51
|
|
52
|
Abstract
It is proposed that, in addition to genetic factors involved in immune attack on myelin, higher concentrations of nerve growth factor in certain tissues during development determine susceptibility to multiple sclerosis. High early nerve growth factor in some vasculature of spontaneously hypertensive rats increases sympathetic innervation and catecholamine production in these vessels. They become more sensitive than controls to noradrenaline after chemical sympathectomy. Continued exposure to high noradrenaline can result in sympathectomy-like effects, heightening sensitivity to constricting neurotransmitters. Vasoresponses of spontaneously hypertensive rats are impaired with submaximal but not maximal hypoxia. Such a situation in multiple sclerosis patients could result in insufficient blood flow by vasoconstriction until it becomes maximal. Glutamate increase by ischemia and hyperemic release of free radicals could injure neurons, prompting an immune response to myelin proteins in susceptible people. Developmental adaptation to situations requiring lower sympathetic activity might help counteract these effects.
Collapse
|
53
|
Ghelardini C, Galeotti N, Bartolini A, Furukawa S, Nitta A, Manetti D, Gualtieri F. Memory facilitation and stimulation of endogenous nerve growth factor synthesis by the acetylcholine releaser PG-9. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:245-51. [PMID: 9869257 DOI: 10.1254/jjp.78.245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of PG-9 (3alpha-tropyl 2-(p-bromophenyl)propionate), the acetylcholine releaser, on memory processes and nerve growth factor (NGF) synthesis were evaluated. In the mouse passive-avoidance test, PG-9 (10-30 mg/kg, i.p.), administered 20 min before the training session, prevented amnesia induced by both the non selective antimuscarinic drug scopolamine and the M1-selective antagonist S-(-)-ET-126. In the same experimental conditions, PG-9 (5-20 microg per mouse, i.c.v.) was also able to prevent antimuscarine-induced amnesia, demonstrating a central localization of the activity. At the highest effective doses, PG-9 did not produce any collateral symptoms as revealed by the Irwin test, and it did not modify spontaneous motility and inspection activity, as revealed by the hole-board test. PG-9 was also able to increase the amount of NGF secreted in vitro by astrocytes in a dose-dependent manner. The maximal NGF contents obtained by PG-9 were 17.6-fold of the control value. During culture, no morphological changes were found at effective concentrations of PG-9. The current work indicates the ability of PG-9 to induce beneficial effects on cognitive processes and stimulate activity of NGF synthesis in astroglial cells. Therefore, PG-9 could represent a potential useful drug able to improve the function of impaired cognitive processes.
Collapse
Affiliation(s)
- C Ghelardini
- Department of Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
54
|
Gu Z, Yu J, Perez-Polo JR. Long term changes in brain cholinergic markers and nerve growth factor levels after partial immunolesion. Brain Res 1998; 801:190-7. [PMID: 9729378 DOI: 10.1016/s0006-8993(98)00579-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There are deficits in cholinergic basal forebrain neurons (CBFNs) in the aged brain and patients suffering Alzheimer's disease associated with a partial loss of the CBFNs. To mimic this partial loss and assess its long term effects on residual cholinergic activity and resultant target-derived nerve growth factor (NGF) levels, we produced a partial immunolesion to CBFNs with 192 IgG-saporin, an immunotoxin selectively taken up by p75NTR-bearing neurons. We measured two cholinergic markers, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity, and NGF protein levels at 10 days, 1, 6 and 12 months postlesion. There were no significant changes in the cholinergic markers and the NGF protein levels in the sham-treated animal controls during the one year experiment. Ten days after 192 IgG-saporin treatment, ChAT activity decreased to 35-50% of controls in the olfactory bulb, hippocampus, and cortex. There was a minor but significant recovery of ChAT activity one year after the immunolesion in the hippocampus. Changes in AChE activity mirrored the ChAT changes but were less robust. There were transient increases in NGF protein levels in the hippocampus and cortex that returned to basal levels at 6 months and 12 months postlesion, respectively. In summary, partial immunolesions resulted in partial region-specific and time-dependent recoveries of cholinergic activity in the target areas of the basal forebrain after a partial elimination of CBFNs and a return to basal levels of NGF protein consistent with the hypothesis that the remaining CBFNs compensated for losses of ChAT and NGF due to changes in cholinergic innervation of basal forebrain target areas.
Collapse
Affiliation(s)
- Z Gu
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch at Galveston, 301 University Blvd. , Galveston, TX 77555-0652, USA
| | | | | |
Collapse
|
55
|
Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke 1998; 29:1687-96; discussion 1697. [PMID: 9707213 DOI: 10.1161/01.str.29.8.1687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE In vitro studies have shown that nerve growth factor (NGF) is protective to cortical neurons against various insults. However, the role of NGF in relation to its high-affinity trkA receptor in the cortical neurons has not been well discussed. In this experiment, we studied the possible involvement of the NGF/receptor system in the ischemic injury of cortical neurons after focal cerebral ischemia in rats. METHODS Male Wistar rats received right middle cerebral artery occlusion of 90 minutes' duration. The rats were decapitated at different reperfusion time points: hour 4 and days 1, 3, 7, and 14 of recirculation. Brain sections at the level of striatum were immunostained against NGF, trkA, glial fibrillary acidic protein (GFAP), and stress protein HSP70. Double immunostaining against NGF and GFAP was also performed. Optical density of NGF immunoreactivity in the ischemic and nonischemic cortexes was compared between sham-control and ischemic animals. RESULTS In the sham-control rats, NGF immunoreactivity was present in the cortical and striatal neurons. However, beginning at hour 4 after recirculation, there was a significant decrease of NGF in the ischemic cortex and striatum. Beginning at day 1, NGF was absent completely in the infarcted striatum and cortex. However, in the peri-infarct penumbra area, despite a decrease in NGF at hour 4 and day 1, NGF recovered beginning at day 3 and returned almost to the sham-control level at day 14. In the nonischemic cortex, NGF increased beginning at hour 4, peaked at day 7, and returned almost to the sham-control level at day 14. The trkA and HSP70 immunoreactivities were not present in the sham-control cortex. However, trkA was induced at hour 4 in the ischemic cortex and at days 1 and 3 in the peri-infarct penumbra cortex. The HSP70 was induced at days 1 and 3 in the peri-infarct penumbra area. Double immunostaining showed that the number of GFAP-positive cells increased gradually, and NGF immunoreactivity in the GFAP-positive cells became gradually intense after ischemia. CONCLUSIONS Our study demonstrated a temporal profile of NGF and trkA in the ischemic cortex and NGF expression by reactive astrocytes. Our data suggest that the NGF/receptor system may play a role in the astrocyte/neuron interaction under certain pathological conditions, such as focal cerebral ischemia.
Collapse
Affiliation(s)
- T H Lee
- Second Department of Neurology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
56
|
Aloe L, Fiore M. Neuroinflammatory Implications of Schistosoma mansoni Infection: New Information from the Mouse Model. ACTA ACUST UNITED AC 1998; 14:314-8. [PMID: 17040797 DOI: 10.1016/s0169-4758(98)01283-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Schistosoma mansoni infection is known to induce granulomas, not only in the liver and intestine, but also in the brain, resulting in neuropathological and psychiatric disorders. In the past, the interaction between Schistosoma mansoni infection and the nervous system has received little attention. Here, Luigi Aloe and Marco Fiore discuss recent findings from experimental Schistosoma mansoni infection in the mouse nervous system showing that brain granulomas are associated with a significant alteration in the constitutive expression of nerve growth factor, a neurotrophic factor that plays an essential role in growth and differentiation and in preventing neuronal damage. These findings suggest that the neuropathological dysfunctions in neuroschistosomiasis may be linked to changes in the basal levels and/or activity of neurotrophic factors caused by local formation of granulomas.
Collapse
Affiliation(s)
- L Aloe
- Institute of Neurobiology, CNR, Viale Marx 15/43, 00137 Rome, Italy
| | | |
Collapse
|
57
|
Van der Zee CE, Hagg T. p75NGFR mediates death of cholinergic neurons during postnatal development of the neostriatum in mice. J Chem Neuroanat 1998; 14:129-40. [PMID: 9704891 DOI: 10.1016/s0891-0618(98)00002-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have previously shown that p75 nerve growth factor receptor (p75NGFR) mediates apoptosis of approximately 25% of the cholinergic basal forebrain neurons in normal control mice between postnatal day 6 and 15, but only of cholinergic neurons that lacked the nerve growth factor receptor TrkA. Here, we investigated whether and when the cholinergic neurons of the neostriatum, which express TrkA and p75NGFR during early postnatal times, undergo p75NGFR-mediated death. The cholinergic neurons in the lateral neostriatal regions expressed choline acetyltransferase (ChAT) earlier (postnatal day 3-6) than those of the medial regions and TrkA appeared before ChAT in all regions. Between postnatal day 6 and 10, approximately 40% of the ChAT-positive neurons in the most lateral regions disappeared in control mice but not in p75NGFR-deficient mice. During this time, the neostriatum of control, but not p75NGFR-deficient, mice contained many apoptotic cells. This suggests that, similar to the cholinergic neurons of the basal forebrain, the neostriatal cholinergic neurons of control mice die and that this process is mediated by p75NGFR. However, the roles of p75NGFR and TrkA appear to be more complicated in the neostriatum where relatively few neurons express p75NGFR during the death phase (and predominantly in the lateral neostriatum where the neuronal loss is greatest), and TrkA-positive as well as TrkA-negative neurons may be lost.
Collapse
Affiliation(s)
- C E Van der Zee
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
58
|
Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 27:1-39. [PMID: 9639663 DOI: 10.1016/s0165-0173(98)00004-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that neurotrophic factors that promote the survival or differentiation of developing neurons may also protect mature neurons from neuronal atrophy in the degenerating human brain. Furthermore, it has been proposed that the pathogenesis of human neurodegenerative disorders may be due to an alteration in neurotrophic factor and/or trk receptor levels. The use of neurotrophic factors as therapeutic agents is a novel approach aimed at restoring and maintaining neuronal function in the central nervous system (CNS). Research is currently being undertaken to determine potential mechanisms to deliver neurotrophic factors to selectively vulnerable regions of the CNS. However, while there is widespread interest in the use of neurotrophic factors to prevent and/or reduce the neuronal cell loss and atrophy observed in neurodegenerative disorders, little research has been performed examining the expression and functional role of these factors in the normal and diseased human brain. This review will discuss recent studies and examine the role members of the nerve growth factor family (NGF, BDNF and NT-3) and trk receptors as well as additional growth factors (GDNF, TGF-alpha and IGF-I) may play in neurodegenerative disorders of the human brain.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | |
Collapse
|
59
|
Lee TH, Kato H, Pan LH, Ryu JH, Kogure K, Itoyama Y. Localization of nerve growth factor, trkA and P75 immunoreactivity in the hippocampal formation and basal forebrain of adult rats. Neuroscience 1998; 83:335-49. [PMID: 9460744 DOI: 10.1016/s0306-4522(97)00346-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the immunohistochemical staining of nerve growth factor, it has been reported that fixation-dependent lability of nerve growth factor hampers its localization. In the present study, we used two different polyclonal antibodies to immunostain nerve growth factor in rat brain tissue. We found that in paraformaldehyde-fixed (immersion- or perfusion-fixed) brains, nerve growth factor-like immunoreactivity was located primarily in the cytoplasmic membrane and fiber tract of hippocampal neurons and was sparse in cortical neurons. When fresh frozen brain sections were fixed in paraformaldehyde solution, nerve-growth factor-like immunoreactivity was distributed evenly in the cell body. However, when fresh frozen brain sections were fixed in acetone, immunoreactivity to nerve growth factor was present as discrete or confluent dense particles in the cell body, especially in the nuclear region. Also, when paraformaldehyde-perfusion-fixed brain sections were heat treated in salt solution before immunostaining, nerve growth factor-like immunoreactivity could be retrieved in the cytoplasmic and nuclear regions. The hippocampal formation, cerebral cortex and basal forebrain expressed nerve growth factor-like immunoreactivity. Double immunostaining in fresh frozen brains showed that the low-affinity nerve growth factor receptor (p75) co-expressed with nerve growth factor and trkA proto-oncogene in basal forebrain neurons. Our study shows that formaldehyde fixation can mask nerve growth factor antigen, and special treatment, such as heating, is needed to retrieve nerve growth factor antigen to permit immunohistochemical detection. For immunohistochemical study of nerve growth factor in rat brain tissue, successful immunostaining can be obtained by using fresh frozen brains to prevent the masking effect of fixatives or by using paraformaldehyde-fixed brains with heat treatment. It is likely that nerve growth factor is synthesized and accumulated mainly in the cell body but not in the fiber tracts, which is similar to the distribution of its messenger RNA. The co-existence of p75 with nerve growth factor and trkA in basal forebrain neurons suggests the role of low- and high-affinity receptors in regulating the trophic effect of nerve growth factor.
Collapse
Affiliation(s)
- T H Lee
- Second Department of Neurology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
60
|
Goss JR, O'Malley ME, Zou L, Styren SD, Kochanek PM, DeKosky ST. Astrocytes are the major source of nerve growth factor upregulation following traumatic brain injury in the rat. Exp Neurol 1998; 149:301-9. [PMID: 9500953 DOI: 10.1006/exnr.1997.6712] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies from our group have demonstrated an upregulation in nerve growth factor (NGF) RNA and protein in the cortex 24 h following traumatic brain injury (TBI) in a rat model. This increase in NGF is suppressed if rats are subjected to 4 h of whole-body hypothermia following TBI. In the present study we used in situ hybridization to extend our initial RNA gel-blot (Northern) hybridization findings by demonstrating that NGF RNA is increased in the cortex following TBI and that hypothermia diminishes this response. Further, by combining in situ hybridization with immunocytochemistry for glial fibrillary acidic protein we demonstrate that astrocytes are the major cellular source for the upregulation in NGF and that this upregulation can be observed in the hippocampus as early as 3 h posttrauma. The predominantly astrocytic origin suggests that the NGF upregulation is not related primarily to cholinotrophic activities. We hypothesize that its function is to stimulate upregulation of antioxidant enzymes, as part of an injury-induced cascade, and that supplementation of NGF or antioxidants may be warranted in hypothermic therapies for head injury.
Collapse
Affiliation(s)
- J R Goss
- Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
61
|
Manni L, Micera A, Pistillo L, Aloe L. Neonatal handling in EAE-susceptible rats alters NGF levels and mast cell distribution in the brain. Int J Dev Neurosci 1998; 16:1-8. [PMID: 9664217 DOI: 10.1016/s0736-5748(98)00003-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Maternal separation in neonatal rodents causes a wide range of behavioural and metabolic alterations, affecting the physiological response of the neuro-immune-endocrine system. For example, interference with the normal mother-infant interactions leads to an increased susceptibility to experimentally-induced allergic encephalomyelitis (EAE) in adult life. Since it has been reported that mast cells (MCs) participate in the pathophysiology of the autoimmune inflammatory disease multiple sclerosis (MS) and also EAE and that brain nerve growth factor (NGF) levels are altered in EAE, studied whether maternal separation and gentle manipulation (gentling) of neonatal Lewis rats perturb NGF levels or MC distribution in the brain. EAE-induction susceptibility in adult life was also evaluated and NGF levels and mast cell distribution within the hippocampus and thalamus were measured at 0, 10, 20 and 60 postnatal days. Our results show an exacerbation of clinical signs in rats separated from mothers where EAE was induced, a general decrease in NGF protein levels and MC number in the hippocampus during the first developmental period and significant increase in the number of MC in the hippocampus and the thalamus at young-adulthood (60 days of age). These results indicate that disruption of the maternal bond during early infancy may produce long-lasting alterations in the brain cellular and molecular environment, leading to increased susceptibility to EAE in adult life.
Collapse
MESH Headings
- Animals
- Animals, Newborn/physiology
- Animals, Newborn/psychology
- Brain/growth & development
- Brain/pathology
- Brain Chemistry
- Cell Count
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/psychology
- Female
- Handling, Psychological
- Mast Cells/pathology
- Nerve Growth Factors/metabolism
- Pregnancy
- Rats
- Rats, Inbred Lew
Collapse
Affiliation(s)
- L Manni
- Institute of Neurobiology, CNR, Rome, Italy
| | | | | | | |
Collapse
|
62
|
Miwa T, Uramoto N, Ishimaru T, Furukawa M, Shiba K, Morjizumi T. Retrograde transport of nerve growth factor from olfactory bulb to olfactory epithelium. Neuroreport 1998; 9:153-5. [PMID: 9592067 DOI: 10.1097/00001756-199801050-00031] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NGF is produced in the olfactory bulb and transported from the bulb to cholinergic neurons in the horizontal limb of the diagonal band. Although the expression of NGF receptors has been reported in olfactory epithelial cells, no correlation between NGF and olfactory epithelial cells has been found. This study aimed to define whether or not retrograde transport of NGF occurs in the olfactory neural system using the method of radioluminography. 125I-labeled NGF injected into the olfactory bulb was taken up and transported to the olfactory epithelium 18 h after injection. This finding suggests that bulbar NGF may act as a neurotrophic factor in olfactory epithelial cells.
Collapse
Affiliation(s)
- T Miwa
- Department of Otorhinolaryngology, School of Medicine, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Sakamoto H, Kuzuya H, Tamaru M, Sugimoto S, Shimizu J, Fukushima M, Yazaki T, Yamazaki T, Nagata Y. Developmental changes in the NGF content in the brain of young, growing, low-birth-weight rats. Neurochem Res 1998; 23:115-20. [PMID: 9482275 DOI: 10.1023/a:1022465807253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The NGF content in each region of the brain of four-week-old rats was ranked in the decreasing order of cerebral cortex, hippocampus, cerebellum, midbrain/diencephalon, and pons/medulla oblongata, and the NGF concentration, in the decreasing order of hippocampus, cerebral cortex, cerebellum, midbrain/diencephalon, and pons/medulla oblongata in both AFD and SFD groups. The NGF content and concentration in the cerebral cortex were about the same value at each age between those in the AFD and SFD groups. Those in the hippocampus were a little higher in the SFD group than in the AFD group at the ages of three and four weeks, unlike those in the other regions, where the values for the cerebellum, midbrain/diencephalon and pons/medulla oblongata tended to be somewhat higher in the AFD group than in the SFD group. The NGF concentrations in the hippocampus and cerebral cortex increased with growth: the concentration in the hippocampus at four weeks of age was about 4-fold of that at one week in the AFD group and about 5.7-fold of that at one week in the SFD group; and likewise the concentration in the cerebral cortex at four weeks of age was about 5.3-fold in the AFD group and about 7-fold in the SFD group. The NGF concentrations in the cerebellum decreased, and those in midbrain/diencephalon and pons/medulla oblongata hardly changed with growth in either AFD or SFD group. From these results NGF may have stronger implications for the neuronal growth in the hippocampus compared with those in the lower brain regions of the SFD rats.
Collapse
Affiliation(s)
- H Sakamoto
- Division of Molecular Biology, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Murata Y, Kumamoto E, Masuko S. Phenotypic characterization of septal neurons in culture: immunohistochemistry of GABA, calbindin D-28k and choline acetyltransferase, and histochemistry of acetylcholinesterase. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0165-3806(97)00143-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Shimizu H, Kuroki J, Ogura H, Yamanishi Y, Arakawa Y. Quantitative reverse transcription-PCR-HPLC for nerve growth factor mRNA using a deletion RNA as an internal standard. Biomed Chromatogr 1998; 12:38-42. [PMID: 9470974 DOI: 10.1002/(sici)1099-0801(199801/02)12:1<38::aid-bmc724>3.0.co;2-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have developed a convenient method for the routine measurement of the absolute amount of nerve growth factor (NGF) mRNA in tissue samples. The method consists of RNA extraction, amplification by reverse transcription-PCR and detection by high-performance liquid chromatography. The addition of a deletion mutant RNA to tissue samples as an internal standard enabled correction for RNA recovery during extraction, and the target mRNA and the internal standard were both amplified with the same PCR primers. The conditions were optimized so that the procedure was conducted in the region where the calibration curve was linear, thereby allowing high reproducibility and reliability. The method was applied to the measurement of NGF mRNA in tissues such as skin and skeletal muscle, where the levels are too low to be easily detected by Northern blotting analysis: skin, 14.1 +/- 4.6 fg/mg tissue and skeletal muscle, 11.0 +/- 2.2 fg/mg tissue (mean +/- SD, n = 10). The coefficient of variation of this method was less than 2.8%. This approach should also be applicable to the routine assay of the absolute amount of other mRNAs present at low levels in tissues.
Collapse
Affiliation(s)
- H Shimizu
- Eisai Tsukuba Research Laboratories, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
66
|
Cummings DM, Brunjes PC. The effects of variable periods of functional deprivation on olfactory bulb development in rats. Exp Neurol 1997; 148:360-6. [PMID: 9398478 DOI: 10.1006/exnr.1997.6660] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dramatic alterations occur in the developing olfactory bulb when air flow is reduced through one-half of the nasal cavity. Naris closure on the day after the day of birth (P1) in rats, for example, results in reduced cell survival in the ipsilateral bulb by P20 and a substantial (25%) decrease in bulb size by P30. Almost immediate changes in protein synthesis and cell metabolism are also observed, and one prevalent theory suggests that these changes may be important in specifying which cells are subsequently eliminated. In the present study we used a reversible technique for unilateral naris closure to examine the sensitive period for the effects of olfactory deprivation on bulb size and cell survival. This technique involves the insertion of removable plugs into a rat pup's external naris. We occluded the naris for increasing periods of time (P1-P10, P1-P15, or P1-P20), reared all animals to P30, and measured volumes of bulb laminae. In addition, we examined the duration of naris closure needed to affect cell survival by injecting animals with the thymidine analogue bromodeoxyuridine to label cells born soon after the onset of olfactory deprivation. Results indicate that relatively long periods of naris occlusion (P1-P15 or longer) are required to produce a substantial reduction in experimental bulb size. Cell survival was decreased following olfactory deprivation from P1 to P10, but not after deprivation from P1 to P3. These data support the hypothesis that changes that occur within 48 h of naris closure are not sufficient to affect cell survival.
Collapse
Affiliation(s)
- D M Cummings
- Neuroscience Program, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
67
|
Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 1997. [PMID: 9295375 DOI: 10.1523/jneurosci.17-19-07288.1997] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Administration of nerve growth factor (NGF) to aged or lesioned animals has been shown to reverse the atrophy of basal forebrain cholinergic neurons and ameliorate behavioral deficits. To examine the importance of endogenous NGF in the survival of basal forebrain cholinergic cells and in spatial memory, mice bearing a disruption mutation in one allele of the NGF gene were studied. Heterozygous mutant mice (ngf+/-) have reduced levels of NGF mRNA and protein within the hippocampus and were found to display significant deficits in memory acquisition and retention in the Morris water maze. The behavioral deficits observed in NGF-deficient mice were accompanied by both shrinkage and loss of septal cells expressing cholinergic markers and by a decrease in cholinergic innervation of the hippocampus. Infusions of NGF into the lateral ventricle of adult ngf+/- mice abolished the deficits on the water maze task. Prolonged exposure to NGF may be required to induce cognitive effects, because reversal of the acquisition deficit was seen after long (5 weeks) but not short (3 d) infusion. Although NGF administration did not result in any improvement in the number of septal cells labeled for choline acetyltransferase, this treatment did effectively correct the deficits in both size of cholinergic neurons and density of cholinergic innervation of the hippocampus. These findings demonstrate the importance of endogenous NGF for survival and function of basal forebrain cholinergic neurons and reveal that partial depletion of this trophic factor is associated with measurable deficits in learning and memory.
Collapse
|
68
|
Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M. Brain-derived neurotrophic factor is reduced in Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:71-81. [PMID: 9387865 DOI: 10.1016/s0169-328x(97)00125-3] [Citation(s) in RCA: 449] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease may be due to a deficiency in neurotrophin protein or receptor expression. Consistent with this hypothesis, a reduction in BDNF mRNA expression has been observed in human post-mortem Alzheimer's disease hippocampi. To further investigate this observation, we examined whether the alteration in BDNF expression also occurred at the protein level in human post-mortem Alzheimer's disease hippocampi and temporal cortices using immunohistochemical techniques. We observed a reduction in the intensity and number of BDNF-immunoreactive cell bodies within both the Alzheimer's disease hippocampus and temporal cortex when compared to normal tissue. These results support and extend previous findings that BDNF mRNA is reduced in the human Alzheimer's disease hippocampus and temporal cortex, and suggest that a loss of BDNF may contribute to the progressive atrophy of neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
69
|
Aloe L, Bracci-Laudiero L, Bonini S, Manni L. The expanding role of nerve growth factor: from neurotrophic activity to immunologic diseases. Allergy 1997; 52:883-94. [PMID: 9298172 DOI: 10.1111/j.1398-9995.1997.tb01247.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous studies published in the last 10-15 years have shown that nerve growth factor (NGF), a polypeptide originally discovered in connection with its neurotrophic activity, also acts on cells of the immune system. NGF has been found in various immune organs including the spleen, lymph nodes, and thymus, and cells such as mast cells, eosinophils, and B and T cells. The circulating levels of NGF increase in inflammatory responses, in various autoimmune diseases, in parasitic infections, and in allergic diseases. Stress-related events both in animal models and in man also result in an increase of NGF, suggesting that this molecule is involved in neuroendocrine functions. The rapid release of NGF is part of an alerting signal in response to either psychologically stressful or anxiogenic conditions in response to homeostatic alteration. Thus, the inflammation and stress-induced increase in NGF might alone or in association with other biologic mediators induce the activation of immune cells during immunologic insults. A clearer understanding of the role of NGF in these events may be useful to identify the mechanisms implicated in certain neuroimmune and immune dysfunctions.
Collapse
Affiliation(s)
- L Aloe
- Institute of Neurobiology, CNR, Rome, Italy
| | | | | | | |
Collapse
|
70
|
Janis LS, Glasier MM, Stein DG. Effects of a single intraseptal injection of NGF on spatial learning in the water maze. Physiol Behav 1997; 62:69-76. [PMID: 9226344 DOI: 10.1016/s0031-9384(97)00143-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Male Sprague-Dawley rats given electrolytic lesions of the septum followed by a single intraseptal injection of 5 microg of NGF were trained on a water maze task that assessed their ability to learn the location of a visible platform and the location of platform when it was submerged. Rats with damage to the septum acquired the visible platform version of the task but were significantly impaired in locating the submerged platform. Administration of NGF, however, produced an intermediate ameliorative effect on the measure of latency to find the hidden platform during these trials. In order to determine the relative strength of the place and cue responses learned during the visible and hidden platform training trials, a probe trial was given on the final test day in which the visible platform was moved to a new location. Control rats swam either to the new platform location or the old platform location indicating the use of both a place and cue response. However, both rats with septal damage alone and rats with septal lesions treated with NGF swam directly to the new platform location indicating the relative strength of the cue response. These results support previous findings indicating that a single injection of NGF can produce improvements on a cognitive task, but it may not be doing so by restoring lost spatial functions following septohippocampal damage.
Collapse
Affiliation(s)
- L S Janis
- Institute of Animal Behavior, Rutgers University, Newark, NJ, USA
| | | | | |
Collapse
|
71
|
Dragunow M, MacGibbon GA, Lawlor P, Butterworth N, Connor B, Henderson C, Walton M, Woodgate A, Hughes P, Faull RL. Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci 1997; 8:223-65. [PMID: 9548234 DOI: 10.1515/revneuro.1997.8.3-4.223] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is an active process of cell death characterized by distinct morphological features, and is often the end result of a genetic programme of events, i.e. programmed cell death (PCD). There is growing evidence supporting a role for apoptosis in some neurodegenerative diseases. This conclusion is based on DNA fragmentation studies and findings of increased levels of pro-apoptotic genes in human brain and in in vivo and in vitro model systems. Additionally, there is some evidence for a loss of neurotrophin support in neurodegenerative diseases. In Alzheimer's disease, in particular, there is strong evidence from human brain studies, transgenic models and in vitro models to suggest that the mode of nerve cell death is apoptotic. In this review we describe the evidence implicating apoptosis in neurodegenerative diseases with a particular emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology and Clinical Pharmacology, Medicine and Health Sciences Campus, The University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Day-Lollini PA, Stewart GR, Taylor MJ, Johnson RM, Chellman GJ. Hyperplastic changes within the leptomeninges of the rat and monkey in response to chronic intracerebroventricular infusion of nerve growth factor. Exp Neurol 1997; 145:24-37. [PMID: 9184106 DOI: 10.1006/exnr.1997.6448] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recombinant human nerve growth factor (rhNGF) was delivered for up to 6 months by continuous intracerebroventricular (i.c.v.) infusion to CD (Sprague-Dawley derived) rats and cynomolgus monkeys. Rats (n = 15/sex/group) received doses of 0 (vehicle), 6, 60, or 300 ng/day; monkeys (n = 5/sex/group) received 0, 0.6, 6, or 60 microg/day of rhNGF. Animals tolerated i.c.v. infusion with no behavioral signs attributable to rhNGF. Body weight was transiently decreased in female rats at the highest dose. At the completion of dosing, histological examination in both species revealed an increase in the thickness of the leptomeninges along the ventral and lateral surfaces of the hindbrain and extending over the dorsal aspect of the spinal cord. The change was present to varying degrees at all doses of rhNGF and tended to be more severe at higher doses. At the light microscopic level, the leptomeninges contained layers of well-differentiated, spindle-shaped cells and a plexus of axonal fibers. Cells were immunoreactive for S-100 protein and were associated with an accumulation of Type IV collagen, suggesting Schwann cell origin. Electron microscopy revealed numerous fine caliber axons ensheathed by the presumptive Schwann cells, with myelination of individual axonal segments. These findings suggest that chronic i.c.v. delivery of rhNGF has stimulated axonal sprouting and secondary hyperplasia of Schwann or Schwann-like support cells within the pia-arachnoid.
Collapse
Affiliation(s)
- P A Day-Lollini
- Bioservices, Center for Biological Research, and Roche Bioscience, Palo Alto, California 94304-1397, USA
| | | | | | | | | |
Collapse
|
73
|
Plaschke M, Naumann T, Kasper E, Bender R, Frotscher M. Development of cholinergic and GABAergic neurons in the rat medial septum: effect of target removal in early postnatal development. J Comp Neurol 1997; 379:467-81. [PMID: 9067837 DOI: 10.1002/(sici)1096-9861(19970324)379:4<467::aid-cne1>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During normal development of the nervous system, the target fields influence the survival and differentiation of projection neurons, but the factors regulating this interaction remain obscure. In the present study, we have raised the question whether the target region is essential for the postnatal development and maintenance of two different types of central projection neurons, cholinergic and GABAergic septohippocampal cells. In early postnatal rats (P5, P10), the hippocampus was eliminated by unilateral intrahippocampal injections of the excitotoxin N-methyl-D-aspartate. After a long survival time (at P70), we have immunostained serial sections of the septal region with antibodies against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme, or the calcium-binding protein parvalbumin (PARV) which is known to be contained in GABAergic septohippocampal neurons. In the medial septum ipsilateral to the lesioned side, about 60% of ChAT-immunoreactive neurons and 62% of PARV-immunoreactive neurons were found in adulthood even after complete elimination of the hippocampus. Some immunoreactive cells appeared heavily shrunken, but electron microscopic analysis revealed ultrastructural characteristics typical for medial septal neurons obtained from controls. Our results indicate that target elimination during development affected both types of projection cells, although only the cholinergic cells are known to be responsive to target-derived factors.
Collapse
Affiliation(s)
- M Plaschke
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
74
|
Bina KG, Rusak B, Semba K. Sources of p75-nerve growth factor receptor-like immunoreactivity in the rat suprachiasmatic nucleus. Neuroscience 1997; 77:461-72. [PMID: 9472404 DOI: 10.1016/s0306-4522(96)00496-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, the suprachiasmatic nucleus is critical for the generation of circadian rhythms and their entrainment to environmental cues. In the rat, the ventrolateral aspect of the suprachiasmatic nucleus receives a robust retinal input. This region also exhibits the most intense immunolabeling for the low-affinity nerve growth factor receptor in the forebrain. Our study was aimed at identifying the sources of this low-affinity nerve growth factor receptor immunoreactivity using immunohistochemistry combined with retrograde tract-tracing, and orbital enucleation. To determine the origin of the low-affinity nerve growth factor receptor immunoreactivity from sources extrinsic to the suprachiasmatic nucleus, unilateral injections of the retrograde tracer, Fluorogold, were made into the suprachiasmatic nucleus. Retrogradely labeled neurons that were also immunopositive for the low-affinity nerve growth factor receptor were found in both the basal forebrain and the retina. In the basal forebrain, such cells were found throughout its rostrocaudal extent, with the majority also being immunoreactive for the cholinergic marker, choline acetyltransferase. In the retina, cells retrogradely labeled with Fluorogold that were immunoreactive for low-affinity nerve growth factor receptor were located in the ganglion cell layer. Orbital enucleations were performed to confirm the findings observed following retrograde labeling in the retina. Unilateral orbital enucleations resulted in a significant reduction in low-affinity nerve growth factor receptor immunoreactivity in the contralateral suprachiasmatic nucleus compared to that seen on the ipsilateral side when examined one week post-surgery. Bilateral enucleations resulted in an equal decrease on both sides of the suprachiasmatic nucleus. Similar low-affinity nerve growth factor-like immunoreactivity was seen in the suprachiasmatic nucleus even two to four weeks after bilateral enucleations. Taken together, these findings suggest that low-affinity nerve growth factor receptors in the suprachiasmatic nucleus derive from multiple sources. While some receptors may be intrinsic to suprachiasmatic nucleus neurons, most appear to be of extrinsic origin and are located on axon terminals of basal forebrain cholinergic neurons and retinal ganglion cells.
Collapse
Affiliation(s)
- K G Bina
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
75
|
Li XM, Qi J, Juorio A, Boulton A. Reciprocal regulation of the content of aromatic L-amino acid decarboxylase and tyrosine hydroxylase mRNA by NGF in PC12 cells. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970215)47:4<449::aid-jnr10>3.0.co;2-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
76
|
Haas HS, Schauenstein K. Neuroimmunomodulation via limbic structures--the neuroanatomy of psychoimmunology. Prog Neurobiol 1997; 51:195-222. [PMID: 9247964 DOI: 10.1016/s0301-0082(96)00055-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the last 20 years, mutual communications between the immune, the endocrine and the nervous systems have been defined on the basis of physiological, cellular, and molecular data. Nevertheless, a major problem in the new discipline "Psychoneuroimmunology" is that controversial data and differences in the interpretation of the results make it difficult to obtain a comprehensive overview of the implications of immunoneuroendocrine interactions in the maintenance of physiological homeostasis, as well as in the initiation and the course of pathological conditions within these systems. In this article, we will first discuss the afferent pathways by which immune cells may affect CNS functions and, conversely, how neural tissues can influence the peripheral immune response. We will then review recent data, which emphasize the (patho)physiological roles of hippocampal-amygdala structures and the nucleus accumbens in neuroimmunomodulation. Neuronal activity within the hippocampal formation, the amygdaloid body, and the ventral parts of the basal ganglia has been examined most thoroughly in studies on neuroendocrine, autonomic and cognitive functions, or at the level of emotional and psychomotor behaviors. The interplay of these limbic structures with components of the immune system and vice versa, however, is still less defined. We will attempt to review and discuss this area of research taking into account recent evidences for neuroendocrine immunoregulation via limbic neuronal systems, as well as the influence of cytokines on synaptic transmission, neuronal growth and survival in these brain regions. Finally, the role of limbic structures in stress responses and conditioning of immune reactivity will be commented. Based on these data, we propose new directions of future research.
Collapse
Affiliation(s)
- H S Haas
- Department of General and Experimental Pathology, University of Graz Medical School, Austria
| | | |
Collapse
|
77
|
Kourounakis A, Bodor N, Simpkins J. Synthesis and evaluation of brain-targeted chemical delivery systems for the neurotrophomodulator 4-methylcatechol. J Pharm Pharmacol 1997; 49:1-9. [PMID: 9120757 DOI: 10.1111/j.2042-7158.1997.tb06742.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Since various 4-alkylcatechols stimulate nerve growth factor (NGF) biosynthesis both in-vitro and in-vivo, delivery of these agents to the brain may provide beneficial effect for the treatment of neurodegenerative diseases such as Alzheimer's. Several dihydropyridine-pyridinium salt type redox chemical delivery systems (CDS) of 4-methylcatechol (4-methylcatechol) were prepared as potential brain selective targetry forms for 4-methylcatechol. After preliminary evaluation by in-vitro stability studies in various buffer solutions and biological media, a selected CDS was further investigated in the rat to determine its in-vivo distribution. Selective and sustained delivery of the compound of interest to the rat brain was achieved. Furthermore, the NGF stimulatory activity in the rat brain after peripheral administration of the selected CDS was evaluated by measuring the levels of pre-pro-NGF mRNA in the rat hippocampus and frontal cortex, by dot blot hybridization and analysis. Results showed the peripheral administration of the CDS to achieve a 1.7-fold increase in NGF mRNA compared to control in the rat hippocampus, and an approximately 1.4-fold increase in the frontal cortex.
Collapse
Affiliation(s)
- A Kourounakis
- Center for Drug Discovery, College of Pharmacy, University of Florida, Gainesville 32610-0497, USA
| | | | | |
Collapse
|
78
|
Tatsuno I, Morio H, Tanaka T, Uchida D, Hirai A, Tamura Y, Saito Y. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulator of astrocytes: PACAP stimulates proliferation and production of interleukin 6 (IL-6), but not nerve growth factor (NGF), in cultured rat astrocyte. Ann N Y Acad Sci 1996; 805:482-8. [PMID: 8993428 DOI: 10.1111/j.1749-6632.1996.tb17508.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- I Tatsuno
- Second Department of Internal Medicine, Chiba University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Nerve growth factor (NGF) is the best characterized of the neurotrophic factors, but there is incomplete information concerning its levels in body fluids. Normal values of NGF in serum from 157 normal subjects were determined by enzyme immunoassay (EIA). A mean NGF level of 194 +/- 25 pg ml-1 was obtained. There were no statistically significant variations with age, but the NGF level was significantly lower in females (112 +/- 31 pg ml-1) than in males (243 +/- 35 pg ml-1).
Collapse
Affiliation(s)
- T Serrano
- Department of Neuroimmunology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | | | | |
Collapse
|
80
|
Neurotrophin effects on survival and expression of cholinergic properties in cultured rat septal neurons under normal and stress conditions. J Neurosci 1996. [PMID: 8824307 DOI: 10.1523/jneurosci.16-21-06665.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These studies tested the hypothesis that survival-promoting effects of neurotrophins on basal forebrain cholinergic neurons are enhanced under stress. Septal neurons from embryonic day 14-15 rats exposed for 10-14 d to neurotrophin [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4), each at 100 ng/ml] showed a two- to threefold increase in choline acetyltransferase (ChAT) activity, with little evidence of synergistic interactions. Neurotrophins produced no significant increase in the survival of total or acetylcholinesterase (AChE)-positive neurons at moderate plating density (1200-1600 cells/mm2). However, with very low plating densities (2-28 cells/mm2) BDNF, NT-3, and NT-4 (but not NGF) increased total neuronal survival, and BDNF increased survival of AChE-positive neurons. NGF and BDNF enhanced ChAT activity and survival of cholinergic neurons after a 24 hr hypoglycemic stress, even when added 1 hr after stress onset. All four tested neurotrophins increased total neuronal survival after hypoglycemic stress. These results suggest that neurotrophins are important for preservation of central cholinergic function under stress conditions, with different neurotrophins protecting against different stresses. The stress-associated survival-promoting effects of neurotrophins were not limited to the cholinergic subpopulation.
Collapse
|
81
|
Semkova I, Wolz P, Schilling M, Krieglstein J. Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 1996; 315:19-30. [PMID: 8960860 DOI: 10.1016/s0014-2999(96)00593-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been previously demonstrated that selegiline, an irreversible monoamine oxidase B (MAO-B) inhibitor, potentiates glial reaction to injury and possesses some 'trophic-like' activities which do not depend on the inhibition of MAO-B and which are probably associated with the induction of astrocyte-derived neurotrophic substances. Based on these findings, we tried to find out whether selegiline is able to modify the expression of nerve growth factor (NGF) and to protect central nervous system (CNS) neurons from excitotoxic and ischemic damage. Selegiline (10 pM-1 nM) induced NGF messenger RNA (mRNA) expression in cultured rat cortical astrocytes as determined by reverse transcription-polymerase chain reaction (RT-PCR) followed by a corresponding increase in NGF protein content measured by two-site NGF-enzyme-linked immunosorbent assay (ELISA) in astrocyte-conditioned medium. Additionally, exposure of hippocampal cultures containing neuronal and glial cells to this drug at the same concentrations enhanced significantly the content of NGF measured in the culture medium after 6 h of incubation. We hypothesize that selegiline could rescue hippocampal neurons from injury by induction of astrocyte-derived NGF in this cell culture system. To test this hypothesis, an excitotoxic damage was induced in the same type of cells by exposure to 0.5 mM L-glutamate for 1 h. Selegiline (10 pM-1 nM) present in the growth medium 6 h before until 18 h after induction of injury (the point of glutamate-toxicity measurement) protected hippocampal neurons from excitotoxic death. Furthermore, administered intraperitoneally (i.p.) (8 x 15 mg/kg per day) this drug enhanced the expression of NGF message in intact rat cerebral cortex and protected rat cortical tissue from ischemic insult due to permanent occlusion of the middle cerebral artery (MCA). The neuroprotective activity of selegiline (5 x 10 mg/kg per day i.p.) was also demonstrated in a mouse model of focal cerebral ischemia. The present data show that selegiline induced NGF expression in cultured rat cortical astrocytes. In mixed primary cultures of hippocampal neuronal and glial cells, selegiline increased NGF protein content and protected hippocampal neurons from excitotoxic degeneration. In vivo, this drug induced NGF gene expression in cerebral cortex from intact rats and protected rat and mouse cortical tissue from ischemic insult after occlusion of the MCA. Our results indicate that the induction of astrocyte-derived NGF could contribute to the neuroprotective activity of selegiline demonstrated both in vivo and in vitro and can explain, in part, the 'trophic-like' properties of this compound which has been observed by others.
Collapse
Affiliation(s)
- I Semkova
- Institut für Pharmakologie und Toxikologie, Fachbereìch Pharmazie and Lebensminelchemle, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
82
|
Yamamoto K, Yoshikawa R, Okuyama S, Takahashi Y, Karasawa Y, Hino N, Miyoshi T, Araki H, Hanabusa K, Shirai H, Tomisawa K. Neuroprotective effect of 4'-(4-methylphenyl)-2,2':6',2-terpyridine trihydrochloride, a novel inducer of nerve growth factor. Life Sci 1996; 59:2139-46. [PMID: 8950317 DOI: 10.1016/s0024-3205(96)00570-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified 4'-(4-methylphenyl)-2,2':6',2-terpyridine: trihydrochloride (SS701), which belongs to a family of a small unique neuroprotective agents. SS701 accelerated the production of nerve growth factor (NGF) in cultured astroglial cells, dose- and time-dependently. In in vivo studies, SS701, when administered 30 min after induced cerebral ischemia, neuroprotective effects on delayed neuronal death in Mongolian gerbils were evident. The neuroprotective effects of SS701 against ischemia-induced delayed neuronal death are attributed to stimulation of the production of NGF.
Collapse
Affiliation(s)
- K Yamamoto
- 1st Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Figueiredo BC, Hu L, Bedard AM, Tetzlaff W, Cuello AC. NGF prevents further atrophy of cholinergic cells of the nucleus basalis due to cortical infarction in adult post-hypothyroid rats but does not restore cell size compared to euthyroid [correction of euthroid] rats. J Chem Neuroanat 1996; 12:15-27. [PMID: 9001945 DOI: 10.1016/s0891-0618(96)00171-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have tested the hypotheses that nerve growth factor treatment in adult post-hypothyroid rats can: (1) restore cross-sectional area of cholinergic cells of the nucleus basalis and (2) prevent further atrophy of these neurons following cortical infarction. In addition, we assessed the expression of p75NGFR and p140trkA mRNAs in the nucleus basalis cells of post-hypothyroid rats. Rats were rendered hypothyroid by the addition of propylthiouracil to their diet beginning on embryonic day 19 until the age of 1 month. At this time both the pups and their dams continued to receive 0.05% propylthiouracil in their diet and the pups were thyroidectomized. At 60 days, propylthiouracil treatment was interrupted and thyroxine levels were restored to normal by daily subcutaneous administration of physiological levels of thyroxine. Morphometric analysis identified atrophied nucleus basalis magnocellularis cholinergic cells at two ages, days 75 and 105, identified by in situ hybridization for p75NGFR and p140trkA mRNAs in methylene blue stained cells (day 75) and choline acetyltransferase immunostaining (day 105). The mean number of silver grains (pixels) per microns2 (mean +/- S.E.M.) of cell body cross-sectional area for p75NGFR mRNA in the nucleus basalis magnocellularis of euthyroid rats was 3.43 +/- 0.89, which was not statistically different from post-hypothyroid animals (4.02 +/- 1.07). A similar finding was noted for p140trkA mRNA: mean number of grains in the euthyroid group was 5.54 +/- 0.96 and was not statistically different from the post-hypothyroid group (6.32 +/- 1.45). Nerve growth factor treatment in adulthood (between days 75 and 82) did not restore cross-sectional area from early thyroid deprivation. However, it prevented further atrophy of nucleus basalis magnocellularis neurons following cortical devascularization inflicted in adulthood (day 75).
Collapse
Affiliation(s)
- B C Figueiredo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
84
|
Connor B, Young D, Lawlor P, Gai W, Waldvogel H, Faull RL, Dragunow M. Trk receptor alterations in Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:1-17. [PMID: 8915574 DOI: 10.1016/s0169-328x(96)00040-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of trk receptors in postmortem normal, Huntington's disease and Alzheimer's disease human brains was investigated using immunohistochemistry, in-situ hybridisation and Western blotting. Alzheimer's disease hippocampi displayed an increase in trkA receptor levels in astrocytes in the CA1 region, some of which were associated with beta-amyloid-positive plaques. Truncated trkB receptors were found in high levels in senile plaques, while the full-length receptor was expressed in glial-like cells in the hippocampus of Alzheimer's disease brains. In-situ hybridisation studies indicated that trk receptor mRNA was also elevated in Alzheimer's. The appearance of trkA and trkB receptors in astrocytes and plaques in Alzheimer's disease might be related to beta-amyloid deposition and could be implicated in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, School of Medicine, University of Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
85
|
Liu Y, Meiri KF, Cynader MS, Gu Q. Nerve growth factor induced modification of presynaptic elements in adult visual cortex in vivo. Brain Res 1996; 732:36-42. [PMID: 8891266 DOI: 10.1016/0006-8993(96)00484-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nerve growth factor (NGF) has been shown to play important roles in neuronal survival, growth and differentiation. Recently, we have found that intracortical infusion of NGF into adult cat visual cortex can recreate ocular dominance plasticity, suggesting that NGF is also involved in activity-dependent modification of synaptic connectivity in the adult brain. To further explore the mechanisms of NGF-induced plasticity in adult visual cortex, we studied two presynaptic markers: GAP-43 and synaptophysin. Immunocytochemical staining showed that NGF-treatment of adult visual cortex selectively increased the level of the phosphorylated form of GAP-43, while the total level of GAP-43 was not changed. These results demonstrate that NGF-treatment stimulates phosphorylation processes of GAP-43 in vivo. In addition, NGF-treatment of adult visual cortex increased the level of synaptophysin immunoreactivity. Since the phosphorylated form of GAP-43 is known to be enriched in the membrane skeleton of growth cones and of developing synapses, and the phosphorylation of GAP-43 has been linked with events that underlie synaptic plasticity, and since synaptophysin is a major component of presynaptic vesicles, our results suggest that NGF-treatment of adult visual cortex modulates presynaptic terminals, possibly by inducing axonal sprouting and formation of new synapses, and that these changes may play a role in the NGF-induced functional plasticity.
Collapse
Affiliation(s)
- Y Liu
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
86
|
|
87
|
Takahashi LK, Goh CS. Presynaptic muscarinic cholinergic receptors in the dorsal hippocampus regulate behavioral inhibition of preweanling rats. Brain Res 1996; 731:230-5. [PMID: 8883877 DOI: 10.1016/0006-8993(96)00684-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this research was to determine whether early maturation of the dorsal hippocampal cholinergic system mediates behavior exhibited by preweanling rats in the presence or absence of an unfamiliar adult male rat, a threatening stimulus. The behavioral responses that were examined included behavioral inhibition or freezing which emerges at 2 weeks of age and ultrasonic vocalizations. Prior to behavioral testing, oxotremorine, an M2 muscarinic receptor agonist that reduces cholinergic release from presynaptic terminals, was infused into the dorsal hippocampal dentate gyrus. Results demonstrated that 14-day-old rats with bilateral hippocampal infusions of a 1 microgram dose of oxotremorine exhibited significant deficits in freezing when exposed to the adult male rat. Importantly, oxotremorine had no significant effects on ultrasound emission and ambulatory activity when rat pups were tested in social isolation. Thus, effects of oxotremorine in the hippocampal dentate gyrus do not produce global changes in behavior. Results suggest that cholinergic release into the dorsal hippocampus facilitates the display of behavioral inhibition at the end of the second postnatal week. Behavioral deficits in freezing may reflect an oxotremorine-induced disruption of hippocampal cholinergic function underlying the processing of biologically relevant olfactory stimuli as well as mechanisms associated with attention.
Collapse
Affiliation(s)
- L K Takahashi
- Department of Psychiatry, University of Wisconsin Medical School, Madison 53719-1179, USA.
| | | |
Collapse
|
88
|
Intraseptal injections of NGF attenuates edema formation following septal lesions in the rat. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)12873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Hoener MC, Hewitt E, Conner JM, Costello JW, Varon S. Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00386-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Cho JY, Min N, Franzen L, Baker H. Rapid down-regulation of tyrosine hydroxylase expression in the olfactory bulb of naris-occluded adult rats. J Comp Neurol 1996; 369:264-76. [PMID: 8726999 DOI: 10.1002/(sici)1096-9861(19960527)369:2<264::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In most sensory systems, afferent innervation regulates morphological and biochemical characteristics of target cells for a limited time during development. Sensory deprivation experiments in adult rats also have suggested a critical period for afferent influences on olfactory bulb structure and function. Previous odorant deprivation studies that employed unilateral naris closure in neonatal rats demonstrated down-regulation of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) in dopamine neurons intrinsic to the olfactory bulb. Accompanying the altered biochemical parameters was a decrease in bulb size. To distinguish between deprivation-induced alterations in TH expression secondary to developmental sequelae and those occurring in mature neurons, the consequences of unilateral naris closure were assessed in young adult rats. In agreement with previous studies significant postnatal increases occurred in TH expression and total protein, an indication of bulb size. At 30 days post-closure, total protein was unaltered in the ipsilateral olfactory bulb but showed a small (12.9%), significant decline at 60 days. In contrast to the limited morphological consequences of odor deprivation, profound reductions occurred in TH expression. TH activity ipsilateral to the closure decreased significantly by 14 days post-closure and remained depressed for up to 6 months. In parallel with enzyme activity, TH immunoreactivity did not decline in the first few days post-closure. In situ hybridization revealed that TH mRNA levels decreased rapidly, i.e., by 2 days post-closure, reached a nadir at 1 month, and remained depressed for at least 6 months. The capacity of odor deprivation in the adult rat olfactory system to down-regulate TH expression suggests that this phenotypic alteration occurs independently of a presumed critical period.
Collapse
Affiliation(s)
- J Y Cho
- Cornell University Medical College, Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | |
Collapse
|
91
|
Nagao H, Matsuoka I, Kurihara K. Effects of phorbol ester on expression of CNTF-mRNA in cultured astrocytes from rat olfactory bulb. Brain Res 1996; 719:23-8. [PMID: 8782859 DOI: 10.1016/0006-8993(96)00055-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine which has various functions, such as survival promoting effect on both peripheral and central neurons, promotion of cholinergic differentiation, and participation in differentiation of Type-2 astrocytes (reviewed in ref. [30]). However, the regulatory mechanism of the CNTF expression is largely unknown. In this study, we analyzed the effects of phorbol 12-myristate 13-acetate (PMA), an activator of PKC, on the expression of CNTF-mRNA in cultured astrocytes from neonatal rat olfactory bulb. PMA induced a transient decrease of CNTF-mRNA levels which was followed by a persistent increase of the mRNA up to 4-fold of the control level at 24 h after the addition of the compound. Both the PMA-induced decrease and increase of the CNTF-mRNA levels were canceled by treatment with cycloheximide, an inhibitor of protein synthesis, suggesting that protein synthesis-dependent mechanisms participate in both the PMA-induced decrease and increase of CNTF-mRNA levels. On the other hand, PMA induced expressions of mRNAs of several subunit members of the AP-1 complex, such as c-fos, c-jun and jun-B. Furthermore, dexamethasone, a synthetic glucocorticoid which is known to inhibit the AP-1 complex-mediated transcription [14,27,36], canceled the PMA-induced decrease of the CNTF-mRNA levels. These results suggested that the AP-1 complex participates in the regulatory mechanism of the CNTF expression in the cultured astrocytes treated with PMA.
Collapse
Affiliation(s)
- H Nagao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
92
|
Nakamura K, Kubota K. The primate temporal pole: its putative role in object recognition and memory. Behav Brain Res 1996; 77:53-77. [PMID: 8762159 DOI: 10.1016/0166-4328(95)00227-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this article, we consider both the ventral temporopolar cortex and the perirhinal cortex (areas 35 and 36) as the anterior ventromedial temporal (aVMT) cortex, and discuss its role based on recent data in monkeys and human subjects. In monkeys, the aVMT cortex receives its primary input from area TE, and only minor input from other cortical areas. Laminar patterns of connections suggest that the aVMT cortex is a hierarchically higher-order area than area TE. Lesions of this cortex produce deficits in the learning and performance of visual memory tasks. Neurons in the aVMT cortex respond selectively to complex stimuli and changes in activity related to visual memory tasks. In humans, damage of this cortex induces deficits in the recognition of familiar objects and faces. The aVMT cortex is activated during recognition of familiar faces. In addition, the aVMT cortex is one of the most vulnerable areas in Alzheimer's disease. All these data indicate that the aVMT cortex is a higher-order visual cortical area that is related to object recognition and memory. The anterior area TE has been implicated in both functions. We propose here that these areas and the anterior entorhinal cortex are designated as the temporal pole, a brain region which is specialized for both object recognition and memory.
Collapse
Affiliation(s)
- K Nakamura
- Department of Behavioral and Brain Sciences, Kyoto University, Aichi, Japan
| | | |
Collapse
|
93
|
Bannon AW, Curzon P, Gunther KL, Decker MW. Effects of intraseptal injection of 192-IgG-saporin in mature and aged Long-Evans rats. Brain Res 1996; 718:25-36. [PMID: 8773763 DOI: 10.1016/0006-8993(95)01568-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects intraseptal injections of the selective cholinergic immunotoxin, 192-IgG-saporin, were investigated in mature (6-month-old) and aged (24-26-month-old) male Long-Evans rats. Ten days following intraseptal injection of either 192-IgG-saporin or saline, testing began in a battery of behavioral tests modulated by the septohippocampal system including two versions of the Morris water maze (i.e. submerged platform task, and 2-platform spatial discrimination), inhibitory avoidance, and pre-pulse inhibition of acoustic startle. In both mature and aged rats, intraseptal injection of 192-IgG-saporin selectively reduced ChAT activity in the hippocampus and posterior cingulate cortex, without affecting ChAT activity of amygdala or parietal cortex. In general, in all of the behavioral tests analyzed, intraseptal 192-IgG-saporin treatment had no effect in mature animals. Age-related deficits were observed in the spatial memory tasks, however this impairment was largely a function of the poor performance of aged rats treated with the toxin. In addition, an increase in the response to an acoustic startle was found in aged rats treated with 192-IgG-saporin. Thus, although intraseptal injection of 192-IgG-saporin produced similar reductions of ChAT activity, performance of mature and aged rats in tasks believed to be modulated by the septohippocampal pathway tended to be differentially affected in mature and aged rats.
Collapse
Affiliation(s)
- A W Bannon
- Dept. 47W, Abbott Laboratories, Abbott Park, IL 60064-3500, USA
| | | | | | | |
Collapse
|
94
|
Semkova I, Schilling M, Henrich-Noack P, Rami A, Krieglstein J. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brain Res 1996; 717:44-54. [PMID: 8738252 DOI: 10.1016/0006-8993(95)01567-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been shown previously that clenbuterol, a beta 2-adrenergic receptor agonist, enhances NGF synthesis in adult rat brain. Since NGF is able to protect neurons against damage, we tried to find out whether clenbuterol can rescue cultured hippocampal neurons from excitotoxic damage by induction of NGF. The neuroprotective activity of clenbuterol on neurons in the vulnerable CA1 subfield of the hippocampus was tested in a rat model of transient forebrain ischemia. Additionally, in the mouse model of focal cerebral ischemia the ability of clenbuterol to reduce the infarct size was examined. Exposure of mixed neuronal/glial hippocampal cultures to clenbuterol (1 to 100 microM) enhanced significantly the content of NGF measured in the culture medium by two-site ELISA. The excitotoxic injury was induced in the same type of cells after 14 days in vitro by exposure to 1 mM L-glutamate for 1 h in serum-free medium. NGF itself (0.15 to 100 ng/ml) added to the growth medium 4 h before until 18 h after induction of injury (the point of glutamate-toxicity measurement), protected hippocampal neurons from excitotoxic damage. Clenbuterol (1 to 100 microM) provided similar neuroprotection as NGF under the same experimental conditions. The neuroprotective activity of clenbuterol (100 microM) against glutamate-induced damage in hippocampal cultures was blocked by anti-NGF monoclonal antibodies (0.5 microgram/ml) added to the medium during the clenbuterol exposure, demonstrating that the neuronal rescue is mediated by NGF. Propranolol, a beta-adrenergic receptor antagonist (10 microM) added 20 min before and kept in the medium during exposure of the cultures to clenbuterol (1 microM) reversed the neuroprotective activity, suggesting that the induction of NGF and neuroprotection caused by clenbuterol are mediated via beta-adrenergic receptor activation. The capacity of clenbuterol to protect hippocampal neurons was also demonstrated in vivo in a rat model of transient forebrain ischemia. Clenbuterol (4 x 1 mg/kg) administered intraperitoneally increased the number of viable neurons in CA1 subfield of the rat hippocampus. Furthermore, clenbuterol (0.3 and 1 mg/kg, i.p. and 1 mg/kg, s.c.) reduced significantly the infarct area on the mouse brain surface after occlusion of the middle cerebral artery. The present data demonstrate that clenbuterol induces NGF synthesis in cultured hippocampal cells and protects hippocampal neurons from excitotoxic damage. The neuroprotective activity of clenbuterol is also demonstrated in vivo in two rodent models of cerebral ischemia. The results offer strong evidence that the neuroprotective activity of clenbuterol is caused by activation of beta-adrenergic receptors and the subsequent increased expression of NGF.
Collapse
Affiliation(s)
- I Semkova
- Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie und Lebensmittelchemie, Philipps-Universität, Marburg, Germany
| | | | | | | | | |
Collapse
|
95
|
Lee TH, Kato H, Kogure K, Itoyama Y. Temporal profile of nerve growth factor-like immunoreactivity after transient focal cerebral ischemia in rats. Brain Res 1996; 713:199-210. [PMID: 8724992 DOI: 10.1016/0006-8993(95)01510-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We studied the temporal profile of nerve growth factor-like immunoreactivity (NGF-LI) in the rat brains following 30 min of middle cerebral artery occlusion. The rats were decapitated at 4 h, 1, 3, 7, and 14 days of recirculation. Brain sections at the level of striatum were immunostained against NGF as well as a stress protein, HSP70. Also, double immunostaining of NGF and glial fibrillary acidic protein was performed. In the sham-control rats, NGF-LI was normally present in the cortical and striatal neurons. However, at 4 h of recirculation, there was a significant decrease of NGF-LI in the ischemic cortex and striatum. From 1 day, NGF-LI was absent completely in the ischemic striatum. However, in the ischemic cortex, NGF-LI decreased to the lowest level at 1 day, but it recovered gradually from 3 days and increased significantly to above sham-control level at 7 days. At 14 days of recirculation, NGF-LI returned to a near sham-control level. In the non-ischemic cortex, NGF-LI increased gradually from 4 h with a peak at 7 days, and returned to the sham-control level at 14 days of recirculation. A HSP70 was induced in the ischemic cortex at 1 and 3 days, when there was a significant reduction of NGF-LI. The number of reactive astrocytes increased gradually and NGF-LI in the reactive astrocytes became gradually intense after ischemia. The present finding showing that NGF-LI can be recovered in the stressed cortical neurons suggests a possible involvement of NGF in the process of neuronal survival after focal cerebral ischemia. The expression of NGF in reactive astrocytes indicates that astrocyte may also play a role in supporting neuronal survival after ischemia.
Collapse
Affiliation(s)
- T H Lee
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
96
|
Sarrieau A, O'Donnell D, Alonso R, Meaney MJ. Regulation of glucocorticosteroid receptor expression in rat hippocampal cell cultures by nerve growth factor. Neurosci Lett 1996; 206:207-11. [PMID: 8710188 DOI: 10.1016/s0304-3940(96)12454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dispersed hippocampal cells cultured in serum-free conditions were used to study the effects of nerve growth factor (NGF) on the expression of type I (mineralocorticosteroid or MR) and type II (glucocorticosteroid or GR) corticosteroid receptors. Cells, plated at a density of 1.2 x 10(6) cells/ml in 60 mm Petri dishes, were mainly identified as neurons (90-95%) and maintained for at least 2 weeks. A 7-day treatment with 10-50 ng NGF/ml induced a concentration-dependent decrease of GR binding (40% decrease) compared to untreated cells. In contrast, MR density was unaffected by a 7-day treatment with 50 ng NGF/ml. Data are discussed as possible direct and/or indirect effects of NGF at the level of both neuronal and glial cells.
Collapse
Affiliation(s)
- A Sarrieau
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
97
|
Wolz P, Krieglstein J. Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology 1996; 35:369-75. [PMID: 8783212 DOI: 10.1016/0028-3908(95)00172-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate whether alpha-lipoic acid (LA), the oxidized form of the radical scavenger dihydrolipoic acid (DLA), protected brain tissue against ischemic damage and whether there were differences in the neuroprotective potencies between its enantiomers. We used the models of focal cerebral ischemia in mice and rats. The infarct area on the mouse brain surface and the infarct volume of the rat brain were determined by means of an image analyzing system. The LA was capable of reducing the infarct area only when it was administered subcutaneously, but not when it was administered intraperitoneally or into the cisterna magna. Both the R- and the S-enantiomer of LA protected brain tissue against ischemic damage, but their protective activities seemed to be related to the time period of pretreatment. In mice, both enantiomers revealed a similar neuroprotective potency when they were administered subcutaneously 1 or 2 hr before occlusion of the middle cerebral artery (MCA), whereas a longer time period of pretreatment (4 or 6 hr) failed to exert neuroprotection. In rats, subcutaneous pretreatment with R- or S-LA for 2 hr before ischemia significantly diminished the infarct volume. We assume that LA has to be reduced to DLA which finally causes neuroprotection.
Collapse
Affiliation(s)
- P Wolz
- Institute für Pharmakologie und Toxikologie, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
98
|
Affiliation(s)
- P D Spear
- Department of Psychology, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
99
|
Brodie C, Oshiba A, Renz H, Bradley K, Gelfand EW. Nerve growth-factor and anti-CD40 provide opposite signals for the production of IgE in interleukin-4-treated lymphocytes. Eur J Immunol 1996; 26:171-8. [PMID: 8566063 DOI: 10.1002/eji.1830260127] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nerve growth factor (NGF) is a well-known neurotrophic factor acting on both the peripheral and the central nervous systems. In addition, it has been shown to play a role in the function of the immune system through specific receptors. Both high-affinity and low-affinity NGF receptors (NGFR) are expressed on human B lymphocytes. The low-affinity NGFR has been shown to have structural homology with another specific B cell surface molecule, CD40, which plays an important role in IgE production. In view of the structural similarities of the p75 NGFR and CD40 we examined whether NGF may also be involved in the regulation of IgE production. We found that NGF and anti-CD40 exerted opposite effects on the induction of IgE by IL-4 in peripheral blood mononuclear cells. NGF inhibited the induction of IgE by IL-4 and this inhibition was not mediated through blocking of the induction of CD23 nor through inhibition of IL-4R expression. The inhibition of IL-4-dependent IgE production was observed on surface (s)IgE+ and sIgE-/sIgM+ B lymphocytes. Anti-CD40 on the other hand, exerted an enhancing effect on IgE production and its addition to IL-4 provided a signal that was resistant to the inhibitory effect of NGF. Antagonistic effects of NGF and IL-4 were also observed for other Ig isotypes since IL-4 prevented the increase in IgA and IgM production induced by NGF. These data indicate that although NGFR and CD40 belong to the same receptor superfamily and exert similar proliferative effects on B lymphocytes, they interact differently with IL-4 in the regulation of IgE production.
Collapse
Affiliation(s)
- C Brodie
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
100
|
Ricceri L, Alleva E, Chiarotti F, Calamandrei G. Nerve growth factor affects passive avoidance learning and retention in developing mice. Brain Res Bull 1996; 39:219-26. [PMID: 8963687 DOI: 10.1016/0361-9230(95)02137-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present studies investigate the effects of early nerve growth factor (NGF) administration on the ontogenetic profile of learning and retention capacities in mice. The learning paradigm used required the animals to withhold an escape response from a vibrating platform to avoid a punishment (step-down passive avoidance). In Experiment 1, acquisition of step-down passive avoidance was essentially the same in 11- and 15-day-old mice whereas only the latter showed significant retention after 24 h. In younger animals, data pointed to a facilitating effect of familiarization with the test environment. In Experiment 2 ICV NGF treatment on postnatal day 9 increased step-down latencies in both reinforced and nonreinforced pups on day 11. Moreover, NGF mice exposed in nonreinforcement condition on day 11 failed to acquire the avoidance response 24 h later, suggesting that the treatment anticipated the appearance of latent inhibition. Results of Experiment 3, investigating the effects of different durations of preexposure to the test apparatus on passive avoidance acquisition 24 h later, supported the specificity of NGF effects on the emergence of latent inhibition. These findings suggest that neural populations responsive to NGF trophic effect are involved in the maturation of early learning and retention capacities in rodents.
Collapse
Affiliation(s)
- L Ricceri
- Section of Comparative Psychology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|