51
|
Paul A, Nawalpuri B, Shah D, Sateesh S, Muddashetty RS, Clement JP. Differential Regulation of Syngap1 Translation by FMRP Modulates eEF2 Mediated Response on NMDAR Activity. Front Mol Neurosci 2019; 12:97. [PMID: 31143100 PMCID: PMC6520660 DOI: 10.3389/fnmol.2019.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
SYNGAP1, a Synaptic Ras-GTPase activating protein, regulates synapse maturation during a critical developmental window. Heterozygous mutation in SYNGAP1 (SYNGAP1 -/+) has been shown to cause Intellectual Disability (ID) in children. Recent studies have provided evidence for altered neuronal protein synthesis in a mouse model of Syngap1 -/+. However, the molecular mechanism behind the same is unclear. Here, we report the reduced expression of a known translation regulator, FMRP, during a specific developmental period in Syngap1 -/+ mice. Our results demonstrate that FMRP interacts with and regulates the translation of Syngap1 mRNA. We further show reduced Fmr1 translation leads to decreased FMRP level during development in Syngap1 -/+ which results in an increase in Syngap1 translation. These developmental changes are reflected in the altered response of eEF2 phosphorylation downstream of NMDA Receptor (NMDAR)-mediated signaling. In this study, we propose a cross-talk between FMRP and SYNGAP1 mediated signaling which can also explain the compensatory effect of impaired signaling observed in Syngap1 -/+ mice.
Collapse
Affiliation(s)
- Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Bharti Nawalpuri
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Shruthi Sateesh
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi S Muddashetty
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
52
|
Creson TK, Rojas C, Hwaun E, Vaissiere T, Kilinc M, Jimenez-Gomez A, Holder JL, Tang J, Colgin LL, Miller CA, Rumbaugh G. Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. eLife 2019; 8:46752. [PMID: 31025938 PMCID: PMC6504227 DOI: 10.7554/elife.46752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. SYNGAP1 haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for SYNGAP1 haploinsufficiency. Adult restoration of SynGAP protein improved behavioral and electrophysiological measures of memory and seizure. This included the elimination of interictal events that worsened during sleep. These events may be a biomarker for generalized cortical dysfunction in SYNGAP1 disorders because they also worsened during sleep in the human patient population. We conclude that SynGAP protein retains biological functions throughout adulthood and that non-developmental functions may contribute to disease phenotypes. Thus, treatments that target debilitating aspects of severe NDDs, such as medically-refractory seizures and cognitive impairment, may be effective in adult patients.
Collapse
Affiliation(s)
- Thomas K Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Ernie Hwaun
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, United States
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Andres Jimenez-Gomez
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jimmy Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Laura L Colgin
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, United States
| | - Courtney A Miller
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
53
|
Dual diagnosis causing severe phenotype in a patient with Angelman syndrome. Clin Dysmorphol 2019; 28:160-163. [PMID: 30998607 DOI: 10.1097/mcd.0000000000000280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Michaelson SD, Ozkan ED, Aceti M, Maity S, Llamosas N, Weldon M, Mizrachi E, Vaissiere T, Gaffield MA, Christie JM, Holder JL, Miller CA, Rumbaugh G. SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nat Neurosci 2018; 21:1-13. [PMID: 30455457 PMCID: PMC6309426 DOI: 10.1038/s41593-018-0268-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
Abstract
In addition to cognitive impairments, neurodevelopmental disorders often result in sensory processing deficits. However, the biological mechanisms that underlie impaired sensory processing associated with neurodevelopmental disorders are generally understudied and poorly understood. We found that SYNGAP1 haploinsufficiency in humans, which causes a sporadic neurodevelopmental disorder defined by cognitive impairment, autistic features, and epilepsy, also leads to deficits in tactile-related sensory processing. In vivo neurophysiological analysis in Syngap1 mouse models revealed that upper-lamina neurons in somatosensory cortex weakly encode information related to touch. This was caused by reduced synaptic connectivity and impaired intrinsic excitability within upper-lamina somatosensory cortex neurons. These results were unexpected, given that Syngap1 heterozygosity is known to cause circuit hyperexcitability in brain areas more directly linked to cognitive functions. Thus, Syngap1 heterozygosity causes a range of circuit-specific pathologies, including reduced activity within cortical neurons required for touch processing, which may contribute to sensory phenotypes observed in patients.
Collapse
Affiliation(s)
| | - Emin D Ozkan
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | - Massimiliano Aceti
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Nerea Llamosas
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | - Monica Weldon
- Bridge-the-GAP Educational Research Foundation, Cyprus, TX, USA
| | - Elisa Mizrachi
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | | | | | | | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute and Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Courtney A Miller
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
- Department of Molecular Medicine, Scripps Florida, Jupiter, Fl, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, Scripps Florida, Jupiter, Fl, USA.
| |
Collapse
|
55
|
Kimura Y, Akahira-Azuma M, Harada N, Enomoto Y, Tsurusaki Y, Kurosawa K. Novel SYNGAP1 variant in a patient with intellectual disability and distinctive dysmorphisms. Congenit Anom (Kyoto) 2018; 58:188-190. [PMID: 29381230 DOI: 10.1111/cga.12273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 11/27/2022]
Abstract
We describe a novel de novo heterozygous variant in SYNGAP1 (c.1741C>T, p.R581W), identified through targeted resequencing in an 8-year-old boy with intellectual disability, autism spectrum disorder, distinctive dysmorphic features, and no seizures. Our data strongly suggest that the SYNGAP1 variant is causative of intellectual disability in this patient.
Collapse
Affiliation(s)
- Yuichi Kimura
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Moe Akahira-Azuma
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriaki Harada
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
56
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
57
|
Brown EA, Lautz JD, Davis TR, Gniffke EP, VanSchoiack AAW, Neier SC, Tashbook N, Nicolini C, Fahnestock M, Schrum AG, Smith SEP. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol Autism 2018; 9:48. [PMID: 30237867 PMCID: PMC6139139 DOI: 10.1186/s13229-018-0229-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Background Autism spectrum disorders (ASDs) are a heterogeneous group of behaviorally defined disorders and are associated with hundreds of rare genetic mutations and several environmental risk factors. Mouse models of specific risk factors have been successful in identifying molecular mechanisms associated with a given factor. However, comparisons among different models to elucidate underlying common pathways or to define clusters of biologically relevant disease subtypes have been complicated by different methodological approaches or different brain regions examined by the labs that developed each model. Here, we use a novel proteomic technique, quantitative multiplex co-immunoprecipitation or QMI, to make a series of identical measurements of a synaptic protein interaction network in seven different animal models. We aim to identify molecular disruptions that are common to multiple models. Methods QMI was performed on 92 hippocampal and cortical samples taken from seven mouse models of ASD: Shank3B, Shank3Δex4-9, Ube3a2xTG, TSC2, FMR1, and CNTNAP2 mutants, as well as E12.5 VPA (maternal valproic acid injection on day 12.5 post-conception). The QMI panel targeted a network of 16 interacting, ASD-linked, synaptic proteins, probing 240 potential co-associations. A custom non-parametric statistical test was used to call significant differences between ASD models and littermate controls, and Hierarchical Clustering by Principal Components was used to cluster the models using mean log2 fold change values. Results Each model displayed a unique set of disrupted interactions, but some interactions were disrupted in multiple models. These tended to be interactions that are known to change with synaptic activity. Clustering revealed potential relationships among models and suggested deficits in AKT signaling in Ube3a2xTG mice, which were confirmed by phospho-western blots. Conclusions These data highlight the great heterogeneity among models, but suggest that high-dimensional measures of a synaptic protein network may allow differentiation of subtypes of ASD with shared molecular pathology.
Collapse
Affiliation(s)
- Emily A Brown
- 1Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA USA
| | - Jonathan D Lautz
- 1Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA USA
| | - Tessa R Davis
- 2Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN USA.,3Present address: Department of Biomedical Engineering, UT Austin, Austin, TX USA
| | - Edward P Gniffke
- 1Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA USA
| | - Alison A W VanSchoiack
- 1Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA USA.,Present address: Nanostring, Seattle, WA USA
| | - Steven C Neier
- 2Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN USA.,5Present address: Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA.,6Present address: Department of Medicine, Harvard Medical School, Boston, MA USA.,7Present address: Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Noah Tashbook
- 1Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA USA
| | - Chiara Nicolini
- 8Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| | - Margaret Fahnestock
- 8Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| | - Adam G Schrum
- 9Departments of Molecular Microbiology & Immunology, Surgery and Bioengineering, University of Missouri, Columbia, MO USA
| | - Stephen E P Smith
- 1Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA USA.,10Department of Pediatrics and Graduate Program in Neuroscience, University of Washington, Seattle, WA USA
| |
Collapse
|
58
|
Pharmacological Inhibition of ERK Signaling Rescues Pathophysiology and Behavioral Phenotype Associated with 16p11.2 Chromosomal Deletion in Mice. J Neurosci 2018; 38:6640-6652. [PMID: 29934348 DOI: 10.1523/jneurosci.0515-17.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
The human 16p11.2 microdeletion is one of the most common gene copy number variations linked to autism, but the pathophysiology associated with this chromosomal abnormality is largely unknown. The 593 kb deletion contains the ERK1 gene and other genes that converge onto the ERK/MAP kinase pathway. Perturbations in ERK signaling are linked to a group of related neurodevelopmental disorders hallmarked by intellectual disability, including autism. We report that mice harboring the 16p11.2 deletion exhibit a paradoxical elevation of ERK activity, cortical cytoarchitecture abnormalities and behavioral deficits. Importantly, we show that treatment with a novel ERK pathway inhibitor during a critical period of brain development rescues the molecular, anatomical and behavioral deficits in the 16p11.2 deletion mice. The ERK inhibitor treatment administered to adult mice ameliorates a subset of these behavioral deficits. Our findings provide evidence for potential targeted therapeutic intervention in 16p11.2 deletion carriers.SIGNIFICANCE STATEMENT The ERK/MAPK pathway is genetically linked to autism spectrum disorders and other syndromes typified by intellectual disability. We provide direct evidence connecting the ERK/MAP kinases to the developmental abnormalities in neurogenesis and cortical cytoarchitecture associated with the 16p11.2 chromosomal deletion. Most importantly, we demonstrate that treatment with a novel ERK-specific inhibitor during development rescues aberrant cortical cytoarchitecture and restores normal levels of cell-cycle regulators during cortical neurogenesis. These treatments partially reverse the behavioral deficits observed in the 16p11.2del mouse model, including hyperactivity, memory as well as olfaction, and maternal behavior. We also report a rescue of a subset of these deficits upon treatment of adult 16p11.2del mice. These data provide a strong rationale for therapeutic approaches to this disorder.
Collapse
|
59
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
60
|
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition with no current treatment available. Although advances in genetics and genomics have identified hundreds of genes associated with ASD, very little is known about the pathophysiology of ASD and the functional contribution of specific genes to ASD phenotypes. Improved understanding of the biological function of ASD-associated genes and how this heterogeneous group of genetic variants leads to the disease is needed in order to develop therapeutic strategies. Here, we review the current state of ASD research related to gene discovery and examples of emerging molecular mechanisms (protein translation and alternative splicing). In addition, we discuss how patient-derived three-dimensional brain organoids might provide an opportunity to model specific genetic variants in order to define molecular and cellular defects that could be amenable for developing and screening personalized therapies related to ASD.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| |
Collapse
|
61
|
Kilinc M, Creson T, Rojas C, Aceti M, Ellegood J, Vaissiere T, Lerch JP, Rumbaugh G. Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders. Mol Cell Neurosci 2018; 91:140-150. [PMID: 29580901 DOI: 10.1016/j.mcn.2018.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/22/2023] Open
Abstract
SYNGAP1 loss-of-function variants are causally associated with intellectual disability, severe epilepsy, autism spectrum disorder and schizophrenia. While there are hundreds of genetic risk factors for neurodevelopmental disorders (NDDs), this gene is somewhat unique because of the frequency and penetrance of loss-of-function variants found in patients combined with the range of brain disorders associated with SYNGAP1 pathogenicity. These clinical findings indicate that SYNGAP1 regulates fundamental neurodevelopmental processes that are necessary for brain development. Here, we describe four phenotypic domains that are controlled by Syngap1 expression across vertebrate species. Two domains, the maturation of cognitive functions and maintenance of excitatory-inhibitory balance, are defined exclusively through a review of the current literature. Two additional domains are defined by integrating the current literature with new data indicating that SYNGAP1/Syngap1 regulates innate survival behaviors and brain structure. These four phenotypic domains are commonly disrupted in NDDs, suggesting that a deeper understanding of developmental Syngap1 functions will be generalizable to other NDDs of known or unknown etiology. Therefore, we discuss the known molecular and cellular functions of Syngap1 and consider how these functions may contribute to the emergence of disease-relevant phenotypes. Finally, we identify major unexplored areas of Syngap1 neurobiology and discuss how a deeper understanding of this gene may uncover general principles of NDD pathobiology.
Collapse
Affiliation(s)
- Murat Kilinc
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, United States
| | - Thomas Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ONT, Canada
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ONT, Canada; Medical Biophysics, University of Toronto, Toronto, ONT, Canada
| | - Gavin Rumbaugh
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States.
| |
Collapse
|
62
|
Weldon M, Kilinc M, Lloyd Holder J, Rumbaugh G. The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord 2018; 10:6. [PMID: 29402231 PMCID: PMC5800089 DOI: 10.1186/s11689-018-9225-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/25/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pathologic mutations in SYNGAP1 cause a genetically defined form of intellectual disability (ID) with comorbid epilepsy and autistic features. While only recently discovered, pathogenicity of this gene is a relatively frequent genetic cause of classically undefined developmental delay that progresses to ID with commonly occurring comorbidities. MAIN BODY A meeting of 150 people was held that included affected individuals and their caregivers, clinicians that treat this and related brain disorders, neuroscientists that study SYNGAP1 biology or the function of related genes, and representatives from government agencies that fund science and approve new medical treatments. The meeting focused on developing a consensus among all stakeholders as to how best to achieve a more fundamental and profound understanding of SYNGAP1 biology and its role in human disease. SHORT CONCLUSION From all of these proceedings, several areas of consensus emerged. The clinicians and geneticists agreed that the prevalence of epilepsy and sensory processing impairments in SYNGAP1-related brain disorders approached 100%. The neurobiologists agreed that more basic research is needed to better understand the molecular and cellular functions of the Syngap1 gene, which will lead to targets for therapeutic intervention. Finally, everyone agreed that there is a pressing need to form a robust patient registry as an initial step toward a prospective natural history study of patients with pathogenic SYNGAP1 variants.
Collapse
Affiliation(s)
- Monica Weldon
- Bridge-the-GAP-SYNGAP Education and Research Foundation (ERF), Cypress, TX, USA
| | - Murat Kilinc
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute and Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, 1250 Moursund St. Suite 1150, Houston, TX, 77030, USA.
| | - Gavin Rumbaugh
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA. .,Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, #3B3, Jupiter, FL, 33458, USA.
| |
Collapse
|
63
|
Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HA, Hoekzema K, Kvarnung M, Shaw M, Friend K, Liebelt J, Barnett C, Thompson EM, Haan E, Guo H, Anderlid BM, Nordgren A, Lindstrand A, Vandeweyer G, Alberti A, Avola E, Vinci M, Giusto S, Pramparo T, Pierce K, Nalabolu S, Michaelson JJ, Sedlacek Z, Santen GW, Peeters H, Hakonarson H, Courchesne E, Romano C, Kooy RF, Bernier RA, Nordenskjöld M, Gecz J, Xia K, Zweifel LS, Eichler EE. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci 2017; 20:1043-1051. [PMID: 28628100 PMCID: PMC5539915 DOI: 10.1038/nn.4589] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/19/2017] [Indexed: 12/17/2022]
Abstract
Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.
Collapse
Affiliation(s)
| | - Gabriel Heymann
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Tychele N. Turner
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Holly A.F. Stessman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Shaw
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Kathryn Friend
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- SA Pathology, Adelaide, South Australia, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
| | - Christopher Barnett
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Elizabeth M. Thompson
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric Haan
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hui Guo
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Antonino Alberti
- Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Emanuela Avola
- Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Mirella Vinci
- Laboratory of Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Stefania Giusto
- Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Tiziano Pramparo
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | - Karen Pierce
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | - Srinivasa Nalabolu
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | | | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Gijs W.E. Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research, Leuven, Belgium
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Courchesne
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | - Corrado Romano
- Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
64
|
Zeng M, Bai G, Zhang M. Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. Small GTPases 2017; 10:296-304. [PMID: 28524815 DOI: 10.1080/21541248.2017.1320350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SynGAP, encoded by SYNGAP1, is a Ras/Rap GTPase activator specifically expressed in the nervous systems. SynGAP is one of the most abundant proteins in the postsynaptic densities (PSDs) of excitatory synapses and acts as a critical synaptic activity brake by tuning down synaptic GTPase activities. Mutations of SYNGAP1 have been frequently linked to brain disorders including intellectual disability, autisms, and seizure. SynGAP has been shown to undergo fast dispersions from synapses in response to stimulations, a strategy that neurons use to control the specific activities of the enzyme within the tiny, semi-open compartments in dendritic spines. However, the mechanism governing the activity-dependent synaptic localization modulations of SynGAP is poorly understood. It has been shown recently that SynGAP α1, via specifically binding to PSD-95, can undergo liquid-liquid phase separation forming membraneless, condensed protein-rich sub-compartments. This phase transition-mediated, PSD-95-dependent synaptic enrichment of SynGAP α1 not only suggests a dynamic anchoring mechanism of the protein within the PSD, but also implies a new model for the PSD formation in living neurons.
Collapse
Affiliation(s)
- Menglong Zeng
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| | - Guanhua Bai
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| | - Mingjie Zhang
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China.,b Center of Systems Biology and Human Health , Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| |
Collapse
|
65
|
Roh JD, Choi SY, Cho YS, Choi TY, Park JS, Cutforth T, Chung W, Park H, Lee D, Kim MH, Lee Y, Mo S, Rhee JS, Kim H, Ko J, Choi SY, Bae YC, Shen K, Kim E, Han K. Increased Excitatory Synaptic Transmission of Dentate Granule Neurons in Mice Lacking PSD-95-Interacting Adhesion Molecule Neph2/Kirrel3 during the Early Postnatal Period. Front Mol Neurosci 2017; 10:81. [PMID: 28381988 PMCID: PMC5360738 DOI: 10.3389/fnmol.2017.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Copy number variants and point mutations of NEPH2 (also called KIRREL3) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2-/- mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2-/- mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations.
Collapse
Affiliation(s)
- Junyeop D Roh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Daejeon, South Korea
| | - Su-Yeon Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS) Daejeon, South Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University Daegu, South Korea
| | - Tae-Yong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry Seoul, South Korea
| | - Jong-Sil Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry Seoul, South Korea
| | - Tyler Cutforth
- Department of Neurology, Columbia University Medical Center New York, NY, USA
| | - Woosuk Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University Daejeon, South Korea
| | - Hanwool Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS) Daejeon, South Korea
| | - Dongsoo Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS) Daejeon, South Korea
| | - Myeong-Heui Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Daejeon, South Korea
| | - Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea University Seoul, South Korea
| | - Seojung Mo
- Department of Anatomy, College of Medicine, Korea University Seoul, South Korea
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine Göttingen, Germany
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University Seoul, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry Seoul, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University Daegu, South Korea
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University Stanford, CA, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)Daejeon, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University Seoul, South Korea
| |
Collapse
|
66
|
Huang GH, Sun ZL, Li HJ, Feng DF. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 2017; 80:18-31. [PMID: 28163190 DOI: 10.1016/j.mcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
The Rho family of small GTPases was considered as molecular switches in regulating multiple cellular events, including cytoskeleton reorganization. The Rho GTPase-activating proteins (RhoGAPs) are one of the major families of Rho GTPase regulators. RhoGAPs were initially considered negative mediators of Rho signaling pathways via their GAP domain. Recent studies have demonstrated that RhoGAPs also regulate numerous aspects of neuronal development and are related to various neurodegenerative diseases in GAP-dependent and GAP-independent manners. Moreover, RhoGAPs are regulated through various mechanisms, such as phosphorylation. To date, approximately 70 RhoGAPs have been identified; however, only a small portion has been thoroughly investigated. Thus, the characterization of important RhoGAPs in the central nervous system is crucial to understand their spatiotemporal role during different stages of neuronal development. In this review, we summarize the current knowledge of RhoGAPs in the brain with an emphasis on their molecular function, regulation mechanism and disease implications in the central nervous system.
Collapse
Affiliation(s)
- Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
67
|
Xie Z, Li J, Baker J, Eagleson KL, Coba MP, Levitt P. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse. Biol Psychiatry 2016; 80:933-942. [PMID: 27086544 PMCID: PMC5001930 DOI: 10.1016/j.biopsych.2016.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. METHODS Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. RESULTS Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. CONCLUSIONS The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Pediatrics and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jing Li
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jonathan Baker
- College of Science, University of Notre Dame, South Bend, Indiana
| | - Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California; Program in Developmental Neurogenetics, Institute for the Developing Mind and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
68
|
Xu Y, Quinn CC. Transition between synaptic branch formation and synaptogenesis is regulated by the lin-4 microRNA. Dev Biol 2016; 420:60-66. [PMID: 27746167 PMCID: PMC5841448 DOI: 10.1016/j.ydbio.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
Axonal branch formation and synaptogenesis are sequential events that are required for the establishment of neuronal connectivity. However, little is known about how the transition between these two events is regulated. Here, we report that the lin-4 microRNA can regulate the transition between branch formation and synaptogenesis in the PLM axon of C. elegans. The PLM axon grows a collateral branch during the early L1 stage and undergoes synaptogenesis during the late L1 stage. Loss of the lin-4 microRNA disrupts synaptogenesis during the late L1 stage, suggesting that lin-4 promotes synaptogenesis. Conversely, the target of lin-4, the LIN-14 transcription factor, promotes PLM branch formation and inhibits synaptogenesis during the early L1 stage. Moreover, we present genetic evidence suggesting that synaptic vesicle transport is required for PLM branch formation and that the role of LIN-14 is to promote transport of synaptic vesicles to the region of future branch growth. These observations provide a novel mechanism whereby lin-4 promotes the transition from branch formation to synaptogenesis by repressing the branch-promoting and synaptogenesis-inhibiting activities of LIN-14.
Collapse
Affiliation(s)
- Yan Xu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| |
Collapse
|
69
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
70
|
Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2016; 37:14-30. [DOI: 10.1002/pd.4942] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jiani Yin
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| |
Collapse
|
71
|
Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun 2016; 7:13340. [PMID: 27827368 PMCID: PMC5105197 DOI: 10.1038/ncomms13340] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023] Open
Abstract
Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear. Here, we show that Syngap1 haploinsufficiency significantly reduces the formation of perisomatic innervations by parvalbumin-positive basket cells, a major population of GABAergic neurons, in a cell-autonomous manner. We further show that Syngap1 haploinsufficiency in GABAergic cells derived from the medial ganglionic eminence impairs their connectivity, reduces inhibitory synaptic activity and cortical gamma oscillation power, and causes cognitive deficits. Our results indicate that Syngap1 plays a critical role in GABAergic circuit function and further suggest that Syngap1 haploinsufficiency in GABAergic circuits may contribute to cognitive deficits.
Collapse
|
72
|
Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plast 2016; 2016:8051861. [PMID: 27795858 PMCID: PMC5067329 DOI: 10.1155/2016/8051861] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains-the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.
Collapse
|
73
|
Walkup WG, Mastro TL, Schenker LT, Vielmetter J, Hu R, Iancu A, Reghunathan M, Bannon BD, Kennedy MB. A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density. eLife 2016; 5. [PMID: 27623146 PMCID: PMC5040590 DOI: 10.7554/elife.16813] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
SynGAP is a Ras/Rap GTPase-activating protein (GAP) that is a major constituent of postsynaptic densities (PSDs) from mammalian forebrain. Its α1 isoform binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and can occupy as many as 15% of these PDZ domains. We present evidence that synGAP-α1 regulates the composition of the PSD by restricting binding to the PDZ domains of PSD-95. We show that phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Polo-like kinase-2 (PLK2) decreases its affinity for the PDZ domains by several fold, which would free PDZ domains for occupancy by other proteins. Finally, we show that three critical postsynaptic signaling proteins that bind to the PDZ domains of PSD-95 are present in higher concentration in PSDs isolated from mice with a heterozygous deletion of synGAP.
Collapse
Affiliation(s)
- Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Tara L Mastro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Leslie T Schenker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jost Vielmetter
- Beckman Institute Protein Expression Center, California Institute of Technology, Pasadena, United States
| | - Rebecca Hu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ariella Iancu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Meera Reghunathan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Barry Dylan Bannon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mary B Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
74
|
Mosca SJ, Langevin LM, Dewey D, Innes AM, Lionel AC, Marshall CC, Scherer SW, Parboosingh JS, Bernier FP. Copy-number variations are enriched for neurodevelopmental genes in children with developmental coordination disorder. J Med Genet 2016; 53:812-819. [DOI: 10.1136/jmedgenet-2016-103818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/24/2023]
|
75
|
Mullins C, Fishell G, Tsien RW. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 2016; 89:1131-1156. [PMID: 26985722 DOI: 10.1016/j.neuron.2016.02.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying autism spectrum disorders (ASDs) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry, and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops and provide detailed commentary for exemplar genes within each module.
Collapse
Affiliation(s)
- Caitlin Mullins
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
76
|
Tidyman WE, Rauen KA. Pathogenetics of the RASopathies. Hum Mol Genet 2016; 25:R123-R132. [PMID: 27412009 DOI: 10.1093/hmg/ddw191] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 01/26/2023] Open
Abstract
The RASopathies are defined as a group of medical genetics syndromes that are caused by germ-line mutations in genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) pathway. Taken together, the RASopathies represent one of the most prevalent groups of malformation syndromes affecting greater than 1 in 1,000 individuals. The Ras/MAPK pathway has been well studied in the context of cancer as it plays essential roles in growth, differentiation, cell cycle, senescence and apoptosis, all of which are also critical to normal development. The consequence of germ-line dysregulation leads to phenotypic alterations of development. RASopathies can be caused by several pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. These pathogenetic mechanisms can include functional alteration of GTPases, Ras GTPase-activating proteins, Ras guanine exchange factors, kinases, scaffolding or adaptor proteins, ubiquitin ligases, phosphatases and pathway inhibitors. Although these mechanisms are diverse, the common underlying biochemical phenotype shared by all the RASopathies is Ras/MAPK pathway activation. This results in the overlapping phenotypic features among these syndromes.
Collapse
Affiliation(s)
- William E Tidyman
- Division of Behavioral and Developmental Pediatrics, Department of Pediatrics UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, USA UC Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
77
|
Abstract
The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of cell cycle, differentiation, growth, cell senescence and apoptosis, all of which are critical to normal development. A class of neurodevelopmental disorders, RASopathies, is caused by germline mutations in genes of the Ras/MAPK pathway. Through the use of whole exome sequencing and targeted sequencing of selected genes in cohorts of panel-negative RASopathy patients, several new genes have been identified. These include: RIT1, SOS2, RASA2, RRAS and SYNGAP1, that likely represent new, albeit rare, causative RASopathy genes. In addition, A2ML1, LZTR1, MYST4, SPRY1 and MAP3K8 may represent new rare genes for RASopathies, but, additional functional studies regarding the mutations are warranted. In addition, recent reports have demonstrated that chromosomal copy number variation in regions encompassing Ras/MAPK pathway genes may be a novel pathogenetic mechanism expanding the RASopathies.
Collapse
|
78
|
Peng Y, Lu Z, Li G, Piechowicz M, Anderson M, Uddin Y, Wu J, Qiu S. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain. Mol Psychiatry 2016; 21:925-35. [PMID: 26728565 PMCID: PMC4914424 DOI: 10.1038/mp.2015.182] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/30/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
Abstract
The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.
Collapse
Affiliation(s)
- Yun Peng
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Zhongming Lu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Guohui Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Interdisciplinary Graduate Program in Neuroscience, School of Life Science, Arizona State University. Tempe, AZ 85287
| | - Mariel Piechowicz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Miranda Anderson
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Yasin Uddin
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Jie Wu
- Division of Neurology, Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Interdisciplinary Graduate Program in Neuroscience, School of Life Science, Arizona State University. Tempe, AZ 85287
| |
Collapse
|
79
|
Ryu HH, Lee YS. Cell type-specific roles of RAS-MAPK signaling in learning and memory: Implications in neurodevelopmental disorders. Neurobiol Learn Mem 2016; 135:13-21. [PMID: 27296701 DOI: 10.1016/j.nlm.2016.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/28/2016] [Accepted: 06/09/2016] [Indexed: 01/17/2023]
Abstract
The RAS-mitogen-activated protein kinase (MAPK) signaling pathway plays critical roles in brain function, including learning and memory. Mutations of molecules in the RAS-MAPK pathway are associated with a group of disorders called RASopathies, which include Noonan syndrome, neurofibromatosis type 1, Costello syndrome, Noonan syndrome with multiple lentigines, Legius syndrome, and cardio-facio-cutaneous syndrome. RASopathies share certain clinical symptoms, including craniofacial abnormalities, heart defects, delayed growth, and cognitive deficits such as learning disabilities, while each individual syndrome also displays unique phenotypes. Recent studies using mouse models of RASopathies showed that each disorder may have a distinct molecular and cellular etiology depending on the cellular specificity of the mutated molecules. Here, we review the cell-type specific roles of the regulators of the RAS-MAPK pathway in cognitive function (learning and memory) and their contribution to the development of RASopathies. We also discussed recent technical advances in analyzing cell type-specific transcriptomes and proteomes in the nervous system. Understanding specific mechanisms for these similar but distinct disorders would facilitate the development of mechanism-based individualized treatment for RASopathies.
Collapse
Affiliation(s)
- Hyun-Hee Ryu
- Department of Life Science, College of Natural Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
80
|
Resequencing and Association Analysis of Six PSD-95-Related Genes as Possible Susceptibility Genes for Schizophrenia and Autism Spectrum Disorders. Sci Rep 2016; 6:27491. [PMID: 27271353 PMCID: PMC4895433 DOI: 10.1038/srep27491] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/20/2016] [Indexed: 12/21/2022] Open
Abstract
PSD-95 associated PSD proteins play a critical role in regulating the density and activity of glutamate receptors. Numerous previous studies have shown an association between the genes that encode these proteins and schizophrenia (SZ) and autism spectrum disorders (ASD), which share a substantial portion of genetic risks. We sequenced the protein-encoding regions of DLG1, DLG2, DLG4, DLGAP1, DLGAP2, and SynGAP in 562 cases (370 SZ and 192 ASD patients) on the Ion PGM platform. We detected 26 rare (minor allele frequency <1%), non-synonymous mutations, and conducted silico functional analysis and pedigree analysis when possible. Three variants, G344R in DLG1, G241S in DLG4, and R604C in DLGAP2, were selected for association analysis in an independent sample set of 1315 SZ patients, 382 ASD patients, and 1793 healthy controls. Neither DLG4-G241S nor DLGAP2-R604C was detected in any samples in case or control sets, whereas one additional SZ patient was found that carried DLG1-G344R. Our results suggest that rare missense mutations in the candidate PSD genes may increase susceptibility to SZ and/or ASD. These findings may strengthen the theory that rare, non-synonymous variants confer substantial genetic risks for these disorders.
Collapse
|
81
|
Ruegsegger C, Stucki DM, Steiner S, Angliker N, Radecke J, Keller E, Zuber B, Rüegg MA, Saxena S. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron 2016; 89:129-46. [PMID: 26748090 DOI: 10.1016/j.neuron.2015.11.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1), due to the expansion of a polyglutamine repeat within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), the cause of which is poorly understood. Here, we identified the unique proteomic signature of Sca1(154Q/2Q) PCs at an early stage of disease, highlighting extensive alterations in proteins associated with synaptic functioning, maintenance, and transmission. Focusing on Homer-3, a PC-enriched scaffold protein regulating neuronal activity, revealed an early decline in its expression. Impaired climbing fiber-mediated synaptic transmission diminished mTORC1 signaling, paralleling Homer-3 reduction in Sca1(154Q/2Q) PCs. Ablating mTORC1 within PCs or pharmacological inhibition of mTORC1 identified Homer-3 as its downstream target. mTORC1 knockout in Sca1(154Q/2Q) PCs exacerbated and accelerated pathology. Reinstating Homer-3 expression in Sca1(154Q/2Q) PCs attenuated cellular dysfunctions and improved motor deficits. Our work reveals that impaired mTORC1-Homer-3 activity underlies PC susceptibility in SCA1 and presents a promising therapeutic target.
Collapse
Affiliation(s)
- Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - David M Stucki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Silvio Steiner
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Nico Angliker
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Julika Radecke
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Eva Keller
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
82
|
Mignot C, von Stülpnagel C, Nava C, Ville D, Sanlaville D, Lesca G, Rastetter A, Gachet B, Marie Y, Korenke GC, Borggraefe I, Hoffmann-Zacharska D, Szczepanik E, Rudzka-Dybała M, Yiş U, Çağlayan H, Isapof A, Marey I, Panagiotakaki E, Korff C, Rossier E, Riess A, Beck-Woedl S, Rauch A, Zweier C, Hoyer J, Reis A, Mironov M, Bobylova M, Mukhin K, Hernandez-Hernandez L, Maher B, Sisodiya S, Kuhn M, Glaeser D, Weckhuysen S, Myers CT, Mefford HC, Hörtnagel K, Biskup S, Lemke JR, Héron D, Kluger G, Depienne C. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J Med Genet 2016; 53:511-22. [PMID: 26989088 DOI: 10.1136/jmedgenet-2015-103451] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype-phenotype correlations. METHODS We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed. RESULTS We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3' and 5' exons. Seizures in patients with mutations in exons 4-5 were more pharmacoresponsive than in patients with mutations in exons 8-15. CONCLUSIONS SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers.
Collapse
Affiliation(s)
- Cyril Mignot
- Département de Génétique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Centre de Référence "Déficiences Intellectuelles de Causes Rares, Paris, France Groupe de Recherche Clinique (GRC) "Déficience Intellectuelle et Autisme", UPMC, Paris, France
| | - Celina von Stülpnagel
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany Paracelsus Medical University Salzburg, Austria
| | - Caroline Nava
- Département de Génétique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Dorothée Ville
- Service de Neurologie Pédiatrique, Hôpital Femme Mère Enfant, CHU de Lyon, Bron, France
| | - Damien Sanlaville
- Service de Génétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France Université Claude-Bernard Lyon 1, Villeurbanne, France CRNL, CNRS UMR 5292, INSERM U1028, bâtiment IMBL, Villeurbanne, France
| | - Gaetan Lesca
- Service de Génétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France Université Claude-Bernard Lyon 1, Villeurbanne, France CRNL, CNRS UMR 5292, INSERM U1028, bâtiment IMBL, Villeurbanne, France
| | - Agnès Rastetter
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Benoit Gachet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Yannick Marie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - G Christoph Korenke
- Klinikum Oldenburg, Zentrum für Kinder- und Jugendmedizin (Elisabeth Kinderkrankenhaus), Klinik für Neuropädiatrie u. angeborene Stoffwechselerkrankungen, Oldenburg, Germany
| | - Ingo Borggraefe
- Department of Pediatric Neurology and Developmental Medicine and Epilepsy Center, University of Munich, Munich, Germany
| | | | - Elżbieta Szczepanik
- Clinic of Neurology of Children and Adolescents, Institute of Mother and Child, Warsaw, Poland
| | - Mariola Rudzka-Dybała
- Clinic of Neurology of Children and Adolescents, Institute of Mother and Child, Warsaw, Poland
| | - Uluç Yiş
- Division of Child Neurology, Department of Pediatrics, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Hande Çağlayan
- Department of Molecular Biology and Genetics Istanbul, Boğaziçi University, Istanbul, Turkey
| | - Arnaud Isapof
- AP-HP, Hôpital Trousseau, Service de Neuropédiatrie, Paris, France
| | - Isabelle Marey
- Département de Génétique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Eleni Panagiotakaki
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), France
| | - Christian Korff
- Département de l'Enfant et de l'Adolescent, Neuropédiatrie-Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Eva Rossier
- Institute of Human Genetics, University of Tuebingen, Tuebingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Woedl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schwerzenbach, Switzerland
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mikhail Mironov
- Svt. Luka's Institute of Child Neurology and Epilepsy, Moscow, Russia
| | - Maria Bobylova
- Svt. Luka's Institute of Child Neurology and Epilepsy, Moscow, Russia
| | - Konstantin Mukhin
- Svt. Luka's Institute of Child Neurology and Epilepsy, Moscow, Russia
| | - Laura Hernandez-Hernandez
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Bridget Maher
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | | | | | - Sarah Weckhuysen
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR S 1127, CNRS UMR 7225, ICM, Paris, France Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
| | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, USA
| | | | | | | | | | - Delphine Héron
- Département de Génétique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Centre de Référence "Déficiences Intellectuelles de Causes Rares, Paris, France Groupe de Recherche Clinique (GRC) "Déficience Intellectuelle et Autisme", UPMC, Paris, France Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
| | - Gerhard Kluger
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany Paracelsus Medical University Salzburg, Austria
| | - Christel Depienne
- Département de Génétique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| |
Collapse
|
83
|
Casanova EL, Sharp JL, Chakraborty H, Sumi NS, Casanova MF. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Mol Autism 2016; 7:18. [PMID: 26985359 PMCID: PMC4793536 DOI: 10.1186/s13229-016-0082-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Intellectual disability (ID), autism, and epilepsy share frequent yet variable comorbidities with one another. In order to better understand potential genetic divergence underlying this variable risk, we studied genes responsible for monogenic IDs, grouped according to their autism and epilepsy comorbidities. METHODS Utilizing 465 different forms of ID with known molecular origins, we accessed available genetic databases in conjunction with gene ontology (GO) to determine whether the genetics underlying ID diverge according to its comorbidities with autism and epilepsy and if genes highly penetrant for autism or epilepsy share distinctive features that set them apart from genes that confer comparatively variable or no apparent risk. RESULTS The genetics of ID with autism are relatively enriched in terms associated with nervous system-specific processes and structural morphogenesis. In contrast, we find that ID with highly comorbid epilepsy (HCE) is modestly associated with lipid metabolic processes while ID without autism or epilepsy comorbidity (ID only) is enriched at the Golgi membrane. Highly comorbid autism (HCA) genes, on the other hand, are strongly enriched within the nucleus, are typically involved in regulation of gene expression, and, along with IDs with more variable autism, share strong ties with a core protein-protein interaction (PPI) network integral to basic patterning of the CNS. CONCLUSIONS According to GO terminology, autism-related gene products are integral to neural development. While it is difficult to draw firm conclusions regarding IDs unassociated with autism, it is clear that the majority of HCA genes are tightly linked with general dysregulation of gene expression, suggesting that disturbances to the chronology of neural maturation and patterning may be key in conferring susceptibility to autism spectrum conditions.
Collapse
Affiliation(s)
- Emily L. Casanova
- />Department of Biomedical Sciences, University of South Carolina, South Carolina, USA
- />Department of Pediatrics, Greenville Health System, Patewood Medical Campus, 200A Patewood Dr, Greenville, SC 29615 USA
| | - Julia L. Sharp
- />Department of Mathematical Sciences, Clemson University, Clemson, USA
| | - Hrishikesh Chakraborty
- />Department of Biostatistics and Epidemiology, University of South Carolina, South Carolina, USA
| | - Nahid Sultana Sumi
- />Department of Biostatistics and Epidemiology, University of South Carolina, South Carolina, USA
| | - Manuel F. Casanova
- />Department of Biomedical Sciences, University of South Carolina, South Carolina, USA
- />Department of Pediatrics, Greenville Health System, Patewood Medical Campus, 200A Patewood Dr, Greenville, SC 29615 USA
| |
Collapse
|
84
|
Abstract
UNLABELLED Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen in the human condition (i.e., have structural validity) and which produce phenotypes that mirror ID/ASDs (i.e., have face validity). We show that SynGAP haploinsufficiency, which causes ID with co-occurring ASD in humans, mimics and occludes the synaptic pathophysiology associated with deletion of the Fmr1 gene. Syngap(+/-) and Fmr1(-/y) mice show increases in basal protein synthesis and metabotropic glutamate receptor (mGluR)-dependent long-term depression that, unlike in their wild-type controls, is independent of new protein synthesis. Basal levels of phosphorylated ERK1/2 are also elevated in Syngap(+/-) hippocampal slices. Super-resolution microscopy reveals that Syngap(+/-) and Fmr1(-/y) mice show nanoscale alterations in dendritic spine morphology that predict an increase in biochemical compartmentalization. Finally, increased basal protein synthesis is rescued by negative regulators of the mGlu subtype 5 receptor and the Ras-ERK1/2 pathway, indicating that therapeutic interventions for fragile X syndrome may benefit patients with SYNGAP1 haploinsufficiency. SIGNIFICANCE STATEMENT As the genetics of intellectual disability (ID) and autism spectrum disorders (ASDs) are unraveled, a key issue is whether genetically divergent forms of these disorders converge on common biochemical/cellular pathways and hence may be amenable to common therapeutic interventions. This study compares the pathophysiology associated with the loss of fragile X mental retardation protein (FMRP) and haploinsufficiency of synaptic GTPase-activating protein (SynGAP), two prevalent monogenic forms of ID. We show that Syngap(+/-) mice phenocopy Fmr1(-/y) mice in the alterations in mGluR-dependent long-term depression, basal protein synthesis, and dendritic spine morphology. Deficits in basal protein synthesis can be rescued by pharmacological interventions that reduce the mGlu5 receptor-ERK1/2 signaling pathway, which also rescues the same deficit in Fmr1(-/y) mice. Our findings support the hypothesis that phenotypes associated with genetically diverse forms of ID/ASDs result from alterations in common cellular/biochemical pathways.
Collapse
|
85
|
Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases. Neural Plast 2016; 2016:3025948. [PMID: 26989514 PMCID: PMC4775798 DOI: 10.1155/2016/3025948] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.
Collapse
|
86
|
Abstract
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngap1 mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Narayana Nethralaya Post-Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City Bangalore, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India
| |
Collapse
|
87
|
Park HR, Lee JM, Moon HE, Lee DS, Kim BN, Kim J, Kim DG, Paek SH. A Short Review on the Current Understanding of Autism Spectrum Disorders. Exp Neurobiol 2016; 25:1-13. [PMID: 26924928 PMCID: PMC4766109 DOI: 10.5607/en.2016.25.1.1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by a deficit in social behaviors and nonverbal interactions such as reduced eye contact, facial expression, and body gestures in the first 3 years of life. It is not a single disorder, and it is broadly considered to be a multi-factorial disorder resulting from genetic and non-genetic risk factors and their interaction. Genetic studies of ASD have identified mutations that interfere with typical neurodevelopment in utero through childhood. These complexes of genes have been involved in synaptogenesis and axon motility. Recent developments in neuroimaging studies have provided many important insights into the pathological changes that occur in the brain of patients with ASD in vivo. Especially, the role of amygdala, a major component of the limbic system and the affective loop of the cortico-striatothalamo-cortical circuit, in cognition and ASD has been proved in numerous neuropathological and neuroimaging studies. Besides the amygdala, the nucleus accumbens is also considered as the key structure which is related with the social reward response in ASD. Although educational and behavioral treatments have been the mainstay of the management of ASD, pharmacological and interventional treatments have also shown some benefit in subjects with ASD. Also, there have been reports about few patients who experienced improvement after deep brain stimulation, one of the interventional treatments. The key architecture of ASD development which could be a target for treatment is still an uncharted territory. Further work is needed to broaden the horizons on the understanding of ASD.
Collapse
Affiliation(s)
- Hye Ran Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
88
|
Erickson RP. The importance of de novo mutations for pediatric neurological disease--It is not all in utero or birth trauma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:42-58. [PMID: 27036065 DOI: 10.1016/j.mrrev.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023]
Abstract
The advent of next generation sequencing (NGS, which consists of massively parallel sequencing to perform TGS (total genome sequencing) or WES (whole exome sequencing)) has abundantly discovered many causative mutations in patients with pediatric neurological disease. A surprisingly high number of these are de novo mutations which have not been inherited from either parent. For epilepsy, autism spectrum disorders, and neuromotor disorders, including cerebral palsy, initial estimates put the frequency of causative de novo mutations at about 15% and about 10% of these are somatic. There are some shared mutated genes between these three classes of disease. Studies of copy number variation by comparative genomic hybridization (CGH) proceded the NGS approaches but they also detect de novo variation which is especially important for ASDs. There are interesting differences between the mutated genes detected by CGS and NGS. In summary, de novo mutations cause a very significant proportion of pediatric neurological disease.
Collapse
Affiliation(s)
- Robert P Erickson
- Dept. of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724, United States.
| |
Collapse
|
89
|
Myers C, Mefford H. Genetic investigations of the epileptic encephalopathies. PROGRESS IN BRAIN RESEARCH 2016; 226:35-60. [DOI: 10.1016/bs.pbr.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
90
|
Bartol TM, Keller DX, Kinney JP, Bajaj CL, Harris KM, Sejnowski TJ, Kennedy MB. Computational reconstitution of spine calcium transients from individual proteins. Front Synaptic Neurosci 2015; 7:17. [PMID: 26500546 PMCID: PMC4595661 DOI: 10.3389/fnsyn.2015.00017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
We have built a stochastic model in the program MCell that simulates Ca(2+) transients in spines from the principal molecular components believed to control Ca(2+) entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 6 × 6 × 5 μm(3) cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca(2+) channels, Na(+)/Ca(2+) exchangers, plasma membrane Ca(2+) ATPases, smooth endoplasmic reticulum Ca(2+) ATPases, immobile Ca(2+) buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins in vitro. For simulation of electrical stimuli, the time course of voltage changes in the dendritic spine was generated with the desired stimulus in the program NEURON. Voltage-dependent parameters were then continuously re-adjusted during simulations in MCell to reproduce the effects of the stimulus. Nine parameters of the model were optimized within realistic experimental limits by a process that compared results of simulations to published data. We find that simulations in the optimized model reproduce the timing and amplitude of Ca(2+) transients measured experimentally in intact neurons. Thus, we demonstrate that the characteristics of individual isolated proteins determined in vitro can accurately reproduce the dynamics of experimentally measured Ca(2+) transients in spines. The model will provide a test bed for exploring the roles of additional proteins that regulate Ca(2+) influx into spines and for studying the behavior of protein targets in the spine that are regulated by Ca(2+) influx.
Collapse
Affiliation(s)
- Thomas M. Bartol
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa Jolla, CA, USA
- Center for Theoretical Biological Physics, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Daniel X. Keller
- Center for Theoretical Biological Physics, University of CaliforniaSan Diego, La Jolla, CA, USA
- Neurosciences Department, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Justin P. Kinney
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa Jolla, CA, USA
| | - Chandrajit L. Bajaj
- Department of Computer Science, Center for Computational Visualization, University of TexasAustin, TX, USA
| | - Kristen M. Harris
- Department of Neuroscience, Center for Learning and Memory, University of TexasAustin, TX, USA
| | - Terrence J. Sejnowski
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa Jolla, CA, USA
- Center for Theoretical Biological Physics, University of CaliforniaSan Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
91
|
Abstract
The high heritability, early age at onset, and reproductive disadvantages of autism spectrum disorders (ASDs) are consistent with an etiology composed of dominant-acting de novo (spontaneous) mutations. Mutation detection by microarray analysis and DNA sequencing has confirmed that de novo copy-number variants or point mutations in protein-coding regions of genes contribute to risk, and some of the underlying causal variants and genes have been identified. As our understanding of autism genes develops, the spectrum of autism is breaking up into quanta of many different genetic disorders. Given the diversity of etiologies and underlying biochemical pathways, personalized therapy for ASDs is logical, and clinical genetic testing is a prerequisite.
Collapse
|
92
|
Abstract
Epilepsy is a group of disorders characterized by recurrent seizures, and is one of the most common neurological conditions. The genetic basis of epilepsy is clear from epidemiological studies and from rare gene discoveries in large families. The three major classes of epilepsy disorders are genetic generalized, focal and encephalopathic epilepsies, with several specific disorders within each class. Advances in genomic technologies that facilitate genome-wide discovery of both common and rare variants have led to a rapid increase in our understanding of epilepsy genetics. Copy number variant and genome-wide association studies have contributed to our understanding of the complex genetic architecture of generalized epilepsy, while genetic insights into the focal epilepsies and epileptic encephalopathies have come primarily from exome sequencing. It is increasingly clear that epilepsy is genetically heterogeneous, and novel gene discoveries have moved the field beyond the known contribution of ion channels to implicate chromatin remodeling, transcriptional regulation and regulation of the mammalian target of rapamycin (mTOR) protein in the etiology of epilepsy. Such discoveries pave the way for new therapeutics, some of which are already being studied. In this review, we discuss the rapid pace of gene discovery in epilepsy, as facilitated by genomic technologies, and highlight several novel genes and potential therapies.
Collapse
Affiliation(s)
- Candace T Myers
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
93
|
Ogden KK, Ozkan ED, Rumbaugh G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 2015; 100:2-16. [PMID: 26231830 DOI: 10.1016/j.neuropharm.2015.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
94
|
Tassano E, Gamucci A, Celle ME, Ronchetto P, Cuoco C, Gimelli G. Clinical and Molecular Cytogenetic Characterization of a de novo Interstitial 1p31.1p31.3 Deletion in a Boy with Moderate Intellectual Disability and Severe Language Impairment. Cytogenet Genome Res 2015; 146:39-43. [DOI: 10.1159/000431391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Interstitial 1p deletions are rare events. Very few cases of 1p31.1p31.3 deletions characterized by variable phenotypes have been reported. No clear genotype-phenotype correlation has been determined yet. We present a child with a de novo interstitial 1p31.1p31.3 deletion, identified by array CGH, associated with intellectual disability and severe language impairment. The deleted region contains 20 OMIM genes, but we focused on GADD45A (MIM 126335; growth arrest- and DNA damage-inducible gene), LRRC7 (MIM 614453; leucine-rich repeat-containing protein 7), and NEGR1 (MIM 613173; neuronal growth regulator 1). We discuss whether these genes play a role in determining the phenotype of our patient in order to investigate the possibility of a genotype-phenotype correlation.
Collapse
|
95
|
Parker MJ, Fryer AE, Shears DJ, Lachlan KL, McKee SA, Magee AC, Mohammed S, Vasudevan PC, Park SM, Benoit V, Lederer D, Maystadt I, Study D, FitzPatrick DR. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am J Med Genet A 2015; 167A:2231-7. [PMID: 26079862 PMCID: PMC4744742 DOI: 10.1002/ajmg.a.37189] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/11/2015] [Indexed: 01/27/2023]
Abstract
De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase‐activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi‐gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss‐of‐function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate‐to‐severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide‐based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Parker
- Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Alan E Fryer
- Clinical Genetics Department, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Deborah J Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Katherine L Lachlan
- Wessex Clinical Genetics Service, University Hospitals Southampton, Southampton, UK.,Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Shane A McKee
- Department of Genetic Medicine, Belfast City Hospital, Belfast, UK
| | - Alex C Magee
- Department of Genetic Medicine, Belfast City Hospital, Belfast, UK
| | - Shehla Mohammed
- Department of Clinical Genetics, Guy's and St. Thomas' Hospital NHS Trust, London, UK
| | - Pradeep C Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | - Soo-Mi Park
- East Anglian Medical Genetics Service, Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (I.P.G.), Gosselies (Charleroi), Belgium
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (I.P.G.), Gosselies (Charleroi), Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (I.P.G.), Gosselies (Charleroi), Belgium
| | - Ddd Study
- DDD Study, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (I.G.M.M.), University of Edinburgh, UK
| |
Collapse
|
96
|
Lesca G, Depienne C. Epilepsy genetics: the ongoing revolution. Rev Neurol (Paris) 2015; 171:539-57. [PMID: 26003806 DOI: 10.1016/j.neurol.2015.01.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Epilepsies have long remained refractory to gene identification due to several obstacles, including a highly variable inter- and intrafamilial expressivity of the phenotypes, a high frequency of phenocopies, and a huge genetic heterogeneity. Recent technological breakthroughs, such as array comparative genomic hybridization and next generation sequencing, have been leading, in the past few years, to the identification of an increasing number of genomic regions and genes in which mutations or copy-number variations cause various epileptic disorders, revealing an enormous diversity of pathophysiological mechanisms. The field that has undergone the most striking revolution is that of epileptic encephalopathies, for which most of causing genes have been discovered since the year 2012. Some examples are the continuous spike-and-waves during slow-wave sleep and Landau-Kleffner syndromes for which the recent discovery of the role of GRIN2A mutations has finally confirmed the genetic bases. These new technologies begin to be used for diagnostic applications, and the main challenge now resides in the interpretation of the huge mass of variants detected by these methods. The identification of causative mutations in epilepsies provides definitive confirmation of the clinical diagnosis, allows accurate genetic counselling, and sometimes permits the development of new appropriate and specific antiepileptic therapies. Future challenges include the identification of the genetic or environmental factors that modify the epileptic phenotypes caused by mutations in a given gene and the understanding of the role of somatic mutations in sporadic epilepsies.
Collapse
Affiliation(s)
- G Lesca
- Service de génétique, groupement hospitalier Est, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; CRNL, CNRS UMR 5292, Inserm U1028, bâtiment IMBL, 11, avenue Jean-Capelle, 69621 Villeurbanne cedex, France.
| | - C Depienne
- Département de génétique et cytogénétique, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; ICM, CNRS UMR 7225, Inserm U1127, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
97
|
Araki Y, Zeng M, Zhang M, Huganir RL. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 2015; 85:173-189. [PMID: 25569349 DOI: 10.1016/j.neuron.2014.12.023] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
SynGAP is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. Previous studies have shown that CaMKII and the RAS-ERK pathway are critical for several forms of synaptic plasticity including LTP. NMDA receptor-dependent calcium influx has been shown to regulate the RAS-ERK pathway and downstream events that result in AMPA receptor synaptic accumulation, spine enlargement, and synaptic strengthening during LTP. However, the cellular mechanisms whereby calcium influx and CaMKII control Ras activity remain elusive. Using live-imaging techniques, we have found that SynGAP is rapidly dispersed from spines upon LTP induction in hippocampal neurons, and this dispersion depends on phosphorylation of SynGAP by CaMKII. Moreover, the degree of acute dispersion predicts the maintenance of spine enlargement. Thus, the synaptic dispersion of SynGAP by CaMKII phosphorylation during LTP represents a key signaling component that transduces CaMKII activity to small G protein-mediated spine enlargement, AMPA receptor synaptic incorporation, and synaptic potentiation.
Collapse
Affiliation(s)
- Yoichi Araki
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Menglong Zeng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Mingjie Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
98
|
Aceti M, Creson TK, Vaissiere T, Rojas C, Huang WC, Wang YX, Petralia RS, Page DT, Miller CA, Rumbaugh G. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry 2015; 77:805-15. [PMID: 25444158 PMCID: PMC4326604 DOI: 10.1016/j.biopsych.2014.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. METHODS A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. RESULTS Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. CONCLUSIONS Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.
Collapse
Affiliation(s)
- Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Thomas K. Creson
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458,Department of Metabolism and Aging, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Wen-Chin Huang
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Convent Drive 1E614, Bethesda, MD 20892-3729
| | - Ronald S. Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Convent Drive 1E614, Bethesda, MD 20892-3729
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Courtney A. Miller
- Department of Neuroscience, The Scripps Research Institute, #3C2, Jupiter, FL 33458,Department of Metabolism and Aging, The Scripps Research Institute, #3C2, Jupiter, FL 33458
| | - Gavin Rumbaugh
- Departments of Neuroscience, The Scripps Research Institute, Jupiter, Florida.
| |
Collapse
|
99
|
Thomas MS, Davis R, Karmiloff-Smith A, Knowland VC, Charman T. The over-pruning hypothesis of autism. Dev Sci 2015; 19:284-305. [DOI: 10.1111/desc.12303] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Michael S.C. Thomas
- Developmental Neurocognition Lab; Centre for Brain & Cognitive Development, Birkbeck,University of London; UK
| | - Rachael Davis
- Developmental Neurocognition Lab; Centre for Brain & Cognitive Development, Birkbeck,University of London; UK
| | - Annette Karmiloff-Smith
- Developmental Neurocognition Lab; Centre for Brain & Cognitive Development, Birkbeck,University of London; UK
| | | | - Tony Charman
- Institute of Psychiatry; Psychology & Neuroscience, King's College London; UK
| |
Collapse
|
100
|
Tan CA, Topper S, Del Gaudio D, Nelakuditi V, Shchelochkov O, Nowaczyk MJM, Zeesman S, Brady L, Russell L, Meeks N, Sastry S, Arndt K, Kobiernicki F, Shaw R, Das S. Characterization of patients referred for non-specific intellectual disability testing: the importance of autosomal genes for diagnosis. Clin Genet 2015; 89:478-483. [PMID: 25693842 DOI: 10.1111/cge.12575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
Genetic testing for non-specific intellectual disability (ID) presents challenges in daily clinical practice. Historically, the focus of the genetic elucidation of non-specific ID has been on genes on the X chromosome, and recent research has brought attention to the growing contribution of autosomal genes. In addition, next-generation sequencing (NGS) has greatly improved the ability to simultaneously analyze multiple genetic loci, making large panel testing a practical approach to testing for non-specific ID. We performed NGS analysis of a total of 90 genes implicated in non-specific ID. The 90 genes included 56 X-linked genes and 34 autosomal genes. Pathogenic variants were identified in 11 of 52 (21%) patient samples. Nine of the eleven cases harbored mutations in autosomal genes including AP4B1, STXB1, SYNGAP1, TCF4 and UBE3A. Our mutation-positive cases provide further evidence supporting the prevalence of autosomal mutations in patients referred for non-specific ID testing and the utility of their inclusion in multi-gene panel analysis.
Collapse
Affiliation(s)
- C A Tan
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - S Topper
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - D Del Gaudio
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - V Nelakuditi
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - O Shchelochkov
- Division of Genetics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - M J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - S Zeesman
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - L Brady
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - L Russell
- Department of Medical Genetics, Montreal General Hospital, Montreal, QC, Canada
| | - N Meeks
- Department of Pediatrics, Section of Genetics, University of Colorado, Aurora, CO, USA
| | - S Sastry
- Division of Genetic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI, USA
| | - K Arndt
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - F Kobiernicki
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - R Shaw
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - S Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|