51
|
Singh P, Gollapalli K, Mangiola S, Schranner D, Yusuf MA, Chamoli M, Shi SL, Bastos BL, Nair T, Riermeier A, Vayndorf EM, Wu JZ, Nilakhe A, Nguyen CQ, Muir M, Kiflezghi MG, Foulger A, Junker A, Devine J, Sharan K, Chinta SJ, Rajput S, Rane A, Baumert P, Schönfelder M, Iavarone F, Lorenzo GD, Kumari S, Gupta A, Sarkar R, Khyriem C, Chawla AS, Sharma A, Sarper N, Chattopadhyay N, Biswal BK, Settembre C, Nagarajan P, Targoff KL, Picard M, Gupta S, Velagapudi V, Papenfuss AT, Kaya A, Ferreira MG, Kennedy BK, Andersen JK, Lithgow GJ, Ali AM, Mukhopadhyay A, Palotie A, Kastenmüller G, Kaeberlein M, Wackerhage H, Pal B, Yadav VK. Taurine deficiency as a driver of aging. Science 2023; 380:eabn9257. [PMID: 37289866 PMCID: PMC10630957 DOI: 10.1126/science.abn9257] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Collapse
Affiliation(s)
- Parminder Singh
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Kishore Gollapalli
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Stefano Mangiola
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
- Olivia Newton-John Cancer Research Institute; Heidelberg, Australia
| | - Daniela Schranner
- Exercise Biology Group, Technical University of Munich; Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University; Lucknow, India
| | - Manish Chamoli
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Sting L. Shi
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Bruno Lopes Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN); Nice, France
| | - Tripti Nair
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Annett Riermeier
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | - Elena M. Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Judy Z. Wu
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Aishwarya Nilakhe
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Christina Q. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael Muir
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Anna Foulger
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Alex Junker
- Department of Neurology, Columbia University; New York, USA
| | - Jack Devine
- Department of Neurology, Columbia University; New York, USA
| | - Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
| | | | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute; Lucknow, India
| | - Anand Rane
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Philipp Baumert
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | | | | | | | - Swati Kumari
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Alka Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Rajesh Sarkar
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Costerwell Khyriem
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Amanpreet S. Chawla
- Immunobiology Laboratory, National Institute of Immunology; New Delhi, India
- MRC-Protein Phosphorylation and Ubiquitination Unit, University of Dundee; Dundee, UK
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Nazan Sarper
- Pediatrics and Pediatric Hematology, Kocaeli University Hospital; Kocaeli, Turkey
| | | | - Bichitra K. Biswal
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University; Naples, Italy
| | - Perumal Nagarajan
- Primate Research Facility, National Institute of Immunology; New Delhi, India
- Small Animal Research Facility, National Institute of Immunology; New Delhi, India
| | - Kimara L. Targoff
- Division of Cardiology, Department of Pediatrics, Columbia University; New York, USA
| | - Martin Picard
- Department of Neurology, Columbia University; New York, USA
| | - Sarika Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
| | | | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University; Virginia, USA
| | | | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
- Centre for Healthy Longevity, National University Health System; Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
| | | | | | - Abdullah Mahmood Ali
- Department of Medicine, Columbia University Irving Medical Center; New York, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Aarno Palotie
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
- Broad Institute of Harvard and MIT; Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital; Boston, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | | | - Bhupinder Pal
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
| | - Vijay K. Yadav
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
- Department of Genetics and Development, Columbia University; New York, USA
| |
Collapse
|
52
|
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
53
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
54
|
Castillo V, Díaz-Astudillo P, Corrales-Orovio R, San Martín S, Egaña JT. Comprehensive Characterization of Tissues Derived from Animals at Different Regenerative Stages: A Comparative Analysis between Fetal and Adult Mouse Skin. Cells 2023; 12:cells12091215. [PMID: 37174615 PMCID: PMC10177150 DOI: 10.3390/cells12091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Tissue regeneration capabilities vary significantly throughout an organism's lifespan. For example, mammals can fully regenerate until they reach specific developmental stages, after which they can only repair the tissue without restoring its original architecture and function. The high regenerative potential of fetal stages has been attributed to various factors, such as stem cells, the immune system, specific growth factors, and the presence of extracellular matrix molecules upon damage. To better understand the local differences between regenerative and reparative tissues, we conducted a comparative analysis of skin derived from mice at regenerative and reparative stages. Our findings show that both types of skin differ in their molecular composition, structure, and functionality. We observed a significant increase in cellular density, nucleic acid content, neutral lipid density, Collagen III, and glycosaminoglycans in regenerative skin compared with reparative skin. Additionally, regenerative skin had significantly higher porosity, metabolic activity, water absorption capacity, and elasticity than reparative skin. Finally, our results also revealed significant differences in lipid distribution, extracellular matrix pore size, and proteoglycans between the two groups. This study provides comprehensive data on the molecular and structural clues that enable full tissue regeneration in fetal stages, which could aid in developing new biomaterials and strategies for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Valentina Castillo
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
55
|
Huang Y, Wang H, Yue X, Li X. Bone serves as a transfer station for secondary dissemination of breast cancer. Bone Res 2023; 11:21. [PMID: 37085486 PMCID: PMC10121690 DOI: 10.1038/s41413-023-00260-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
Metastasis is responsible for the majority of deaths among breast cancer patients. Although parallel polyclonal seeding has been shown to contribute to organ-specific metastasis, in the past decade, horizontal cross-metastatic seeding (metastasis-to-metastasis spreading) has also been demonstrated as a pattern of distant metastasis to multiple sites. Bone, as the most frequent first destination of breast cancer metastasis, has been demonstrated to facilitate the secondary dissemination of breast cancer cells. In this review, we summarize the clinical and experimental evidence that bone is a transfer station for the secondary dissemination of breast cancer. We also discuss the regulatory mechanisms of the bone microenvironment in secondary seeding of breast cancer, focusing on stemness regulation, quiescence-proliferation equilibrium regulation, epigenetic reprogramming and immune escape of cancer cells. Furthermore, we highlight future research perspectives and strategies for preventing secondary dissemination from bone.
Collapse
Affiliation(s)
- Yufan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Hongli Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaomin Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaoqing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
56
|
Mo C, Wang J, Ye Z, Ke H, Liu S, Hatch K, Gao S, Magidson J, Chen C, Mitchell BD, Kochunov P, Hong LE, Ma T, Chen S. Evaluating the causal effect of tobacco smoking on white matter brain aging: a two-sample Mendelian randomization analysis in UK Biobank. Addiction 2023; 118:739-749. [PMID: 36401354 PMCID: PMC10443605 DOI: 10.1111/add.16088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. DESIGN Mendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. SETTING United Kingdom. PARTICIPANTS The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. MEASUREMENTS Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers. FINDINGS The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10-3 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10-3 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results. CONCLUSIONS There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.
Collapse
Affiliation(s)
- Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jingtao Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongjie Ke
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Kathryn Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Magidson
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
57
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|
58
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
59
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
60
|
Yu W, Wang HL, Zhang J, Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res 2023; 64:105-116. [PMID: 36271658 DOI: 10.1080/03008207.2022.2120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the population ages, there is an increased risk of fracture and morbidity diseases associated with aging, such as age-related osteoporosis and other bone diseases linked to aging skeletons. RESULTS Several bone-related cells, including multipotent bone mesenchymal stem cells, osteoblasts that form bone tissue, and osteoclasts that break it down, are in symbiotic relationships throughout life. Growing evidence indicates that epigenetic modifications of cells caused by aging contribute to compromised bone remodeling and lead to osteoporosis. A number of epigenetic mechanisms are at play, including DNA/RNA modifications, histone modifications, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), as well as chromatin remodeling. CONCLUSION In this review, we summarized the epigenetic modifications of different bone-related cells during the development and progression of osteoporosis associated with aging. Additionally, we described a compensatory recovery mechanism under epigenetic regulation that may lead to new strategies for regulating bone remodeling in age-related osteoporosis.
Collapse
Affiliation(s)
- Wenyue Yu
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chengcheng Yin
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
61
|
Josiah N, Shoola H, Rodney T, Arscott J, Ndzi M, Bush AD, Wilson PR, Jacques K, Baptiste DL, Starks S. Addressing systemic racism and intergenerational transmission of anxiety using Bowenian family therapy with African American populations: A Discursive paper. J Adv Nurs 2023; 79:1714-1723. [PMID: 36825628 DOI: 10.1111/jan.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
AIM To examine the intergenerational impact of systemic racism on mental health, depicting the evolution and patterns of anxiety symptoms and the application of the Bowenian family therapy to understand the interrelatedness and long-standing impact of intergenerational trauma in African American families. This article highlights interventions that increase awareness of and promotes physical and mental health for African American populations. DESIGN Discursive Paper. METHOD Searching literature published between 2012 and 2022 in PubMed, SCOPUS, EBSCO Host and Google Scholar, we explored factors associated with systemic racism and generational anxiety. DISCUSSION Evidence-based literature supports the application of the Bowenian family therapy theoretical framework to understand the intergenerational impact of systemic racism and to address the transmission of anxiety symptoms in African American populations. CONCLUSION Culturally appropriate interventions are needed to decrease anxiety symptoms in an attempt to heal intergenerational trauma and to improve family dynamics in African American populations. IMPACT TO NURSING PRACTICE Nurses play an integral role in providing holistic quality patient-centred care for African American populations who have experienced racial trauma. It is critical for nurses to implement culturally responsive and racially informed care with patients that focuses on self-awareness, health promotion, prevention and healing in efforts to address racial trauma. Application of Bowenian family therapy can aid in the reduction of both intergenerational transmission of racial trauma and generational anxiety. NO PATIENT OR PUBLIC CONTRIBUTION There was no patient or public involvement in the design or drafting of this discursive paper. The authors reviewed the literature to develop a discussion.
Collapse
Affiliation(s)
- Nia Josiah
- Columbia University School of Nursing, New York, New York, USA
| | - Hakeem Shoola
- Columbia University School of Nursing, New York, New York, USA
| | - Tamar Rodney
- Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
| | - Joyell Arscott
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maureen Ndzi
- Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
| | - Ashley D Bush
- Department of Defense, Department of Human Resources, Fort Detrick, Maryland, USA
| | - Patty R Wilson
- Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
| | - Keilah Jacques
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Shaquita Starks
- Emory Nell Hodgson Woodruff, School of Nursing, Atlanta, Georgia, USA
| |
Collapse
|
62
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
63
|
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol 2023; 24:45-62. [PMID: 35859206 PMCID: PMC9879573 DOI: 10.1038/s41580-022-00510-w] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| | - Thomas A Rando
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
64
|
Buckley MT, Sun ED, George BM, Liu L, Schaum N, Xu L, Reyes JM, Goodell MA, Weissman IL, Wyss-Coray T, Rando TA, Brunet A. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. NATURE AGING 2023; 3:121-137. [PMID: 37118510 PMCID: PMC10154228 DOI: 10.1038/s43587-022-00335-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.
Collapse
Affiliation(s)
- Matthew T Buckley
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
65
|
Teulière J, Bernard C, Corel E, Lapointe FJ, Martens J, Lopez P, Bapteste E. Network analyses unveil ageing-associated pathways evolutionarily conserved from fungi to animals. GeroScience 2022; 45:1059-1080. [PMID: 36508078 PMCID: PMC9886728 DOI: 10.1007/s11357-022-00704-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
The genetic roots of the diverse paces and shapes of ageing and of the large variations in longevity observed across the tree of life are poorly understood. Indeed, pathways associated with ageing/longevity are incompletely known, both in terms of their constitutive genes/proteins and of their molecular interactions. Moreover, there is limited overlap between the genes constituting these pathways across mammals. Yet, dedicated comparative analyses might still unravel evolutionarily conserved, important pathways associated with longevity or ageing. Here, we used an original strategy with a double evolutionary and systemic focus to analyse protein interactions associated with ageing or longevity during the evolution of five species of Opisthokonta. We ranked these proteins and interactions based on their evolutionary conservation and centrality in past and present protein-protein interaction (PPI) networks, providing a big systemic picture of the evolution of ageing and longevity pathways that identified which pathways emerged in which Opisthokonta lineages, were conserved, and/or central. We confirmed that longevity/ageing-associated proteins (LAPs), be they pro- or anti-longevity, are highly central in extant PPI, consistently with the antagonistic pleiotropy theory of ageing, and identified key antagonistic regulators of ageing/longevity, 52 of which with homologues in humans. While some highly central LAPs were evolutionarily conserved for over a billion years, we report a clear transition in the functionally important components of ageing/longevity within bilaterians. We also predicted 487 novel evolutionarily conserved LAPs in humans, 54% of which are more central than mTOR, and 138 of which are druggable, defining new potential targets for anti-ageing treatments in humans.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - Eduardo Corel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - François-Joseph Lapointe
- grid.14848.310000 0001 2292 3357Département de Sciences Biologiques, Complexe Des Sciences, Université de Montréal, Montréal, QC Canada
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, 75005 Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France.
| |
Collapse
|
66
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
67
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
68
|
Palmer RD. Three Tiers to biological escape velocity: The quest to outwit aging. Aging Med (Milton) 2022; 5:281-286. [PMID: 36606268 PMCID: PMC9805293 DOI: 10.1002/agm2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
As longevity companies emerge with new products and the fields of anti-aging research develop new cutting-edge therapies, three distinct classes of longevity methodologies emerge. This discussion finds that there are three clear classes (Tiers) of longevity systems that are currently under development, and all three will be paramount to achieve biological escape velocity (where tissues can be repaired faster than aging can damage them). These classes are referred to as Tier 1, Tier 2, and Tier 3 treatments and are described in detail below. These three Tiers are required for easy identification for pharmaceutical companies and research companies to determine the type of therapy they may choose to deliver being noninvasive, invasive, time consuming, or simple end user products. Specific targets and goals need to be defined clearly from an early perspective in the development of these technologies for future precision medicines. This allows consumers of future anti-aging technologies to consider which Tier a particular therapy may be, delivering a more informed choice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of Aging, Science of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
69
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
70
|
Naughton GK, Jiang LI, Makino ET, Chung R, Nguyen A, Cheng T, Kadoya K, Mehta RC. Targeting Multiple Hallmarks of Skin Aging: Preclinical and Clinical Efficacy of a Novel Growth Factor-Based Skin Care Serum. Dermatol Ther (Heidelb) 2022; 13:169-186. [PMID: 36374431 PMCID: PMC9823186 DOI: 10.1007/s13555-022-00839-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The aging process involves numerous biological mechanisms that have been characterized and proposed as the "hallmarks of aging." Targeting the processes and pathways related to these hallmarks of aging that cause and promote skin aging could provide anti-aging benefits. A novel topical growth factor-based skin care serum (A+) was developed using human fibroblast conditioned media. This study aimed to assess the effects of A+ on four hallmarks of aging and its clinical efficacy in skin rejuvenation in subjects with moderate to severe overall facial photodamage. METHODS Preclinical studies included immunohistochemistry in human ex vivo skin, and gene expression analysis in human 3D skin models. A 24-week, vehicle placebo-controlled study, including FaceQ patient-reported outcomes and skin biopsy analysis, was performed to assess clinical efficacy and tolerability. RESULTS Treatment with A+ resulted in reduced expression of cell senescence biomarker H2A.J and upregulation of genes associated with proteasome, autophagy, stemness, and intercellular communication. Clinical assessments showed A+ provided significantly greater reductions in sagging, coarse lines/wrinkles, fine lines/wrinkles, overall photodamage, and overall hyperpigmentation compared with placebo. Subjects felt they appeared younger-looking, reporting a median decrease in self-perceived age of 6 years after 12 weeks of use. Decreased levels of H2A.J and increased expression of key dermal extracellular matrix and epidermal barrier components, including collagen and elastin, were observed in skin biopsy samples. CONCLUSION The present study shows for the first time the potential effects of a topical growth factor-based cosmeceutical on cellular processes related to four hallmarks of aging (cellular senescence, loss of proteostasis, stem cell exhaustion, and altered intercellular communication) to help delay the aging process and restore aged skin. A+ targets the biological mechanisms underlying the aging process itself and stimulates skin regeneration, resulting in rapid and significant clinical improvements.
Collapse
Affiliation(s)
| | | | - Elizabeth T Makino
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Robin Chung
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Audrey Nguyen
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Tsing Cheng
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Kuniko Kadoya
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Rahul C Mehta
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA.
| |
Collapse
|
71
|
Hjelmen CE, Yuan Y, Parrott JJ, McGuane AS, Srivastav SP, Purcell AC, Pimsler ML, Sze SH, Tarone AM. Identification and Characterization of Small RNA Markers of Age in the Blow Fly Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). INSECTS 2022; 13:948. [PMID: 36292896 PMCID: PMC9603907 DOI: 10.3390/insects13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Blow fly development is important in decomposition ecology, agriculture, and forensics. Much of the impact of these species is from immature samples, thus knowledge of their development is important to enhance or ameliorate their effects. One application of this information is the estimation of immature insect age to provide temporal information for death investigations. While traditional markers of age such as stage and size are generally accurate, they lack precision in later developmental stages. We used miRNA sequencing to measure miRNA expression, throughout development, of the secondary screwworm, Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae) and identified 217 miRNAs present across the samples. Ten were identified to be significantly differentially expressed in larval samples and seventeen were found to be significantly differentially expressed in intrapuparial samples. Twenty-eight miRNAs were identified to be differentially expressed between sexes. Expression patterns of two miRNAs, miR-92b and bantam, were qPCR-validated in intrapuparial samples; these and likely food-derived miRNAs appear to be stable markers of age in C. macellaria. Our results support the use of miRNAs for developmental markers of age and suggest further investigations across species and under a range of abiotic and biotic conditions.
Collapse
Affiliation(s)
- Carl E. Hjelmen
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Ye Yuan
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan J. Parrott
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | | | - Satyam P. Srivastav
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amanda C. Purcell
- Centre for Forensic Science, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Meaghan L. Pimsler
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
72
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
73
|
A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41:111451. [DOI: 10.1016/j.celrep.2022.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
|
74
|
Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 2022; 16:3380-3396. [PMID: 35920280 PMCID: PMC9490142 DOI: 10.1002/1878-0261.13299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.
Collapse
Affiliation(s)
- Gustavo Borges
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Mélanie Criqui
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Lea Harrington
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
- Departments of Medicine and Biochemistry and Molecular MedicineUniversity of MontrealQCCanada
| |
Collapse
|
75
|
Stern S, Lau S, Manole A, Rosh I, Percia MM, Ben Ezer R, Shokhirev MN, Qiu F, Schafer S, Mansour AA, Mangan KP, Stern T, Ofer P, Stern Y, Diniz Mendes AP, Djamus J, Moore LR, Nayak R, Laufer SH, Aicher A, Rhee A, Wong TL, Nguyen T, Linker SB, Winner B, Freitas BC, Jones E, Sagi I, Bardy C, Brice A, Winkler J, Marchetto MC, Gage FH. Reduced synaptic activity and dysregulated extracellular matrix pathways in midbrain neurons from Parkinson's disease patients. NPJ Parkinsons Dis 2022; 8:103. [PMID: 35948563 PMCID: PMC9365794 DOI: 10.1038/s41531-022-00366-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from the induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, show changes that are central and convergent to PD and suggest a strong involvement of the tetra-partite synapse in PD pathophysiology.
Collapse
Affiliation(s)
- Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shong Lau
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andreea Manole
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Menachem Mendel Percia
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ran Ben Ezer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Fan Qiu
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Abed AlFatah Mansour
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kile P Mangan
- Fujifilm Cellular Dynamics, In, Madison, WI, 53711, USA
| | - Tchelet Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Polina Ofer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yam Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | | - Jose Djamus
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lynne Randolph Moore
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sapir Havusha Laufer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aidan Aicher
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amanda Rhee
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas L Wong
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thao Nguyen
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sara B Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | | | - Eugenia Jones
- Fujifilm Cellular Dynamics, In, Madison, WI, 53711, USA
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), Adelaide, SA, Australia
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, F-75013, Paris, France
| | - Juergen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Nürnberg, Germany
| | - Maria C Marchetto
- Department of Anthropology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
76
|
Inagaki E, Yoshimatsu S, Okano H. Accelerated neuronal aging in vitro ∼melting watch ∼. Front Aging Neurosci 2022; 14:868770. [PMID: 36016855 PMCID: PMC9397486 DOI: 10.3389/fnagi.2022.868770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In developed countries, the aging of the population and the associated increase in age-related diseases are causing major unresolved medical, social, and environmental matters. Therefore, research on aging has become one of the most important and urgent issues in life sciences. If the molecular mechanisms of the onset and progression of neurodegenerative diseases are elucidated, we can expect to develop disease-modifying methods to prevent neurodegeneration itself. Since the discovery of induced pluripotent stem cells (iPSCs), there has been an explosion of disease models using disease-specific iPSCs derived from patient-derived somatic cells. By inducing the differentiation of iPSCs into neurons, disease models that reflect the patient-derived pathology can be reproduced in culture dishes, and are playing an active role in elucidating new pathological mechanisms and as a platform for new drug discovery. At the same time, however, we are faced with a new problem: how to recapitulate aging in culture dishes. It has been pointed out that cells differentiated from pluripotent stem cells are juvenile, retain embryonic traits, and may not be fully mature. Therefore, attempts are being made to induce cell maturation, senescence, and stress signals through culture conditions. It has also been reported that direct conversion of fibroblasts into neurons can reproduce human neurons with an aged phenotype. Here, we outline some state-of-the-art insights into models of neuronal aging in vitro. New frontiers in which stem cells and methods for inducing differentiation of tissue regeneration can be applied to aging research are just now approaching, and we need to keep a close eye on them. These models are forefront and intended to advance our knowledge of the molecular mechanisms of aging and contribute to the development of novel therapies for human neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Japanese Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Hideyuki Okano,
| |
Collapse
|
77
|
Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
|
78
|
Palmer RD. Aging clocks & mortality timers, methylation, glycomic, telomeric and more. A window to measuring biological age. Aging Med (Milton) 2022; 5:120-125. [PMID: 35783114 PMCID: PMC9245174 DOI: 10.1002/agm2.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/11/2022] Open
Abstract
As humans age multiple forms of biological decay ensue, and many aspects of human biology can be measured to determine how far biological machinery has drifted from homeostasis. Research has led to aging clocks being developed that claim to predict biological age as opposed to chronological age. Aging could be regarded as a measured loss of homeostatic biological equilibrium that augments biological decay in fully developed tissues. Measuring aspects of how far various elements of biology have drifted from a youthful state may allow us to make determinations on a subject's health but also make informed predictions on their biological age. As we see across human physiology, many facets that maintain human health taper off such as nicotinamide adenine dinucleotide, glutathione, catalase, super oxide dismutase, and more. Extracellular vesicle density also tapers off during age combined with epigenetic drift, telomere attrition, and stem cell exhaustion, whilst genomic instability and biological insults from environment and lifestyle factors increase. Measuring these types of biomarkers with aging clocks may allow subjects to understand their own health more accurately and enable subjects to better focus on their efforts in the pursuit of longevity and, in addition, allow healthcare practitioners to deliver better health advice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of AgingScience of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
79
|
Liu Z, Ji Q, Ren J, Yan P, Wu Z, Wang S, Sun L, Wang Z, Li J, Sun G, Liang C, Sun R, Jiang X, Hu J, Ding Y, Wang Q, Bi S, Wei G, Cao G, Zhao G, Wang H, Zhou Q, Belmonte JCI, Qu J, Zhang W, Liu GH. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev Cell 2022; 57:1347-1368.e12. [PMID: 35613614 DOI: 10.1016/j.devcel.2022.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023]
Abstract
Nuclear deformation, a hallmark frequently observed in senescent cells, is presumed to be associated with the erosion of chromatin organization at the nuclear periphery. However, how such gradual changes in higher-order genome organization impinge on local epigenetic modifications to drive cellular mechanisms of aging has remained enigmatic. Here, through large-scale epigenomic analyses of isogenic young, senescent, and progeroid human mesenchymal progenitor cells (hMPCs), we delineate a hierarchy of integrated structural state changes that manifest as heterochromatin loss in repressive compartments, euchromatin weakening in active compartments, switching in interfacing topological compartments, and increasing epigenetic entropy. We found that the epigenetic de-repression unlocks the expression of pregnancy-specific beta-1 glycoprotein (PSG) genes that exacerbate hMPC aging and serve as potential aging biomarkers. Our analyses provide a rich resource for uncovering the principles of epigenomic landscape organization and its changes in cellular aging and for identifying aging drivers and intervention targets with a genome-topology-based mechanism.
Collapse
Affiliation(s)
- Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/ Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoguang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
80
|
Gill D, Parry A, Santos F, Okkenhaug H, Todd CD, Hernando-Herraez I, Stubbs TM, Milagre I, Reik W. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife 2022; 11:e71624. [PMID: 35390271 PMCID: PMC9023058 DOI: 10.7554/elife.71624] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of somatic cell reprogramming, which suggests full reprogramming is not required to reverse ageing of somatic cells. Here we have developed the first "maturation phase transient reprogramming" (MPTR) method, where reprogramming factors are selectively expressed until this rejuvenation point then withdrawn. Applying MPTR to dermal fibroblasts from middle-aged donors, we found that cells temporarily lose and then reacquire their fibroblast identity, possibly as a result of epigenetic memory at enhancers and/or persistent expression of some fibroblast genes. Excitingly, our method substantially rejuvenated multiple cellular attributes including the transcriptome, which was rejuvenated by around 30 years as measured by a novel transcriptome clock. The epigenome was rejuvenated to a similar extent, including H3K9me3 levels and the DNA methylation ageing clock. The magnitude of rejuvenation instigated by MPTR appears substantially greater than that achieved in previous transient reprogramming protocols. In addition, MPTR fibroblasts produced youthful levels of collagen proteins, and showed partial functional rejuvenation of their migration speed. Finally, our work suggests that optimal time windows exist for rejuvenating the transcriptome and the epigenome. Overall, we demonstrate that it is possible to separate rejuvenation from complete pluripotency reprogramming, which should facilitate the discovery of novel anti-ageing genes and therapies.
Collapse
Affiliation(s)
- Diljeet Gill
- Epigenetics Programme, Babraham InstituteCambridgeUnited Kingdom
| | - Aled Parry
- Epigenetics Programme, Babraham InstituteCambridgeUnited Kingdom
| | - Fátima Santos
- Epigenetics Programme, Babraham InstituteCambridgeUnited Kingdom
| | | | | | | | | | - Inês Milagre
- Laboratory for Epigenetic Mechanisms/Chromosome Dynamics Lab, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Wolf Reik
- Epigenetics Programme, Babraham InstituteCambridgeUnited Kingdom
- Wellcome Trust Sanger Institute, HinxtonCambridgeUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
81
|
Zhu H, Ye G, Xie Y, Zhu K, Zhu F, Chen Q. Association of high-density lipoprotein cholesterol and periodontitis severity in Chinese elderly: a cross-sectional study. Clin Oral Investig 2022; 26:4753-4759. [PMID: 35348881 DOI: 10.1007/s00784-022-04439-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Periodontitis is a local inflammatory disease of high prevalence worldwide. Increasing evidence has shown its association with cardiovascular diseases. While high-density lipoprotein is an important protective factor in preventing cardiovascular diseases, this study aims to examine whether high-density lipoprotein cholesterol (HDL-C) level is associated with different status of periodontitis. MATERIALS AND METHODS A total of 874 Chinese retirees (≥ 60 years of age) with different statuses of periodontitis were enrolled. Periodontal clinical data were collected to define periodontal disease severity (no, mild-moderate, severe). Peripheral blood was collected for serum lipid profile analysis. Linear and logistic regression analysis with adjustment for potential confounders (gender, age, BMI, alcohol intake, exercise frequency, smoking habits) were used to determine the association of periodontitis with HDL-C. RESULTS After adjustments for confounders, linear regression analyses revealed a significant relationship between the decreased HDL-C and periodontitis severity (p < 0.05). Although the multivariable-adjusted ORs of decreased HDL-C were not statistically significant, logistic regression analyses showed Chinese elderly with severe periodontitis had higher odds of exhibiting clinically abnormal HDL-C levels than those without periodontitis. CONCLUSIONS The elderly population with periodontitis showed HDL-C levels significantly lower than those without periodontitis. The severity of periodontitis was positively correlated with serum HDL-C levels. CLINICAL RELEVANCE Periodontitis reduces HDL-C level in the elderly population, indicating that oral health should be paid attention to in the prevention and treatment of dyslipidemia.
Collapse
Affiliation(s)
- Haihua Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Guanchen Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Yanyi Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Kangqi Zhu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Fudong Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
82
|
Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson’s Disease Influence Sporadic Forms? Genes (Basel) 2022; 13:genes13030479. [PMID: 35328033 PMCID: PMC8951612 DOI: 10.3390/genes13030479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease (PD) is a disorder characterized by a triad of motor symptoms (akinesia, rigidity, resting tremor) related to loss of dopaminergic neurons mainly in the Substantia nigra pars compacta. Diagnosis is often made after a substantial loss of neurons has already occurred, and while dopamine replacement therapies improve symptoms, they do not modify the course of the disease. Although some biological mechanisms involved in the disease have been identified, such as oxidative stress and accumulation of misfolded proteins, they do not explain entirely PD pathophysiology, and a need for a better understanding remains. Neurodegenerative diseases, including PD, appear to be the result of complex interactions between genetic and environmental factors. The latter can alter gene expression by causing epigenetic changes, such as DNA methylation, post-translational modification of histones and non-coding RNAs. Regulation of genes responsible for monogenic forms of PD may be involved in sporadic PD. This review will focus on the epigenetic mechanisms regulating their expression, since these are the genes for which we currently have the most information available. Despite technical challenges, epigenetic epidemiology offers new insights on revealing altered biological pathways and identifying predictive biomarkers for the onset and progression of PD.
Collapse
|
83
|
Chondronasiou D, Gill D, Mosteiro L, Urdinguio RG, Berenguer‐Llergo A, Aguilera M, Durand S, Aprahamian F, Nirmalathasan N, Abad M, Martin‐Herranz DE, Stephan‐Otto Attolini C, Prats N, Kroemer G, Fraga MF, Reik W, Serrano M. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 2022; 21:e13578. [PMID: 35235716 PMCID: PMC8920440 DOI: 10.1111/acel.13578] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum.
Collapse
Affiliation(s)
- Dafni Chondronasiou
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Diljeet Gill
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
| | | | - Rocio G. Urdinguio
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN CSIC)OviedoSpain
- Health Research Institute of Asturias (ISPA)OviedoSpain
- Institute of Oncology of Asturias (IUOPA)University of OviedoOviedoSpain
- Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- CIBER of Rare Diseases (CIBERER)OviedoSpain
| | - Antonio Berenguer‐Llergo
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Sylvere Durand
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Fanny Aprahamian
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Nitharsshini Nirmalathasan
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Maria Abad
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Camille Stephan‐Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Guido Kroemer
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Department of Women's and Children's HealthKarolinska InstituteKarolinska University HospitalStockholmSweden
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN CSIC)OviedoSpain
- Health Research Institute of Asturias (ISPA)OviedoSpain
- Institute of Oncology of Asturias (IUOPA)University of OviedoOviedoSpain
- Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- CIBER of Rare Diseases (CIBERER)OviedoSpain
| | - Wolf Reik
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
- Altos Labs Cambridge InstituteCambridgeUK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
84
|
Palmer RD. The intervention on aging system: A classification model, the requirement for five novel categories. Aging Med (Milton) 2022; 5:68-72. [PMID: 35309156 PMCID: PMC8917257 DOI: 10.1002/agm2.12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022] Open
Abstract
Aging is widely considered an immovable fact of life. Cultural conditioning has ensured that therapeutics for extreme human lifespans are considered out of reach technologies. However, longevity therapies such as stem cell replacement, fasting, gene therapies, fasting mimetics such as metformin and rapamycin, regulation and tissue reprogramming with OSK transcription factors, blood dilution, metabolic pathway engineering, reversal of epigenetic drift, heterochronic parabiosis, coenzyme replacement technologies (nicotinamide adenine dinucleotide) and a plethora of other established sciences are showing great potential at slowing down the rate at which tissues enter dysfunction. Recent discoveries have shed light on major mysteries of the aging process. Longevity-based discoveries are not only landing quickly, but therapies to prevent or reverse those drivers of aging are also being devised regularly and this is opening up an entirely new industry, the longevity industry. This presents the requirement for a new classification system where subjects can be divided into specific groups based on their potential for mortality. This system also enables the public to target which class of this classification system they wish to be on. Moving the population on the classification system to become more disease resistant holds great benefit for society and governments as a whole.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Science of AgingSouth PerthWAAustralia
- Full Spectrum Biologics & Health SciencesWAAustralia
| |
Collapse
|
85
|
Jiang Z, Li H, Schroer SA, Voisin V, Ju Y, Pacal M, Erdmann N, Shi W, Chung PED, Deng T, Chen N, Ciavarra G, Datti A, Mak TW, Harrington L, Dick FA, Bader GD, Bremner R, Woo M, Zacksenhaus E. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J 2022; 41:e106825. [PMID: 35023164 PMCID: PMC8844977 DOI: 10.15252/embj.2020106825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic β-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.
Collapse
Affiliation(s)
- Zhe Jiang
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Huiqin Li
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Stephanie A Schroer
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Veronique Voisin
- The Donnelly CentreDepartment of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - YoungJun Ju
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute – Sinai Health SystemMount Sinai HospitalDepartment of Ophthalmology and Vision ScienceUniversity of TorontoTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Natalie Erdmann
- Campbell Family Institute for Breast Cancer ResearchPrincess Margaret HospitalTorontoONCanada
| | - Wei Shi
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Philip E D Chung
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Tao Deng
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nien‐Jung Chen
- Campbell Family Institute for Breast Cancer ResearchPrincess Margaret HospitalTorontoONCanada
| | - Giovanni Ciavarra
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental SciencesUniversity of PerugiaPerugiaItaly
- Network Biology Collaborative CentreSMART Laboratory for High‐Throughput Screening ProgramsMount Sinai HospitalTorontoONCanada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer ResearchPrincess Margaret HospitalTorontoONCanada
| | - Lea Harrington
- Department of MedicineInstitute for Research in Immunology and CancerUniversity of MontrealMontrealQCCanada
| | | | - Gary D Bader
- The Donnelly CentreDepartment of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute – Sinai Health SystemMount Sinai HospitalDepartment of Ophthalmology and Vision ScienceUniversity of TorontoTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Minna Woo
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| | - Eldad Zacksenhaus
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| |
Collapse
|
86
|
D Palmer R, Papa V, Vaccarezza M. The Ability of Nutrition to Mitigate Epigenetic Drift: A Novel Look at Regulating Gene Expression. J Nutr Sci Vitaminol (Tokyo) 2022; 67:359-365. [PMID: 34980713 DOI: 10.3177/jnsv.67.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epigenetic drift causes modification in gene expression during aging and a myriad of physiological changes that are mostly undesirable, remove youthful phenotype and are related to biological decay and disease onset. The epigenome is considered a stable regulator of genetic expression. Moreover, evidence is now accumulating that commonly available compounds found in foods can influence the epigenome to embrace a more youthful and therefore, more disease resistant state. Here we explore the correlation between nutriment and the epigenetic regulation through various types of alimentation. The aim is not to discuss specific chemicals involved in disease onset. Instead, we offer a brief glance at pathogens and offer a practical pathway into epigenetic regulation, hypothesizing that epigenetic drift might be attenuated by several foods able to drive a more youthful and disease resistant phenotype.
Collapse
Affiliation(s)
| | - Veronica Papa
- Department of Motor Sciences and Wellness, University of Naples "Parthenope".,FABAP Research Center
| | - Mauro Vaccarezza
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University.,Department of Translational Medicine, University of Ferrara
| |
Collapse
|
87
|
Brusini I, MacNicol E, Kim E, Smedby Ö, Wang C, Westman E, Veronese M, Turkheimer F, Cash D. MRI-derived brain age as a biomarker of ageing in rats: validation using a healthy lifestyle intervention. Neurobiol Aging 2022; 109:204-215. [PMID: 34775211 DOI: 10.1016/j.neurobiolaging.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
The difference between brain age predicted from MRI and chronological age (the so-called BrainAGE) has been proposed as an ageing biomarker. We analyse its cross-species potential by testing it on rats undergoing an ageing modulation intervention. Our rat brain age prediction model combined Gaussian process regression with a classifier and achieved a mean absolute error (MAE) of 4.87 weeks using cross-validation on a longitudinal dataset of 31 normal ageing rats. It was then tested on two groups of 24 rats (MAE = 9.89 weeks, correlation coefficient = 0.86): controls vs. a group under long-term environmental enrichment and dietary restriction (EEDR). Using a linear mixed-effects model, BrainAGE was found to increase more slowly with chronological age in EEDR rats (p=0.015 for the interaction term). Cox regression showed that older BrainAGE at 5 months was associated with higher mortality risk (p=0.03). Our findings suggest that lifestyle-related prevention approaches may help to slow down brain ageing in rodents and the potential of BrainAGE as a predictor of age-related health outcomes.
Collapse
Affiliation(s)
- Irene Brusini
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chunliang Wang
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
88
|
Fathi A, Mathivanan S, Kong L, Petersen AJ, Harder CK, Block J, Miller JM, Bhattacharyya A, Wang D, Zhang S. Chemically induced senescence in human stem cell-derived neurons promotes phenotypic presentation of neurodegeneration. Aging Cell 2022; 21:e13541. [PMID: 34953016 PMCID: PMC8761019 DOI: 10.1111/acel.13541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023] Open
Abstract
Modeling age‐related neurodegenerative disorders with human stem cells are difficult due to the embryonic nature of stem cell‐derived neurons. We developed a chemical cocktail to induce senescence of iPSC‐derived neurons to address this challenge. We first screened small molecules that induce embryonic fibroblasts to exhibit features characteristic of aged fibroblasts. We then optimized a cocktail of small molecules that induced senescence in fibroblasts and cortical neurons without causing DNA damage. The utility of the “senescence cocktail” was validated in motor neurons derived from ALS patient iPSCs which exhibited protein aggregation and axonal degeneration substantially earlier than those without cocktail treatment. Our “senescence cocktail” will likely enhance the manifestation of disease‐related phenotypes in neurons derived from iPSCs, enabling the generation of reliable drug discovery platforms.
Collapse
Affiliation(s)
- Ali Fathi
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
| | | | - Linghai Kong
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
| | | | - Cole R. K. Harder
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jasper Block
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
| | | | - Anita Bhattacharyya
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Cell and Regenerative Biology School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - Daifeng Wang
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
| | - Su‐Chun Zhang
- Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Neuroscience School of Medicine and Public Health University of Wisconsin Madison Wisconsin USA
- Department of Neurology School of Medicine and Public Health University of Wisconsin Madison Wisconsin USA
- Program in Neuroscience and Behavioral Disorders Duke‐NUS Medical School Singapore Singapore
| |
Collapse
|
89
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
90
|
Su X, Zhang H, Lei F, Wang R, Lin T, Liao L. Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J Cell Mol Med 2021; 26:375-384. [PMID: 34874118 PMCID: PMC8743666 DOI: 10.1111/jcmm.17089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, a hallmark of ageing, inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells in long bone. The dysfunction of the cellular antioxidant defence system is a critical cause of oxidative stress, but the mechanism of the decline of antioxidant defence in senescent stem cells remains elusive. Here, we found that EZH2, an epigenetic regulator of histone methylation, acted as a suppressor of the antioxidative defence system in BMSCs from the femur. The increased EZH2 led to a decrease in the levels of antioxidant enzymes and exaggerated oxidative damage in aged BMSCs, resulting in the defect of bone formation and regeneration. Mechanistically, EZH2 enhanced the modification of H3K27me3 on the promoter of Foxo1 and suppressed its function to activate the downstream genes in antioxidant defence. Moreover, epigenetic therapy targeting EZH2-mediated H3K27me3 modification largely recovered the antioxidant defence in BMSCs and attenuate oxidative damage, leading to the recovery of the osteogenesis in old BMSCs. Taken together, our findings revealed novel crosstalk between histone epigenetic modification and oxidative stress during stem cell ageing, suggesting a possibility of epigenetic therapy in the recovery of BMSCs senescence and treatment of age-related bone disease.
Collapse
Affiliation(s)
- Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fengzhen Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Lin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
91
|
Restoration of aged hematopoietic cells by their young counterparts through instructive microvesicles release. Aging (Albany NY) 2021; 13:23981-24016. [PMID: 34762598 PMCID: PMC8610119 DOI: 10.18632/aging.203689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.
Collapse
|
92
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
93
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
94
|
Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021; 200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
95
|
Hong J, Yun HJ, Park G, Kim S, Ou Y, Vasung L, Rollins CK, Ortinau CM, Takeoka E, Akiyama S, Tarui T, Estroff JA, Grant PE, Lee JM, Im K. Optimal Method for Fetal Brain Age Prediction Using Multiplanar Slices From Structural Magnetic Resonance Imaging. Front Neurosci 2021; 15:714252. [PMID: 34707474 PMCID: PMC8542770 DOI: 10.3389/fnins.2021.714252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
The accurate prediction of fetal brain age using magnetic resonance imaging (MRI) may contribute to the identification of brain abnormalities and the risk of adverse developmental outcomes. This study aimed to propose a method for predicting fetal brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of gestational age (GA). We built a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices in different orthogonal planes without correction for interslice motion. In each fetus, multiple age predictions from different slices were generated, and the brain age was obtained using the mode that determined the most frequent value among the multiple predictions from the 2D single-channel CNN. We obtained a mean absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across the fetuses. The use of multiplanar slices achieved significantly lower prediction error and its variance than the use of a single slice and a single MRI stack. Our 2D single-channel CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks) than the 2D multi-channel (MAE = 0.979, p < 0.001) and 3D (MAE = 1.114, p < 0.001) CNNs. The saliency maps from our method indicated that the anatomical information describing the cortex and ventricles was the primary contributor to brain age prediction. With the application of the proposed method to external MRIs from 21 healthy fetuses, we obtained an MAE of 0.508 weeks. Based on the external MRIs, we found that the stack-wise MAE of the 2D single-channel CNN (0.743 weeks) was significantly lower than those of the 2D multi-channel (1.466 weeks, p < 0.001) and 3D (1.241 weeks, p < 0.001) CNNs. These results demonstrate that our method with multiplanar slices accurately predicts fetal brain age without the need for increased dimensionality or complex MRI preprocessing steps.
Collapse
Affiliation(s)
- Jinwoo Hong
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Gilsoon Park
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Seonggyu Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Yangming Ou
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Lana Vasung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Caitlin K. Rollins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Cynthia M. Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Emiko Takeoka
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Shizuko Akiyama
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Judy A. Estroff
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Patricia Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
96
|
Macias RI, Monte MJ, Serrano MA, González-Santiago JM, Martín-Arribas I, Simão AL, Castro RE, González-Gallego J, Mauriz JL, Marin JJ. Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging (Albany NY) 2021; 13:23416-23434. [PMID: 34633987 PMCID: PMC8544321 DOI: 10.18632/aging.203620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023]
Abstract
Aging involves progressive physiological and metabolic reprogramming to adapt to gradual deterioration of organs and functions. This includes mechanisms of defense against pre-malignant transformations. Thus, certain tumors are more prone to appear in elderly patients. This is the case of the two most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Accordingly, aging hallmarks, such as genomic instability, telomere attrition, epigenetic alterations, altered proteostasis, mitochondrial dysfunction, cellular senescence, exhaustion of stem cell niches, impaired intracellular communication, and deregulated nutrient sensing can play an important role in liver carcinogenesis in the elders. In addition, increased liver fragility determines a worse response to risk factors, which more frequently affect the aged population. This, together with the difficulty to carry out an early detection of HCC and iCCA, accounts for the late diagnosis of these tumors, which usually occurs in patients with approximately 60 and 70 years, respectively. Furthermore, there has been a considerable controversy on what treatment should be used in the management of HCC and iCCA in elderly patients. The consensus reached by numerous studies that have investigated the feasibility and safety of different curative and palliative therapeutic approaches in elders with liver tumors is that advanced age itself is not a contraindication for specific treatments, although the frequent presence of comorbidities in these individuals should be taken into consideration for their management.
Collapse
Affiliation(s)
- Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jesús M. González-Santiago
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Isabel Martín-Arribas
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
97
|
GAS5 rs2067079 and miR-137 rs1625579 functional SNPs and risk of chronic hepatitis B virus infection among Egyptian patients. Sci Rep 2021; 11:20014. [PMID: 34625583 PMCID: PMC8501054 DOI: 10.1038/s41598-021-99345-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a significant health issue worldwide.. We attempted to fulfill the molecular mechanisms of epigenetic and genetic factors associated with chronic HBV (CHBV). Expression levels of the lncRNA growth arrest-specific 5 (GAS5) and miR-137 and their corresponding SNPs, rs2067079 (C/T) and rs1625579 (G/T) were analyzed in 117 CHBV patients and 120 controls to investigate the probable association between these biomarkers and CHBV pathogenesis in the Egyptian population. Serum expression levels of GAS5 and miR-137 were significantly down-regulated in cases vs controls. Regarding GAS5 (rs2067079), the mutant TT genotype showed an increased risk of CHBV (p < 0.001), while the dominant CC was a protective factor (p = 0.004). Regarding miR-137 rs1625579, the mutant genotype TT was reported as a risk factor for CHBV (p < 0.001) and the normal GG genotype was a protective factor, p < 0.001. The serum GAS5 was significantly higher in the mutant TT genotype of GAS5 SNP as compared to the other genotypes (p = 0.007). Concerning miR-137 rs1625579, the mutant TT genotype was significantly associated with a lower serum expression level of miR-137 (p = 0.018). We revealed the dysregulated expression levels of GAS5 and miR-137 linked to their functioning SNPs were associated with CHBV risk and might act as potential therapeutic targets.
Collapse
|
98
|
Zhao K, Wang M, Gao S, Chen J. Chromatin architecture reorganization during somatic cell reprogramming. Curr Opin Genet Dev 2021; 70:104-114. [PMID: 34530248 DOI: 10.1016/j.gde.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
It has been nearly 60 years since Dr John Gurdon achieved the first cloning of Xenopus by somatic cell nuclear transfer (SCNT). Later, in 2006, Takahashi and Yamanaka published their landmark study demonstrating the application of four transcription factors to induce pluripotency. These two amazing discoveries both clearly established that cell identity can be reprogrammed and that mature cells still contain the information required for lineage specification. Considering that different cell types possess identical genomes, what orchestrates reprogramming has attracted wide interest. Epigenetics, including high-level chromatin structure, might provide some answers. Benefitting from the tremendous progress in high-throughput and multi-omics techniques, we here address the roles and interactions of genome architecture, chromatin modifications, and transcription regulation during somatic cell reprogramming that were previously beyond reach. In addition, we provide perspectives on recent technical advances that might help to overcome certain barriers in the field.
Collapse
Affiliation(s)
- Kun Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
99
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
100
|
Simpson DJ, Olova NN, Chandra T. Cellular reprogramming and epigenetic rejuvenation. Clin Epigenetics 2021; 13:170. [PMID: 34488874 PMCID: PMC8419998 DOI: 10.1186/s13148-021-01158-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
Ageing is an inevitable condition that afflicts all humans. Recent achievements, such as the generation of induced pluripotent stem cells, have delivered preliminary evidence that slowing down and reversing the ageing process might be possible. However, these techniques usually involve complete dedifferentiation, i.e. somatic cell identity is lost as cells are converted to a pluripotent state. Separating the rejuvenative properties of reprogramming from dedifferentiation is a promising prospect, termed epigenetic rejuvenation. Reprogramming-induced rejuvenation strategies currently involve using Yamanaka factors (typically transiently expressed to prevent full dedifferentiation) and are promising candidates to safely reduce biological age. Here, we review the development and potential of reprogramming-induced rejuvenation as an anti-ageing strategy.
Collapse
Affiliation(s)
- Daniel J Simpson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Nelly N Olova
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|