stained for CB-IR and PV-IR in guinea pigs. In rats, they stain with similar completeness only for CB-IR, PV-IR being weak and restricted to the cell's soma. Similar staining differences between the two species are seen with the cerebellar Purkinje cells, i.e., PLCs resemble the cerebellar Purkinje cells more than do the CWCs. Based on the present material (and preliminary findings in a primate (marmoset), we speculate that the PLCs have their place in the circuitry of the DCN receiving input via parallel fibers, like the CWCs, and possibly projecting their axon onto the cerebellum.
Collapse
Affiliation(s)
- W B Spatz
- Department of Oto-Rhino-Laryngology, University of Freiburg, Germany
| |
Collapse
|
92
|
Crespo C, Alonso JR, Briñón JG, Weruaga E, Porteros A, Arévalo R, Aijón J. Calcium-binding proteins in the periglomerular region of typical and typical olfactory glomeruli. Brain Res 1997; 745:293-302. [PMID: 9037421 DOI: 10.1016/s0006-8993(96)01185-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of chemically identified neuronal populations was studied in the glomerular layer of the rat olfactory bulb using calcium-binding protein immunocytochemistry combined with acetylcholinesterase histochemistry. Four calcium-binding proteins (calbindin D-28k, parvalbumin, calretinin, and neurocalcin) were analyzed in the periglomerular region of two different glomerular subsets; typical and atypical glomeruli. Atypical glomeruli were clearly distinguishable from typical ones by their dense network of acetylcholinesterase-positive centrifugal fibers. Each calcium-binding protein studied showed a specific distribution pattern in the rat olfactory bulb. Calbindin D-28k-, calretinin-, and neurocalcin-immunoreactive neurons were specially abundant in the glomerular layer. These three calcium-binding proteins had their main expressions in neuronal subpopulations directly involved in the glomerular circuitries of the rat olfactory bulb. Specific populations of periglomerular cells were stained for calbindin D-28k, parvalbumin, calretinin, or neurocalcin, whereas external tufted cells were only immunoreactive to neurocalcin. Both neuronal types, periglomerular cells and external tufted cells, were found in the periglomerular region of both glomerular subsets. Nevertheless, a homogeneous distribution of calbindin D-28k- or calretinin-immunopositive periglomerular cells were found between typical and atypical glomeruli, whereas the neurocalcin-immunostained external tufted cells were statistically more abundant in typical glomeruli than atypical ones (P < 0.001). These data suggest that some neuronal subpopulations are related with general properties of the glomerular physiology, and they have a homogeneous distribution in different subsets of glomeruli, whereas other chemically identified populations are related with a finer tuning of the olfactory processing, and they are segregately distributed in relation to particular glomerular subsets. In addition, this work adds new differences in the cellular composition of typical and atypical glomeruli.
Collapse
Affiliation(s)
- C Crespo
- Dpto. Biología Celular y Patología, Universidad de Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
93
|
Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 1997; 18:71-9. [PMID: 9010206 DOI: 10.1016/s0896-6273(01)80047-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most of the cerebellar Purkinje cells (PCs) of an adult animal are innervated individually by a single climbing fiber (CF) that forms strong excitatory synapses with the PCs. This one-to-one relationship between a PC and a CF is a consequence of a developmentally regulated regression of the innervation of PCs by CFs. We found that, in mice deficient in the type 1 metabotropic glutamate receptor (mGluR1), the regression of supernumerary CFs ceases by the end of the second postnatal week, which is about one week earlier than in normal mice. Consequently, about one third of PCs in the mGluR1 mutant mice are innervated by multiple CFs in adulthood. We conclude that the regression of CFs normally occurs in two developmental phases and that mGluR1 plays a crucial role in the second phase.
Collapse
Affiliation(s)
- M Kano
- Department of Physiology, Jichi Medical School, Minamikawachi-machi, Japan
| | | | | | | | | | | | | |
Collapse
|
94
|
Johnson EW, Eller PM, Jafek BW. Protein gene product 9.5-like and calbindin-like immunoreactivity in the nasal respiratory mucosa of perinatal humans. Anat Rec (Hoboken) 1997; 247:38-45. [PMID: 8986301 DOI: 10.1002/(sici)1097-0185(199701)247:1<38::aid-ar6>3.0.co;2-b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Protein gene product 9.5 (PGP) and calbindin-D28k (calbindin) are neuroendocrine markers that have been localized to neuroendocrine cells in the developing tracheobronchial epithelium. Neuroendocrine cells may play some role in the development of the tracheobronchial epithelium. Little is known about the development of the nasal respiratory epithelium (RE). METHODS Nasal respiratory mucosa from fetal and newborn humans was examined to determine immunoreactivity for PGP and calbindin. RESULTS At all stages studied, cells of different morphologies displayed PGP-like immunoreactivity (-LI) and calbindin-LI. Columnar immunoreactive cells for both markers predominated, but labeled cells of different shapes were also observed. Most labeled columnar cells were in the RE at its border with olfactory epithelium (OE); a few similarly labeled columnar cells also appeared in this OE. In the lamina propria, PGP-LI was also seen in numerous thin branching fibers. Some of these branches penetrated into the epithelium, where fiber varicosities appeared to contact cells, some of which also exhibited PGP-LI. CONCLUSION This study demonstrates that during development the human nasal RE contains different cell types, as illustrated by the assortment of epithelial cells displaying PGP-LI and calbindin-LI among unlabeled cells. Because PGP and calbindin immunoreactivities were found within neuroendocrine cells in previous studies, the present results indicate that the developing human nasal RE also may support a number of neuroendocrine cells. Furthermore, at least some of these cells may form synaptic contacts with nerve fibers from outside the epithelium.
Collapse
Affiliation(s)
- E W Johnson
- Department of Biological Sciences, Idaho State University, Pocatello 83209-8007, USA
| | | | | |
Collapse
|
95
|
Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience 1996; 75:523-33. [PMID: 8931015 DOI: 10.1016/0306-4522(96)00228-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The calcium-binding proteins Calbindin-D28k and calretinin are co-localized with dopamine in some of the midbrain dopaminergic neurons in the rat and monkey; the present study sought to examine the pattern of co-localization in the mouse. Double immunofluorescence staining procedures were used for tyrosine hydroxylase (a dopaminergic cell marker) and Calbindin-D28k or calretinin. Midbrain dopaminergic neurons were examined at four rostrocaudal levels, and the percentage of cells that contained both tyrosine hydroxylase and either of the two calcium-binding proteins was determined in nucleus A8 (retrorubral field), nucleus A9 (substantia nigra pars compacta, pars reticulata and pars lateralis) and nucleus A10 (nucleus paranigralis, ventral tegmental area, interfascicular nucleus, central linear nucleus). The two calcium-binding proteins were distributed similarly in midbrain dopaminergic neurons in the several nuclear groups that comprise nuclei A8, A9 and A10. The calcium-binding proteins were found in the majority (50-100%) of nucleus A10 neurons, whereas in nuclei A8 and A9 (except for the substantia nigra pars lateralis) less than 40% of the cells contained either calcium-binding protein. The pattern of co-localization in the mouse is similar to that reported for the rat and monkey. The calcium-binding proteins mark the population of midbrain dopaminergic neurons that are less vulnerable to degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- C L Liang
- Department of Psychiatry, University of Texas, Dallas 75235-9070, USA
| | | | | |
Collapse
|
96
|
Wakisaka S, Youn SH, Miyawaki Y, Kurisu K. The effects of peripheral nerve injury of the masseteric nerve on the levels of calcium binding proteins and neuropeptide Y, and their correlation in the mesencephalic trigeminal nucleus of the rat. Brain Res 1996; 735:249-56. [PMID: 8911663 DOI: 10.1016/0006-8993(96)00585-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Combined retrograde neuronal tracing with FluoroGold (FG) and a double immunofluorescence method was performed to examine the effects of peripheral nerve injury of the masseteric nerve (MassN) on the levels of two calcium binding proteins (CaBPs), parvalbumin (PV) and calbindin D28k (CB), and neuropeptide Y (NPY) in the mesencephalic trigeminal nucleus (MesV) in the rat. In the normal MesV, many medium- to large-sized unipolar PV-like immunoreactive (-IR) cells were detected through the entire rostrocaudal extent, but CB-IR cells were rarely observed. No NPY-IR cells were observed in the normal MesV. The distributions of these three neurochemical markers in the MesV contralateral to the transection of Mass were almost identical to those observed in the normal MesV. Four days following transection and application of FG to the MassN, approximately 52% (572/1104) and 38% (414/1104) of FG-labeled cells (FG cells) in the MesV displayed PV-like immunoreactivity (-LI) and NPY-LI, respectively; Approximately 24% (265/1104) of FG cells showed both PV-LI and NPY-LI. Approximately 47% (265/572) of FG cells with PV-LI showed NPY-LI or 64% (265/414) of FG cells with NPY-LI displayed PV-LI. Fourteen days following transection and application of FG, the percentage of FG cells with PV-LI significantly decreased to 36% (365/1024) compared to that observed 4 days post-injury; approximately 44% (448/1024) of FG cells displayed NPY-LI; approximately 38% (141/365) of FG cells with PV-LI showed NPY-LI and approximately 31% (141/448) of FG cells with NPY-LI displayed PV-LI. In contrast, FG cells showing CB-LI were very rare on 4 days (1%; 15/1182) or 14 days (1%; 16/1085) following MassN transection. The present results indicate that the levels of PV in the MesV decreased 14 days following the MassN injury compared to those observed 4 days post-injury and rapid induction of NPY in the injured MesV neurons, and that the correlation between CaBP and NPY in the MesV following the MassN transection is different from that observed in the trigeminal ganglion, which is equivalent to the MesV, following peripheral nerve injury of the inferior alveolar nerve.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Development Biology, Osaka University Faculty of Dentistry, Japan
| | | | | | | |
Collapse
|
97
|
Miyawaki Y, Morisaki I, Tabata MJ, Kurisu K, Wakisaka S. Calbindin D28k-like immunoreactivity in the gustatory epithelium in the rat. Neurosci Lett 1996; 214:29-32. [PMID: 8873124 DOI: 10.1016/0304-3940(96)12871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distribution of calbindin D28k (CB)-like immunoreactivity (-LI) in the gustatory epithelium was examined in the adult rat. In the circumvallate and foliate papillae, CB-like immunoreactive (-IR) nerve fibers were observed in the subgemmal region, and some of these penetrated the taste buds. Two or three spindle-shaped gustatory cells displayed CB-LI in each taste bud of these lingual papillae; the immunoreactivity was restricted to the cytoplasm. In the fungiform papilla, CB-IR nerve fibers were detected in the subgemmal region, but no CB-IR cells were observed in the taste buds of the fungiform papillae. In the taste buds of the incisive papillae, many CB-IR intragemmal nerve fibers were observed, but no apparent CB-IR cells were detected. In the soft palate, CB-IR nerve fibers associated with the taste buds were also observed, but no CB-IR cells were detected in the taste buds. The present findings indicate that CB-IR gustatory cells were only localized in the taste buds in the posterior lingual papillae (circumvallate and foliate papillae), but not in the taste buds in other gustatory epithelium.
Collapse
Affiliation(s)
- Y Miyawaki
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Japan
| | | | | | | | | |
Collapse
|
98
|
Abstract
This paper describes the distribution of the calcium-binding proteins calbindin-D28k. Parvalbumin and calretinin in primate basal ganglia. The data derive from immunocytochemical studies undertaken in squirrel monkeys (Saimiri sciureus) and in normal human individuals. In the striatum, calbindin labels medium-sized spiny projection neurons whereas parvalbumin and calretinin mark two separate classes of aspiny interneurons. The striatal matrix compartment is markedly enriched with calbindin while striatal patches (striosomes) display a calretinin-rich neuropil. In the pallidum, virtually all neurons contain parvalbumin but none express calbindin. Calretinin occurs only in a small subpopulation of both large and small pallidal neurons. In the subthalamic nucleus, there exists a multitude of parvalbumun-positive cells and fibers but the number of calretinin and calbindin-positive neuronal elements is small. In the substantia nigra/ventral tegmental area complex, calbindin and calretinin occur principally in dopaminergic neurons of the dorsal tier of the pars compacta and in those of the ventral tegmental area. Parvalbumin is strictly confined to the GABAergic neurons of the pars reticulata and lateralis. Calbindin-rich fibers abound in the pars reticulata and lateralis, while calretinin-positive axons are confined to the pars compacta. These results indicate that calbindin and parvalbumin are distributed according to a strikingly complementary pattern in primate basal ganglia. Calretinin is less ubiquitous but occurs in all basal ganglia components where it labels distinct subsets of neurons. Such highly specific patterns of distribution indicate that calbindin, parvalbumin and calretinin may work in synergy within primate basal ganglia.
Collapse
Affiliation(s)
- A Parent
- Centre de recherche en Neurobiologie, Hôpital de I'Enfant-Jésus, Québec, Canada.
| | | | | | | |
Collapse
|
99
|
Tauer U, Volk B, Heimrich B. Differentiation of Purkinje cells in cerebellar slice cultures: an immunocytochemical and Golgi EM study. Neuropathol Appl Neurobiol 1996; 22:361-9. [PMID: 8875471 DOI: 10.1111/j.1365-2990.1996.tb01115.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the rat central nervous system, the cerebellar cortex has a stereotypical cytoarchitecture and a characteristic connectivity pattern, both mainly formed post-natally. Organotypic cultures of immature cerebellar tissue were used to study the formation of the cerebellar lamination and the differentiation of Purkinje cells in the absence of their extracerebellar afferents. The lamination was retained in the majority of the cerebellar cultures and most Purkinje cells were aligned. Axonal profiles of Purkinje cells, immunolabelled for UCHT1 or anti-calbindin D-28 k, followed pathways similar to those in vivo cerebellum. The dendrites were orientated towards the superficial layer except of those neurons which were ectopically positioned. Unlike in vivo, the dendritic arborization of Golgi-impregnated/gold-toned or immunostained Purkinje cells was reduced and the dendritic spines were often elongated. Somatic spines, a morphological feature of immature Purkinje cells persisted even after 4 weeks in culture. We conclude that the Purkinje cells in organotypic cultures send their axon to the correct target region independent of their local position. In contrast, the dendritic orientation and differentiation is influenced by the cellular environment and by specific synaptic interaction.
Collapse
Affiliation(s)
- U Tauer
- Department of Neuropathology, University of Freiburg, Germany
| | | | | |
Collapse
|
100
|
Nag TC, Wadhwa S. Calbindin and parvalbumin immunoreactivity in the developing and adult human retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 93:23-32. [PMID: 8804689 DOI: 10.1016/0165-3806(96)00011-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the expression and pattern of two calcium-binding proteins (CBPs), calbindin (CALB) and parvalbumin (PV), in the fetal (13-25 weeks of gestation), postnatal (5 months) and adult human retina, as studied by immunohistochemistry. Both CBPs appear prenatally in different neurones as well as in the nerve fibre, inner and outer plexiform layers. The cones do not show immunoreactivity for both CBPs up to 25 weeks, the last fetal stage studied; however, they are immunopositive in the postnatal and adult retina. Of the two CBPs, CALB appears first, followed by PV. The immunoreactivity for both CALB and PV in the fetal retina follows a centroperipheral gradient and vitreal to scleral pattern of retinal differentiation. The CALB immunoreactivity shows a gradual increase in intensity with age. A spurt in intensity of PV immunoreactivity in the 24-25 week fetal retina and increased intensity in the 60 year normal adult retina when compared to the light-deprived retina of a 34-year-old staphyloma patient suggests an activity-dependent functional role for PV.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|