51
|
Zeng Y, Li N, Liu W, Zeng M, Cheng J, Huang J. Analyses of expressions and prognostic values of Polo-like kinases in non-small cell lung cancer. J Cancer Res Clin Oncol 2020; 146:2447-2460. [PMID: 32627077 DOI: 10.1007/s00432-020-03288-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite great advances in its early diagnosis and treatment, lung cancer is still an intractable disease and the second leading cause of cancer-related deaths and morbidity in the world. The family of Polo-like kinases (PLKs) consists of five serine/threonine kinases, which have been reported to participate in various human diseases. However, the expression and prognostic value of each PLK in human lung cancer have not been fully understood. This study analyzed mRNA expression and prognostic value of different PLKs in human non-small cell lung cancer (NSCLC). METHODS First, mRNA expression of PLKs in patients with NSCLC from the Oncomine and the Gene Expression Profiling Interactive Analysis (GEPIA) database was investigated. Then, a Kaplan-Meier plotter was employed for survival analysis. The sequence alteration for PLKs was analyzed using The Cancer Genome Atlas (TCGA) and the cBioPortal database. Additionally, we analyzed the association among different PLKs using the LinkedOmics database. Finally, the enrichment analysis of PLKs was achieved using the DAVID database. RESULTS The mRNA expression levels of PLK1 and PLK4 were significantly overexpressed, while mRNA expression level of PLK3 was underexpressed in patients with NSCLC. mRNA expressions of PLK1 and PLK4 were significantly and positively related to the tumor stage of NSCLC. Increased expressions of PLK1, PLK4, and PLK5 and decreased expression of PLK2 were attributed to limited overall survival time in NSCLC. PLK1 was positively correlated with PLK4 via the LinkedOmics database. CONCLUSIONS PLKs are relevant targets for NSCLC treatment, especially PLK1 and PLK4.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, 12# Minyou Road, Xiashan, Zhanjiang, 524003, Guangdong, People's Republic of China
- Graduate School, Guangdong Medical University, 2# Wenming Eastern Road, Xiashan, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Nanhong Li
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, 57# Renmin avenue South, Xiashan, Zhanjiang, 524000, Guangdong, People's Republic of China
- Department of Pathology, Guangdong Medical University, 2# Wenming Eastern Road, Xiashan, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, 12# Minyou Road, Xiashan, Zhanjiang, 524003, Guangdong, People's Republic of China
| | - Mingqing Zeng
- First Clinical School of Medicine, Guangdong Medical University, 2# Wenming Eastern Road, Xiashan, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, 12# Minyou Road, Xiashan, Zhanjiang, 524003, Guangdong, People's Republic of China.
| | - Jian Huang
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, 57# Renmin avenue South, Xiashan, Zhanjiang, 524000, Guangdong, People's Republic of China.
- Department of Pathology, Guangdong Medical University, 2# Wenming Eastern Road, Xiashan, Zhanjiang, 524023, Guangdong, People's Republic of China.
| |
Collapse
|
52
|
Yeow ZY, Lambrus BG, Marlow R, Zhan KH, Durin MA, Evans LT, Scott PM, Phan T, Park E, Ruiz LA, Moralli D, Knight EG, Badder LM, Novo D, Haider S, Green CM, Tutt ANJ, Lord CJ, Chapman JR, Holland AJ. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 2020; 585:447-452. [PMID: 32908313 PMCID: PMC7597367 DOI: 10.1038/s41586-020-2690-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Genomic instability is a hallmark of cancer, and has a central role in the initiation and development of breast cancer1,2. The success of poly-ADP ribose polymerase inhibitors in the treatment of breast cancers that are deficient in homologous recombination exemplifies the utility of synthetically lethal genetic interactions in the treatment of breast cancers that are driven by genomic instability3. Given that defects in homologous recombination are present in only a subset of breast cancers, there is a need to identify additional driver mechanisms for genomic instability and targeted strategies to exploit these defects in the treatment of cancer. Here we show that centrosome depletion induces synthetic lethality in cancer cells that contain the 17q23 amplicon, a recurrent copy number aberration that defines about 9% of all primary breast cancer tumours and is associated with high levels of genomic instability4-6. Specifically, inhibition of polo-like kinase 4 (PLK4) using small molecules leads to centrosome depletion, which triggers mitotic catastrophe in cells that exhibit amplicon-directed overexpression of TRIM37. To explain this effect, we identify TRIM37 as a negative regulator of centrosomal pericentriolar material. In 17q23-amplified cells that lack centrosomes, increased levels of TRIM37 block the formation of foci that comprise pericentriolar material-these foci are structures with a microtubule-nucleating capacity that are required for successful cell division in the absence of centrosomes. Finally, we find that the overexpression of TRIM37 causes genomic instability by delaying centrosome maturation and separation at mitotic entry, and thereby increases the frequency of mitotic errors. Collectively, these findings highlight TRIM37-dependent genomic instability as a putative driver event in 17q23-amplified breast cancer and provide a rationale for the use of centrosome-targeting therapeutic agents in treating these cancers.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Marlow
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Kevin H Zhan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary-Anne Durin
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena A Ruiz
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eleanor G Knight
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Luned M Badder
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Daniela Novo
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Catherine M Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - J Ross Chapman
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
53
|
Kazazian K, Haffani Y, Ng D, Lee CMM, Johnston W, Kim M, Xu R, Pacholzyk K, Zih FSW, Tan J, Smrke A, Pollett A, Wu HST, Swallow CJ. FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity. Commun Biol 2020; 3:448. [PMID: 32807875 PMCID: PMC7431843 DOI: 10.1038/s42003-020-01161-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polo like kinase 4 (Plk4) is a tightly regulated serine threonine kinase that governs centriole duplication. Increased Plk4 expression, which is a feature of many common human cancers, causes centriole overduplication, mitotic irregularities, and chromosomal instability. Plk4 can also promote cancer invasion and metastasis through regulation of the actin cytoskeleton. Herein we demonstrate physical interaction of Plk4 with FAM46C/TENT5C, a conserved protein of unknown function until recently. FAM46C localizes to centrioles, inhibits Plk4 kinase activity, and suppresses Plk4-induced centriole duplication. Interference with Plk4 function by FAM46C was independent of the latter's nucleotidyl transferase activity. In addition, FAM46C restrained cancer cell invasion and suppressed MDA MB-435 cancer growth in a xenograft model, opposing the effect of Plk4. We demonstrate loss of FAM46C in patient-derived colorectal cancer tumor tissue that becomes more profound with advanced clinical stage. These results implicate FAM46C as a tumor suppressor that acts by inhibiting Plk4 activity.
Collapse
Affiliation(s)
- Karineh Kazazian
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Yosr Haffani
- Laboratory of Physiopathology, Alimentation and Biomolecules LR17ES03, Higher Institute of Biotechnology, Sidi Thabet, University of Manouba, Ariana, 2020, Tunisia
| | - Deanna Ng
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Chae Min Michelle Lee
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Wendy Johnston
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Minji Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Roland Xu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Karina Pacholzyk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Francis Si-Wah Zih
- Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Julie Tan
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Alannah Smrke
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hannah Sun-Tsi Wu
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Carol Jane Swallow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada. .,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
54
|
Anticancer effects of the PLK4 inhibitors CFI-400945 and centrinone in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2020; 146:2871-2883. [PMID: 32770382 PMCID: PMC7519924 DOI: 10.1007/s00432-020-03346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Purpose Polo-like kinase 4 (PLK4) inhibitors, such as CFI-400945 and centrinone, are emerging as promising antineoplastic agents. However, their effectiveness against Ewing’s sarcoma, a highly aggressive childhood cancer, remains to be established.
Methods CFI-400945 and centrinone were tested in three Ewing’s sarcoma cell lines with different TP53 status. Effects were assessed by flow-cytometric analyses of cell death, dissipation of the mitochondrial transmembrane potential and cell cycle distribution, by cell viability assay as well as by caspase 3/7 activity measurement, by immunoblotting and by immunofluorescence microscopy. Results CFI-400945 and centrinone elicited cell death in p53 wild-type and mutant Ewing’s sarcoma cells. Both agents induced mitochondrial membrane depolarisation, caspase 3/7 activation, PARP1 cleavage and DNA fragmentation, indicating an apoptotic form of cell death. In addition, the PLK4 inhibitors induced a G2/M cell cycle arrest, particularly when cell killing was attenuated by the pan-caspase inhibitor z-VAD-fmk. Moreover, CFI-400945 treatment produced polyploidy. Conclusion Our findings show that PLK4 inhibitors were effective against Ewing’s sarcoma cells in vitro and thus provide a rationale for their evaluation in vivo. Electronic supplementary material The online version of this article (10.1007/s00432-020-03346-z) contains supplementary material, which is available to authorized users.
Collapse
|
55
|
Li Q, Meng L, Liu D. Screening and Identification of Therapeutic Targets for Pulmonary Arterial Hypertension Through Microarray Technology. Front Genet 2020; 11:782. [PMID: 32849793 PMCID: PMC7396553 DOI: 10.3389/fgene.2020.00782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by vascular cell proliferation; the pathogenesis of PAH has yet to be fully elucidated. Publicly available genetic data were downloaded from the Gene Expression Omnibus (GEO) database, and gene set enrichment analysis (GSEA) was used to determine significant differences in gene expression between tissues with PAH and healthy lung tissues. Differentially expressed genes (DEGs) were identified using the online tool, GEO2R, and functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Next, the construction and module analysis of the protein–protein interaction (PPI) network and verification of the expression level of hub genes was performed. Finally, prediction and enrichment analysis of microRNAs associated with the hub genes was carried out. A total of 110 DEGs were detected by screening PAH and healthy lung samples. The expression of nine genes [polo-like kinase 4 (PLK4), centromere protein U, kinesin family member 20B, structural maintenance of chromosome 2 (SMC2), abnormal spindle microtubule assembly, Fanconi Anemia complementation group I, kinesin family member 18A, spindle apparatus coiled-coil protein 1, and MIS18 binding protein 1] was elevated in PAH; this was statistically significant compared with their expression in healthy lung tissue, and they were identified as hub genes. GO and KEGG analysis showed that the variations in DEGs were abundant in DNA-templated transcription, sister chromatid cohesion, mitotic nuclear division, cell proliferation, and regulation of the actin cytoskeleton. In conclusion, this study has successfully identified hub genes and key pathways of PAH, with a total of 110 DEGs and nine hub genes related to PAH, especially the PLK4 and SMC2 genes, thus providing important clues for the in-depth understanding of the molecular mechanism of PAH and providing potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - LingBing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Departments of Cardiology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - DePing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
56
|
Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther 2020; 5:107. [PMID: 32606370 PMCID: PMC7327052 DOI: 10.1038/s41392-020-00214-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosome aberrations are hallmarks of human cancers and contribute to the senescence process. Structural and numerical centrosome abnormalities trigger mitotic errors, cellular senescence, cell death, genomic instability and/or aneuploidy, resulting in human disorders such as aging and cancer and affecting immunity. Interestingly, centrosome dysfunction promotes the secretion of multiple inflammatory factors that act as pivotal drivers of senescence and tumor immune escape. In this review, we summarize the forms of centrosome dysfunction and further discuss recent advances indicating that centrosome defects contribute to acceleration of senescence progression and promotion of tumor cell immune evasion in different ways.
Collapse
|
57
|
Zhu Y, Liu Z, Qu Y, Zeng J, Yang M, Li X, Wang Z, Su J, Wang X, Yu L, Wang Y. YLZ-F5, a novel polo-like kinase 4 inhibitor, inhibits human ovarian cancer cell growth by inducing apoptosis and mitotic defects. Cancer Chemother Pharmacol 2020; 86:33-43. [PMID: 32519033 DOI: 10.1007/s00280-020-04098-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Polo-like kinase 4 (PLK4), a member of the polo-like kinase family, plays several important roles in mitotic regulation, including centrosome duplication, spindle formation, and cytokinesis. PLK4 overexpression is frequently detected in many human cancers, including ovarian cancer, and the inhibition of PLK4 activity results in cancer cell mitotic arrest and apoptosis. Therefore, PLK4 might be a valid therapeutic target for antitumor therapy. In the present study, we aimed to determine if YLZ-F5, a potent small-molecule inhibitor of PLK4, inhibits ovarian cancer cell growth. METHODS AND RESULTS MTT assay showed that YLZ-F5 inhibited ovarian cancer cell proliferation in a concentration- and time-dependent manner. The results of colony formation assays were consistent with those of the MTT assay results. In addition, YLZ-F5 induced ovarian cancer cell apoptosis that was associated with activation of caspase-3/caspase-9. Moreover, YLZ-F5 caused aberrant in centriole duplication that was associated with the inhibition of PLK4 phosphorylation. Notably, we showed that YLZ-F5 promoted the accumulation of ovarian cancer cells with mitotic defects (> 4 N DNA content) in a concentration-dependent manner. Furthermore, YLZ-F5 markedly inhibited the migration of A2780 cells. CONCLUSION Taken together, these findings suggest that YLZ-F5 is a potential drug candidate for human ovarian cancer.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanling Qu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Meiqin Yang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Xiaoyi Li
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zhaodi Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Junxiang Su
- Medical Genetics Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xueqin Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
58
|
Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020; 28:910-921.e4. [PMID: 32433990 DOI: 10.1016/j.str.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility. The molecular mechanisms of these functions of FAM46C remain elusive. We report the crystal structure of FAM46C to provide the basis for its poly(A) polymerase activity and rationalize mutations associated with multiple myeloma. In addition, we found that FAM46C interacts directly with the serine/threonine kinase Plk4, the master regulator of centrosome duplication. We present the structure of FAM46C in complex with the Cryptic Polo-Box 1-2 domains of Plk4. Our structure-based mutational analyses show that the interaction with Plk4 recruits FAM46C to centrosomes. Our data suggest that Plk4-mediated localization of FAM46C enables its regulation of centrosome structure and functions, which may underlie the roles for FAM46C in cell proliferation and sperm development.
Collapse
|
59
|
Shen J, Li L, Howlett NG, Cohen PS, Sun G. Application of a Biphasic Mathematical Model of Cancer Cell Drug Response for Formulating Potent and Synergistic Targeted Drug Combinations to Triple Negative Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12051087. [PMID: 32349331 PMCID: PMC7281712 DOI: 10.3390/cancers12051087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023] Open
Abstract
Triple negative breast cancer is a collection of heterogeneous breast cancers that are immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to deletion or lack of amplification). No dominant proliferative driver has been identified for this type of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel of targeted therapy drugs were determined over a broad range of concentrations. The analyses of the drug responses by the biphasic mathematical model revealed that both cell lines were indeed dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a target-specific partial inhibition at low nM concentrations, and an off-target toxicity at μM concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the individual drugs and drug combinations on the signaling pathways supports the above conclusion. These results support a multi-driver proliferation hypothesis for these triple negative breast cancer cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective and synergistic targeted drug combinations for triple negative breast cancer cells.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Niall G. Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
60
|
Kelleher FC, Kroes J, Lewin J. Targeting the centrosome and polo-like kinase 4 in osteosarcoma. Carcinogenesis 2020; 40:493-499. [PMID: 30508038 DOI: 10.1093/carcin/bgy175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
It has been historically uncertain if extra centrosomes are a cause or consequence of tumorigenesis. Experiments have recently established that overexpression of polo-like kinase 4 (PLK4) promotes centrosome amplification with consequential promotion of cellular aneuploidy. Furthermore, centrosome amplification drives spontaneous tumorigenesis in mice. Tissues lacking normal functional p53 tolerate extra centrosomes, whereas p53 proficient tissues initiate proliferative arrest in this circumstance. Extra centrosomes trigger activation of the multi-protein PIDDosome complex, with Caspase-2 effecting cleavage of the p53-negative regulator mouse double minute 2, consequent stabilization of p53 and p21-dependent arrest of the cell cycle. The co-occurrence of cellular aneuploidy, complex chromosomal rearrangements and p53 dysfunction is a striking feature of some osteosarcomas. It is postulated that small-molecule PLK4 inhibitors such as CFI-400945, which are in development, may have utility in osteosarcoma given these findings.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Department of Medical Oncology, St. James Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jeska Kroes
- Department of Medical Oncology, St. James Hospital, Dublin, Ireland
| | - Jeremy Lewin
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| |
Collapse
|
61
|
Eslami Amirabadi H, Tuerlings M, Hollestelle A, SahebAli S, Luttge R, van Donkelaar CC, Martens JWM, den Toonder JMJ. Characterizing the invasion of different breast cancer cell lines with distinct E-cadherin status in 3D using a microfluidic system. Biomed Microdevices 2019; 21:101. [PMID: 31760501 PMCID: PMC6875428 DOI: 10.1007/s10544-019-0450-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
E-cadherin is a cell-cell adhesion protein that plays a prominent role in cancer invasion. Inactivation of E-cadherin in breast cancer can arise from gene promoter hypermethylation or genetic mutation. Depending on their E-cadherin status, breast cancer cells adopt different morphologies with distinct invasion modes. The tumor microenvironment (TME) can also affect the cell morphology and invasion mode. In this paper, we used a previously developed microfluidic system to quantify the three-dimensional invasion of breast cancer cells with different E-cadherin status, namely MCF-7, CAMA-1 and MDA-MB-231 with wild type, mutated and promoter hypermethylated E-cadherin, respectively. The cells migrated into a stable and reproducible microfibrous polycaprolactone mesh in the chip under a programmed stable chemotactic gradient. We observed that the MDA-MB-231 cells invaded the most, as single cells. MCF-7 cells collectively invaded into the matrix more than CAMA-1 cells, maintaining their E-cadherin expression. The CAMA-1 cells exhibited multicellular multifocal infiltration into the matrix. These results are consistent with what is seen in vivo in the cancer biology literature. In addition, comparison between complete serum and serum gradient conditions showed that the MDA-MB-231 cells invaded more under the serum gradient after one day, however this behavior was inverted after 3 days. The results showcase that the microfluidic system can be used to quantitatively assess the invasion behavior of cancer cells with different E-cadherin expression, for a longer period than conventional invasion models. In the future, it can be used to quantitatively investigate effects of matrix structure and cell treatments on cancer invasion.
Collapse
Affiliation(s)
- H Eslami Amirabadi
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
- Healthy living division, TNO, Zeist, the Netherlands
- Institute for Pharmeceutical Sciences, Department of Pharmacology, Utrecht University, Utrecht, the Netherlands
| | - M Tuerlings
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
- Orthopaedic Biomechanics group, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - A Hollestelle
- Department of Medical oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S SahebAli
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - R Luttge
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics group, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands
| | - J W M Martens
- Department of Medical oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J M J den Toonder
- Microsystems group, Department of Mechanical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 15, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
62
|
Design, synthesis and evaluation of structurally diverse chrysin-chromene-spirooxindole hybrids as anticancer agents. Bioorg Med Chem 2019; 27:115109. [DOI: 10.1016/j.bmc.2019.115109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/04/2023]
|
63
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
64
|
Veitch ZW, Cescon DW, Denny T, Yonemoto LM, Fletcher G, Brokx R, Sampson P, Li SW, Pugh TJ, Bruce J, Bray MR, Slamon DJ, Mak TW, Wainberg ZA, Bedard PL. Safety and tolerability of CFI-400945, a first-in-class, selective PLK4 inhibitor in advanced solid tumours: a phase 1 dose-escalation trial. Br J Cancer 2019; 121:318-324. [PMID: 31303643 PMCID: PMC6738068 DOI: 10.1038/s41416-019-0517-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 11/24/2022] Open
Abstract
Background CFI-400945 is a first-in-class oral inhibitor of polo-like kinase 4 (PLK4) that regulates centriole duplication. Primary objectives of this first-in-human phase 1 trial were to establish the safety and tolerability of CFI-400945 in patients with advanced solid tumours. Secondary objectives included pharmacokinetics, pharmacodynamics, efficacy, and recommended phase 2 dose (RP2D). Methods Continuous daily oral dosing of CFI-400945 was evaluated using a 3+3 design guided by incidence of dose-limiting toxicities (DLTs) in the first 28-day cycle. Safety was assessed by CTCAE v4.0. ORR and CBR were evaluated using RECIST v1.1. Results Forty-three patients were treated in dose escalation from 3 to 96 mg/day, and 9 were treated in 64 mg dose expansion. After DLT occurred at 96 and 72 mg, 64 mg was established as the RP2D. Neutropenia was a common high-grade (19%) treatment-related adverse event at ≥ 64 mg. Half-life of CFI-400945 was 9 h, with Cmax achieved 2–4 h following dosing. One PR (45 cycles, ongoing) and two SD ≥ 6 months were observed (ORR = 2%; CBR = 6%). Conclusions CFI-400945 is well tolerated at 64 mg with dose-dependent neutropenia. Favourable pharmacokinetic profiles were achieved with daily dosing. Response rates were low without biomarker pre-selection. Disease-specific and combination studies are ongoing. Trial Registration Clinical Trials Registration Number – NCT01954316 (Oct 1st, 2013)
Collapse
Affiliation(s)
- Zachary W Veitch
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W Cescon
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Trisha Denny
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lisa-Maria Yonemoto
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Graham Fletcher
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Richard Brokx
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Peter Sampson
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sze-Wan Li
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark R Bray
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dennis J Slamon
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zev A Wainberg
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
65
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
66
|
Luo Y, Barrios-Rodiles M, Gupta GD, Zhang YY, Ogunjimi AA, Bashkurov M, Tkach JM, Underhill AQ, Zhang L, Bourmoum M, Wrana JL, Pelletier L. Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nat Commun 2019; 10:2356. [PMID: 31142743 PMCID: PMC6541620 DOI: 10.1038/s41467-019-10241-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Centrosomes control cell motility, polarity and migration that is thought to be mediated by their microtubule-organizing capacity. Here we demonstrate that WNT signalling drives a distinct form of non-directional cell motility that requires a key centrosome module, but not microtubules or centrosomes. Upon exosome mobilization of PCP-proteins, we show that DVL2 orchestrates recruitment of a CEP192-PLK4/AURKB complex to the cell cortex where PLK4/AURKB act redundantly to drive protrusive activity and cell motility. This is mediated by coordination of formin-dependent actin remodelling through displacement of cortically localized DAAM1 for DAAM2. Furthermore, abnormal expression of PLK4, AURKB and DAAM1 is associated with poor outcomes in breast and bladder cancers. Thus, a centrosomal module plays an atypical function in WNT signalling and actin nucleation that is critical for cancer cell motility and is associated with more aggressive cancers. These studies have broad implications in how contextual signalling controls distinct modes of cell migration. Centrosomes function in cell migration by organizing microtubules. Here, Luo et al. surprisingly show that centrosome proteins also control migration after recruitment by Wnt-PCP proteins to the cell cortex, leading to actin remodelling and protrusive activity relevant to aggressive cancer motility.
Collapse
Affiliation(s)
- Yi Luo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Gagan D Gupta
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Ying Y Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Abiodun A Ogunjimi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ainsley Q Underhill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liang Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mohamed Bourmoum
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
67
|
Abstract
The mitotic protein polo-like kinase 4 (PLK4) plays a critical role in centrosome duplication for cell division. By using immunofluorescence, we confirm that PLK4 is localized to centrosomes. In addition, we find that phospho-PLK4 (pPLK4) is cleaved and distributed to kinetochores (metaphase and anaphase), spindle midzone/cleavage furrow (anaphase and telophase), and midbody (cytokinesis) during cell division in immortalized epithelial cells as well as breast, ovarian, and colorectal cancer cells. The distribution of pPLK4 midzone/cleavage furrow and midbody positions pPLK4 to play a functional role in cytokinesis. Indeed, we found that inhibition of PLK4 kinase activity with a small-molecule inhibitor, CFI-400945, prevents translocation to the spindle midzone/cleavage furrow and prevents cellular abscission, leading to the generation of cells with polyploidy, increased numbers of duplicated centrosomes, and vulnerability to anaphase or mitotic catastrophe. The regulatory role of PLK4 in cytokinesis makes it a potential target for therapeutic intervention in appropriately selected cancers.
Collapse
|
68
|
Suri A, Bailey AW, Tavares MT, Gunosewoyo H, Dyer CP, Grupenmacher AT, Piper DR, Horton RA, Tomita T, Kozikowski AP, Roy SM, Sredni ST. Evaluation of Protein Kinase Inhibitors with PLK4 Cross-Over Potential in a Pre-Clinical Model of Cancer. Int J Mol Sci 2019; 20:E2112. [PMID: 31035676 PMCID: PMC6540285 DOI: 10.3390/ijms20092112] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 4 (PLK4) is a cell cycle-regulated protein kinase (PK) recruited at the centrosome in dividing cells. Its overexpression triggers centrosome amplification, which is associated with genetic instability and carcinogenesis. In previous work, we established that PLK4 is overexpressed in pediatric embryonal brain tumors (EBT). We also demonstrated that PLK4 inhibition exerted a cytostatic effect in EBT cells. Here, we examined an array of PK inhibitors (CFI-400945, CFI-400437, centrinone, centrinone-B, R-1530, axitinib, KW-2449, and alisertib) for their potential crossover to PLK4 by comparative structural docking and activity inhibition in multiple established embryonal tumor cell lines (MON, BT-12, BT-16, DAOY, D283). Our analyses demonstrated that: (1) CFI-400437 had the greatest impact overall, but similar to CFI-400945, it is not optimal for brain exposure. Also, their phenotypic anti-cancer impact may, in part, be a consequence of the inhibition of Aurora kinases (AURKs). (2) Centrinone and centrinone B are the most selective PLK4 inhibitors but they are the least likely to penetrate the brain. (3) KW-2449, R-1530 and axitinib are the ones predicted to have moderate-to-good brain penetration. In conclusion, a new selective PLK4 inhibitor with favorable physiochemical properties for optimal brain exposure can be beneficial for the treatment of EBT.
Collapse
Affiliation(s)
- Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Maurício T Tavares
- Department of Pharmacy, University of São Paulo, São Paulo, SP 05508-900, Brazil.
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Connor P Dyer
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Alex T Grupenmacher
- Department of Ophtalmology, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| | - David R Piper
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA.
| | - Robert A Horton
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA.
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Simone T Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
69
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
70
|
Denu RA, Sass MM, Johnson JM, Potts GK, Choudhary A, Coon JJ, Burkard ME. Polo-like kinase 4 maintains centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). J Biol Chem 2019; 294:6531-6549. [PMID: 30804208 PMCID: PMC6484138 DOI: 10.1074/jbc.ra118.004867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The centrosome, consisting of two centrioles surrounded by a dense network of proteins, is the microtubule-organizing center of animal cells. Polo-like kinase 4 (PLK4) is a Ser/Thr protein kinase and the master regulator of centriole duplication, but it may play additional roles in centrosome function. To identify additional proteins regulated by PLK4, we generated an RPE-1 human cell line with a genetically engineered "analog-sensitive" PLK4AS, which genetically encodes chemical sensitivity to competitive inhibition via a bulky ATP analog. We used this transgenic line in an unbiased multiplex phosphoproteomic screen. Several hits were identified and validated as direct PLK4 substrates by in vitro kinase assays. Among them, we confirmed Ser-78 in centrosomal protein 131 (CEP131, also known as AZI1) as a direct substrate of PLK4. Using immunofluorescence microscopy, we observed that although PLK4-mediated phosphorylation of Ser-78 is dispensable for CEP131 localization, ciliogenesis, and centriole duplication, it is essential for maintaining the integrity of centriolar satellites. We also found that PLK4 inhibition or use of a nonphosphorylatable CEP131 variant results in dispersed centriolar satellites. Moreover, replacement of endogenous WT CEP131 with an S78D phosphomimetic variant promoted aggregation of centriolar satellites. We conclude that PLK4 phosphorylates CEP131 at Ser-78 to maintain centriolar satellite integrity.
Collapse
Affiliation(s)
- Ryan A Denu
- From the Medical Scientist Training Program
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Madilyn M Sass
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - James M Johnson
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Gregory K Potts
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Alka Choudhary
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Joshua J Coon
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Mark E Burkard
- the Division of Hematology/Oncology, Department of Medicine,
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
71
|
Wang J, Zuo J, Wang M, Ma X, Gao K, Bai X, Wang N, Xie W, Liu H. Polo‑like kinase 4 promotes tumorigenesis and induces resistance to radiotherapy in glioblastoma. Oncol Rep 2019; 41:2159-2167. [PMID: 30816483 PMCID: PMC6412581 DOI: 10.3892/or.2019.7012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant tumors in adults, associated with severe outcomes (median survival, <2 years). Multiple mechanisms are known to be involved in tumor recurrence and treatment resistance in GBM, however, the key regulator for GBM tumorigenesis and therapy resistance remains unclear. To clarify a novel potential functional mechanism of GBM recurrence, a wide range of experiments including in vitro molecular biological experiments and in vivo intracranial xenograft tumor models were performed in the present study. With bioinformatics analysis, polo-like kinase 4 (PLK4) was initially identified as one of the most upregulated kinase encoding genes in GBM, which was functionally required for both in vitro cell proliferation and in vivo tumorigenesis in GBM. Clinically, an elevated PLK4 expression was observed in high grade glioma patients, which was associated with poor prognosis. In addition, PLK4 enhanced radioresistance in GBM, while PLK4 knockdown via lentivirus transfection significantly increased the radiosensitivity of GBM cells. Mechanically, PLK4 expression was markedly elevated by the exogenous overexpression of ATPase family AAA domain-containing protein 2 (ATAD2) in GBM cells. Collectively, the results suggested that the ATAD2-dependent transcriptional regulation of PLK4 promoted cell proliferation and tumorigenesis, as well as radioresistance in GBM, thus potentially inducing tumor recurrence. PLK4 could therefore serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
72
|
PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett 2019; 443:91-107. [DOI: 10.1016/j.canlet.2018.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
|
73
|
Vitiello E, Moreau P, Nunes V, Mettouchi A, Maiato H, Ferreira JG, Wang I, Balland M. Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nat Commun 2019; 10:52. [PMID: 30604763 PMCID: PMC6318293 DOI: 10.1038/s41467-018-07965-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The presence of aberrant number of centrioles is a recognized cause of aneuploidy and hallmark of cancer. Hence, centriole duplication needs to be tightly regulated. It has been proposed that centriole separation limits centrosome duplication. The mechanism driving centriole separation is poorly understood and little is known on how this is linked to centriole duplication. Here, we propose that actin-generated forces regulate centriole separation. By imposing geometric constraints via micropatterns, we were able to prove that precise acto-myosin force arrangements control direction, distance and time of centriole separation. Accordingly, inhibition of acto-myosin contractility impairs centriole separation. Alongside, we observed that organization of acto-myosin force modulates specifically the length of S-G2 phases of the cell cycle, PLK4 recruitment at the centrosome and centriole fidelity. These discoveries led us to suggest that acto-myosin forces might act in fundamental mechanisms of aneuploidy prevention.
Collapse
Affiliation(s)
- Elisa Vitiello
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France.
| | - Philippe Moreau
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Vanessa Nunes
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Amel Mettouchi
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Irène Wang
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| |
Collapse
|
74
|
Goroshchuk O, Kolosenko I, Vidarsdottir L, Azimi A, Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene 2019; 38:1-16. [PMID: 30104712 DOI: 10.1038/s41388-018-0443-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Acute leukemia is a common malignancy among children and adults worldwide and many patients suffer from chronic health issues using current therapeutic approaches. Therefore, there is a great need for the development of novel and more specific therapies with fewer side effects. The family of Polo-like kinases (Plks) is a group of five serine/threonine kinases that play an important role in cell cycle regulation and are critical targets for therapeutic invention. Plk1 and Plk4 are novel targets for cancer therapy as leukemic cells often express higher levels than normal cells. In contrast, Plk2 and Plk3 are considered to be tumor suppressors. Several small molecule inhibitors have been developed for targeting Plk1 inhibition. Despite reaching phase III clinical trials, one of the ATP-competitive Plk1 inhibitor, volasertib, did not induce an objective clinical response and even caused lethal side effects in some patients. In order to improve the specificity of the Plk1 inhibitors and reduce off-target side effects, novel RNA interference (RNAi)-based therapies have been developed. In this review, we summarize the mechanisms of action of the Plk family members in acute leukemia, describe preclinical studies and clinical trials involving Plk-targeting drugs and discuss novel approaches in Plk targeting.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
75
|
Mariappan A, Soni K, Schorpp K, Zhao F, Minakar A, Zheng X, Mandad S, Macheleidt I, Ramani A, Kubelka T, Dawidowski M, Golfmann K, Wason A, Yang C, Simons J, Schmalz HG, Hyman AA, Aneja R, Ullrich R, Urlaub H, Odenthal M, Büttner R, Li H, Sattler M, Hadian K, Gopalakrishnan J. Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells. EMBO J 2018; 38:embj.201899876. [PMID: 30530478 PMCID: PMC6331730 DOI: 10.15252/embj.201899876] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP‐dependent peri‐centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP–tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP–tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de‐clustering, prolonged multipolar mitosis, and cell death. 3D‐organotypic invasion assays reveal that CCB02 has broad anti‐invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)‐resistant EGFR‐mutant non‐small‐cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug‐resistant cancers exhibiting high incidence of centrosome amplification.
Collapse
Affiliation(s)
- Aruljothi Mariappan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fan Zhao
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Amin Minakar
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - Xiangdong Zheng
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Macheleidt
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Anand Ramani
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tomáš Kubelka
- Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Maciej Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany.,Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Kristina Golfmann
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Arpit Wason
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Judith Simons
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | | | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Roland Ullrich
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany
| | - Margarete Odenthal
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Reinhardt Büttner
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Haitao Li
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany .,Center for Molecular Medicine of the University of Cologne, Cologne, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
76
|
He Y, Wang H, Yan M, Yang X, Shen R, Ni X, Chen X, Yang P, Chen M, Lu X, Shao G, Zhou X, Shao Q. High LIN28A and PLK4 co‑expression is associated with poor prognosis in epithelial ovarian cancer. Mol Med Rep 2018; 18:5327-5336. [PMID: 30365085 PMCID: PMC6236221 DOI: 10.3892/mmr.2018.9562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. LIN28 homolog A (LIN28A) is a RNA‑binding protein, which serves a fundamental role in cell development and pluripotency. Polo‑like kinase 4 (PLK4) is a member of the polo‑like kinase family, which primarily takes part in the mitotic regulation. Overexpression of LIN28A has been demonstrated in ovarian cancer; however, the expression of PLK4 and the correlation between the expression of LIN28A and PLK4 in EOC has not been discussed. In the present study, the mRNA and protein levels of LIN28A and PLK4 were evaluated by reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry in ovarian tissues of patients. Results demonstrated significantly increased expression in EOC compared with benign epithelial ovarian tumors. High expression of LIN28A and PLK4 was detected at the advanced pathological stage. Furthermore, PLK4 expression was positively correlated with LIN28A (r=0.555; P=0.039). The median survival analysis of patients with EOC with LIN28A and PLK4 double positive expression was 14 months, compared with 30 months in single positive and 60 months in double negative patients by Kaplan‑Meier analysis (P<0.05). The expressions of LIN28A and PLK4 was elevated in different EOC cell lines compared to with a normal ovarian cell line. The 293T cells transfected with LIN28A plus a PLK4 plasmid were the fastest‑growing group. These results suggest that co‑expression of LIN28A and PLK4 may be associated with poor prognosis of EOC and could serve as promising prognostic biomarkers and therapeutic targets in EOC. LIN28A and PLK4 may be used along with traditional morphological and clinical characteristics for predicting prognosis.
Collapse
Affiliation(s)
- Yao He
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 2100011, P.R. China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Zhenjiang, Jiangsu 212013, P.R. China
| | - Meina Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinxin Yang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Zhenjiang, Jiangsu 212013, P.R. China
| | - Rong Shen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoge Ni
- Department of Gynecology and Obstetrics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xiaokun Chen
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Peifang Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Miao Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaodong Lu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Genbao Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoming Zhou
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
77
|
Bailey AW, Suri A, Chou PM, Pundy T, Gadd S, Raimondi SL, Tomita T, Sredni ST. Polo-Like Kinase 4 (PLK4) Is Overexpressed in Central Nervous System Neuroblastoma (CNS-NB). Bioengineering (Basel) 2018; 5:E96. [PMID: 30400339 PMCID: PMC6315664 DOI: 10.3390/bioengineering5040096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in pediatrics, with rare occurrences of primary and metastatic tumors in the central nervous system (CNS). We previously reported the overexpression of the polo-like kinase 4 (PLK4) in embryonal brain tumors. PLK4 has also been found to be overexpressed in a variety of peripheral adult tumors and recently in peripheral NB. Here, we investigated PLK4 expression in NBs of the CNS (CNS-NB) and validated our findings by performing a multi-platform transcriptomic meta-analysis using publicly available data. We evaluated the PLK4 expression by quantitative real-time PCR (qRT-PCR) on the CNS-NB samples and compared the relative expression levels among other embryonal and non-embryonal brain tumors. The relative PLK4 expression levels of the NB samples were found to be significantly higher than the non-embryonal brain tumors (p-value < 0.0001 in both our samples and in public databases). Here, we expand upon our previous work that detected PLK4 overexpression in pediatric embryonal tumors to include CNS-NB. As we previously reported, inhibiting PLK4 in embryonal tumors led to decreased tumor cell proliferation, survival, invasion and migration in vitro and tumor growth in vivo, and therefore PLK4 may be a potential new therapeutic approach to CNS-NB.
Collapse
Affiliation(s)
- Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Pauline M Chou
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Tatiana Pundy
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | - Samantha Gadd
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| |
Collapse
|
78
|
Reply to Oegema et al.: CFI-400945 and Polo-like kinase 4 inhibition. Proc Natl Acad Sci U S A 2018; 115:E10810-E10811. [PMID: 30377273 DOI: 10.1073/pnas.1813967115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
79
|
|
80
|
YLT-11, a novel PLK4 inhibitor, inhibits human breast cancer growth via inducing maladjusted centriole duplication and mitotic defect. Cell Death Dis 2018; 9:1066. [PMID: 30337519 PMCID: PMC6194023 DOI: 10.1038/s41419-018-1071-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Polo-like kinase 4 (PLK4) is indispensable for precise control of centriole duplication. Abnormal expression of PLK4 has been reported in many human cancers, and inhibition of PLK4 activity results in their mitotic arrest and apoptosis. Therefore, PLK4 may be a valid therapeutic target for antitumor therapy. However, clinically available small-molecule inhibitors targeting PLK4 are deficient and their underlying mechanisms still remain not fully clear. Herein, the effects of YLT-11 on breast cancer cells and the associated mechanism were investigated. In vitro, YLT-11 exhibited significant antiproliferation activities against breast cancer cells. Meanwhile, cells treated with YLT-11 exhibited effects consistent with PLK4 kinase inhibition, including dysregulated centriole duplication and mitotic defects, sequentially making tumor cells more vulnerable to chemotherapy. Furthermore, YLT-11 could strongly regulate downstream factors of PLK4, which was involved in cell cycle regulation, ultimately inducing apoptosis of breast cancer cell. In vivo, oral administration of YLT-11 significantly suppressed the tumor growth in human breast cancer xenograft models at doses that are well tolerated. In summary, the preclinical data show that YLT-11 could be a promising candidate drug for breast tumor therapy.
Collapse
|
81
|
Wang W, Oguz G, Lee PL, Bao Y, Wang P, Terp MG, Ditzel HJ, Yu Q. KDM4B-regulated unfolded protein response as a therapeutic vulnerability in PTEN-deficient breast cancer. J Exp Med 2018; 215:2833-2849. [PMID: 30266800 PMCID: PMC6219741 DOI: 10.1084/jem.20180439] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/23/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Wang et al. report an unexpected role of demethylase KDM4B in regulating unfolded protein response (UPR). A stepwise hyperactivation of UPR by co-targeting the KDM4B and PI3K pathway uncovers a therapeutic vulnerability of PTEN-deficient TNBC that otherwise would be resistant to PI3K inhibition. PTEN deficiency in breast cancer leads to resistance to PI3K–AKT inhibitor treatment despite aberrant activation of this signaling pathway. Here, we report that genetic depletion or small molecule inhibition of KDM4B histone demethylase activates the unfolded protein response (UPR) pathway and results in preferential apoptosis in PTEN-deficient triple-negative breast cancers (TNBCs). Intriguingly, this function of KDM4B on UPR requires its demethylase activity but is independent of its canonical role in histone modification, and acts through its cytoplasmic interaction with eIF2α, a crucial component of UPR signaling, resulting in reduced phosphorylation of this component. Targeting KDM4B in combination with PI3K inhibition induces further activation of UPR, leading to robust synergy in apoptosis. These findings identify KDM4B as a therapeutic vulnerability in PTEN-deficient TNBC that otherwise would be resistant to PI3K inhibition.
Collapse
Affiliation(s)
- Wenyu Wang
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Gokce Oguz
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puay Leng Lee
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Yi Bao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Panpan Wang
- Cancer Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School of Singapore, Singapore
| |
Collapse
|
82
|
Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle 2018; 17:1871-1885. [PMID: 30078354 DOI: 10.1080/15384101.2018.1502567] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.
Collapse
Affiliation(s)
- K L Thu
- a Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre , University Health Network , Toronto , Canada
| | - I Soria-Bretones
- a Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre , University Health Network , Toronto , Canada
| | - T W Mak
- a Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre , University Health Network , Toronto , Canada.,b Department of Medical Biophysics , University Health Network , Toronto , Canada
| | - D W Cescon
- a Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre , University Health Network , Toronto , Canada.,c Department of Medicine , University of Toronto , Toronto , Canada
| |
Collapse
|
83
|
Kawakami M, Liu X, Dmitrovsky E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu Rev Pharmacol Toxicol 2018; 59:361-377. [PMID: 30110577 DOI: 10.1146/annurev-pharmtox-010818-021649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aneuploidy is a hallmark of cancer. Defects in chromosome segregation result in aneuploidy. Multiple pathways are engaged in this process, including errors in kinetochore-microtubule attachments, supernumerary centrosomes, spindle assembly checkpoint (SAC) defects, and chromosome cohesion defects. Although aneuploidy provides an adaptation and proliferative advantage in affected cells, excessive aneuploidy beyond a critical level can be lethal to cancer cells. Given this, enhanced chromosome missegregation is hypothesized to limit survival of aneuploid cancer cells, especially when compared to diploid cells. Based on this concept, proteins and pathways engaged in chromosome segregation are being exploited as candidate therapeutic targets for aneuploid cancers. Agents that induce chromosome missegregation and aneuploidy now exist, including SAC inhibitors, those that alter centrosome fidelity and others that are under active study in preclinical and clinical contexts. This review explores the therapeutic potentials of such new agents, including the benefits of combining them with other antineoplastic agents.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Current affiliation: Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA;
| |
Collapse
|
84
|
Lopes CAM, Mesquita M, Cunha AI, Cardoso J, Carapeta S, Laranjeira C, Pinto AE, Pereira-Leal JB, Dias-Pereira A, Bettencourt-Dias M, Chaves P. Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. J Cell Biol 2018; 217:2353-2363. [PMID: 29739803 PMCID: PMC6028540 DOI: 10.1083/jcb.201711191] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosome abnormalities are a typical hallmark of human cancers. However, the origin and dynamics of such abnormalities in human cancer are not known. In this study, we examined centrosomes in Barrett's esophagus tumorigenesis, a well-characterized multistep pathway of progression, from the premalignant condition to the metastatic disease. This human cancer model allows the study of sequential steps of progression within the same patient and has representative cell lines from all stages of disease. Remarkably, centrosome amplification was detected as early as the premalignant condition and was significantly expanded in dysplasia. It was then present throughout malignant transformation both in adenocarcinoma and metastasis. The early expansion of centrosome amplification correlated with and was dependent on loss of function of the tumor suppressor p53 both through loss of wild-type expression and hotspot mutations. Our work shows that centrosome amplification in human tumorigenesis can occur before transformation, being repressed by p53. These findings suggest centrosome amplification in humans can contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Carla A M Lopes
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta Mesquita
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Isabel Cunha
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | | | - Cátia Laranjeira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - António E Pinto
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | - António Dias-Pereira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | | | - Paula Chaves
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
85
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
86
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
87
|
Liu Y, Gupta GD, Barnabas DD, Agircan FG, Mehmood S, Wu D, Coyaud E, Johnson CM, McLaughlin SH, Andreeva A, Freund SMV, Robinson CV, Cheung SWT, Raught B, Pelletier L, van Breugel M. Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nat Commun 2018; 9:1731. [PMID: 29712910 PMCID: PMC5928214 DOI: 10.1038/s41467-018-04122-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/05/2018] [Indexed: 02/08/2023] Open
Abstract
Centrosomes are required for faithful chromosome segregation during mitosis. They are composed of a centriole pair that recruits and organizes the microtubule-nucleating pericentriolar material. Centriole duplication is tightly controlled in vivo and aberrations in this process are associated with several human diseases, including cancer and microcephaly. Although factors essential for centriole assembly, such as STIL and PLK4, have been identified, the underlying molecular mechanisms that drive this process are incompletely understood. Combining protein proximity mapping with high-resolution structural methods, we identify CEP85 as a centriole duplication factor that directly interacts with STIL through a highly conserved interaction interface involving a previously uncharacterised domain of STIL. Structure-guided mutational analyses in vivo demonstrate that this interaction is essential for efficient centriolar targeting of STIL, PLK4 activation and faithful daughter centriole assembly. Taken together, our results illuminate a molecular mechanism underpinning the spatiotemporal regulation of the early stages of centriole duplication.
Collapse
Affiliation(s)
- Yi Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gagan D Gupta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Deepak D Barnabas
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Fikret G Agircan
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Christopher M Johnson
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Stephen H McLaughlin
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Sally W T Cheung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Mark van Breugel
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
88
|
Abstract
Mitosis belongs to the most appealing cellular processes. Yet, the highly dynamic and complex nature of mitosis represents a major challenge when it comes to the functional dissection of mitotic proteins. Due to their fast and often reversible mode of action, small molecules have proven themselves as invaluable tools to dissect mitotic processes. In this chapter, we provide a broad overview of available compounds affecting mitosis. We discuss the different application fields of small molecules and important aspects that have to be considered when using them. Finally, we provide two detailed protocols for the application of small molecules to study mitosis in tissue culture cells.
Collapse
Affiliation(s)
- Franziska Teusel
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Lars Henschke
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Thomas U Mayer
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
89
|
Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 2018; 9:1258. [PMID: 29593297 PMCID: PMC5871873 DOI: 10.1038/s41467-018-03641-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities. Cancer cells are characterised by abnormalities in the number of centrosomes and this phenotype is linked with tumorigenesis. Here the authors report centriole length deregulation in a subset of cancer cell lines and suggest a link with subsequent alterations in centriole numbers and chromosomal instability.
Collapse
|
90
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
91
|
Kawakami M, Mustachio LM, Zheng L, Chen Y, Rodriguez-Canales J, Mino B, Kurie JM, Roszik J, Villalobos PA, Thu KL, Silvester J, Cescon DW, Wistuba II, Mak TW, Liu X, Dmitrovsky E. Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers. Proc Natl Acad Sci U S A 2018; 115:1913-1918. [PMID: 29434041 PMCID: PMC5828621 DOI: 10.1073/pnas.1719760115] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinase 4 (PLK4) is a serine/threonine kinase regulating centriole duplication. CFI-400945 is a highly selective PLK4 inhibitor that deregulates centriole duplication, causing mitotic defects and death of aneuploid cancers. Prior work was substantially extended by showing CFI-400945 causes polyploidy, growth inhibition, and apoptotic death of murine and human lung cancer cells, despite expression of mutated KRAS or p53. Analysis of DNA content by propidium iodide (PI) staining revealed cells with >4N DNA content (polyploidy) markedly increased after CFI-400945 treatment. Centrosome numbers and mitotic spindles were scored. CFI-400945 treatment produced supernumerary centrosomes and mitotic defects in lung cancer cells. In vivo antineoplastic activity of CFI-400945 was established in mice with syngeneic lung cancer xenografts. Lung tumor growth was significantly inhibited at well-tolerated dosages. Phosphohistone H3 staining of resected lung cancers following CFI-400945 treatment confirmed the presence of aberrant mitosis. PLK4 expression profiles in human lung cancers were explored using The Cancer Genome Atlas (TCGA) and RNA in situ hybridization (RNA ISH) of microarrays containing normal and malignant lung tissues. PLK4 expression was significantly higher in the malignant versus normal lung and conferred an unfavorable survival (P < 0.05). Intriguingly, cyclin dependent kinase 2 (CDK2) antagonism cooperated with PLK4 inhibition. Taken together, PLK4 inhibition alone or as part of a combination regimen is a promising way to combat lung cancer.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lisa Maria Mustachio
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lin Zheng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jaime Rodriguez-Canales
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Barbara Mino
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Pamela Andrea Villalobos
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Jennifer Silvester
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - David W Cescon
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ignacio I Wistuba
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| |
Collapse
|
92
|
Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 2018; 9:54. [PMID: 29352113 PMCID: PMC5833556 DOI: 10.1038/s41419-017-0088-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is the most common malignant tumor in infancy and most common extracranial solid tumor in childhood. With the improvement of diagnosis and treatment, the survival rate of patients with low-risk and intermediate-risk NB can reach up to 90%. In contrast, for high-risk NBs, the long-term survival rate is still <40% because of heterogeneity of this tumor. The pathogenesis of NB is still not explicit, therefore it is of great significance to explore the mechanism of NB tumorigenesis and discover new therapeutic targets for NB. Polo-like kinase 4 (PLK4), one of the polo-like kinase family members, is an important regulator of centriole replication. The aberrant expression of PLK4 was found in several cancers and a recent study has unraveled a novel function of PLK4 as a mediator of invasion and metastasis in Hela and U2OS cells. However, the function of PLK4 in NB development and progression remains to be elucidated. The study showed the expression level of PLK4 in NB tissues was remarkably upregulated and high expression of PLK4 was negatively correlated with clinical features and survival, which suggested that PLK4 could be a potential tumor-promoting factor of NB. Functional studies indicated downregulation of PLK4 suppressed migration and invasion and promoted apoptosis in NB cells. Further experiments showed that downregulation of PLK4 in NB cells inhibited EMT through the PI3K/Akt signaling pathway. Animal experiments demonstrated that the downregulation of PLK4 in SK-N-BE(2) cells dramatically suppressed tumorigenesis and metastasis. PLK4 may be a promising therapeutic target for NB.
Collapse
|
93
|
Denu RA, Shabbir M, Nihal M, Singh CK, Longley BJ, Burkard ME, Ahmad N. Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Mol Cancer Res 2018; 16:517-527. [PMID: 29330283 DOI: 10.1158/1541-7786.mcr-17-0197] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) is common in cancer and can arise by centriole overduplication or by cell doubling events, including the failure of cell division and cell-cell fusion. To assess the relative contributions of these two mechanisms, the number of centrosomes with mature/mother centrioles was examined by immunofluorescence in a tissue microarray of human melanomas and benign nevi (n = 79 and 17, respectively). The centrosomal protein 170 (CEP170) was used to identify centrosomes with mature centrioles; this is expected to be present in most centrosomes with cell doubling, but on fewer centrosomes with overduplication. Using this method, it was determined that the majority of CA in melanoma can be attributed to centriole overduplication rather than cell doubling events. As Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication, the hypothesis that PLK4 overexpression contributes to centriole overduplication was evaluated. PLK4 is significantly overexpressed in melanoma compared with benign nevi and in a panel of human melanoma cell lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL-28) compared with normal human melanocytes. Interestingly, although PLK4 expression did not correlate with CA in most cases, treatment of melanoma cells with a selective small-molecule PLK4 inhibitor (centrinone B) significantly decreased cell proliferation. The antiproliferative effects of centrinone B were also accompanied by induction of apoptosis.Implications: This study demonstrates that centriole overduplication is the predominant mechanism leading to centrosome amplification in melanoma and that PLK4 should be further evaluated as a potential therapeutic target for melanoma treatment. Mol Cancer Res; 16(3); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Maria Shabbir
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Minakshi Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Chandra K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
94
|
Tone M, Nakagawa Y, Chanthamath S, Fujisawa I, Nakayama N, Goto H, Shibatomi K, Iwasa S. Highly stereoselective spirocyclopropanation of various diazooxindoles with olefins catalyzed using Ru(ii)-complex. RSC Adv 2018; 8:39865-39869. [PMID: 35558243 PMCID: PMC9092356 DOI: 10.1039/c8ra09212e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Optically active spirocyclopropyloxindole derivatives were efficiently synthesized from diazooxindoles and olefins in the presence of a Ru(ii)-Pheox catalyst. Among a series of Ru(ii)-Pheox catalysts, Ru(ii)-Pheox 6e was determined to be the best catalyst for spirocyclopropanation reactions of diazooxindoles with various olefins in high yields (up to 98%) with high diastereoselectivities (up to trans:cis = >99:1<) and enantioselectivities (up to 99% ee). Furthermore, as the first catalytic asymmetric synthesis, anti-HIV active candidate 4a and a bioactive compound of AMPK modulator 4c were easily synthesized from the corresponding diazooxindoles 1i and 1b, respectively, in high yields with high enantioselectivities (4a: 82% yield, 95% ee, 4b: 99% yield, 93% ee). Optically active spirocyclopropyloxindole derivatives were efficiently synthesized from diazooxindoles and olefins in the presence of a Ru(ii)-Pheox catalyst.![]()
Collapse
Affiliation(s)
- Masaya Tone
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi 441-8580
- Japan
| | - Yoko Nakagawa
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi 441-8580
- Japan
| | - Soda Chanthamath
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi 441-8580
- Japan
| | - Ikuhide Fujisawa
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi 441-8580
- Japan
| | - Naofumi Nakayama
- CONFLEX Corporation, Shinagawa Center Building
- Tokyo 108-0074
- Japan
| | - Hitoshi Goto
- CONFLEX Corporation, Shinagawa Center Building
- Tokyo 108-0074
- Japan
- Department of Computer Science and Engineering
- Toyohashi University of Technology
| | - Kazutaka Shibatomi
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi 441-8580
- Japan
| | - Seiji Iwasa
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi 441-8580
- Japan
| |
Collapse
|
95
|
Sredni ST, Bailey AW, Suri A, Hashizume R, He X, Louis N, Gokirmak T, Piper DR, Watterson DM, Tomita T. Inhibition of polo-like kinase 4 (PLK4): a new therapeutic option for rhabdoid tumors and pediatric medulloblastoma. Oncotarget 2017; 8:111190-111212. [PMID: 29340047 PMCID: PMC5762315 DOI: 10.18632/oncotarget.22704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023] Open
Abstract
Rhabdoid tumors (RT) are highly aggressive and vastly unresponsive embryonal tumors. They are the most common malignant CNS tumors in infants below 6 months of age. Medulloblastomas (MB) are embryonal tumors that arise in the cerebellum and are the most frequent pediatric malignant brain tumors. Despite the advances in recent years, especially for the most favorable molecular subtypes of MB, the prognosis of patients with embryonal tumors remains modest with treatment related toxicity dreadfully high. Therefore, new targeted therapies are needed. The polo-like kinase 4 (PLK4) is a critical regulator of centriole duplication and consequently, mitotic progression. We previously established that PLK4 is overexpressed in RT and MB. We also demonstrated that inhibiting PLK4 with a small molecule inhibitor resulted in impairment of proliferation, survival, migration and invasion of RT cells. Here, we showed in MB the same effects that we previously described for RT. We also demonstrated that PLK4 inhibition induced apoptosis, senescence and polyploidy in RT and MB cells, thereby increasing the susceptibility of cancer cells to DNA-damaging agents. In order to test the hypothesis that PLK4 is a CNS druggable target, we demonstrated efficacy with oral administration to an orthotropic xenograft model. Based on these results, we postulate that targeting PLK4 with small-molecule inhibitors could be a novel strategy for the treatment of RT and MB and that PLK4 inhibitors (PLK4i) might be promising agents to be used solo or in combination with cytotoxic agents.
Collapse
Affiliation(s)
- Simone Treiger Sredni
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine, Department of Surgery, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute, Cancer Biology and Epigenomics, Chicago, IL 60614, USA
| | - Anders W. Bailey
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute, Cancer Biology and Epigenomics, Chicago, IL 60614, USA
| | - Amreena Suri
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute, Cancer Biology and Epigenomics, Chicago, IL 60614, USA
| | - Rintaro Hashizume
- Northwestern University, Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Xingyao He
- Northwestern University, Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Nundia Louis
- Northwestern University, Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Tufan Gokirmak
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA
| | - David R. Piper
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA
| | - Daniel M. Watterson
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine, Department of Surgery, Chicago, IL 60611, USA
| |
Collapse
|
96
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
97
|
Sredni ST, Suzuki M, Yang JP, Topczewski J, Bailey AW, Gokirmak T, Gross JN, de Andrade A, Kondo A, Piper DR, Tomita T. A functional screening of the kinome identifies the Polo-like kinase 4 as a potential therapeutic target for malignant rhabdoid tumors, and possibly, other embryonal tumors of the brain. Pediatr Blood Cancer 2017; 64. [PMID: 28398638 DOI: 10.1002/pbc.26551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Malignant rhabdoid tumors (MRTs) are deadly embryonal tumors of the infancy. With poor survival and modest response to available therapies, more effective and less toxic treatments are needed. We hypothesized that a systematic screening of the kinome will reveal kinases that drive rhabdoid tumors and can be targeted by specific inhibitors. METHODS We individually mutated 160 kinases in a well-characterized rhabdoid tumor cell line (MON) using lentiviral clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The kinase that most significantly impaired cell growth was further validated. Its expression was evaluated by microarray gene expression (GE) within 111 pediatric tumors, and functional assays were performed. A small molecule inhibitor was tested in multiple rhabdoid tumor cell lines and its toxicity evaluated in zebrafish larvae. RESULTS The Polo-like kinase 4 (PLK4) was identified as the kinase that resulted in higher impairment of cell proliferation when mutated by CRISPR/Cas9. PLK4 CRISPR-mutated rhabdoid cells demonstrated significant decrease in proliferation, viability, and survival. GE showed upregulation of PLK4 in rhabdoid tumors and other embryonal tumors of the brain. The PLK4 inhibitor CFI-400945 showed cytotoxic effects on rhabdoid tumor cell lines while sparing non-neoplastic human fibroblasts and developing zebrafish larvae. CONCLUSIONS Our findings indicate that rhabdoid tumor cell proliferation is highly dependent on PLK4 and suggest that targeting PLK4 with small-molecule inhibitors may hold a novel strategy for the treatment of MRT and possibly other embryonal tumors of the brain. This is the first time that PLK4 has been described as a potential target for both brain and pediatric tumors.
Collapse
Affiliation(s)
- Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Mario Suzuki
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois.,Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - Jian-Ping Yang
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Jacek Topczewski
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Developmental Biology, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Tufan Gokirmak
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Jeffrey N Gross
- Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Alexandre de Andrade
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Akihide Kondo
- Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - David R Piper
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
98
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
99
|
Ogden A, Rida PCG, Aneja R. Centrosome amplification: a suspect in breast cancer and racial disparities. Endocr Relat Cancer 2017; 24:T47-T64. [PMID: 28515047 PMCID: PMC5837860 DOI: 10.1530/erc-17-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
The multifaceted involvement of centrosome amplification (CA) in tumorigenesis is coming into focus following years of meticulous experimentation, which have elucidated the powerful abilities of CA to promote cellular invasion, disrupt stem cell division, drive chromosomal instability (CIN) and perturb tissue architecture, activities that can accelerate tumor progression. Integration of the extant in vitro, in vivo and clinical data suggests that in some tissues CA may be a tumor-initiating event, in others a consequential 'hit' in multistep tumorigenesis, and in some others, non-tumorigenic. However, in vivo data are limited and primarily focus on PLK4 (which has CA-independent mechanisms by which it promotes aggressive cellular phenotypes). In vitro breast cancer models suggest that CA can promote tumorigenesis in breast cancer cells in the setting of p53 loss or mutation, which can both trigger CA and promote cellular tolerance to its tendency to slow proliferation and induce aneuploidy. It is thus our perspective that CA is likely an early hit in multistep breast tumorigenesis that may sometimes be lost to preserve aggressive karyotypes acquired through centrosome clustering-mediated CIN, both numerical and structural. We also envision that the robust link between p53 and CA may underlie, to a considerable degree, racial health disparity in breast cancer outcomes. This question is clinically significant because, if it is true, then analysis of centrosomal profiles and administration of centrosome declustering drugs could prove highly efficacious in risk stratifying breast cancers and treating African American (AA) women with breast cancer.
Collapse
Affiliation(s)
- Angela Ogden
- Department of BiologyGeorgia State University, Atlanta, Georgia, USA
| | | | - Ritu Aneja
- Department of BiologyGeorgia State University, Atlanta, Georgia, USA
| |
Collapse
|
100
|
Drewry DH, Wells CI, Andrews DM, Angell R, Al-Ali H, Axtman AD, Capuzzi SJ, Elkins JM, Ettmayer P, Frederiksen M, Gileadi O, Gray N, Hooper A, Knapp S, Laufer S, Luecking U, Michaelides M, Müller S, Muratov E, Denny RA, Saikatendu KS, Treiber DK, Zuercher WJ, Willson TM. Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS One 2017; 12:e0181585. [PMID: 28767711 PMCID: PMC5540273 DOI: 10.1371/journal.pone.0181585] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases.
Collapse
Affiliation(s)
- David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Andrews
- AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge, United Kingdom
| | - Richard Angell
- Drug Discovery Group, Translational Research Office, University College London School of Pharmacy, 29–39 Brunswick Square, London, United Kingdom
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Universidade Estadual de Campinas—UNICAMP, Campinas, Sao Paulo, Brazil
| | | | - Mathias Frederiksen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Opher Gileadi
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathanael Gray
- Harvard Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana−Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Alice Hooper
- Drug Discovery Group, Translational Research Office, University College London School of Pharmacy, 29–39 Brunswick Square, London, United Kingdom
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, and Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, Tübingen, Germany
| | - Ulrich Luecking
- Bayer Pharma AG, Drug Discovery, Müllerstrasse 178, Berlin, Germany
| | - Michael Michaelides
- Oncology Chemistry, AbbVie, 1 North Waukegan Road, North Chicago, Illinois, United States of America
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, and Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt am Main, Germany
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - R. Aldrin Denny
- Worldwide Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts, United States of America
| | - Kumar S. Saikatendu
- Global Research Externalization, Takeda California, Inc., 10410 Science Center Drive, San Diego, California, United States of America
| | | | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|