51
|
Novel series of triazole containing coumarin and isatin based hybrid molecules as acetylcholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
52
|
Stebbins RC, Edwards JK, Plassman BL, Yang YC, Noppert GA, Haan M, Aiello AE. Immune function, cortisol, and cognitive decline & dementia in an aging latino population. Psychoneuroendocrinology 2021; 133:105414. [PMID: 34563836 PMCID: PMC8600484 DOI: 10.1016/j.psyneuen.2021.105414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The etiology of dementias and cognitive decline remain largely unknown. It is widely accepted that inflammation in the central nervous system plays a critical role in the pathogenesis of dementia. However, less is known about the role of the peripheral immune system and interactions with cortisol, though evidence suggests that these, too, may play a role. METHODS Using data from 1337 participants aged 60+ years from the Sacramento Area Latino Study of Aging (observational cohort) we investigated variation in trajectories of cognitive decline by pathogen IgG and cytokine levels. Linear mixed effects models were used to examine the association between baseline Interleukin (IL)-6, C-reactive protein, tumor necrosis factor (TNF)-α, and five persistent pathogens' IgG response and trajectories of cognition over 10 years, and to examine interactions between immune biomarkers and cortisol. Stratified cumulative incidence functions were used to assess the relation between biomarkers and incident dementia. Inverse probability weights accounted for loss-to-follow-up and confounding. RESULTS IL-6, TNF-α, and CMV IgG were statistically significantly associated with a higher log of Modified Mini-Mental State Examination errors (IL-6, β=0.0935 (95%CI: 0.055, 0.13), TNF-alpha β= 0.0944 (95%CI: 0.032, 0.157), and CMV, β= 0.0409 (95%CI: 0.013, 0.069)). Furthermore, cortisol interacted with HSV-1 and IL-6, and CRP for both cross-sectional cognitive function and rate of decline. No statistically significant relationship was detected between biomarkers and incidence of dementia. CONCLUSIONS These findings support the theory that the peripheral immune system may play a role in cognitive decline but not incident dementia. Furthermore, they identify specific markers amenable for intervention for slowing decline.
Collapse
Affiliation(s)
- Rebecca C Stebbins
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Social, Genetic, & Developmental Psychiatry CentreInstitute of Psychiatry, Psychology, and Neuroscience King's College London, London, United Kingdom.
| | - Jessie K Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brenda L Plassman
- Departments of Psychiatry and Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Y Claire Yang
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Sociology, Lineberger Cancer Center University of North Carolina at Chapel Hill, United States
| | - Grace A Noppert
- Social Environment and Health, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Mary Haan
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Allison E Aiello
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
53
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
54
|
Multiomics Identification of Potential Targets for Alzheimer Disease and Antrocin as a Therapeutic Candidate. Pharmaceutics 2021; 13:pharmaceutics13101555. [PMID: 34683848 PMCID: PMC8539161 DOI: 10.3390/pharmaceutics13101555] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the development and progression of dementia remain poorly understood. Therefore, identifying essential genes and molecular pathways that are associated with this disease’s pathogenesis will help uncover potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (ATP6V1A), BCL2 interacting protein 3 (BNIP3), calmodulin-dependent protein kinase IV (CAMK4), TOR signaling pathway regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 (TOMM70) as upregulated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1, CDK14, MAP2K4, YWHAB, PARK2, CMAS, HSPA12A, and RGS17. Taking the mean relative expression levels of this geneset in different brain regions into account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05) higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved in the pathogenesis of AD. Finally, our blood–brain barrier (BBB) predictions using the support vector machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is permeable to the BBB and exhibits robust ligand–receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties, drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS) Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a potential therapeutic agent. Further investigation is warranted.
Collapse
|
55
|
Mengr A, Hrubá L, Exnerová A, Holubová M, Popelová A, Železná B, Kuneš J, Maletínská L. Palmitoylated prolactin-releasing peptide reduced Aβ plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res 2021; 18:607-622. [PMID: 34551697 DOI: 10.2174/1567205018666210922110652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated type 2 diabetes mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s disease (AD)-like amyloid-β (Aβ) pathology, reducing the Aβ plaque load, microgliosis and astrocytosis in the hippocampus and cortex. OBJECTIVE In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aβ plaques contribute to cognitive deficits in AD. METHODS APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice. RESULTS In the cerebella of 8 months old APP/PS1 mice, we found widespread Aβ plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker glial fibrillary acidic protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aβ plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice. CONCLUSION These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Aneta Exnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| |
Collapse
|
56
|
Karoly HC, Skrzynski CJ, Moe E, Bryan AD, Hutchison KE. Investigating Associations Between Inflammatory Biomarkers, Gray Matter, Neurofilament Light and Cognitive Performance in Healthy Older Adults. Front Aging Neurosci 2021; 13:719553. [PMID: 34539381 PMCID: PMC8446648 DOI: 10.3389/fnagi.2021.719553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Exploring biological variables that may serve as indicators of the development and progression of cognitive decline is currently a high-priority research area. Recent studies have demonstrated that during normal aging, individuals experience increased inflammation throughout the brain and body, which may be linked to cognitive impairment and reduced gray matter volume in the brain. Neurofilament light polypeptide (NfL), which is released into the circulation following neuronal damage, has been proposed as a biomarker for neurodegenerative diseases, and may also have utility in the context of normal aging. The present study tested associations between age, peripheral levels of the pro-inflammatory cytokine IL-6, peripheral NfL, brain volume, and cognitive performance in a sample of healthy adults over 60 years old. Methods: Of the 273 individuals who participated in this study, 173 had useable neuroimaging data, a subset of whom had useable blood data (used for quantifying IL-6 and NfL) and completed a cognitive task. Gray matter (GM) thickness values were extracted from brain areas of interest using Freesurfer. Regression models were used to test relationships between IL-6, NfL, GM, and cognitive performance. To test putative functional relationships between these variables, exploratory path analytic models were estimated, in which the relationship between age, IL-6, and working memory performance were linked via four different operationalizations of brain health: (1) a latent GM variable composed of several regions linked to cognitive impairment, (2) NfL alone, (3) NfL combined with the GM latent variable, and (4) the hippocampus alone. Results: Regression models showed that IL-6 and NfL were significantly negatively associated with GM volume and that GM was positively associated with cognitive performance. The path analytic models indicated that age and cognitive performance are linked by GM in the hippocampus as well as several other regions previously associated with cognitive impairment, but not by NfL alone. Peripheral IL-6 was not associated with age in any of the path models. Conclusions: Results suggest that among healthy older adults, there are several GM regions that link age and cognitive performance. Notably, NfL alone is not a sufficient marker of brain changes associated with aging, inflammation, and cognitive performance.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, United States.,Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Carillon J Skrzynski
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Erin Moe
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kent E Hutchison
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.,Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
57
|
Kern DM, Lovestone S, Cepeda MS. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12163. [PMID: 34584936 PMCID: PMC8450793 DOI: 10.1002/trc2.12163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Peripheral inhibition of tumor necrosis factor (TNF)-α, outside of the central nervous system, may result in clinical improvement of Alzheimer's disease (AD) outcomes. TNF-α inhibitors (TNFIs) are effective treatments for various autoimmune conditions and may be effective for preventing and/or treating AD. The objective of this study was to compare the risk of dementia and AD in patients initiating methotrexate versus those initiating TNFIs. METHODS Insurance claims data from databases of commercially insured and Medicare-eligible patients were used to estimate the risk of dementia and AD within patients with rheumatoid arthritis (RA) initiating a TNFI versus initiation of methotrexate. A sensitivity analysis included all patients without the RA diagnosis requirement. The at-risk period spanned from the index date until a diagnosis of the outcome, loss-to-follow-up, or receipt of the comparator drug. Patients were matched 1-to-1 using propensity scores. A Cox proportional hazards model was used to estimate the hazard ratio (HR). Negative controls were used to calibrate the results. RESULTS A total of 11,092 new TNFI patients and 44,023 new methotrexate patients were identified, and 8925 from each group were matched. The outcome of dementia occurred in 1.4% of patients in both groups. The calibrated results from the Cox regression found no difference between the two groups (commercially insured database: calibrated HR = 0.69, 95% confidence interval = 0.45 to 1.05; Medicare-only database: 1.14, 0.66 to 1.96). Results were similar in all sensitivity analyses: outcome of AD and including patients without RA. DISCUSSION No significant difference for the risk of dementia or AD was seen between patients initiating a TNFI versus methotrexate. Although this study cannot conclude whether use of TNFIs is protective against dementia and AD compared with receiving no treatment, there was no evidence that it is more protective than the active comparator methotrexate.
Collapse
Affiliation(s)
- David M. Kern
- Janssen Research & DevelopmentLLCTitusvilleNew JerseyUSA
| | - Simon Lovestone
- Janssen Research & DevelopmentNeuroscienceBeerse, TurnhoutsewegBelgium
| | | |
Collapse
|
58
|
Chee SEJ, Solito E. The Impact of Ageing on the CNS Immune Response in Alzheimer's Disease. Front Immunol 2021; 12:738511. [PMID: 34603320 PMCID: PMC8484764 DOI: 10.3389/fimmu.2021.738511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease strongly associated with increasing age. Neuroinflammation and the accumulation of amyloid protein are amongst the hallmarks of this disease and most translational research to date has focused on targeting these two processes. However, the exact etiology of AD remains to be fully elucidated. When compared alongside, the immune response in AD closely resembles the central nervous system (CNS) immune changes seen in elderly individuals. It is possible that AD is a pathological consequence of an aged immune system secondary to chronic stimulation by a previous or ongoing insult. Pathological changes like amyloid accumulation and neuronal cell death may reflect this process of immunosenescence as the CNS immune system fails to maintain homeostasis in the CNS. It is likely that future treatments designed to modulate the aged immune system may prove beneficial in altering the disease course. The development of new tests for appropriate biomarkers would also be essential in screening for patients most likely to benefit from such treatments.
Collapse
Affiliation(s)
- Stephan En Jie Chee
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Federico II University, Naples, Italy
| |
Collapse
|
59
|
Antiamnesic and Neuroprotective Effects of an Aqueous Extract of Ziziphus jujuba Mill. (Rhamnaceae) on Scopolamine-Induced Cognitive Impairments in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5577163. [PMID: 34422074 PMCID: PMC8373493 DOI: 10.1155/2021/5577163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023]
Abstract
Background Alzheimer's disease is a neurological condition that affects about 44 million people worldwide. The available treatments target symptoms rather than the underlying causes. Ziziphus jujuba (Rhamnaceae) is widely used in traditional Cameroonian medicine to treat diabetes, pain, infections, and dementia. Previous studies reported that Z. jujuba aqueous macerate improves working memory impairment, but no study on the antiamnesic effect of a concoction of Z. jujuba in rats has been performed. Therefore, this study aimed to assess the antiamnesic and neuroprotective effects of an aqueous extract of Z. jujuba on scopolamine-induced cognitive impairments in rats. Methods Learning and memory impairments were induced in rats by administering scopolamine (1 mg/kg, i.p.) to 58 rats for 15 days. Rats that developed learning and memory impairments in Morris water maze and Y-maze paradigms were divided into 7 groups (8 rats each) and treated daily for 15 days as follows: the normal control group received distilled water (10 ml/kg, p.o.), the negative control group received distilled water (10 ml/kg, p.o.), positive control groups either received donepezil (1.2 mg/kg, p.o.) or tacrine (10 mg/kg, p.o.), and the three test groups were given the extract (29, 57, and 114 mg/kg, p.o.). At the end of treatments, learning and memory impairments were determined using the same paradigms. Animals were then euthanized, and biochemical parameters of oxidative stress, inflammation, and apoptosis were analyzed in the hippocampus and prefrontal cortex. Results On the 4th day of the acquisition phase in the Morris water maze, Z. jujuba (29 and 114 mg/kg) reduced (p < 0.001) the latency to reach the platform, while in the retention phase, Z. jujuba (57 and 114 mg/kg) decreased (p < 0.001) the time to reach the platform and increased the time in the target quadrant (p < 0.05) compared to control. Surprisingly, the extract failed to affect spontaneous alternations in the Y-maze. Furthermore, the extract (29, 57, and 114 mg/kg) reversed (p < 0.001) scopolamine-induced oxidative stress, inflammation, and apoptosis. This was supported by the reduction of neuronal alterations in the hippocampus and prefrontal cortex. Conclusions Compared to donepezil, a standard drug against Alzheimer's disease, these findings suggest that Z. jujuba extract possesses antiamnesic and neuroprotective effects, and these effects are mediated in part through antioxidant, anti-inflammatory, and antiapoptotic activities. These findings help to explain its use in treating psychiatric disorders in Cameroon's folk medicine.
Collapse
|
60
|
Jorda A, Aldasoro M, Aldasoro C, Valles SL. Inflammatory Chemokines Expression Variations and Their Receptors in APP/PS1 Mice. J Alzheimers Dis 2021; 83:1051-1060. [PMID: 34397415 DOI: 10.3233/jad-210489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), an increase in inflammation is distinctive. Amyloid precursor protein plus presenilin-1 (APP/PS1 mice) is a model for this illness. Chemokines secreted by central nervous system (CNS) cells could play multiple important roles in AD. Data looking for the chemokines involved in inflammatory mechanisms are lacking. To understand the changes that occur in the inflammation process in AD, it is necessary to improve strategies to act on specific inflammatory targets. OBJECTIVE Chemokines and their receptors involved in phagocytosis, demyelination, chemotaxis, and coagulation were the objective of our study. METHODS Female APPswe/PS1 double-transgenic mice (B6C3-Tg) were used and cortex brain from 20-22-month-old mice obtained and used to quantify chemokines and chemokine receptors expression using RT-PCR technique. RESULTS Significant inflammatory changes were detected in APP/PS1 compared to wild type mice. CCR1, CCR3, CCR4, and CCR9 were elevated, and CCR2 were decreased compared with wild type mice. Their ligands CCL7, CCL11, CCL17, CCL22, CCL25, and CXCL4 showed an increase expression; however, changes were not observed in CCL2 in APP/PS1 compared to wild type mice. CONCLUSION This change in expression could explain the differences between AD patients and elderly people without this illness. This would provide a new strategy for the treatment of AD, with the possibility to act in specific inflammatory targets.
Collapse
Affiliation(s)
- Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Surgery and Chiropody, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| |
Collapse
|
61
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 2021; 46:2832-2851. [PMID: 34357520 DOI: 10.1007/s11064-021-03415-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
62
|
Ziziphus jujuba (Rhamnaceae) Alleviates Working Memory Impairment and Restores Neurochemical Alterations in the Prefrontal Cortex of D-Galactose-Treated Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6610864. [PMID: 34194520 PMCID: PMC8184324 DOI: 10.1155/2021/6610864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/15/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a progressive cognitive dysfunction. However, pharmacological treatments are symptomatic and have many side effects, opening the opportunity to alternative medicine. This study investigated the antiamnesic effect of the aqueous extract of Ziziphus jujuba on D-galactose-induced working memory impairment in rats. Impairment of working memory was induced by subcutaneous (s.c.) injection of D-galactose (350 mg/kg/day) to rats for 21 days. These animals were then subjected to object recognition and Y-maze tests. Rats with confirmed memory impairment were treated per os (p.o.) with tacrine (10 mg/kg), aspirin (20 mg/kg, p.o.), extract (41.5, 83, and 166 mg/kg, p.o.), and distilled water (10 mL/kg, p.o.) daily for 14 days. At the end of the treatments, alteration in working memory was assessed using the above paradigms. Afterward, these animals were euthanized, and cholinergic, proinflammatory, and neuronal damage markers were analyzed in the prefrontal cortex. Rats administered D-galactose and treated with distilled water had impaired working memory (evidenced by decreased time spent on the novel object and discrimination index) and decreased spontaneous alternation in the Y-maze. D-galactose also decreased the levels of acetylcholinesterase and acetylcholine and increased the level of glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and interferon-gamma (IFN-γ). Treatment with the extract (166 mg/kg) reversed the time spent on the novel object and the discrimination index. It equally increased the percentage of spontaneous alternation. Neurochemical analysis revealed that the extract markedly alleviated acetylcholinesterase activity and neuroinflammation. These observations were corroborated by the reduction in neuronal loss. Taken together, these results suggest that Ziziphus jujuba aqueous extract possesses an antiamnesic effect. This effect seems to involve cholinergic and anti-inflammatory modulations. This, therefore, claims using this plant in the treatment of dementia in Cameroon subject to further studies and trials.
Collapse
|
63
|
Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
|
64
|
Song B, Zhu J. Cerebellar malfunction and postoperative sleep disturbances after general anesthesia: a narrative review. Sleep Breath 2021; 26:31-36. [PMID: 33990908 DOI: 10.1007/s11325-021-02361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 11/27/2022]
Abstract
The cerebellum is widely regarded as a brain region involved in motor processing, non-motor processing, and even sleep-wake cycles. Cerebellar dysfunction may cause changes in the sleep-wake cycle, leading to sleep disturbances. At present, there is limited research on its effect on postoperative sleep after general anesthesia, despite the suspicion of its implication in postoperative sleep disturbances. With this review, we aim to provide a clear and comprehensive review of the cerebellar activity during the normal sleep-wake cycle, the correlation between cerebellar dysfunction and postoperative sleep disturbances, and the effects of general anesthesia on cerebellar dysfunction. Future large-scale multicenter trials are needed to objectively support the present results, identify the initial cerebellar dysfunction to prevent postoperative sleep disturbances, and develop new therapeutic measures targeting sleep disturbances with possible far-reaching implications for neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Beijing Friendship Hospital of Capital Medical University, Beijing, China.,Department of Anesthesiology, Shengjing Hospital of China Medical University, Tiexi District, Huaxiang Road, Shenyang, Liaoning, China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Tiexi District, Huaxiang Road, Shenyang, Liaoning, China.
| |
Collapse
|
65
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
66
|
Marizzoni M, Cattaneo A, Mirabelli P, Festari C, Lopizzo N, Nicolosi V, Mombelli E, Mazzelli M, Luongo D, Naviglio D, Coppola L, Salvatore M, Frisoni GB. Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer's Disease. J Alzheimers Dis 2021; 78:683-697. [PMID: 33074224 DOI: 10.3233/jad-200306] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metagenomic data support an association between certain bacterial strains and Alzheimer's disease (AD), but their functional dynamics remain elusive. OBJECTIVE To investigate the association between amyloid pathology, bacterial products such as lipopolysaccharide (LPS) and short chain fatty acids (SCFAs: acetate, valerate, butyrate), inflammatory mediators, and markers of endothelial dysfunction in AD. METHODS Eighty-nine older persons with cognitive performance from normal to dementia underwent florbetapir amyloid PET and blood collection. Brain amyloidosis was measured with standardized uptake value ratio versus cerebellum. Blood levels of LPS were measured by ELISA, SCFAs by mass spectrometry, cytokines by using real-time PCR, and biomarkers of endothelial dysfunction by flow cytometry. We investigated the association between the variables listed above with Spearman's rank test. RESULTS Amyloid SUVR uptake was positively associated with blood LPS (rho≥0.32, p≤0.006), acetate and valerate (rho≥0.45, p < 0.001), pro-inflammatory cytokines (rho≥0.25, p≤0.012), and biomarkers of endothelial dysfunction (rho≥0.25, p≤0.042). In contrast, it was negatively correlated with butyrate (rho≤-0.42, p≤0.020) and the anti-inflammatory cytokine IL10 (rho≤-0.26, p≤0.009). Endothelial dysfunction was positively associated with pro-inflammatory cytokines, acetate and valerate (rho≥0.25, p≤0.045) and negatively with butyrate and IL10 levels (rho≤-0.25, p≤0.038). CONCLUSION We report a novel association between gut microbiota-related products and systemic inflammation with brain amyloidosis via endothelial dysfunction, suggesting that SCFAs and LPS represent candidate pathophysiologic links between the gut microbiota and AD pathology.
Collapse
Affiliation(s)
- Moira Marizzoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Cristina Festari
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valentina Nicolosi
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisa Mombelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Mazzelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Naples, Italy
| | | | | | - Giovanni B Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
67
|
Horinokita I, Hayashi H, Yoshizawa R, Ichiyanagi M, Imamura Y, Iwatani Y, Takagi N. Possible involvement of progranulin in the protective effect of elastase inhibitor on cerebral ischemic injuries of neuronal and glial cells. Mol Cell Neurosci 2021; 113:103625. [PMID: 33933589 DOI: 10.1016/j.mcn.2021.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
In a previous study, we demonstrated that neutrophil elastase is activated in the brain parenchyma after cerebral ischemia, which enzyme cleaves progranulin (PGRN), an anti-inflammatory factor. In that study, we also found that sivelestat, a selective neutrophil elastase inhibitor, attenuates ischemia-induced inflammatory responses. However, it was not clear whether this anti-inflammatory effect was due to the direct effect of sivelestat. In this study, we evaluated the effects of sivelestat or recombinant PGRN (rPGRN) on cell injuries in cultured neurons, astrocytes, and microglia under oxygen/glucose deprivation (OGD) conditions. We demonstrated that OGD-induced neuronal cell injury, astrocyte activation, and increased proinflammatory cytokines caused by microglial activation, were suppressed by rPGRN treatment, whereas sivelestat had no effect on any of these events. These results indicate that the anti-inflammatory responses after in vivo cerebral ischemia were not due to the direct action of sivelestat but due to the suppression of PGRN cleavage by inhibition of elastase activity. It was also suggested that the pleiotropic effect of rPGRN could be attributed to the differentiation of M1 microglia into anti-inflammatory type M2 microglia. Therefore, the inhibition of PGRN cleavage by sivelestat could contribute to the establishment of a new therapeutic approach for cerebral ischemia.
Collapse
Affiliation(s)
- Ichiro Horinokita
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Rihona Yoshizawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mika Ichiyanagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yui Imamura
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
68
|
Kumar A, Doan VM, Kunkli B, Csősz É. Construction of Unified Human Antimicrobial and Immunomodulatory Peptide Database and Examination of Antimicrobial and Immunomodulatory Peptides in Alzheimer's Disease Using Network Analysis of Proteomics Datasets. Front Genet 2021; 12:633050. [PMID: 33995478 PMCID: PMC8113759 DOI: 10.3389/fgene.2021.633050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer's disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer's disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer's disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer's disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer's disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Collapse
Affiliation(s)
- Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vo Minh Doan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kunkli
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
69
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
70
|
Siddappaji KK, Gopal S. Molecular mechanisms in Alzheimer's disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neurosci 2021; 8:357-389. [PMID: 34183987 PMCID: PMC8222772 DOI: 10.3934/neuroscience.2021020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common, severe neurodegenerative brain disorder characterized by the accumulation of amyloid-beta plaques, neurofibrillary tangles in the brain causing neural disintegration, synaptic dysfunction, and neuronal death leading to dementia. Although many US-FDA-approved drugs like Donepezil, Rivastigmine, Galantamine are available in the market, their consumption reduces only the symptoms of the disease but fails in potency to cure the disease. This disease affects many individuals with aging. Combating the disease tends to be very expensive. This review focuses on biochemical mechanisms in the neuron both at normal and AD state with relevance to the tau hypothesis, amyloid hypothesis, the risk factors influencing dementia, oxidative stress, and neuroinflammation altogether integrated with neurodegeneration. A brief survey is carried out on available biomarkers in the diagnosis of the disease, drugs used for the treatment, and the challenges in approaching therapeutic targets in inhibiting the disease pathologies. This review conjointly assesses the demerits with the inefficiency of drugs to reach targets, their side effects, and toxicity. Optimistically, this review directs on the advantageous strategies in using nanotechnology-based drug delivery systems to cross the blood-brain barrier for improving the efficacy of drugs combined with a novel neuronal stem cell therapy approach. Determinately, this review aims at the natural, non-therapeutic healing impact of physical exercise on different model organisms and the effect of safe neuromodulation treatments using repetitive Transcranial Magnetic Stimulation (rTMS), transcranial Electrical Stimulation (tES) in humans to control the disease pathologies prominent in enhancing the synaptic function.
Collapse
Affiliation(s)
| | - Shubha Gopal
- Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| |
Collapse
|
71
|
Li B, Ponjavic A, Chen WH, Hopkins L, Hughes C, Ye Y, Bryant C, Klenerman D. Single-Molecule Light-Sheet Microscopy with Local Nanopipette Delivery. Anal Chem 2021; 93:4092-4099. [PMID: 33595281 DOI: 10.1021/acs.analchem.0c05296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of single molecules in biological systems has rapidly increased in resolution over the past decade. However, the delivery of single molecules remains to be a challenge. Currently, there is no effective method that can both introduce a precise amount of molecules onto or into a single cell at a defined position and then image the cellular response. Here, we have combined light-sheet microscopy with local delivery, using a nanopipette, to accurately deliver individual proteins to a defined position. We call this method local-delivery selective-plane illumination microscopy (ldSPIM). ldSPIM uses a nanopipette and ionic feedback current at the nanopipette tip to control the position from which the molecules are delivered. The number of proteins delivered can be controlled by varying the voltage applied. For single-molecule detection, we implemented single-objective SPIM using a reflective atomic force microscopy cantilever to create a 2 μm thin sheet. Using this setup, we demonstrate that ldSPIM can deliver single fluorescently labeled proteins onto the plasma membrane of HK293 cells or into the cytoplasm. Next, we deposited the aggregates of amyloid-β, which causes proteotoxicity relevant to Alzheimer's disease, onto a single macrophage stably expressing a MyDD88-eGFP fusion construct. Whole-cell imaging in the three-dimensional (3D) mode enables the live detection of MyDD88 accumulation and the formation of myddosome signaling complexes, as a result of the aggregate-induced triggering of toll-like receptor 4. Overall, we demonstrate a novel multifunctional imaging system capable of precise delivery of single proteins to a specific location on the cell surface or inside the cytoplasm and high-speed 3D detection at single-molecule resolution within live cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Wei-Hsin Chen
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Lee Hopkins
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Craig Hughes
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.,UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
72
|
Seifi-Nahavandi B, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. Cymene consumption and physical activity effect in Alzheimer's disease model: an in vivo and in vitro study. J Diabetes Metab Disord 2021; 19:1381-1389. [PMID: 33520841 DOI: 10.1007/s40200-020-00658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
Purpose Alzheimer's disease (AD) is one of the most important neurodegenerative diseases and accompanied by the production of free radicals and inflammatory factors. Studies have shown that p-cymene has anti-inflammatory and anti-oxidant effects. Here, the effects of this compound were investigated on a rat model of AD. Methods In order to create Alzheimer's rat model, bilateral injection of Amyloid β1-42 (Aβ1-42) into rats hippocampus was performed. Both therapeutic (post-AD induction) and preventive effects of p-cymene consumption with doses of 50 and 100 mg/kg were investigated. In addition, the effects of adding short-term exercise to the process were also observed. In vitro, Aβ1-42 peptide was driven toward fibril formation and effect of p-cymene was observed on the resulting fibrils. Results Learning and memory indices in the AD rats were significantly reduced compared to the Sham group, while p-cymene consumption with both doses, as well as performing exercise counteracted AD consequences. Moreover, increased neurogenesis and reduced amyloid plaques counts were observed in treated rats. In vitro formed fibrils of Aβ1-42 were partially disaggregated in the presence of p-cymene. Discussion p-Cymene could act on this AD model via antioxidant and anti-inflammatory properties as well as direct anti-fibril effect. Conclusion p-cymene can improve AD-related disorders including memory impairment.
Collapse
Affiliation(s)
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, Lin YF, Kong LH. Experimental Evidence of the Benefits of Acupuncture for Alzheimer's Disease: An Updated Review. Front Neurosci 2021; 14:549772. [PMID: 33408601 PMCID: PMC7779610 DOI: 10.3389/fnins.2020.549772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As the global population ages, the prevalence of Alzheimer's disease (AD), the most common form of dementia, is also increasing. At present, there are no widely recognized drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several promising clinical trials in recent years has highlighted the urgent need for novel strategies to both prevent and treat AD. Notably, a growing body of literature supports the efficacy of acupuncture for AD. In this review, we summarize the previously reported mechanisms of acupuncture's beneficial effects in AD, including the ability of acupuncture to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis, synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation, cerebral glucose metabolism, and brain responses. Taken together, these findings suggest that acupuncture provides therapeutic effects for AD.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Le-Bin Liu
- Department of Rehabilitation Medicine, Hubei Rongjun Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
74
|
Gutierrez MEZ, Savall ASP, da Luz Abreu E, Nakama KA, Dos Santos RB, Guedes MCM, Ávila DS, Luchese C, Haas SE, Quines CB, Pinton S. Co-nanoencapsulated meloxicam and curcumin improves cognitive impairment induced by amyloid-beta through modulation of cyclooxygenase-2 in mice. Neural Regen Res 2021; 16:783-789. [PMID: 33063743 PMCID: PMC8067937 DOI: 10.4103/1673-5374.295339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive brain disorder and complex mechanisms are involved in the physiopathology of AD. However, there is data suggesting that inflammation plays a role in its development and progression. Indeed, some non-steroidal anti-inflammatory drugs, such as meloxicam, which act by inhibiting cyclooxygenase-2 (COX-2) have been used as neuroprotective agents in different neurodegenerative disease models. The purpose of this study was to investigate the effects of co-nanoencapsulated curcumin and meloxicam in lipid core nanocapsules (LCN) on cognitive impairment induced by amyloid-beta peptide injection in mice. LCN were prepared by the nanoprecipitation method. Male Swiss mice received a single intracerebroventricular injection of amyloid-beta peptide aggregates (fragment 25–35, 3 nmol/3 μL) or vehicle and were subsequently treated with curcumin-loaded LCN (10 mg/kg) or meloxicam-loaded LCN (5 mg/kg) or meloxicam + curcumin-co-loaded LCN (5 and 10 mg/kg, respectively). Treatments were given on alternate days for 12 days (i.e., six doses, once every 48 hours, by intragastric gavage). Our data showed that amyloid-beta peptide infusion caused long-term memory deficits in the inhibitory avoidance and object recognition tests in mice. In the inhibitory avoidance test, both meloxicam and curcumin formulations (oil or co-loaded LCN) improved amyloid-beta-induced memory impairment in mice. However, only meloxicam and curcumin-co-loaded LCN attenuated non-aversive memory impairment in the object recognition test. Moreover, the beneficial effects of meloxicam and curcumin-co-loaded LCN could be explained by the anti-inflammatory properties of these drugs through cortical COX-2 downregulation. Our study suggests that the neuroprotective potential of meloxicam and curcumin co-nanoencapsulation is associated with cortical COX-2 modulation. This study was approved by the Committee on Care and Use of Experimental Animal Resources, the Federal University of Pampa, Brazil (approval No. 02-2015) on April 16, 2015.
Collapse
Affiliation(s)
| | - Anne Suély Pinto Savall
- Postgraduation Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Edina da Luz Abreu
- Postgraduation Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Kelly Ayumi Nakama
- Postgraduation Program in Pharmaceutical Science, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Renata Bem Dos Santos
- Postgraduation Program in Pharmaceutical Science, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | | | - Daiana Silva Ávila
- Postgraduation Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Cristiane Luchese
- Postgraduation Program in Biochemistry and Bioprospecting, Federal University of Pelotas (UFPEL), Capão do Leão, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduation Program in Biochemistry; Postgraduation Program in Pharmaceutical Science, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Caroline Brandão Quines
- Postgraduation Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Simone Pinton
- Postgraduation Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| |
Collapse
|
75
|
Crumpler R, Roman RJ, Fan F. Capillary Stalling: A Mechanism of Decreased Cerebral Blood Flow in AD/ADRD. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:149-153. [PMID: 35028643 PMCID: PMC8754422 DOI: 10.33696/neurol.2.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementias (ADRD) are debilitating conditions that are highly associated with aging populations, especially those with comorbidities such as diabetes and hypertension. In addition to the classical pathological findings of AD, such as beta-amyloid (Aβ) accumulation and tau hyperphosphorylation, vascular dysfunction is also associated with the progression of the disease. Vascular dysfunction in AD is associated with decreased cerebral blood flow (CBF). Impaired CBF is an early and persistent symptom of AD/ADRD and is thought to be associated with deficient autoregulation and neurovascular coupling. Another recently elucidated mechanism that contributes to cerebral hypoperfusion is capillary stalling, or the temporary arrest of capillary blood flow usually precipitated by a stalled leukocyte or constriction of actin-containing capillary pericytes. Stalled capillaries are associated with decreased CBF and impaired cognitive performance. AD/ADRD are associated with chronic, low-level inflammation, which contributes to capillary stalling by increased cell adhesion molecules, circulating leukocytes, and reactive oxygen species production. Recent research has shed light on potential targets to decrease capillary stalling in AD mice. Separate inhibition of Ly6G and VEGF-A has been shown to decrease capillary stalling and increase CBF in AD mice. These results suggest that targeting stalled capillaries could influence the outcome of AD and potentially be a target for future therapies.
Collapse
Affiliation(s)
- Reece Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
76
|
Singh S, Dhanawat M, Gupta S, Kumar D, Kakkar S, Nair A, Verma I, Sharma P. Naturally Inspired Pyrimidines Analogues for Alzheimer's Disease. Curr Neuropharmacol 2021; 19:136-151. [PMID: 33176653 PMCID: PMC8033975 DOI: 10.2174/1570159x18666201111110136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is a multifarious and developing neurodegenerative disorder. The treatment of AD is still a challenge and availability of drug therapy on the basis of symptoms is not up to the mark. In the context of existence, which is getting worse for the human brain, it is necessary to take care of all critical measures. The disease is caused due to multidirectional pathology of the body, which demands the multi-target-directed ligand (MTDL) approach. This gives hope for new drugs for AD, summarized here in with the pyrimidine based natural product inspired molecule as a lead. The review is sufficient in providing a list of chemical ingredients of the plant to cure AD and screen them against various potential targets of AD. The synthesis of a highly functionalized scaffold in one step in a single pot without isolating the intermediate is a challenging task. In few examples, we have highlighted the importance of this kind of reaction, generally known as multi-component reaction. Multi-component is a widely accepted technique by the drug discovery people due to its high atom economy. It reduces multi-step process to a one-step process, therefore the compounds library can be made in minimum time and cost. This review has highlighted the importance of multicomponent reactions by giving the example of active scaffolds of pyrimidine/fused pyrimidines. This would bring importance to the fast as well as smart synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Pharmaceutical Sciences, Somany College of Pharmacy, Rewari, Haryana, India
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, Indra Gandhi University, Mirpur, Rewari Haryana, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Inderjeet Verma
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Prerna Sharma
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| |
Collapse
|
77
|
Chen P, Ding F, Cai R, Javed I, Yang W, Zhang Z, Li Y, Davis TP, Ke PC, Chen C. Amyloidosis Inhibition, a New Frontier of the Protein Corona. NANO TODAY 2020; 35:100937. [PMID: 32728376 PMCID: PMC7388636 DOI: 10.1016/j.nantod.2020.100937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The protein corona has served as a central dogma and a nuisance to the applications of nanomedicine and nanobiotechnology for well over a decade. Here we introduce the emerging field of amyloidosis inhibition, which aims to understand and harness the interfacial phenomena associated with a nanoparticle interacting with pathogenic amyloid proteins. Much of this interaction correlates with our understanding of the protein corona, and yet much differs, as elaborated for the first time in this Perspective. Specifically, we examine the in vitro, in silico and in vivo features of the new class of "amyloid protein corona", and discuss how the interactions with nanoparticles may halt the self-assembly of amyloid proteins. As amyloidosis is driven off pathway by the nanoparticles, the oligomeric and protofibrillar populations are suppressed to ameliorate their cytotoxicity. Furthermore, as amyloid proteins spread via the transport of bodily fluids or cross seeding, amyloidosis is inherently associated with dynamic proteins and ligands to evoke the immune system. Accordingly, we ponder the structural and medical implications of the amyloid protein corona in the presence of their stimulated cytokines. Understanding and exploiting the amyloid protein corona may facilitate the development of new theranostics against a range of debilitating amyloid diseases.
Collapse
Affiliation(s)
- Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Rong Cai
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| |
Collapse
|
78
|
La Rosa F, Saresella M, Marventano I, Piancone F, Ripamonti E, Al-Daghri N, Bazzini C, Zoia CP, Conti E, Ferrarese C, Clerici M. Stavudine Reduces NLRP3 Inflammasome Activation and Modulates Amyloid-β Autophagy. J Alzheimers Dis 2020; 72:401-412. [PMID: 31594217 DOI: 10.3233/jad-181259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with the accumulation of amyloid-β (Aβ) within senile plaques in the brain and neuroinflammation, possibly driven by the activation of the NLRP3 inflammasome. Nucleoside reverse transcriptase inhibitors (NRTI) hamper the NLRP3 inflammasome assembly. OBJECTIVE We utilized an in vitro model reproducing the Aβ-driven inflammation seen in AD to analyze whether stavudine (D4T), a prototypical NRTI, modulates Aβ-mediated inflammasome activation and the ability of macrophages to eliminate Aβ via phagocytosis and autophagy. METHODS THP-1-derived macrophages were stimulated in vitro with Aβ42 or with Aβ42 after LPS-priming in the presence/absence of D4T. NLRP3 and TREM2 expression was analyzed by RT-PCR; phagocytosis, as well as ASC-Speck formation, was analyzed by Amnis FlowSight Imaging; NLRP3-produced cytokines were quantified by ELISA and, finally, autophagy was analyzed by measuring p-ERK1/2, p-AKT, beclin, p70-S6Kinase, and Lamp by ELISA and western blot. RESULTS IL-1β, IL-18, and caspase-1 were increased whereas Aβ phagocytosis and TREM2 were reduced in LPS+Aβ42-stimulated cells. D4T reduced NLRP3 assembly as well as IL-18 and caspase-1 production, but did not affect IL-1β production and TREM2 expression. Notably, whereas D4T reduced Aβ phagocytosis, Aβ autophagy by macrophages was stimulated by D4T, as witnessed by the down-modulation of ERK1/2 and AKT phosphorylation and the upregulation of beclin, LAMP, and p70-S6K, their downstream targets. CONCLUSION In this in vitro model of AD, D4T reduces NLRP3 inflammasome-associated inflammation and stimulates Aβ autophagy by macrophages. It will be interesting to verify the possibly beneficial effects of D4T in the clinical scenario.
Collapse
Affiliation(s)
- Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chiara Bazzini
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Chiara Paola Zoia
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Elisa Conti
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,Department of Neuroscience, S. Gerardo Hospital, Monza, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| |
Collapse
|
79
|
Trojan E, Bryniarska N, Leśkiewicz M, Regulska M, Chamera K, Szuster-Głuszczak M, Leopoldo M, Lacivita E, Basta-Kaim A. The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Curr Neuropharmacol 2020; 18:229-249. [PMID: 31629396 PMCID: PMC7327951 DOI: 10.2174/1570159x17666191019170244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| |
Collapse
|
80
|
Serum levels of resistin and its relationship with some pro-inflammatory cytokines in a cohort of Egyptian patients with Alzheimer's disease. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
81
|
Pi T, Liu B, Shi J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer's Disease from DNA Methylation. Behav Neurol 2020; 2020:8438602. [PMID: 32963633 PMCID: PMC7495165 DOI: 10.1155/2020/8438602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease in the central nervous system that has complex pathogenesis in the elderly. The current review focuses on the epigenetic mechanisms of AD, according to the latest findings. One of the best-characterized chromatin modifications in epigenetic mechanisms is DNA methylation. Highly replicable data shows that AD occurrence is often accompanied by methylation level changes of the AD-related gene. Homocysteine (Hcy) is not only an intermediate product of one-carbon metabolism but also an important independent risk factor of AD; it can affect the cognitive function of the brain by changing the one-carbon metabolism and interfering with the DNA methylation process, resulting in cerebrovascular disease. In general, Hcy may be an environmental factor that affects AD via the DNA methylation pathway with a series of changes in AD-related substance. This review will concentrate on the relation between DNA methylation and Hcy and try to figure out their rule in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bo Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
82
|
Cervellati C, Trentini A, Pecorelli A, Valacchi G. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxid Redox Signal 2020; 33:191-210. [PMID: 32143546 DOI: 10.1089/ars.2020.8076] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Accumulating evidence suggests that inflammation is a major contributor in the pathogenesis of several highly prevalent, but also rare, neurological diseases. In particular, the neurodegenerative processes of Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease (PD), and multiple sclerosis (MS) are fueled by neuroinflammation, which, in turn, is accompanied by a parallel systemic immune dysregulation. This cross-talk between periphery and the brain becomes substantial when the blood-brain barrier loses its integrity, as often occurs in the course of these diseases. It has been hypothesized that the perpetual bidirectional flux of inflammatory mediators is not a mere "static" collateral effect of the neurodegeneration, but represents a proactive phenomenon sparking and driving the neuropathological processes. However, the upstream/downstream relationship between inflammatory events and neurological pathology is still unclear. Recent Advances: Solid recent evidence clearly suggests that metabolic factors, systemic infections, Microbiota dysbiosis, and oxidative stress are implicated, although to a different extent, in the development in brain diseases. Critical Issues: Here, we reviewed the most solid published evidence supporting the implication of the axis systemic inflammation-neuroinflammation-neurodegeneration in the pathogenesis of AD, VAD, PD, and MS, highlighting the possible cause of the putative downstream component of the axis. Future Directions: Reaching a definitive clinical/epidemiological appreciation of the etiopathogenic significance of the connection between peripheral and brain inflammation in neurologic disorders is pivotal since it could open novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
83
|
Yamashima T, Ota T, Mizukoshi E, Nakamura H, Yamamoto Y, Kikuchi M, Yamashita T, Kaneko S. Intake of ω-6 Polyunsaturated Fatty Acid-Rich Vegetable Oils and Risk of Lifestyle Diseases. Adv Nutr 2020; 11:1489-1509. [PMID: 32623461 PMCID: PMC7666899 DOI: 10.1093/advances/nmaa072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Although excessive consumption of deep-fried foods is regarded as 1 of the most important epidemiological factors of lifestyle diseases such as Alzheimer's disease, type 2 diabetes, and obesity, the exact mechanism remains unknown. This review aims to discuss whether heated cooking oil-derived peroxidation products cause cell degeneration/death for the occurrence of lifestyle diseases. Deep-fried foods cooked in ω-6 PUFA-rich vegetable oils such as rapeseed (canola), soybean, sunflower, and corn oils, already contain or intrinsically generate "hydroxynonenal" by peroxidation. As demonstrated previously, hydroxynonenal promotes carbonylation of heat-shock protein 70.1 (Hsp70.1), with the resultant impaired ability of cells to recycle damaged proteins and stabilize the lysosomal membrane. Until now, the implication of lysosomal/autophagy failure due to the daily consumption of ω-6 PUFA-rich vegetable oils in the progression of cell degeneration/death has not been reported. Since the "calpain-cathepsin hypothesis" was formulated as a cause of ischemic neuronal death in 1998, its relevance to Alzheimer's neuronal death has been suggested with particular attention to hydroxynonenal. However, its relevance to cell death of the hypothalamus, liver, and pancreas, especially related to appetite/energy control, is unknown. The hypothalamus senses information from both adipocyte-derived leptin and circulating free fatty acids. Concentrations of circulating fatty acid and its oxidized form, especially hydroxynonenal, are increased in obese and/or aged subjects. As overactivation of the fatty acid receptor G-protein coupled receptor 40 (GPR40) in response to excessive or oxidized fatty acids in these subjects may lead to the disruption of Ca2+ homeostasis, it should be evaluated whether GPR40 overactivation contributes to diverse cell death. Here, we describe the molecular implication of ω-6 PUFA-rich vegetable oil-derived hydroxynonenal in lysosomal destabilization leading to cell death. By oxidizing Hsp70.1, both the dietary PUFA- (exogenous) and the membrane phospholipid- (intrinsic) peroxidation product "hydroxynonenal," when combined, may play crucial roles in the occurrence of diverse lifestyle diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Yasuhiko Yamamoto
- Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | |
Collapse
|
84
|
Cisbani G, Koppel A, Knezevic D, Suridjan I, Mizrahi R, Bazinet RP. Peripheral cytokine and fatty acid associations with neuroinflammation in AD and aMCI patients: An exploratory study. Brain Behav Immun 2020; 87:679-688. [PMID: 32135194 DOI: 10.1016/j.bbi.2020.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation is thought to be important in the progression of Alzheimer's disease (AD). To evaluate cerebral inflammation radioligands that target TSPO, a translocator protein strongly expressed in microglia and macrophages during inflammation, can be used in conjunction with positron emission tomography (PET) imaging. In AD patients, neuroinflammation is up-regulated compared to both healthy volunteers as well as to subjects with amnestic Mild Cognitive Impairment. Peripheral biomarkers, such as serum cytokines and total fatty acids (FAs), can also be indicative of the inflammatory state of subjects with neurodegenerative disorders. To understand whether peripheral biomarkers are predictive of neuroinflammation we conducted a secondary exploratory analysis of two TSPO imaging studies conducted in subjects with AD, aMCI and aged matched healthy volunteers. We examined the association between candidate peripheral biomarkers (including amyloid beta, cytokines and serum total fatty acids) with brain TSPO levels. Our results showed that serum IL-6 and IL-10 are higher in AD compared to the aMCI and healthy volunteers while levels of some fatty acids are modulated during the disease. A limited number of associations were observed between region-specific inflammation and fatty acids in aMCI patients, and between amyloid beta 42 and brain inflammation in AD, however no associations were present with systemic cytokines. Our study suggests that while TSPO binding and systemic IL-6 and IL-10 were elevated in AD, serum amyloid beta, cytokines and fatty acids were generally not predictive of the disease nor correlated with neuroinflammation.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada
| | - Alex Koppel
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dunja Knezevic
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ivonne Suridjan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
85
|
Zhang C, Hu L, Liu D, Huang J, Lin W. Circumdatin D Exerts Neuroprotective Effects by Attenuating LPS-Induced Pro-Inflammatory Responses and Downregulating Acetylcholinesterase Activity In Vitro and In Vivo. Front Pharmacol 2020; 11:760. [PMID: 32523534 PMCID: PMC7261837 DOI: 10.3389/fphar.2020.00760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with multifactorial causes, of which systemic inflammation may play a key role to promote neurodegeneration, and acetylcholinesterase (AChE) is a target protein to induce cholinergic transmission. Inhibitors toward inflammation and targeting AChE are regarded to promote cholinergic signaling of the central nervous system in AD therapy. During the search for neuroprotection agents from marine-derived compounds, seven circumdatin-type alkaloids from a coral-associated fungus Aspergillus ochraceus LZDX-32-15 showed potent inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and activation of NF-κB report gene along with anti-AChE activities. Among the tested compounds, circumdatin D showed the most potent inhibitory effect against AChE activity and NO production. In vivo experiments using AD-like nematode models demonstrated that circumdatin D effectively delayed paralysis of CL4176 worms upon temperature up-shift via suppression of AChE activity and inflammatory-related gene expression. Moreover, circumdatin D interfered with inflammatory response by inhibiting the secretion of pro-inflammatory cytokines in LPS-induced BV-2 and primary microglia cells. Mechanistically, circumdatin D modulated Toll-like receptor 4 (TLR4)-mediated NF-κB, MAPKs and JAK/STAT inflammatory pathways in LPS-stimulated BV-2 cells, and protected primary neurons cells from LPS-induced neurotoxicity. Thus, circumdatin D is a potential agent for neuroprotective effects by the multi-target strategy.
Collapse
Affiliation(s)
- Chanjuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Likun Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
86
|
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med 2020; 10:jpm10020042. [PMID: 32455946 PMCID: PMC7354630 DOI: 10.3390/jpm10020042] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the sixth leading cause of death and is correlated with obesity, which is the second leading cause of preventable diseases in the United States. Obesity, diabetes, and AD share several common features, and inflammation emerges as the central link. High-calorie intake, elevated free fatty acids, and impaired endocrine function leads to insulin resistance and systemic inflammation. Systemic inflammation triggers neuro-inflammation, which eventually hinders the metabolic and regulatory function of the brain mitochondria leading to neuronal damage and subsequent AD-related cognitive decline. As an early event in the pathogenesis of AD, chronic inflammation could be considered as a potential biomarker in the treatment strategies for AD.
Collapse
|
87
|
Kundu D, Prerna K, Chaurasia R, Bharty MK, Dubey VK. Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech 2020; 10:193. [PMID: 32269898 PMCID: PMC7128022 DOI: 10.1007/s13205-020-2166-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Protein aggregation, their mechanisms and trends in the field of neurodegenerative diseases is still far from completely being decoded. It is mainly attributed to the complexity surrounding the interaction between proteins which includes various regulatory mechanisms involved with the presentation of abnormal conditions. Although most proteins are functional in their soluble form, they have also been reported to convert themselves into insoluble aggregates under certain conditions naturally. Misfolded protein forms aggregates which are mostly unwanted by the cellular system and are mostly involved in various pathophysiologies including Alzheimer's, Type II Diabetes mellitus, Kurus's etc. Challenges lie in understanding the complex mechanism of protein misfolding and its correlation with clinical evidence. It is often understood that due to the slowness of the process and its association with ageing, timely intervention with drugs or preventive measures will play an essential role in lowering the rate of dementia causing diseases and associated ailments in the future. Today approximately more than 35 proteins have been identified capable of forming amyloids under defined conditions, and nearly all of them have been associated with disease outcomes. This review incorporates a major understanding from the history of diseases associated with protein misfolding, to the current state of neurodegenerative diseases globally, highlighting challenges in drug development and current state of research in a comprehensive manner in the field of protein misfolding diseases. There is increasing clinical association of protein misfolding with regards to amyloids compelling us to thread questions solved and further helping us design possible solutions by generating a pathway-based research on which future work in this field could be driven.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| | - Kumari Prerna
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| | - Rahul Chaurasia
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Manoj Kumar Bharty
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| |
Collapse
|
88
|
Qing J, Liu X, Wu Q, Zhou M, Zhang Y, Mazhar M, Huang X, Wang L, He F. Hippo/YAP Pathway Plays a Critical Role in Effect of GDNF Against Aβ-Induced Inflammation in Microglial Cells. DNA Cell Biol 2020; 39:1064-1071. [PMID: 32255663 DOI: 10.1089/dna.2019.5308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a critical mechanism responsible for the progression of Alzheimer's disease (AD). Recent studies reveal that Hippo/Yes-associated protein (YAP) signaling pathway is highly associated with a series of inflammation-related disorders. Glial cell line-derived neurotrophic factor (GDNF), with its neurotrophic and anti-apoptotic functions for nervous system, has been demonstrated to decrease the expression of proinflammatory mediators. Here we investigated whether Hippo/YAP signaling may affect amyloid-β (Aβ)-induced proinflammatory cytokine production in microglial cells and explored its relationship with the anti-inflammation function of GDNF. The results showed that Aβ induced a decrease in the expression of YAP in microglia cells. YAP agonist XMU-MP-1 or its overexpression in microglial cells caused decreased expression of proinflammatory cytokines, whereas YAP antagonist Verteporfin or knockdown of YAP had the opposite effect. Treatment with GDNF resulted in upregulation of YAP expression and reduced the production of proinflammatory cytokines. Meanwhile YAP knockdown weakened the function of GDNF in microglial cells. In conclusion, Hippo/YAP pathway plays a critical role in effect of GDNF against Aβ-induced inflammatory response in microglia. Targeting GDNF or Hippo/YAP signaling may be promising therapeutic approach for the treatment of AD.
Collapse
Affiliation(s)
- Jie Qing
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoheng Liu
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Quan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengjie Zhou
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuwei Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoli Huang
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fuqian He
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
89
|
Hu Z, Du R, Xiu L, Bian Z, Ma C, Sato N, Hattori M, Zhang H, Liang Y, Yu S, Wang X. Protective effect of triterpenes of Ganoderma lucidum on lipopolysaccharide-induced inflammatory responses and acute liver injury. Cytokine 2020; 127:154917. [DOI: 10.1016/j.cyto.2019.154917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
|
90
|
Njan AA, Ologe MO, Olorundare OE, Afolabi SO, Ejimkonye BC, Olaoye SO, Fatigun CO, Akinola O, Soje A, Erdogan ON, Asogwa N, Iwalewa OE. Subchronic exposure to Kafura; its neurotoxic potentials in young adult female Wistar rats. Heliyon 2020; 6:e03514. [PMID: 32190756 PMCID: PMC7068054 DOI: 10.1016/j.heliyon.2020.e03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Kafura pelebe (camphor) {C10H16O} is a chemical substance used mostly amongst the Yoruba ethnic group in Western Nigeria to treat infantile colic during early childhood. This study assess the neurotoxic potentials of Kafura following sub-chronic exposure in female albino Wistar rats. METHODS Twenty-eight female rats (mean weight of 130 g) were randomly selected and assigned into four (4) groups. Control, received 1ml coconut oil while the treatment groups received 79, 158 and 237. mg/kg b.wt (d ose p.o) of Kafura for the period of 14 days. On day fifteen, animals were dissected and the brain organ excised for the homogenate and histopathologic assay, blood samples were also collected for haematological analysis. Morris Water Maze experiment for reference memory was also carried out to ascertain effect of Kafura in the Central Nervous system (CNS). RESULTS A trend toward decreased body-weight gain and increase brain weight was observed in Kafura-treated rats but was statistically not significant, compared to control. The biochemical assessment of the antioxidant status of brains of Kafura-treated rats showed significant (p ≤ 0.05) increase in activities of some anti-oxidant enzymes (Superoxide dismutase (SOD), Glutathione peroxide (GPx), and Catalase (CAT)). There was increase in acetylcholinesterase (AChE), Malondialdehyde (MDA), and Total protein activities in the brain of treated rats compared to control. Alterations of the haematological parameters were observed, with the plasma granulocytes, lymphocytes, and haemoglobin (HGB), showing significant decrease in the treated rats compared to control. The water maze test showed a marked increase in spatial learning and memory time (seconds) in kafura-treated rats, compared to control and across treated groups. CONCLUSIONS The present study provides indication that kafura Pelebe shows apparent neurotoxicity in experimental animals. Incessant exposure in humans though may lead to development of some central nervous system defects.
Collapse
Affiliation(s)
- Anoka A. Njan
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mary O. Ologe
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olufunke E. Olorundare
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Saheed O. Afolabi
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Benjamin C. Ejimkonye
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Chloe O. Fatigun
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olugbenga Akinola
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Anthonia Soje
- Heirs Specialist Hospital and Diagnostic Center, Oye Ekiti, Ekiti State, Nigeria
| | - Ozlem Nazan Erdogan
- Department of Pharmacy Management, School of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | | | - Olugbenga E. Iwalewa
- Department of Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
91
|
Exposure to CuO Nanoparticles Mediates NFκB Activation and Enhances Amyloid Precursor Protein Expression. Biomedicines 2020; 8:biomedicines8030045. [PMID: 32120908 PMCID: PMC7175332 DOI: 10.3390/biomedicines8030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid precursor protein (APP) is directly related to Aβ amyloidosis—a hallmark of Alzheimer’s disease (AD). However, the impact of environmental factors upon APP biology and Aβ amyloid pathology have not been well studied. The increased use of nanoparticles (NPs) or engineered nanomaterials (ENMs) has led to a growing body of evidence suggesting that exposure to metal/metal oxide NPs, such as Fe2O3, CuO, and ZnO, may contribute to the pathophysiology of neurodegenerative diseases such as AD through neuroinflammation. Our previous studies indicated that exposure to CuO nanoparticles (CuONPs) induce potent in vitro neurotoxicity. Herein, we investigated the effects on APP expression in neuronal cells exposed to different metal oxide NPs. We found a low dose of CuONPs effectively activated the NFκB signaling pathway and increased APP expression. Moreover, the inhibition of p65 expression using siRNA abolished CuONP-mediated APP expression, suggesting that NFκB-regulated APP expression in response to CuONP exposure may be associated with AD pathology.
Collapse
|
92
|
Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer's disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134836. [PMID: 31704512 DOI: 10.1016/j.scitotenv.2019.134836] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 05/10/2023]
Abstract
Alzheimer's disease (AD) is a progressive, chronic and severe neurodegenerative disorder linked with cognitive and memory impairment that eventually lead to death. There are several processes which can cause AD, including mitochondrial dysfunction-mediated oxidative stress (OS), intracellular buildup of hyper-phosphorylated tau as neurofibrillary tangles (NFTs) and excessive buildup of extracellular amyloid beta (Aβ) plaques, and/or genetic as well as the environmental factors. Existing treatments can only provide symptomatic relief via providing temporary palliative therapy which can weaken the rate of AD-associated cognitive decline. Plants are the fundamental building blocks for the environment and produce various secondary metabolites. Biflavonoids are one among such secondary metabolite that possesses the potential to mediate noticeable change in the aggregation of tau, Aβ and also efficiently can decrease the toxic effects of Aβ oligomers in comparison with the monoflavonoid moieties. Nevertheless, the molecular processes remain to be exposed, flavonoids are found to cause a change in the Aβ and tau aggregation pathway to generate non-toxic aggregates. In this review, we discuss the neuroprotective action of small molecule biflavonoid to reduce the neurodegenerative events of AD. Furthermore, this appraisal advances our knowledge to develop potential new targets for the treatment of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
93
|
Modification of the lead molecule: Tryptophan and piperidine appended triazines reversing inflammation and hyeperalgesia in rats. Bioorg Med Chem 2020; 28:115246. [PMID: 31843462 DOI: 10.1016/j.bmc.2019.115246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 11/20/2022]
Abstract
The structural optimization of the molecules making them to fit into the active site pocket of COX-2 occupying the same space as covered by the natural substrate arachidonic acid helped in the emergence of compound 10 as an efficacious anti-inflammatory agent. Selective for COX-2 over COX-1, compound 10 exhibited IC50 0.02 µM for COX-2 and reversed acetic acid induced inflammation in rats by 73% when used at 10 mg kg-1 dose and the same dose of the compound also rescued the animals from inflammatory phase of formalin induced hyperalgesia. As evidenced by the results of molecular modeling studies supported by the nuclear Overhauser enhancement data, the appropriate geometry of the molecule in the active site pocket of COX-2 contributing to its H-bond/hydrophobic interactions with Ser530, Trp387 and Tyr385 seems responsible for the enzyme inhibitory activity of the compound.
Collapse
|
94
|
Kosenko E, Tikhonova L, Alilova G, Urios A, Montoliu C. The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. J Clin Med 2020; 9:jcm9010206. [PMID: 31940879 PMCID: PMC7019250 DOI: 10.3390/jcm9010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal form of dementia of unknown etiology. Although amyloid plaque accumulation in the brain has been the subject of intensive research in disease pathogenesis and anti-amyloid drug development; the continued failures of the clinical trials suggest that amyloids are not a key cause of AD and new approaches to AD investigation and treatment are needed. We propose a new hypothesis of AD development based on metabolic abnormalities in circulating red blood cells (RBCs) that slow down oxygen release from RBCs into brain tissue which in turn leads to hypoxia-induced brain energy crisis; loss of neurons; and progressive atrophy preceding cognitive dysfunction. This review summarizes current evidence for the erythrocytic hypothesis of AD development and provides new insights into the causes of neurodegeneration offering an innovative way to diagnose and treat this systemic disease.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
- Correspondence: or ; Tel.: +7-4967-73-91-68
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Amparo Urios
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
95
|
Mani V, Mohd Azahan N, Ramasamy K, Lim S, Johari James R, Alsharidah M, Alhowail A, Abdul Majeed A. Mahanimbine-induced neuroprotection via cholinergic system and attenuated amyloidogenesis as well as neuroinflammation in lipopolysaccharides-induced mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_202_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
96
|
Zsigmond P, Ljunggren SA, Ghafouri B. Proteomic Analysis of the Cerebrospinal Fluid in Patients With Essential Tremor Before and After Deep Brain Stimulation Surgery: A Pilot Study. Neuromodulation 2019; 23:502-508. [PMID: 31755628 DOI: 10.1111/ner.13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Electrical neuromodulation by deep brain stimulation (DBS) is a well-established method for treatment of severe essential tremor (ET). The mechanism behind the tremor relieving effect remains largely unknown. Our aim of this study was to evaluate alterations in proteomics pre- and post-DBS in patients diagnosed with severe ET. MATERIALS AND METHODS Ten right-handed ET patients were included in this study. Cerebrospinal fluid (CSF) was obtained by lumbar puncture preoperatively (N = 10) and six months postoperatively (N = 7). The samples were analyzed by high sensitive liquid chromatography tandem mass spectrometry. RESULTS Twenty-two proteins were statistically significantly altered in the CSF of ET patients before and after DBS treatment. Downregulated proteins were involved in regulatory processes of protein activation, complement activation, humoral immune response as well as acute inflammatory response. The upregulated proteins were involved in pathways for cell secretion, adhesion as well as response to axon injury. CONCLUSIONS DBS in ET patients effects the neurochemical environment in the CSF. These findings further elucidate the mechanisms of DBS and may lead to new biomarkers for evaluating the effect of DBS treatment.
Collapse
Affiliation(s)
- Peter Zsigmond
- Department of Clinical and Experimental Medicine and department of Neurosurgery, Linköping University, Linköping, Sweden
| | - Stefan A Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
97
|
N, N'-Diacetyl- p-phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 2019; 116:23426-23436. [PMID: 31685616 DOI: 10.1073/pnas.1916318116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a central feature of neuroinflammation, microglial dysfunction has been increasingly considered a causative factor of neurodegeneration implicating an intertwined pathology with amyloidogenic proteins. Herein, we report the smallest synthetic molecule (N,N'-diacetyl-p-phenylenediamine [DAPPD]), simply composed of a benzene ring with 2 acetamide groups at the para position, known to date as a chemical reagent that is able to promote the phagocytic aptitude of microglia and subsequently ameliorate cognitive defects. Based on our mechanistic investigations in vitro and in vivo, 1) the capability of DAPPD to restore microglial phagocytosis is responsible for diminishing the accumulation of amyloid-β (Aβ) species and significantly improving cognitive function in the brains of 2 types of Alzheimer's disease (AD) transgenic mice, and 2) the rectification of microglial function by DAPPD is a result of its ability to suppress the expression of NLRP3 inflammasome-associated proteins through its impact on the NF-κB pathway. Overall, our in vitro and in vivo investigations on efficacies and molecular-level mechanisms demonstrate the ability of DAPPD to regulate microglial function, suppress neuroinflammation, foster cerebral Aβ clearance, and attenuate cognitive deficits in AD transgenic mouse models. Discovery of such antineuroinflammatory compounds signifies the potential in discovering effective therapeutic molecules against AD-associated neurodegeneration.
Collapse
|
98
|
Curcumin-Loaded Nanocapsules Reverses the Depressant-Like Behavior and Oxidative Stress Induced by β-Amyloid in Mice. Neuroscience 2019; 423:122-130. [PMID: 31698022 DOI: 10.1016/j.neuroscience.2019.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by cognitive functions impairment. However, its symptomatology is complex and the depression is one of the most frequent behavioral changes in AD. AD pathology includes neuroinflammation and oxidative stress resulting in the Aβ protein accumulation. Curcumin is a natural phenolic compound that shows antioxidant and anti-inflammatory properties. Nevertheless, therapeutic use of curcumin is limited due to its low bioavailability and biodistribution. In this context, the use of curcumin-loaded nanocapsules (NLC C) emerges to overcome its limitations. Thus, the present study investigated the effects of NLC C on the depressant-like behavior and oxidative stress induced by an animal model of AD. For this, Swiss male mice were divided into five groups. The Aβ, Aβ + NLC C and Aβ + Curcumin groups received Aβ25-35 aggregate (3 nmol/3 μL, i.c.v.). Control and NLC C groups received only vehicle. The NLC C were administered via gavage at a dose of 10 mg/kg in alternate days for 12 days. Our results demonstrated that Aβ infusion induced a depressantant-like behavior observed in the tail suspension and forced swimming tests, which was reversed by NLC C treatment. No change was observed in mice locomotion. Furthermore, NLC C reduced the Aβ-generated oxidative stress in the prefrontal cortex, evidenced by the increase in the reactive species levels, superoxide dismutase and catalase activities. Importantly, NLC C were more effective than the free curcumin. Thus, we demonstrated the antidepressant-like and antioxidant effects of NLC C in a mouse model of AD, suggesting its therapeutic potential for this disorder.
Collapse
|
99
|
Baranger K, van Gijsel-Bonnello M, Stephan D, Carpentier W, Rivera S, Khrestchatisky M, Gharib B, De Reggi M, Benech P. Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model. Neurotherapeutics 2019; 16:1237-1254. [PMID: 31267473 PMCID: PMC6985318 DOI: 10.1007/s13311-019-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αβ deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αβ deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αβ processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aβ pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.
Collapse
Affiliation(s)
- Kevin Baranger
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Manuel van Gijsel-Bonnello
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
- Present Address: MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre and School of Life Science - Division of Cell Signalling and Immunology, Welcome Trust Building, University of Dundee, Dundee, DD1 5EH UK
| | - Delphine Stephan
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013 Paris, France
| | - Santiago Rivera
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | | | - Bouchra Gharib
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Max De Reggi
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Philippe Benech
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
100
|
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress. Curr Pharm Des 2019; 25:2178-2191. [DOI: 10.2174/1381612825666190717110932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly
increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has
shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present
review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially
molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were
searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation,
oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting
the role of molecular processes in the progression of central nervous system diseases. Based on current evidence,
resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol
affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current
evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad H. Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|