51
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
52
|
Hu R, Han Q, Zhang J. STAT3: A key signaling molecule for converting cold to hot tumors. Cancer Lett 2020; 489:29-40. [PMID: 32522692 DOI: 10.1016/j.canlet.2020.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022]
Abstract
Tumors can be classified as cold or hot according to the degree of immune cell infiltration into tumor tissues; cold tumors are insensitive to either chemotherapy or immunotherapy and are associated with poor prognosis. Recent studies have shown that STAT3 signaling molecules hinder the conversion of cold to hot tumors by regulating immunosuppressive molecule secretion and immunosuppressive cell functions. This review aims to present the most recent studies on how STAT3 regulates cold tumor formation and discuss its research status in cancer therapy. We also present insight for designing new therapeutic strategies to "heat" tumors and provide a reference for tumor immunotherapy.
Collapse
Affiliation(s)
- Rui Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
53
|
Cytokine-like Roles for Metabolites in Immunity. Mol Cell 2020; 78:814-823. [DOI: 10.1016/j.molcel.2020.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
|
54
|
Zhang J, Xie B, Xi Z, Zhao L, Cen L, Yang Y. A comparable study of polyglycolic acid's degradation on macrophages' activation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110574. [DOI: 10.1016/j.msec.2019.110574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023]
|
55
|
Harmon C, O'Farrelly C, Robinson MW. The Immune Consequences of Lactate in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:113-124. [PMID: 32578174 DOI: 10.1007/978-3-030-43093-1_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment consists of complex and dynamic networks of cytokines, growth factors, and metabolic products. These contribute to significant alterations in tissue architecture, cell growth, immune cell phenotype, and function. Increased glycolytic flux is commonly observed in solid tumors and is associated with significant changes in metabolites, generating high levels of lactate. While elevated glycolytic flux is a characteristic metabolic adaption of tumor cells, glycolysis is also a key metabolic program utilized by a variety of inflammatory immune cells. As such lactate and the pH changes associated with lactate transport affect not only tumor cells but also immune cells. Here we provide an overview of lactate metabolic pathways and the effects lactate has on tumor growth and immune cell function. This knowledge provides opportunities for synergistic therapeutic approaches that combine metabolic drugs, which limit tumor growth and support immune cell function, together with immunotherapies to enhance tumor eradication.
Collapse
Affiliation(s)
- Cathal Harmon
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mark W Robinson
- Department of Biology, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
56
|
Zhang J, Song C, Han Y, Xi Z, Zhao L, Cen L, Yang Y. Regulation of inflammatory response to polyglycolic acid scaffolds through incorporation of sodium tripolyphosphate. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 2019; 206:107451. [PMID: 31836453 DOI: 10.1016/j.pharmthera.2019.107451] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of biochemical pathways is a hallmark of cancer cells, and generation of lactic acid from glucose/glutamine represents one of the consequences of such metabolic alterations. Cancer cells export lactic acid out to prevent intracellular acidification, not only increasing lactate levels but also creating an acidic pH in extracellular milieu. Lactate and protons in tumor microenvironment are not innocuous bystander metabolites but have special roles in promoting tumor-cell proliferation and growth. Lactate functions as a signaling molecule by serving as an agonist for the G-protein-coupled receptor GPR81, involving both autocrine and paracrine mechanisms. In the autocrine pathway, cancer cell-generated lactate activates GPR81 on cancer cells; in the paracrine pathway, cancer cell-generated lactate activates GPR81 on immune cells, endothelial cells, and adipocytes present in tumor stroma. The end result of GPR81 activation is promotion of angiogenesis, immune evasion, and chemoresistance. The acidic pH creates an inwardly directed proton gradient across the cancer-cell plasma membrane, which provides driving force for proton-coupled transporters in cancer cells to enhance supply of selective nutrients. There are several molecular targets in the pathways involved in the generation of lactic acid by cancer cells and its role in tumor promotion for potential development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Timothy P Brown
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
58
|
Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities. JOURNAL OF ONCOLOGY 2019; 2019:2084195. [PMID: 31781212 PMCID: PMC6875281 DOI: 10.1155/2019/2084195] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/13/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Although immunotherapy plays a significant role in tumor therapy, its efficacy is impaired by an immunosuppressive tumor microenvironment. A molecule that contributes to the protumor microenvironment is the metabolic product lactate. Lactate is produced in large amounts by cancer cells in response to either hypoxia or pseudohypoxia, and its presence in excess alters the normal functioning of immune cells. A key enzyme involved in lactate metabolism is lactate dehydrogenase (LDH). Elevated baseline LDH serum levels are associated with poor outcomes of current anticancer (immune) therapies, especially in patients with melanoma. Therefore, targeting LDH and other molecules involved in lactate metabolism might improve the efficacy of immune therapies. This review summarizes current knowledge about lactate metabolism and its role in the tumor microenvironment. Based on that information, we develop a rationale for deploying drugs that target lactate metabolism in combination with immune checkpoint inhibitors to overcome lactate-mediated immune escape of tumor cells.
Collapse
|
59
|
Casey LM, Kakade S, Decker JT, Rose JA, Deans K, Shea LD, Pearson RM. Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials 2019; 218:119333. [PMID: 31301576 DOI: 10.1016/j.biomaterials.2019.119333] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Developing biomaterials to control the responsiveness of innate immune cells represents a clinically relevant approach to treat diseases with an underlying inflammatory basis, such as sepsis. Sepsis can involve activation of Toll-like receptor (TLR) signaling, which activates numerous inflammatory pathways. The breadth of this inflammation has limited the efficacy of pharmacological interventions that target a single molecular pathway. Here, we developed cargo-less particles as a single-agent, multi-target platform to elicit broad anti-inflammatory action against innate immune cells challenged by multiple TLR agonists. The particles, prepared from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA), displayed potent molecular weight-, polymer composition-, and charge-dependent immunomodulatory properties, including downregulation of TLR-induced costimulatory molecule expression and cytokine secretion. Particles prepared using the anionic surfactant poly(ethylene-alt-maleic acid) (PEMA) significantly blunted the responses of antigen presenting cells to TLR4 (lipopolysaccharide) and TLR9 (CpG-ODN) agonists, demonstrating broad inhibitory activity to both extracellular and intracellular TLR ligands. Interestingly, particles prepared using poly(vinyl alcohol) (PVA), a neutrally-charged surfactant, only marginally inhibited inflammatory cytokine secretions. The biochemical pathways modulated by particles were investigated using TRanscriptional Activity CEll aRrays (TRACER), which implicated IRF1, STAT1, and AP-1 in the mechanism of action for PLA-PEMA particles. Using an LPS-induced endotoxemia mouse model, administration of PLA-PEMA particles prior to or following a lethal challenge resulted in significantly improved mean survival. Cargo-less particles affect multiple biological pathways involved in the development of inflammatory responses by innate immune cells and represent a potentially promising therapeutic strategy to treat severe inflammation.
Collapse
Affiliation(s)
- Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA
| | - Sandeep Kakade
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Justin A Rose
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Kyle Deans
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA.
| | - Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA; Department of Pharmaceutical Sciences, University of Maryland, 20 N. Pine Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
60
|
Caslin HL, Abebayehu D, Abdul Qayum A, Haque TT, Taruselli MT, Paez PA, Pondicherry N, Barnstein BO, Hoeferlin LA, Chalfant CE, Ryan JJ. Lactic Acid Inhibits Lipopolysaccharide-Induced Mast Cell Function by Limiting Glycolysis and ATP Availability. THE JOURNAL OF IMMUNOLOGY 2019; 203:453-464. [PMID: 31160535 DOI: 10.4049/jimmunol.1801005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Abstract
Sepsis has a well-studied inflammatory phase, with a less-understood secondary immunosuppressive phase. Elevated blood lactate and slow lactate clearance are associated with mortality; however, regulatory roles are unknown. We hypothesized that lactic acid (LA) contributes to the late phase and is not solely a consequence of bacterial infection. No studies have examined LA effects in sepsis models in vivo or a mechanism by which it suppresses LPS-induced activation in vitro. Because mast cells can be activated systemically and contribute to sepsis, we examined LA effects on the mast cell response to LPS. LA significantly suppressed LPS-induced cytokine production and NF-κB transcriptional activity in mouse bone marrow-derived mast cells and cytokine production in peritoneal mast cells. Suppression was MCT-1 dependent and reproducible with sodium lactate or formic acid. Further, LA significantly suppressed cytokine induction following LPS-induced endotoxemia in mice. Because glycolysis is linked to inflammation and LA is a byproduct of this process, we examined changes in glucose metabolism. LA treatment reduced glucose uptake and lactate export during LPS stimulation. LA effects were mimicked by glycolytic inhibitors and reversed by increasing ATP availability. These results indicate that glycolytic suppression and ATP production are necessary and sufficient for LA effects. Our work suggests that enhancing glycolysis and ATP production could improve immune function, counteracting LA suppressive effects in the immunosuppressive phase of sepsis.
Collapse
Affiliation(s)
- Heather L Caslin
- Virginia Commonwealth University Life Sciences, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Patrick A Paez
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Neha Pondicherry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - L Alexis Hoeferlin
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Charles E Chalfant
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612; and.,Moffitt Cancer Center, Tampa, FL 33620
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284;
| |
Collapse
|
61
|
Chen Y, Feng R, Yang X, Dai J, Huang M, Ji X, Li Y, Okekunle AP, Gao G, Onwuka JU, Pang X, Wang C, Li C, Li Y, Sun C. Yogurt improves insulin resistance and liver fat in obese women with nonalcoholic fatty liver disease and metabolic syndrome: a randomized controlled trial. Am J Clin Nutr 2019; 109:1611-1619. [PMID: 31136662 DOI: 10.1093/ajcn/nqy358] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Because consumption of conventional yogurt has beneficial effects in a healthy population, and insulin resistance (IR) is the mutual pathogenesis in nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS), we hypothesized that yogurt would ameliorate IR in patients with NAFLD and MetS. OBJECTIVES The aim of this study was to investigate the effects of yogurt on IR and secondary endpoints including liver fat, gut microbiota, and serum biomarkers of inflammation and oxidative stress in obese women with NAFLD and MetS. METHODS One hundred obese women aged 36-66 y with both NAFLD and MetS were randomly assigned to consume 220 g/d of either conventional yogurt or milk for 24 wk. At baseline and week 24, we measured anthropometric indices, serum glucose, insulin, lipids, and cytokines in all participants, and liver fat and gut microbiota in 20 participants randomly selected from each group. RESULTS Forty-eight participants from the yogurt group and 44 from the milk group completed the intervention. Compared with milk, yogurt significantly decreased the homeostasis model assessment of insulin resistance (-0.53; 95% CI: -1.03, -0.02), fasting insulin (-2.77 mU/L; 95% CI: -4.91, -0.63 mU/L), 2-h insulin (-25.5 mU/L; 95% CI: -33.0, -17.9 mU/L), 2-h area under the curve for insulin (-29.4 mU/L · h; 95% CI: -44.0, -14.8 mU/L · h), alanine aminotransferase (-4.65 U/L; 95% CI: -8.67, -0.64 U/L), intrahepatic lipid (-3.44%; 95% CI: -6.19%, -0.68%), and hepatic fat fraction (-3.48%; 95% CI: -6.34%, -0.63%). Yogurt also decreased serum LPS (-0.31 EU/mL; 95% CI: -0.48, -0.14 EU/mL), fibroblast growth factor 21 (-57.76 pg/mL; 95% CI: -86.32, -29.19 pg/mL), lipids, and biomarkers of inflammation and oxidative stress, and altered gut microbiota composition. Mediation analysis showed that yogurt may improve IR by reducing serum lipids, inflammation, oxidative stress, and LPS. CONCLUSIONS Yogurt was better than milk at ameliorating IR and liver fat in obese Chinese women with NAFLD and MetS, possibly by improving lipid metabolism, reducing inflammation, oxidative stress, and LPS, and changing the gut microbiota composition. This trial was registered at www.chictr.org.cn as ChiCTR-IPR-15006801.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nutrition and Food Hygiene
| | - Rennan Feng
- Department of Nutrition and Food Hygiene
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xue Yang
- Department of Nutrition and Food Hygiene
| | - Jiaxing Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Huang
- Department of Nutrition and Food Hygiene
| | | | - Yong Li
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | | | - Guanghui Gao
- Department of Physics and Chemistry, Food Inspection Institute, Liaoning Province, China
| | | | - Xiuyu Pang
- Department of Nutrition and Food Hygiene
| | - Cheng Wang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Chunlong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene
| | | |
Collapse
|
62
|
Bastian D, Wu Y, Betts BC, Yu XZ. The IL-12 Cytokine and Receptor Family in Graft-vs.-Host Disease. Front Immunol 2019; 10:988. [PMID: 31139181 PMCID: PMC6518430 DOI: 10.3389/fimmu.2019.00988] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed with curative intent for high- risk blood cancers and bone marrow failure syndromes; yet the development of acute and chronic graft-vs.-host disease (GVHD) remain preeminent causes of death and morbidity. The IL-12 family of cytokines is comprised of IL-12, IL-23, IL-27, IL-35, and IL-39. This family of cytokines is biologically distinct in that they are composed of functional heterodimers, which bind to cognate heterodimeric receptor chains expressed on T cells. Of these, IL-12 and IL-23 share a common β cytokine subunit, p40, as well as a receptor chain: IL-12Rβ1. IL-12 and IL-23 have been documented as proinflammatory mediators of GVHD, responsible for T helper 1 (Th1) differentiation and T helper 17 (Th17) stabilization, respectively. The role of IL-27 is less defined, seemingly immune suppressive via IL-10 secretion by Type 1 regulatory (Tr1) cells yet promoting inflammation through impairing CD4+ T regulatory (Treg) development and/or enhancing Th1 differentiation. More recently, IL-35 was described as a potent anti-inflammatory agent produced by regulatory B and T cells. The role of the newest member, IL-39, has been implicated in proinflammatory B cell responses but has not been explored in the context of allo-HCT. This review is directed at discussing the current literature relevant to each IL-12-family cytokine and cognate receptor engagement, as well as the consequential downstream signaling implications, during GVHD pathogenesis. Additionally, we will provide an overview of translational strategies targeting the IL-12 family cytokines, their receptors, and subsequent signal transduction to control GVHD.
Collapse
Affiliation(s)
- David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Brian C Betts
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
63
|
Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, Miller SD, Shea LD. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release 2019; 300:185-196. [PMID: 30822435 DOI: 10.1016/j.jconrel.2019.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Inflammation associated with autoimmune diseases and chronic injury is an initiating event that leads to tissue degeneration and dysfunction. Inflammatory monocytes and neutrophils systemically circulate and enter inflamed tissue, and pharmaceutical based targeting of these cells has not substantially improved outcomes and has had side effects. Herein, we investigated the design of drug-free biodegradable nanoparticles, notably without any active pharmaceutical ingredient or targeting ligand, that target circulating inflammatory monocytes and neutrophils in the vasculature to inhibit them from migrating into inflamed tissue. Nanoparticles were formed from 50:50 poly(DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly(DL-lactide) (PLA) (termed PLG-L, PLG-H, and PDLA, respectively) and were analyzed for their association with monocytes and neutrophils and their impact on disease course along with immune cell trafficking. For particles injected intravenously for 6 consecutive days to mice with experimental autoimmune encephalomyelitis (EAE), PLG-H particles had significantly lower EAE clinical scores than PBS control, while PLG-L and PDLA particles had modest or negligible effect on EAE onset. In vivo and in vitro data suggests that PLG-H particles had high association with immune cells, with preferential association with blood neutrophils relative to other particles. PLG-H particles restrained immune cells from the central nervous system (CNS), with increased accumulation in the spleen, which was not observed for mice receiving PDLA or control treatments. These results demonstrate that the particle composition influences the association with inflammatory monocytes and neutrophils in the vasculature, with the potential to redirect trafficking and ameliorate inflammation.
Collapse
Affiliation(s)
- Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Nishant Gohel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Cheung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Science, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
64
|
Stone SC, Rossetti RAM, Alvarez KLF, Carvalho JP, Margarido PFR, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP, Lepique AP. Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol 2019; 105:1041-1054. [PMID: 30811636 DOI: 10.1002/jlb.3a0718-274rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer continues to be a public health problem in developing countries. Previous studies have shown that cervical cancer cells display markers of aerobic glycolysis, indicating that these tumors are likely to secrete lactate. Mostly, lactate is recognized as a molecule capable of suppressing immune responses, through inhibition of T cells, Mϕs, and dendritic cells. We and others have previously shown that Mϕs are frequent cells infiltrating cervical cancers with the ability to inhibit antitumor immune responses and promote tumor growth through angiogenesis. Here, we have tested the hypothesis that lactate, secreted by cervical cancer cells, can modulate Mϕ phenotype. First, we showed higher lactate plasma concentrations in patients with increasing cervical lesion grades, with maximum concentration in the plasma of cancer patients, which supported our hypothesis. We then inhibited lactate production in tumor cell spheroids established from cervical cancer derived cell lines, using the lactate dehydrogenase inhibitor, oxamate, prior to co-culture with monocytes. Lactate mediated part of the crosstalk between tumor cells and Mϕs, promoting secretion of IL-1β, IL-10, IL-6, and up-regulation of hypoxia induced factor-1α expression, and down-regulation of p65-NFκB phosphorylation in Mϕs. We also showed that Mϕs from co-cultures treated with oxamate were better inducers of T cell activation. Of note, experiments performed with inhibition of the monocarboxylate transporters rendered similar results. Our data confirms the hypothesis that lactate, secreted by cervical tumor cells, influences the phenotype of tumor Mϕs, promoting a suppressive phenotype.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Coculture Techniques
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation
- Glycolysis/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- L-Lactate Dehydrogenase/antagonists & inhibitors
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lactic Acid/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Middle Aged
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasm Grading
- Oxidative Phosphorylation/drug effects
- Phenotype
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Simone Cardozo Stone
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Jesus Paula Carvalho
- Department of Oncologic Gynecology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Edmund Chada Baracat
- Department of Oncologic Gynecology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maricy Tacla
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Kaori Yokochi
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Noely Paula Lorenzi
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
65
|
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate Inhibit IL-12 Secretion by Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2019; 20:ijms20030742. [PMID: 30744183 PMCID: PMC6387367 DOI: 10.3390/ijms20030742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) or a reduced expression of L-2-hydroxyglutarate (HG)-dehydrogenase result in accumulation of D-2-HG or L-2-HG, respectively, in tumor tissues. D-2-HG and L-2-HG have been shown to affect T-cell differentiation and activation; however, effects on human myeloid cells have not been investigated so far. In this study we analyzed the impact of D-2-HG and L-2-HG on activation and maturation of human monocyte-derived dendritic cells (DCs). 2-HG was taken up by DCs and had no impact on cell viability but diminished CD83 expression after Lipopolysaccharides (LPS) stimulation. Furthermore, D-2-HG and L-2-HG significantly reduced IL-12 secretion but had no impact on other cytokines such as IL-6, IL-10 or TNF. Gene expression analyses of the IL-12 subunits p35/IL-12A and p40/IL-12B in DCs revealed decreased expression of both subunits. Signaling pathways involved in LPS-induced cytokine expression (NFkB, Akt, p38) were not altered by D-2-HG. However, 2-HG reprogrammed LPS-induced metabolic changes in DCs and increased oxygen consumption. Addition of the ATP synthase inhibitor oligomycin to DC cultures increased IL-12 secretion and was able to partially revert the effect of 2-HG. Our data show that both enantiomers of 2-HG can limit activation of DCs in the tumor environment.
Collapse
|
66
|
Abstract
Serum lactate levels are traditionally interpreted as a marker of tissue hypoxia and often used clinically as an indicator of severity and outcome of sepsis/septic shock. Interestingly, recent studies involving the effects of tumor-derived lactate suggest that lactate itself may have an immunosuppressive effect in its local environment. This finding adds to the recent advances in immunometabolism that shed light on the importance of metabolism and metabolic intermediates in the regulation of innate immune and inflammatory responses in sepsis. In this article, we summarize recent studies, showing that the activation of immune cells requires aerobic glycolytic metabolism and that lactate produced by aerobic glycolysis may play an immunosuppressive role in sepsis.
Collapse
|
67
|
Divergent Effectiveness of Multispecies Probiotic Preparations on Intestinal Microbiota Structure Depends on Metabolic Properties. Nutrients 2019; 11:nu11020325. [PMID: 30717413 PMCID: PMC6412585 DOI: 10.3390/nu11020325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that probiotic functionality is not accurately predicted by their taxonomy. Here, we have set up a study to investigate the effectiveness of two probiotic formulations containing a blend of seven bacterial species in modulating intestinal inflammation in two rodent models of colitis, induced by treating mice with 2,4,6-Trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulfate (DSS). Despite the taxonomy of the bacterial species in the two probiotic formulations being similar, only one preparation (Blend 2-Vivomixx) effectively attenuated the development of colitis in both models. In the TNBS model of colitis, Blend 2 reduced the expression of pro-inflammatory genes while increasing the production of anti-inflammatory cytokines, promoting the expansion M2 macrophages and the formation of IL-10-producing Treg cells in the colon's lamina propria. In the DSS model of colitis, disease attenuation and Treg formation was observed only in mice administered with Blend 2, and this effect was associated with intestinal microbiota remodeling and increased formation of lactate, butyrate, and propionate. None of these effects were observed in mice administered with Blend 1 (VSL#3). In summary, we have shown that two probiotic mixtures obtained by combining taxonomically similar species produced with different manufacturing methods exert divergent effects in mouse models of colitis.
Collapse
|
68
|
Domblides C, Lartigue L, Faustin B. Control of the Antitumor Immune Response by Cancer Metabolism. Cells 2019; 8:cells8020104. [PMID: 30708988 PMCID: PMC6406288 DOI: 10.3390/cells8020104] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The metabolic reprogramming of tumor cells and immune escape are two major hallmarks of cancer cells. The metabolic changes that occur during tumorigenesis, enabling survival and proliferation, are described for both solid and hematological malignancies. Concurrently, tumor cells have deployed mechanisms to escape immune cell recognition and destruction. Additionally, therapeutic blocking of tumor-mediated immunosuppression has proven to have an unprecedented positive impact in clinical oncology. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune signaling through both the release of signaling molecules and the expression of immune membrane ligands. Here, we review these molecular events to highlight the contribution of cancer cell metabolic reprogramming on the shaping of the antitumor immune response.
Collapse
Affiliation(s)
- Charlotte Domblides
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Department of Medical Oncology, Hôpital Saint-André, Bordeaux University Hospital-CHU, 33000 Bordeaux, France.
| | - Lydia Lartigue
- Curematch, Inc., 6440 Lusk Bvld, San Diego, CA 92121, USA.
| | - Benjamin Faustin
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Cellomet, CGFB, 146 Rue léo Saignat, F-33000 Bordeaux, France.
| |
Collapse
|
69
|
Wang Y, Leong LE, Keating RL, Kanno T, Abell GC, Mobegi FM, Choo JM, Wesselingh SL, Mason AJ, Burr LD, Rogers GB. Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut. Gut Microbes 2018; 10:367-381. [PMID: 30359203 PMCID: PMC6546330 DOI: 10.1080/19490976.2018.1534512] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chronic disruption of the intestinal microbiota in adult cystic fibrosis (CF) patients is associated with local and systemic inflammation, and has been linked to the risk of serious comorbidities. Supplementation with high amylose maize starch (HAMS) might provide clinical benefit by promoting commensal bacteria and the biosynthesis of immunomodulatory metabolites. However, whether the disrupted CF gut microbiota has the capacity to utilise these substrates is not known. We combined metagenomic sequencing, in vitro fermentation, amplicon sequencing, and metabolomics to define the characteristics of the faecal microbiota in adult CF patients and assess HAMS fermentation capacity. Compared to healthy controls, the faecal metagenome of adult CF patients had reduced bacterial diversity and prevalence of commensal fermentative clades. In vitro fermentation models seeded with CF faecal slurries exhibited reduced acetate levels compared to healthy control reactions, but comparable levels of butyrate and propionate. While the commensal genus Faecalibacterium was strongly associated with short chain fatty acid (SCFA) production by healthy microbiota, it was displaced in this role by Clostridium sensu stricto 1 in the microbiota of CF patients. A subset of CF reactions exhibited enterococcal overgrowth, resulting in lactate accumulation and reduced SCFA biosynthesis. The addition of healthy microbiota to CF faecal slurries failed to displace predominant CF taxa, or substantially influence metabolite biosynthesis. Despite significant microbiota disruption, the adult CF gut microbiota retains the capacity to exploit HAMS. Our findings highlight the potential for taxa associated with the altered CF gut microbiotato mediate prebiotic effects in microbial systems subject to ongoing perturbation, irrespective of the depletion of common commensal clades.
Collapse
Affiliation(s)
- Yanan Wang
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia,SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, Australia
| | - Lex E.X. Leong
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia,SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, Australia
| | - Rebecca L. Keating
- Department of Respiratory Medicine, Mater Health Services, South Brisbane, Australia
| | - Tokuwa Kanno
- King’s College London, Institute of Pharmaceutical Science, London, UK
| | - Guy C.J. Abell
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia
| | - Fredrick M. Mobegi
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia,SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, Australia
| | - Jocelyn M. Choo
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia,SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, Australia
| | - Steve L. Wesselingh
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia
| | - A. James Mason
- King’s College London, Institute of Pharmaceutical Science, London, UK
| | - Lucy D. Burr
- Department of Respiratory Medicine, Mater Health Services, South Brisbane, Australia,Mater Research, University of Queensland, South Brisbane, Australia
| | - Geraint B. Rogers
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, Adelaide, Australia,SAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, Australia,CONTACT Geraint B. Rogers SAHMRI Microbiome Research Laboratory, Flinders Medical Centre, Flinders Drive, Bedford Park, SA 5042, Australia
| |
Collapse
|
70
|
Wang Y, Xiao D, Liu Q, Zhang Y, Hu C, Sun J, Yang C, Xu P, Ma C, Gao C. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:569-575. [PMID: 30066495 DOI: 10.1111/1758-2229.12666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa often establishes a chronic infection in the airways of patients with cystic fibrosis (CF). l-Lactate is the most abundant carbon source in the CF sputum, and l-lactate utilization may be important for P. aeruginosa to survive in the lungs of CF patients. In this study, the key enzymes involved in l-lactate utilization by P. aeruginosa PAO1 were characterized using the synthetic CF sputum medium (SCFM). A highly conserved membrane-bound NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by lldD (PA4771) and a novel flavin-containing membrane-bound l-iLDH encoded by lldA (PA2382) were both found to contribute to l-lactate utilization by P. aeruginosa PAO1. In addition, an lldD and lldA double mutant was incapable of growing in a medium containing l-lactate as the sole carbon source. This study clarifies the mechanism and importance of l-lactate catabolism, and demonstrates the first Pseudomonas spp. expressing two l-lactate-oxidizing enzymes.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qiuyuan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yipeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunxia Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinkai Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
71
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
72
|
Sun S, Li H, Chen J, Qian Q. Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology (Bethesda) 2018; 32:453-463. [PMID: 29021365 DOI: 10.1152/physiol.00016.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
For decades, lactic acid has been considered a dead-end product of glycolysis. Research in the last 20+ years has shown otherwise. Through its transporters (MCTs) and receptor (GPR81), lactic acid plays a key role in multiple cellular processes, including energy regulation, immune tolerance, memory formation, wound healing, ischemic tissue injury, and cancer growth and metastasis. We summarize key findings of lactic acid signaling, functions, and many remaining questions.
Collapse
Affiliation(s)
- Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xian, China
| | - Heng Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
73
|
Gupta P, Barthwal MK. IL-1 β genesis: the art of regulating the regulator. Cell Mol Immunol 2018; 15:998-1000. [PMID: 29921967 DOI: 10.1038/s41423-018-0054-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Priya Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Manoj K Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India.
| |
Collapse
|
74
|
Ding J, Karp JE, Emadi A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomark 2018; 19:353-363. [PMID: 28582845 DOI: 10.3233/cbm-160336] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolism of neoplastic cells is shifted toward high glucose uptake and enhanced lactate production. Lactate dehydrogenase (LDH), which is comprised of two major subunits, LDH-A and LDH-B, reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate. LDH-A has a higher affinity for pyruvate and is a key enzyme in the glycolytic pathway. Elevated LDH is a negative prognostic biomarker not only because it is a key enzyme involved in cancer metabolism, but also because it allows neoplastic cells to suppress and evade the immune system by altering the tumor microenvironment. LDH-A alters the tumor microenvironment via increased production of lactate. This leads to enhancement of immune-suppressive cells, such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells (DCs); and inhibition of cytolytic cells, such as natural killer (NK) cells and cytotoxic T-lymphocytes (CTLs). By promoting immune-suppression in the tumor microenvironment, LDH-A is able to promote resistance to chemo/radio/targeted therapy. Here we discuss the evidence that LDH is both a metabolic and an immune surveillance prognostic biomarker and its elevation is harbinger of negative outcome in both solid and hematologic neoplasms.
Collapse
Affiliation(s)
- Jennifer Ding
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Judith E Karp
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, MD, USA
| | - Ashkan Emadi
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
75
|
Morrot A, da Fonseca LM, Salustiano EJ, Gentile LB, Conde L, Filardy AA, Franklim TN, da Costa KM, Freire-de-Lima CG, Freire-de-Lima L. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Front Oncol 2018; 8:81. [PMID: 29629338 PMCID: PMC5876249 DOI: 10.3389/fonc.2018.00081] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is composed by cellular and non-cellular components. Examples include the following: (i) bone marrow-derived inflammatory cells, (ii) fibroblasts, (iii) blood vessels, (iv) immune cells, and (v) extracellular matrix components. In most cases, this combination of components may result in an inhospitable environment, in which a significant retrenchment in nutrients and oxygen considerably disturbs cell metabolism. Cancer cells are characterized by an enhanced uptake and utilization of glucose, a phenomenon described by Otto Warburg over 90 years ago. One of the main products of this reprogrammed cell metabolism is lactate. "Lactagenic" or lactate-producing cancer cells are characterized by their immunomodulatory properties, since lactate, the end product of the aerobic glycolysis, besides acting as an inducer of cellular signaling phenomena to influence cellular fate, might also play a role as an immunosuppressive metabolite. Over the last 10 years, it has been well accepted that in the TME, the lactate secreted by transformed cells is able to compromise the function and/or assembly of an effective immune response against tumors. Herein, we will discuss recent advances regarding the deleterious effect of high concentrations of lactate on the tumor-infiltrating immune cells, which might characterize an innovative way of understanding the tumor-immune privilege.
Collapse
Affiliation(s)
- Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Eduardo J. Salustiano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Boffoni Gentile
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Instituto de Microbiologia, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Almeida Filardy
- Instituto de Microbiologia, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiany Nunes Franklim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
76
|
Allen RP, Bolandparvaz A, Ma JA, Manickam VA, Lewis JS. Latent, Immunosuppressive Nature of Poly(lactic- co-glycolic acid) Microparticles. ACS Biomater Sci Eng 2018; 4:900-918. [PMID: 30555893 PMCID: PMC6290919 DOI: 10.1021/acsbiomaterials.7b00831] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Use of biomaterials to spatiotemporally control the activation of immune cells is at the forefront of biomedical engineering research. As more biomaterial strategies are employed for immunomodulation, understanding the immunogenicity of biodegradable materials and their byproducts is paramount in tailoring systems for immune activation or suppression. Poly(D,L-lactic-co-glycolic acid) (PLGA), one of the most commonly studied polymers in tissue engineering and drug delivery, has been previously described on one hand as an immune adjuvant, and on the other as a nonactivating material. In this study, the effect of PLGA microparticles (MPs) on the maturation status of murine bone marrow-derived dendritic cells (DCs), the primary initiators of adaptive immunity, was investigated to decipher the immunomodulatory properties of this biomaterial. Treatment of bone marrow-derived DCs from C57BL/6 mice with PLGA MPs led to a time dependent decrease in the maturation level of these cells, as quantified by decreased expression of the positive stimulatory molecules MHCII, CD80, and CD86 as well as the ability to resist maturation following challenge with lipopolysaccharide (LPS). Moreover, this immunosuppression was dependent on the molecular weight of the PLGA used to fabricate the MPs, as higher molecular weight polymers required longer incubation to produce comparable dampening of maturation molecules. These phenomena were correlated to an increase in lactic acid both intracellularly and extracellularly during DC/PLGA MP coculture, which is postulated to be the primary agent behind the observed immune inhibition. This hypothesis is supported by our results demonstrating that resistance to LPS stimulation may be due to the ability of PLGA MP-derived lactic acid to inhibit the phosphorylation of TAK1 and therefore prevent NF-κB activation. This work is significant as it begins to elucidate how PLGA, a prominent biomaterial with broad applications ranging from tissue engineering to pharmaceutics, could modulate the local immune environment and offers insight on engineering PLGA to exploit its evolving immunogenicity.
Collapse
Affiliation(s)
- Riley P. Allen
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Amir Bolandparvaz
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Vishal A. Manickam
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
77
|
Hearps AC, Tyssen D, Srbinovski D, Bayigga L, Diaz DJD, Aldunate M, Cone RA, Gugasyan R, Anderson DJ, Tachedjian G. Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol 2017; 10:1480-1490. [PMID: 28401934 DOI: 10.1038/mi.2017.27] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/24/2017] [Indexed: 02/04/2023]
Abstract
Inflammation in the female reproductive tract (FRT) is associated with increased HIV transmission. Lactobacillus spp. dominate the vaginal microbiota of many women and their presence is associated with reduced HIV acquisition. Here we demonstrate that lactic acid (LA), a major organic acid metabolite produced by lactobacilli, mediates anti-inflammatory effects on human cervicovaginal epithelial cells. Treatment of human vaginal and cervical epithelial cell lines with LA (pH 3.9) elicited significant increases in the production of the anti-inflammatory cytokine IL-1RA. When added simultaneously or prior to stimulation, LA inhibited the Toll-like receptor agonist-elicited production of inflammatory mediators IL-6, IL-8, TNFα, RANTES, and MIP3α from epithelial cell lines and prevented IL-6 and IL-8 production by seminal plasma. The anti-inflammatory effect of LA was mediated by the protonated form present at pH≤3.86 and was observed with both L- and D-isomers. A similar anti-inflammatory effect of LA was observed in primary cervicovaginal cells and in an organotypic epithelial tissue model. These findings identify a novel property of LA that acts directly on epithelial cells to inhibit FRT inflammation and highlights the potential use of LA-containing agents in the lower FRT as adjuncts to female-initiated strategies to reduce HIV acquisition.
Collapse
Affiliation(s)
- A C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - D Tyssen
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - D Srbinovski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - L Bayigga
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - D J D Diaz
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - M Aldunate
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - R A Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Gugasyan
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - D J Anderson
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - G Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
78
|
Indoxyl 3-sulfate inhibits maturation and activation of human monocyte-derived dendritic cells. Immunobiology 2017; 223:239-245. [PMID: 29100619 DOI: 10.1016/j.imbio.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023]
Abstract
Indole is produced from l-tryptophan by commensal bacteria and further metabolized to indoxyl 3-sulfate (I3S) in the liver. Physiologic concentrations of I3S are related to a lower risk to develop graft versus host disease in allogeneic stem cell transplanted patients pointing towards an immunoregulatory function of I3S. Here we investigated the impact of I3S on the maturation of human monocyte-derived dendritic cells (DCs). Even pathophysiologic concentrations of I3S did not affect viability of mature DCs, but I3S decreased the expression of co-stimulatory molecules such as CD80 and CD86 on mature DCs. Furthermore, I3S inhibited IL-12 and IL-6 secretion by mature DCs while IL-10 was significantly upregulated. Co-culture of I3S-treated mature DCs with allogeneic T cells revealed no alteration in T cell proliferation. However, interferon gamma and TNF production of T cells was suppressed. As I3S exerted no direct effect on T cells, the defect in T cell activation was mediated by I3S-treated mature DCs. Our study suggests an anti-inflammatory and tolerizing effect of I3S on human DCs.
Collapse
|
79
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
80
|
Zwicker P, Schultze N, Niehs S, Albrecht D, Methling K, Wurster M, Wachlin G, Lalk M, Lindequist U, Haertel B. Differential effects of Helenalin, an anti-inflammatory sesquiterpene lactone, on the proteome, metabolome and the oxidative stress response in several immune cell types. Toxicol In Vitro 2017; 40:45-54. [DOI: 10.1016/j.tiv.2016.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
|
81
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
82
|
Keselowsky BG, Lewis JS. Dendritic cells in the host response to implanted materials. Semin Immunol 2017; 29:33-40. [PMID: 28487131 PMCID: PMC5612375 DOI: 10.1016/j.smim.2017.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
The role of dendritic cells (DCs) and their targeted manipulation in the body's response to implanted materials is an important and developing area of investigation, and a large component of the emerging field of biomaterials-based immune engineering. The key position of DCs in the immune system, serving to bridge innate and adaptive immunity, is facilitated by rich diversity in type and function and places DCs as a critical mediator to biomaterials of both synthetic and natural origins. This review presents current views regarding DC biology and summarizes recent findings in DC responses to implanted biomaterials. Based on these findings, there is promise that the directed programming of application-specific DC responses to biomaterials can become a reality, enabling and enhancing applications almost as diverse as the larger field of biomaterials itself.
Collapse
Affiliation(s)
- Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 USA.
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
83
|
Iraporda C, Romanin DE, Bengoa AA, Errea AJ, Cayet D, Foligné B, Sirard JC, Garrote GL, Abraham AG, Rumbo M. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Front Immunol 2016; 7:651. [PMID: 28082985 PMCID: PMC5187354 DOI: 10.3389/fimmu.2016.00651] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.
Collapse
Affiliation(s)
- Carolina Iraporda
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - David E Romanin
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Ana A Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Agustina J Errea
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Delphine Cayet
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Benoit Foligné
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA), La Plata, Argentina; Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| |
Collapse
|
84
|
Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1290-1296. [DOI: 10.1007/s11427-016-0348-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
|
85
|
Abebayehu D, Spence AJ, Qayum AA, Taruselli MT, McLeod JJA, Caslin HL, Chumanevich AP, Kolawole EM, Paranjape A, Baker B, Ndaw VS, Barnstein BO, Oskeritzian CA, Sell SA, Ryan JJ. Lactic Acid Suppresses IL-33-Mediated Mast Cell Inflammatory Responses via Hypoxia-Inducible Factor-1α-Dependent miR-155 Suppression. THE JOURNAL OF IMMUNOLOGY 2016; 197:2909-17. [PMID: 27559047 DOI: 10.4049/jimmunol.1600651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023]
Abstract
Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33-mediated mast cell function is unknown. To investigate this, mouse bone marrow-derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33-mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1- and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-β-activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow-derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α-dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33-induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33-induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Alena P Chumanevich
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208; and
| | | | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Victor S Ndaw
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208; and
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284;
| |
Collapse
|
86
|
Hutcheson J, Balaji U, Porembka MR, Wachsmann MB, McCue PA, Knudsen ES, Witkiewicz AK. Immunologic and Metabolic Features of Pancreatic Ductal Adenocarcinoma Define Prognostic Subtypes of Disease. Clin Cancer Res 2016; 22:3606-17. [PMID: 26858311 PMCID: PMC4947442 DOI: 10.1158/1078-0432.ccr-15-1883] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is associated with an immunosuppressive microenvironment that supports the growth of the malignancy as well as immune system evasion. Here we examine markers of immunosuppression in PDA within the context of the glycolytic tumor microenvironment, their interrelationship with tumor biology and association with overall survival. EXPERIMENTAL DESIGN We utilized tissue microarrays consisting of 223 PDA patients annotated for clinical stage, tumor size, lymph node involvement, and survival. Expression of CD163, FoxP3, PD-L1, and MCT4 was assessed by IHC and statistical associations were evaluated by univariate and multivariate analysis. Multimarker subtypes were defined by random forest analysis. Mechanistic interactions were evaluated using PDA cell lines and models for myeloid differentiation. RESULTS PDA exhibits discrete expression of CD163, FoxP3, and PD-L1 with modest individual significance. However, combined low expression of these markers was associated with improved prognosis (P = 0.02). PDA tumor cells altered macrophage phenotype and function, which supported enhanced invasiveness in cell-based models. Lactate efflux mediated by MCT4 was associated with, and required for, the selective conversion of myeloid cells. Correspondingly, MCT4 expression correlated with immune markers in PDA cases, and increased the significance of prognostic subtypes (P = 0.002). CONCLUSIONS There exists a complex interplay between PDA tumor cells and the host immune system wherein immunosuppression is associated with negative outcome. MCT4 expression, representative of the glycolytic state of PDA, contributes to the phenotypic conversion of myeloid cells. Thus, metabolic status of PDA tumors is an important determinant of the immunosuppressive environment. Clin Cancer Res; 22(14); 3606-17. ©2016 AACR.
Collapse
Affiliation(s)
- Jack Hutcheson
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - Uthra Balaji
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - Matthew R Porembka
- Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas. Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Megan B Wachsmann
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Peter A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Erik S Knudsen
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Agnieszka K Witkiewicz
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas. Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
87
|
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study. Mediators Inflamm 2016; 2016:5474837. [PMID: 27212809 PMCID: PMC4861798 DOI: 10.1155/2016/5474837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 11/24/2022] Open
Abstract
Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p = 0.047) and a decrease of MCP-1 (−17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.
Collapse
|
88
|
Lochmatter C, Fischer R, Charles PD, Yu Z, Powrie F, Kessler BM. Integrative Phosphoproteomics Links IL-23R Signaling with Metabolic Adaptation in Lymphocytes. Sci Rep 2016; 6:24491. [PMID: 27080861 PMCID: PMC4832251 DOI: 10.1038/srep24491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-23 mediated signal transduction represents a major molecular mechanism underlying the pathology of inflammatory bowel disease, Crohn's disease and ulcerative colitis. In addition, emerging evidence supports the role of IL-23-driven Th17 cells in inflammation. Components of the IL-23 signaling pathway, such as IL-23R, JAK2 and STAT3, have been characterized, but elements unique to this network as compared to other interleukins have not been readily explored. In this study, we have undertaken an integrative phosphoproteomics approach to better characterise downstream signaling events. To this end, we performed and compared phosphopeptide and phosphoprotein enrichment methodologies after activation of T lymphocytes by IL-23. We demonstrate the complementary nature of the two phosphoenrichment approaches by maximizing the capture of phosphorylation events. A total of 8202 unique phosphopeptides, and 4317 unique proteins were identified, amongst which STAT3, PKM2, CDK6 and LASP-1 showed induction of specific phosphorylation not readily observed after IL-2 stimulation. Interestingly, quantitative analysis revealed predominant phosphorylation of pre-existing STAT3 nuclear subsets in addition to translocation of phosphorylated STAT3 within 30 min after IL-23 stimulation. After IL-23R activation, a small subset of PKM2 also translocates to the nucleus and may contribute to STAT3 phosphorylation, suggesting multiple cellular responses including metabolic adaptation.
Collapse
Affiliation(s)
- Corinne Lochmatter
- Kennedy Institute, Nuffield Department of Orthopedics Research Medical Science, Roosevelt Drive, Oxford OX3 7LF, UK
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Roman Fischer
- Kennedy Institute, Nuffield Department of Orthopedics Research Medical Science, Roosevelt Drive, Oxford OX3 7LF, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Philip D. Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Zhanru Yu
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Fiona Powrie
- Kennedy Institute, Nuffield Department of Orthopedics Research Medical Science, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| |
Collapse
|
89
|
Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Front Immunol 2016; 7:52. [PMID: 26909082 PMCID: PMC4754406 DOI: 10.3389/fimmu.2016.00052] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 01/12/2023] Open
Abstract
Malignant transformation of cells leads to enhanced glucose uptake and the conversion of a larger fraction of pyruvate into lactate, even under normoxic conditions; this phenomenon of aerobic glycolysis is largely known as the Warburg effect. This metabolic reprograming serves to generate biosynthetic precursors, thus facilitating the survival of rapidly proliferating malignant cells. Extracellular lactate directs the metabolic reprograming of tumor cells, thereby serving as an additional selective pressure. Besides tumor cells, stromal cells are another source of lactate production in the tumor microenvironment, whose role in both tumor growth and the antitumor immune response is the subject of intense research. In this review, we provide an integral perspective of the relationship between lactate and the overall tumor microenvironment, from lactate structure to metabolic pathways for its synthesis, receptors, signaling pathways, lactate-producing cells, lactate-responding cells, and how all contribute to the tumor outcome. We discuss the role of lactate as an immunosuppressor molecule that contributes to tumor evasion and we explore the possibility of targeting lactate metabolism for cancer treatment, as well as of using lactate as a prognostic biomarker.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Chronic-Degenerative Department, National Institute of Respiratory Diseases "Ismael Cosio Villegas" , Mexico City , Mexico
| | - María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , Mexico City , Mexico
| | - Heriberto Prado-Garcia
- Chronic-Degenerative Department, National Institute of Respiratory Diseases "Ismael Cosio Villegas" , Mexico City , Mexico
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , Mexico City , Mexico
| |
Collapse
|
90
|
Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci Rep 2015; 5:13092. [PMID: 26271607 PMCID: PMC4536527 DOI: 10.1038/srep13092] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
The biomechanics stress and chronic inflammation in obesity are causally linked to osteoarthritis. However, the metabolic factors mediating obesity-related osteoarthritis are still obscure. Here we scanned and identified at least two elevated metabolites (stearic acid and lactate) from the plasma of diet-induced obese mice. We found that stearic acid potentiated LDH-a-dependent production of lactate, which further stabilized HIF1α protein and increased VEGF and proinflammatory cytokine expression in primary mouse chondrocytes. Treatment with LDH-a and HIF1α inhibitors notably attenuated stearic acid-or high fat diet-stimulated proinflammatory cytokine production in vitro and in vivo. Furthermore, positive correlation of plasma lactate, cartilage HIF1α and cytokine levels with the body mass index was observed in subjects with osteoarthritis. In conclusion, saturated free fatty acid induced proinflammatory cytokine production partly through activation of a novel lactate-HIF1α pathway in chondrocytes. Our findings hold promise of developing novel clinical strategies for the management of obesity-related diseases such as osteoarthritis.
Collapse
|
91
|
Hu X, Tian Y, Wang T, Zhang W, Wang W, Gao X, Qu S, Cao Y, Zhang N. TRAM-Derived Decoy Peptides inhibits the inflammatory response in mouse mammary epithelial cells and a mastitis model in mice. Eur J Pharmacol 2015; 764:607-612. [PMID: 26101068 DOI: 10.1016/j.ejphar.2015.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
Abstract
It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Yuan Tian
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Tiancheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Wei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Xuejiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Shihui Qu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, Republic of China.
| |
Collapse
|
92
|
Garrote GL, Abraham AG, Rumbo M. Is lactate an undervalued functional component of fermented food products? Front Microbiol 2015; 6:629. [PMID: 26150815 PMCID: PMC4473639 DOI: 10.3389/fmicb.2015.00629] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022] Open
Abstract
Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signaling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria.
Collapse
Affiliation(s)
- Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA - CONICET), Universidad Nacional de La Plata La Plata, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA - CONICET), Universidad Nacional de La Plata La Plata, Argentina ; Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP - CONICET), Universidad Nacional de La Plata La Plata, Argentina
| |
Collapse
|