51
|
Li JH, Hepworth MR, O'Sullivan TE. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 2023; 56:1168-1186. [PMID: 37315533 PMCID: PMC10321269 DOI: 10.1016/j.immuni.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA; Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
52
|
Weger M, Weger BD, Gachon F. Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery. Expert Opin Drug Discov 2023. [PMID: 37300813 DOI: 10.1080/17460441.2023.2224554] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Most mammalian physiology is orchestrated by the circadian clock, including drug transport and metabolism. As a result, efficacy and toxicity of many drugs are influenced by the timing of their administration, which has led to the establishment of the field of chronopharmacology. AREAS COVERED In this review, the authors provide an overview of the current knowledge about the time-of-day dependent aspects of drug metabolism and the importance of chronopharmacological strategies for drug development. They also discuss the factors influencing rhythmic drug pharmacokinetic including sex, metabolic diseases, feeding rhythms, and microbiota, that are often overlooked in the context of chronopharmacology. This article summarizes the involved molecular mechanisms and functions and explains why these parameters should be considered in the process of drug discovery. EXPERT OPINION Although chronomodulated treatments have shown promising results, particularly for cancer, the practice is still underdeveloped due to the associated high cost and time investments. However, implementing this strategy at the preclinical stage could offer a new opportunity to translate preclinical discoveries into successful clinical treatments.
Collapse
Affiliation(s)
- Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Benjamin D Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| |
Collapse
|
53
|
Ni Y, Nan S, Zheng L, Zhang L, Zhao Y, Fu Z. Time-dependent effect of REV-ERBα agonist SR9009 on nonalcoholic steatohepatitis and gut microbiota in mice. Chronobiol Int 2023; 40:769-782. [PMID: 37161366 DOI: 10.1080/07420528.2023.2207649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The circadian clock is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), and the target pathways of many NASH candidate drugs are controlled by the circadian clock. However, the application of chronopharmacology in NASH is little considered currently. Here, the time-dependent effect of REV-ERBα agonist SR9009 on diet-induced NASH and microbiota was investigated. C57BL/6J mice were fed a high-cholesterol and high-fat diet (CL) for 12 weeks to induce NASH and then treated with SR9009 either at Zeitgeber time 0 (ZT0) or ZT12 for another 6 weeks. Pharmacological activation of REV-ERBα by SR9009 alleviated hepatic steatosis, insulin resistance, liver inflammation, and fibrosis in CL diet-induced NASH mice. These effects were accompanied by improved gut barrier function and altered microbial composition and function in NASH mice, and the effect tended to be stronger when SR9009 was injected at ZT0. Moreover, SR9009 treatment at different time points resulted in a marked difference in the composition of the microbiota, with a stronger effect on the enrichment of beneficial bacteria and the diminishment of harmful bacteria when SR9009 was administrated at ZT0. Therefore, the time-dependent effect of REV-ERBα agonist on NASH was partly associated with the microbiota, highlighting the potential role of microbiota in the chronopharmacology of NASH and the possibility of discovering new therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sujie Nan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqian Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
54
|
Giebfried J, Lorentz A. Relationship between the Biological Clock and Inflammatory Bowel Disease. Clocks Sleep 2023; 5:260-275. [PMID: 37218867 DOI: 10.3390/clockssleep5020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
The biological clock is a molecular oscillator that generates a 24-hour rhythm in accordance with the earth's rotation. Physiological functions and pathophysiological processes such as inflammatory bowel diseases (IBD) are closely linked to the molecular clock. This review summarizes 14 studies in humans and mice on the interactions between the biological clock and IBD. It provides evidence that IBD negatively affect core clock gene expression, metabolism and immune functions. On the other hand, disruption of the clock promotes inflammation. Overexpression of clock genes can lead to inhibition of inflammatory processes, while silencing of clock genes can lead to irreversible disease activity. In both human and mouse studies, IBD and circadian rhythms have been shown to influence each other. Further research is needed to understand the exact mechanisms and to develop potential rhythm-related therapies to improve IBD.
Collapse
Affiliation(s)
- Jonathan Giebfried
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
55
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
56
|
Li C, Chen Y, Zhao W, Zhang C, Tang L, Ying Z, Chen W, Fu P, Song H, Zhou X, Zeng X. Genetic impact on the association of sleep patterns and chronic kidney disease: A prospective cohort study of 157,175 UK Biobank participants. J Psychosom Res 2023; 169:111323. [PMID: 37037154 DOI: 10.1016/j.jpsychores.2023.111323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVES The association between sleep pattern and chronic kidney disease (CKD) incidence, and whether the association is dependent on the genetic backgrounds has not been addressed. We sought to investigate the association of multidimensional sleep pattern with CKD in consideration of genetic polymorphisms. METHODS In this prospective cohort study of 157,175 participants from the UK Biobank, sleep patterns were derived by multiple correspondence analysis (MCA) and k-means clustering of individual sleep traits (sleep duration, insomnia, chronotype, daytime sleepiness, snoring, and night shift status). Cox proportional hazard regression was used to estimate the association between sleep patterns and CKD incidence. Gene-environment-wide interaction study (GEWIS) was performed to detect whether gene polymorphisms were modifiers on this association. RESULTS Compared with "healthy sleep" pattern, increased CKD incidence was observed in the clusters with "long sleep duration" (hazard ratios (HR) 1.42, 95% confidence intervals (CI), 1.18-1.72) and "night shift" (HR 1.23, 95% CI, 1.05-1.45) patterns, but not with the "short sleep duration" pattern. By GEWIS, we identified 167 SNPs as suggestive effect modifiers that interacted with unhealthy sleep patterns and affected the risk of CKD. CONCLUSIONS Unhealthy sleep patterns, with features of long sleep duration and night shift, may increase the risk of CKD. The study highlights the interaction of sleep and individual genetic risk to affect health outcomes.
Collapse
Affiliation(s)
- Chunyang Li
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, 17 Ren Min Nan Road 3(rd) section, Chengdu, Sichuan 610041, China
| | - Yilong Chen
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, 17 Ren Min Nan Road 3(rd) section, Chengdu, Sichuan 610041, China
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, 7000 Fannin Street, Houston, TX 77030, USA
| | - Chao Zhang
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, 17 Ren Min Nan Road 3(rd) section, Chengdu, Sichuan 610041, China
| | - Lei Tang
- Division of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Zhiye Ying
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, 17 Ren Min Nan Road 3(rd) section, Chengdu, Sichuan 610041, China
| | - Wenwen Chen
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Ping Fu
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, 17 Ren Min Nan Road 3(rd) section, Chengdu, Sichuan 610041, China
| | - Huan Song
- Med-X Center for Informatics, Sichuan University, 17 Ren Min Nan Road 3(rd) section, Chengdu, Sichuan 610041, China; Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, 7000 Fannin Street, Houston, TX 77030, USA
| | - Xiaoxi Zeng
- Kidney Research Institute, Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China; Division of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
57
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
58
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
59
|
Ramirez ZE, Surana NK. Ruminococcus gnavus and Limosilactobacillus reuteri Regulate Reg3γ Expression through Multiple Pathways. Immunohorizons 2023; 7:228-234. [PMID: 36943156 PMCID: PMC10563382 DOI: 10.4049/immunohorizons.2200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Epithelium-derived antimicrobial peptides represent an evolutionarily ancient defense mechanism against pathogens. Regenerating islet-derived protein 3 γ (Reg3γ), the archetypal intestinal antimicrobial peptide, is critical for maintaining host-microbe interactions. Expression of Reg3γ is known to be regulated by the microbiota through two different pathways, although it remains unknown whether specific Reg3γ-inducing bacteria act via one or both of these pathways. In recent work, we identified Ruminococcus gnavus and Limosilactobacillus reuteri as commensal bacteria able to induce Reg3g expression. In this study, we show these bacteria require myeloid differentiation primary response protein 88 and group 3 innate lymphoid cells for induction of Reg3γ in mice. Interestingly, we find that R. gnavus and L. reuteri suppress Reg3γ in the absence of either myeloid differentiation primary response protein 88 or group 3 innate lymphoid cells. In addition, we demonstrate that colonization by these bacteria is not required for induction of Reg3γ, which occurs several days after transient exposure to the organisms. Taken together, our findings highlight the complex mechanisms underlying microbial regulation of Reg3γ.
Collapse
Affiliation(s)
- Zeni E. Ramirez
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Neeraj K. Surana
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
60
|
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl) 2023; 101:201-222. [PMID: 36757399 PMCID: PMC10036442 DOI: 10.1007/s00109-023-02289-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Gut microbiota in interaction with intestinal host tissues influences many brain functions and microbial dysbiosis has been linked with brain disorders, such as neuropsychiatric conditions and Alzheimer's disease (AD). L-tryptophan metabolites and short-chained fatty acids (SCFA) are major messengers in the microbiota-brain axis. Aryl hydrocarbon receptors (AhR) are main targets of tryptophan metabolites in brain microvessels which possess an enriched expression of AhR protein. The Ah receptor is an evolutionarily conserved, ligand-activated transcription factor which is not only a sensor of xenobiotic toxins but also a pleiotropic regulator of both developmental processes and age-related tissue degeneration. Major microbiota-produced tryptophan metabolites involve indole derivatives, e.g., indole 3-pyruvic acid, indole 3-acetaldehyde, and indoxyl sulfate, whereas indoleamine and tryptophan 2,3-dioxygenases (IDO/TDO) of intestine host cells activate the kynurenine (KYN) pathway generating KYN metabolites, many of which are activators of AhR signaling. Chronic kidney disease (CKD) increases the serum level of indoxyl sulfate which promotes AD pathogenesis, e.g., it disrupts integrity of blood-brain barrier (BBB) and impairs cognitive functions. Activation of AhR signaling disturbs vascular homeostasis in brain; (i) it controls blood flow via the renin-angiotensin system, (ii) it inactivates endothelial nitric oxide synthase (eNOS), thus impairing NO production and vasodilatation, and (iii) it induces oxidative stress, stimulates inflammation, promotes cellular senescence, and enhances calcification of vascular walls. All these alterations are evident in cerebral amyloid angiopathy (CAA) in AD pathology. Moreover, AhR signaling can disturb circadian regulation and probably affect glymphatic flow. It seems plausible that dysbiosis of gut microbiota impairs the integrity of BBB via the activation of AhR signaling and thus aggravates AD pathology. KEY MESSAGES: Dysbiosis of gut microbiota is associated with dementia and Alzheimer's disease. Tryptophan metabolites are major messengers from the gut host-microbiota to brain. Tryptophan metabolites activate aryl hydrocarbon receptor (AhR) signaling in brain. The expression of AhR protein is enriched in brain microvessels and blood-brain barrier. Tryptophan metabolites disturb brain vascular integrity via AhR signaling. Dysbiosis of gut microbiota promotes inflammation and AD pathology via AhR signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
61
|
Han Z, Jin J, Chen X, He Y, Sun H. Adjuvant activity of tubeimosides by mediating the local immune microenvironment. Front Immunol 2023; 14:1108244. [PMID: 36845089 PMCID: PMC9950507 DOI: 10.3389/fimmu.2023.1108244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Rhizoma Bolbostemmatis, the dry tuber of Bolbostemma paniculatum, has being used for the treatment of acute mastitis and tumors in traditional Chinese medicine. In this study, tubeimoside (TBM) I, II, and III from this drug were investigated for the adjuvant activities, structure-activity relationships (SAR), and mechanisms of action. Three TBMs significantly boosted the antigen-specific humoral and cellular immune responses and elicited both Th1/Th2 and Tc1/Tc2 responses towards ovalbumin (OVA) in mice. TBM I also remarkably facilitated mRNA and protein expression of various chemokines and cytokines in the local muscle tissues. Flow cytometry revealed that TBM I promoted the recruitment and antigen uptake of immune cells in the injected muscles, and augmented the migration and antigen transport of immune cells to the draining lymph nodes. Gene expression microarray analysis manifested that TBM I modulated immune, chemotaxis, and inflammation-related genes. The integrated analysis of network pharmacology, transcriptomics, and molecular docking predicted that TBM I exerted adjuvant activity by interaction with SYK and LYN. Further investigation verified that SYK-STAT3 signaling axis was involved in the TBM I-induced inflammatory response in the C2C12 cells. Our results for the first time demonstrated that TBMs might be promising vaccine adjuvant candidates and exert the adjuvant activity through mediating the local immune microenvironment. SAR information contributes to developing the semisynthetic saponin derivatives with adjuvant activities.
Collapse
Affiliation(s)
- Ziyi Han
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,College of Animal Sciences, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Hongxiang Sun,
| |
Collapse
|
62
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
63
|
Huang H, Mehta A, Kalmanovich J, Anand A, Bejarano MC, Garg T, Khan N, Tonpouwo GK, Shkodina AD, Bardhan M. Immunological and inflammatory effects of infectious diseases in circadian rhythm disruption and future therapeutic directions. Mol Biol Rep 2023; 50:3739-3753. [PMID: 36656437 PMCID: PMC9851103 DOI: 10.1007/s11033-023-08276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circadian rhythm is characterised by daily variations in biological activity to align with the light and dark cycle. These diurnal variations, in turn, influence physiological functions such as blood pressure, temperature, and sleep-wake cycle. Though it is well established that the circadian pathway is linked to pro-inflammatory responses and circulating immune cells, its association with infectious diseases is widely unknown. OBJECTIVE This comprehensive review aims to describe the association between circadian rhythm and host immune response to various kinds of infection. METHODS We conducted a literature search in databases Pubmed/Medline and Science direct. Our paper includes a comprehensive analysis of findings from articles in English which was related to our hypothesis. FINDINGS Molecular clocks determine circadian rhythm disruption in response to infection, influencing the host's response toward infection. Moreover, there is a complex interplay with intrinsic oscillators of pathogens and the influence of specific infectious processes on the CLOCK: BMAL1 pathway. Such mechanisms vary for bacterial and viral infections, both well studied in the literature. However, less is known about the association of parasitic infections and fungal pathogens with circadian rhythm modulation. CONCLUSION It is shown that bidirectional relationships exist between circadian rhythm disruption and infectious process, which contains interplay between the host's and pathogens' circadian oscillator, immune response, and the influence of specific infectious. Further studies exploring the modulations of circadian rhythm and immunity can offer novel explanations of different susceptibilities to infection and can lead to therapeutic avenues in circadian immune modulation of infectious diseases.
Collapse
Affiliation(s)
- Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | | | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Maria Chilo Bejarano
- Facultad de Ciencias de la Salud Humana, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, India
| | - Nida Khan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Gauvain Kankeu Tonpouwo
- Faculté de Médecine, Université de Lubumbashi, Plaine Tshombé, Lubumbashi, Democratic Republic of the Congo
| | | | - Mainak Bardhan
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| |
Collapse
|
64
|
Ratiner K, Fachler-Sharp T, Elinav E. Small Intestinal Microbiota Oscillations, Host Effects and Regulation-A Zoom into Three Key Effector Molecules. BIOLOGY 2023; 12:142. [PMID: 36671834 PMCID: PMC9855434 DOI: 10.3390/biology12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The gut microbiota features a unique diurnal rhythmicity which contributes to modulation of host physiology and homeostasis. The composition and activity of the microbiota and its secreted molecules influence the intestinal milieu and neighboring organs, such as the liver. Multiple immune-related molecules have been linked to the diurnal microbiota-host interaction, including Reg3γ, IgA, and MHCII, which are secreted or expressed on the gut surface and directly interact with intestinal bacteria. These molecules are also strongly influenced by dietary patterns, such as high-fat diet and time-restricted feeding, which are already known to modulate microbial rhythms and peripheral clocks. Herein, we use Reg3γ, IgA, and MHCII as test cases to highlight the divergent effects mediated by the diurnal activity of the gut microbiota and their downstream host effects. We further highlight current challenges and conflicts, remaining questions, and perspectives toward a holistic understanding of the microbiome's impacts on circadian human behavior.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
| | - Tahel Fachler-Sharp
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem 9987500, Israel
| | - Eran Elinav
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Microbiota & Cancer Division, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
65
|
Huang Z, Li Y, Park H, Ho M, Bhardwaj K, Sugimura N, Lee HW, Meng H, Ebert MP, Chao K, Burgermeister E, Bhatt AP, Shetty SA, Li K, Wen W, Zuo T. Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes 2023; 15:2237645. [PMID: 37498052 PMCID: PMC10376922 DOI: 10.1080/19490976.2023.2237645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
The world is witnessing a global increase in the urban population, particularly in developing Asian and African countries. Concomitantly, the global burden of non-communicable diseases (NCDs) is rising, markedly associated with the changing landscape of lifestyle and environment during urbanization. Accumulating studies have revealed the role of the gut microbiome in regulating the immune and metabolic homeostasis of the host, which potentially bridges external factors to the host (patho-)physiology. In this review, we discuss the rising incidences of NCDs during urbanization and their links to the compositional and functional dysbiosis of the gut microbiome. In particular, we elucidate the effects of urbanization-associated factors (hygiene/pollution, urbanized diet, lifestyles, the use of antibiotics, and early life exposure) on the gut microbiome underlying the pathogenesis of NCDs. We also discuss the potential and feasibility of microbiome-inspired and microbiome-targeted approaches as novel avenues to counteract NCDs, including fecal microbiota transplantation, diet modulation, probiotics, postbiotics, synbiotics, celobiotics, and precision antibiotics.
Collapse
Affiliation(s)
- Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heekuk Park
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Centre, New York, NY, USA
| | - Martin Ho
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Kanchan Bhardwaj
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Haryana, India
| | - Naoki Sugimura
- Gastrointestinal Centre and Institute of Minimally-Invasive Endoscopic Care (iMEC), Sano Hospital, Kobe, Japan
| | - Hye Won Lee
- Institute of Gastroenterology and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China
| | - Matthias P. Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, Mannheim, Germany
- Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Mannheim, Germany
| | - Kang Chao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aadra P. Bhatt
- Department of Medicine, Centre for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, NC, USA
| | - Sudarshan A. Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kai Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Wen
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
66
|
Simpkins DA, Downton P, Gray KJ, Dickson S, Maidstone RJ, Konkel JE, Hepworth M, Ray DW, Bechtold DA, Gibbs JE. Consequences of collagen induced inflammatory arthritis on circadian regulation of the gut microbiome. FASEB J 2023; 37:e22704. [PMID: 36520064 PMCID: PMC10107696 DOI: 10.1096/fj.202201728r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The gut microbiota is important for host health and immune system function. Moreover autoimmune diseases, such as rheumatoid arthritis, are associated with significant gut microbiota dysbiosis, although the causes and consequences of this are not fully understood. It has become clear that the composition and metabolic outputs of the microbiome exhibit robust 24 h oscillations, a result of daily variation in timing of food intake as well as rhythmic circadian clock function in the gut. Here, we report that experimental inflammatory arthritis leads to a re-organization of circadian rhythmicity in both the gut and associated microbiome. Mice with collagen induced arthritis exhibited extensive changes in rhythmic gene expression in the colon, and reduced barrier integrity. Re-modeling of the host gut circadian transcriptome was accompanied by significant alteration of the microbiota, including widespread loss of rhythmicity in symbiont species of Lactobacillus, and alteration in circulating microbial derived factors, such as tryptophan metabolites, which are associated with maintenance of barrier function and immune cell populations within the gut. These findings highlight that altered circadian rhythmicity during inflammatory disease contributes to dysregulation of gut integrity and microbiome function.
Collapse
Affiliation(s)
- Devin Amanda Simpkins
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Polly Downton
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Kathryn J. Gray
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Suzanna H. Dickson
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Robert J. Maidstone
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Joanne E. Konkel
- Lydia Becker Institute for Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Matthew R. Hepworth
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute for Immunology and InflammationUniversity of ManchesterManchesterUK
| | - David W. Ray
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - David A. Bechtold
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Julie Elizabeth Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute for Immunology and InflammationUniversity of ManchesterManchesterUK
| |
Collapse
|
67
|
He J, Zhang Y, Li H, Xie Y, Huang G, Peng C, Zhao P, Wang Z. Hybridization alters the gut microbial and metabolic profile concurrent with modifying intestinal functions in Tunchang pigs. Front Microbiol 2023; 14:1159653. [PMID: 37152756 PMCID: PMC10157192 DOI: 10.3389/fmicb.2023.1159653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Hybridization has been widely used among Chinese wild boars to improve their growth performance and maintain meat quality. Most studies have focused on the genetic basis for such variation. However, the differences in the gut environment between hybrid and purebred boars, which can have significant impacts on their health and productivity, have been poorly understood. Methods In the current study, metagenomics was used to detect the gut microbial diversity and composition in hybrid Batun (BT, Berkshire × Tunchang) pigs and purebred Tunchang (TC) pigs. Additionally, untargeted metabolomic analysis was used to detect differences in gut metabolic pathways. Furthermore, multiple molecular experiments were conducted to demonstrate differences in intestinal functions. Results As a result of hybridization in TC pigs, a microbial change was observed, especially in Prevotella and Lactobacillus. Significant differences were found in gut metabolites, including fatty acyls, steroids, and steroid derivatives. Furthermore, the function of the intestinal barrier was decreased by hybridization, while the function of nutrient metabolism was increased. Discussion Evidences were shown that hybridization changed the gut microbiome, gut metabolome, and intestinal functions of TC pigs. These findings supported our hypothesis that hybridization altered the gut microbial composition, thereby modifying the intestinal functions, even the host phenotypes. Overall, our study highlights the importance of considering the gut microbiome as a key factor in the evaluation of animal health and productivity, particularly in the context of genetic selection and breeding programs.
Collapse
Affiliation(s)
- Jiayi He
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunchao Zhang
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hui Li
- Long Jian Animal Husbandry Company, Haikou, China
| | - Yanshe Xie
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Guiqing Huang
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Pengju Zhao
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- *Correspondence: Pengju Zhao,
| | - Zhengguang Wang
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Zhengguang Wang,
| |
Collapse
|
68
|
Schönke M, Ying Z, Kovynev A, In Het Panhuis W, Binnendijk A, van der Poel S, Pronk ACM, Streefland TCM, Hoekstra M, Kooijman S, Rensen PCN. Time to run: Late rather than early exercise training in mice remodels the gut microbiome and reduces atherosclerosis development. FASEB J 2023; 37:e22719. [PMID: 36562708 DOI: 10.1096/fj.202201304r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The metabolic and inflammatory processes that are implicated in the development of cardiovascular diseases are under control of the biological clock. While skeletal muscle function exhibits circadian rhythms, it is unclear to what extent the beneficial health effects of exercise are restricted to unique time windows. We aimed to study whether the timing of exercise training differentially modulates the development of atherosclerosis and elucidate underlying mechanisms. We endurance-trained atherosclerosis-prone female APOE*3-Leiden.CETP mice fed a Western-type diet, a well-established human-like model for cardiometabolic diseases, for 1 h five times a week for 4 weeks either in their early or in their late active phase on a treadmill. We monitored metabolic parameters, the development of atherosclerotic lesions in the aortic root and assessed the composition of the gut microbiota. Late, but not early, exercise training reduced fat mass by 19% and the size of early-stage atherosclerotic lesions by as much as 29% compared to sedentary animals. No correlation between cholesterol exposure and lesion size was evident, as no differences in plasma lipid levels were observed, but circulating levels of the pro-inflammatory markers ICAM-1 and VCAM-1 were reduced with late exercise. Strikingly, we observed a time-of-day-dependent effect of exercise training on the composition of the gut microbiota as only late training increased the abundance of gut bacteria producing short-chain fatty acids with proposed anti-inflammatory properties. Together, these findings indicate that timing is a critical factor to the beneficial anti-atherosclerotic effects of exercise with a great potential to further optimize training recommendations for patients.
Collapse
Affiliation(s)
- Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Artemiy Kovynev
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Binnendijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabine van der Poel
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Department of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
69
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
70
|
Liang F, Chen CY, Li YP, Ke YC, Ho EP, Jeng CF, Lin CH, Chen SK. Early Dysbiosis and Dampened Gut Microbe Oscillation Precede Motor Dysfunction and Neuropathology in Animal Models of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2423-2440. [PMID: 36155528 DOI: 10.3233/jpd-223431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Studies have shown different gut microbiomes in patients with Parkinson's disease (PD) compared to unaffected controls. However, when the gut microbiota shift toward dysbiosis in the PD process remains unclear. OBJECTIVE We aim to investigate the changes in gut microbiota, locomotor function, and neuropathology longitudinally in PD rodent models. METHODS Fecal microbiota were longitudinally assessed by sequencing the V4-V5 region of the 16S ribosomal RNA gene in a human mutant α-synuclein over-expressing mouse model of PD, SNCA p.A53T mice, and the non-transgenic littermate controls. The locomotor function, neuronal integrity, and α-synuclein expression in the different brain regions were compared between groups. Human fecal microbiota communities from 58 patients with PD and 46 unaffected controls were also analyzed using metagenomic sequencing for comparison. RESULTS Compared to non-transgenic littermate controls, the altered gut microbiota of the SNCA p.A53T mice can be detected as early as 2 months old, and the diurnal oscillation of the gut microbiome was dampened throughout PD progression starting from 4 months old. However, neuropathology changes and motor deficits were observed starting at 6 months old. Similar changes in altered gut microbiota were also observed in another PD genetic mouse model carrying the LRRK2 p.G2019S mutation at 2 months old. Among the commonly enriched gut microbiota in both PD genetic mouse models, the abundance of Parabateroides Merdae and Ruminococcus torques were also increased in human PD patients compared to controls. CONCLUSION These findings revealed the altered gut microbiota communities and oscillations preceding the occurrence of neuropathy and motor dysfunction in the PD process.
Collapse
Affiliation(s)
- Feng Liang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Pu Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ci Ke
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - En-Pong Ho
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Fan Jeng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
71
|
Tolba SA, Leone VA. Timed high-fat diet feeding restores small bowel circadian rhythms. Nat Rev Endocrinol 2022; 18:721-722. [PMID: 36266573 PMCID: PMC10594235 DOI: 10.1038/s41574-022-00759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Host–microorganism circadian dynamics are key contributors to metabolic health. In addition, diet composition and timed feeding affect gut microbiota diurnal rhythms, with high-fat diets altering the composition of the gut microbiota and dampening circadian rhythms throughout the intestine. A recent study shows that time-restricted feeding of a high-fat diet restores the rhythms of small bowel host–microorganism interactions, preventing diet-induced obesity in mice.
Collapse
Affiliation(s)
- Samar A Tolba
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
72
|
Erber AC, Wagner A, Karachaliou M, Jeleff M, Kalafatis P, Kogevinas M, Pepłońska B, Santonja I, Schernhammer E, Stockinger H, Straif K, Wiedermann U, Waldhör T, Papantoniou K. The Association of Time of Day of ChAdOx1 nCoV-19 Vaccine Administration With SARS-CoV-2 Anti-Spike IgG Antibody Levels: An Exploratory Observational Study. J Biol Rhythms 2022; 38:98-108. [PMID: 36367167 PMCID: PMC9659693 DOI: 10.1177/07487304221132355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Data from human and animal studies are highly suggestive of an influence of time of day of vaccine administration on host immune responses. In this population-based study, we aimed to investigate the effect of time of day of administration of a COVID-19 vector vaccine, ChAdOx1 nCoV-19 (AstraZeneca), on SARS-CoV-2 anti-spike S1 immunoglobulin (IgG) levels. Participants were 803 university employees who received their first vaccine dose in March 2021, had serology data at baseline and at 3 weeks, and were seronegative at baseline. Antibody levels were determined in binding antibody units (BAU/mL) using enzyme-linked immunosorbent assay (ELISA). Generalized additive models (GAM) and linear regression were used to evaluate the association of time of day of vaccination continuously and in hourly bins with antibody levels at 3 weeks. Participants had a mean age of 42 years (SD: 12; range: 21-74) and 60% were female. Time of day of vaccination was associated non-linearly ("reverse J-shape") with antibody levels. Morning vaccination was associated with the highest (9:00-10:00 h: mean 292.1 BAU/mL; SD: 262.1), early afternoon vaccination with the lowest (12:00-13:00 h: mean 217.3 BAU/mL; SD: 153.6), and late afternoon vaccination with intermediate (14:00-15:00 h: mean 280.7 BAU/mL; SD: 262.4) antibody levels. Antibody levels induced by 12:00-13:00 h vaccination (but not other time intervals) were significantly lower compared to 9:00-10:00 h vaccination after adjusting for potential confounders (beta coefficient = -75.8, 95% confidence interval [CI] = -131.3, -20.4). Our findings show that time of day of vaccination against SARS-CoV-2 has an impact on the magnitude of IgG antibody levels at 3 weeks. Whether this difference persists after booster vaccine doses and whether it influences the level of protection against COVID-19 needs further evaluation.
Collapse
Affiliation(s)
- Astrid C. Erber
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Nuffield Department of Medicine,
University of Oxford, Oxford, UK
| | - Angelika Wagner
- Department of Pathophysiology,
Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical
Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Maren Jeleff
- Department of Social and Preventive
Medicine, Center for Public Health, Medical University of Vienna, Vienna,
Austria
| | - Polyxeni Kalafatis
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Beata Pepłońska
- Nofer Institute of Occupational
Medicine, University of Łodz, Łodz, Poland
| | - Isabel Santonja
- Clinical Department of Virology, Center
for Virology, Medical University of Vienna, Vienna, Austria
| | - Eva Schernhammer
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Channing Division of Network Medicine,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, Massachusetts, USA,Department of Epidemiology, Harvard
T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hannes Stockinger
- Institute for Hygiene and Applied
Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical
University of Vienna, Vienna, Austria
| | - Kurt Straif
- Barcelona Institute for Global Health
(ISGlobal), Barcelona, Spain,Boston College, Chestnut Hill,
Massachusetts, USA
| | - Ursula Wiedermann
- Department of Pathophysiology,
Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical
Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Waldhör
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria
| | - Kyriaki Papantoniou
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Kyriaki Papantoniou,
Department of Epidemiology, Center for Public Health, Medical University of
Vienna, Kinderspitalgasse 15, Vienna 1090, Austria; e-mail:
| |
Collapse
|
73
|
Hashimoto-Hill S, Colapietro L, Woo V, Antonacci S, Whitt J, Engleman L, Alenghat T. Dietary phytate primes epithelial antibacterial immunity in the intestine. Front Immunol 2022; 13:952994. [PMID: 36341403 PMCID: PMC9627201 DOI: 10.3389/fimmu.2022.952994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Although diet has long been associated with susceptibility to infection, the dietary components that regulate host defense remain poorly understood. Here, we demonstrate that consuming rice bran decreases susceptibility to intestinal infection with Citrobacter rodentium, a murine pathogen that is similar to enteropathogenic E. coli infection in humans. Rice bran naturally contains high levels of the substance phytate. Interestingly, phytate supplementation also protected against intestinal infection, and enzymatic metabolism of phytate by commensal bacteria was necessary for phytate-induced host defense. Mechanistically, phytate consumption induced mammalian intestinal epithelial expression of STAT3-regulated antimicrobial pathways and increased phosphorylated STAT3, suggesting that dietary phytate promotes innate defense through epithelial STAT3 activation. Further, phytate regulation of epithelial STAT3 was mediated by the microbiota-sensitive enzyme histone deacetylase 3 (HDAC3). Collectively, these data demonstrate that metabolism of dietary phytate by microbiota decreases intestinal infection and suggests that consuming bran and other phytate-enriched foods may represent an effective dietary strategy for priming host immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theresa Alenghat
- Division of Immunobiology, and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
74
|
Zhanfeng N, Liang W, Jing K, Jinbo B, Yanjun C, Hechun X. Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis. Front Neurosci 2022; 16:934822. [PMID: 36303945 PMCID: PMC9594989 DOI: 10.3389/fnins.2022.934822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVE This study investigates whether people with sleep disorders following traumatic brain injury exhibit altered intestinal flora. The changes may allow us to gain a better understanding of the role of intestinal flora in patients with sleep disorders after traumatic brain injury, which may give us insights into curing the sleep disorder after traumatic brain injury (TBI). METHOD We analyzed the intestinal microbial colony structure in the feces of the 28 patients in the normal sleep group and the sleep disorder group by 16SrDNAsequencing technology. The bioinformatics method was used to analyze the intestinal flora change in the v3-v4 region of patients with biorhythm disorder and to observe the difference between the two groups. RESULTS Group grouping comparison and analysis of the evolutionary cladistic map showed the intestinal flora of patients with normal sleep after TBI was mainly Bacilli and Lactobacillales, while that of patients with sleep disorders was mainly Lachnospiraceae and Bacteroidales. The histogram of group value distribution by grouping comparison and analysis showed that Lachnospiraceae, Bacteroidales, Bacteroidia, and Bacteroidetes were dominant in the sleep disorder group. A relative abundance map of species with significant differences by group grouping comparison showed the main manifestations of intestinal flora are Firmicutes, Bacilli, Lactobacillales, Streptococcaceae, and Bacteroidetes. The normal sleep group was dominated by Bacilli, Lactobacillales, Streptococcus, and Veillonella, while in the sleep disorder group, Lachnospiraceae, Bacteroidales, Bacteroidia, and Bacteroidetes were the main species. It was found that there were also significant differences in intestinal flora abundance between the two groups after TBI. After statistics processing, it was compared with the normal sleep group, Lactobacillus, Streptococcus, Oribacterium and Rothia, Actinomyces, Streptophyta, TM7-3 bacteria, and Serratia, showing a significant reduction in the sleep disorder group (P < 0.05). However, Odoribacter, Lachnospiraceae, and Bilophila increased significantly (P < 0.05). CONCLUSION The sleep disorders of patients after TBI can be closely related to intestinal flora disturbance, and its internal mechanism needs further study. Intestinal flora has the potential to be a new therapeutic target.
Collapse
Affiliation(s)
- Niu Zhanfeng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wu Liang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kang Jing
- ENT & HN Surgery Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bai Jinbo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chen Yanjun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xia Hechun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
75
|
Sperry MM, Novak R, Keshari V, Dinis ALM, Cartwright MJ, Camacho DM, Paré J, Super M, Levin M, Ingber DE. Enhancers of Host Immune Tolerance to Bacterial Infection Discovered Using Linked Computational and Experimental Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200222. [PMID: 35706367 PMCID: PMC9475558 DOI: 10.1002/advs.202200222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Indexed: 05/31/2023]
Abstract
Current therapeutic strategies against bacterial infections focus on reduction of pathogen load using antibiotics; however, stimulation of host tolerance to infection in the presence of pathogens might offer an alternative approach. Computational transcriptomics and Xenopus laevis embryos are used to discover infection response pathways, identify potential tolerance inducer drugs, and validate their ability to induce broad tolerance. Xenopus exhibits natural tolerance to Acinetobacter baumanii, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae bacteria, whereas Aeromonas hydrophila and Pseudomonas aeruginosa produce lethal infections. Transcriptional profiling leads to definition of a 20-gene signature that discriminates between tolerant and susceptible states, as well as identification of a more active tolerance response to gram negative compared to gram positive bacteria. Gene pathways associated with active tolerance in Xenopus, including some involved in metal ion binding and hypoxia, are found to be conserved across species, including mammals, and administration of a metal chelator (deferoxamine) or a HIF-1α agonist (1,4-DPCA) in embryos infected with lethal A. hydrophila increased survival despite high pathogen load. These data demonstrate the value of combining the Xenopus embryo infection model with computational multiomics analyses for mechanistic discovery and drug repurposing to induce host tolerance to bacterial infections.
Collapse
Affiliation(s)
- Megan M. Sperry
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of BiologyTufts UniversityMedfordMA02155USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
Unravel Biosciences, Inc.BostonMA02125USA
| | - Vishal Keshari
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Alexandre L. M. Dinis
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
University of Massachusetts Medical SchoolWorcesterMA01655USA
| | - Mark J. Cartwright
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Diogo M. Camacho
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
Rheos MedicinesCambridgeMA02142USA
| | - Jean‐François Paré
- Department of BiologyTufts UniversityMedfordMA02155USA
- Present address:
Queen's UniversityKingstonON K7L 3N6Canada
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Michael Levin
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of BiologyTufts UniversityMedfordMA02155USA
- Allen Discovery Center at Tufts UniversityMedfordMA02155USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Vascular Biology Program and Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesCambridgeMA02138USA
| |
Collapse
|
76
|
Chichlowski M, Cotter J, Fawkes N, Pandey N. Feed your microbiome and improve sleep, stress resilience, and cognition. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The brain and gut are connected both physically and biochemically. The gut-brain axis includes the central nervous system, neuroendocrine and neuroimmune systems, the enteric nervous system and vagus nerve, and the gut microbiome. It can influence brain function and even behavior, suggesting that dietary interventions may help enhance and protect mental health and cognitive performance. This review focuses on the role of the microbiome and its metabolites in sleep regulation, neurodegenerative disorders, mechanisms of stress, and mood. It also provides examples of nutritional interventions which can restore healthy gut microbiota and aid with risk reduction and management of many disorders related to mental and cognitive health. Evidence suggests a shift in the gut microbiota towards a balanced composition could be a target to maintain brain health, reduce stress and improve quality of life.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47712, USA
| | - Jack Cotter
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neil Fawkes
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neeraj Pandey
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| |
Collapse
|
77
|
Jing H, Chang Q, Xu Y, Wang J, Wu X, Huang J, Wang L, Zhang Z. Effect of aging on acute pancreatitis through gut microbiota. Front Microbiol 2022; 13:897992. [PMID: 35966681 PMCID: PMC9366017 DOI: 10.3389/fmicb.2022.897992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Compared to younger people, older people have a higher risk and poorer prognosis of acute pancreatitis, but the effect of gut microbiota on acute pancreatitis is still unknown. We aim to investigate the effect of aging gut microbiota on acute pancreatitis and explore the potential mechanism of this phenomenon. Methods Eighteen fecal samples from healthy adult participants, including nine older and nine younger adults were collected. C57BL/6 mice were treated with antibiotics for fecal microbiota transplantation from older and younger participants. Acute pancreatitis was induced by cerulein and lipopolysaccharide in these mice. The effect of the aged gut microbiota was further tested via antibiotic treatment before or after acute pancreatitis induction. Results The gut microbiota of older and younger adults differed greatly. Aged gut microbiota exacerbated acute pancreatitis during both the early and recovery stages. At the same time, the mRNA expression of multiple antimicrobial peptides in the pancreas and ileum declined in the older group. Antibiotic treatment before acute pancreatitis could remove the effect of aging gut microbiota, but antibiotic treatment after acute pancreatitis could not. Conclusion Aging can affect acute pancreatitis through gut microbiota which characterizes the deletion of multiple types of non-dominant species. This change in gut microbiota may potentially regulate antimicrobial peptides in the early and recovery stages. The level of antimicrobial peptides has negative correlations with a more severe phenotype.
Collapse
Affiliation(s)
- Hui Jing
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qimeng Chang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Yayun Xu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jianfa Wang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Xubo Wu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiating Huang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Lishun Wang,
| | - Ziping Zhang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Ziping Zhang,
| |
Collapse
|
78
|
Xiao Z, Liu S, Li Z, Cui J, Wang H, Wang Z, Ren Q, Xia L, Wang Z, Li Y. The Maternal Microbiome Programs the m6A Epitranscriptome of the Mouse Fetal Brain and Intestine. Front Cell Dev Biol 2022; 10:882994. [PMID: 35874829 PMCID: PMC9301011 DOI: 10.3389/fcell.2022.882994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
The microbiome exerts profound effects on fetal development and health, yet the mechanisms underlying remain elusive. N6-methyladenosine (m6A) plays important roles in developmental regulation. Although it has been shown that the microbiome affects the mRNA m6A modification of the host, it remains unclear whether the maternal microbiome affects m6A epitranscriptome of the fetus so as to impact fetal development. Here, we found that loss of the maternal microbiome altered the expression of m6A writers and erasers, as well as the m6A methylome of the mouse fetal brain and intestine on embryonic day 18. From the m6A profiles, we identified 2,655 and 2,252 m6A modifications regulated by the maternal microbiome in the fetal brain and intestine, respectively, and we demonstrated that these m6A-modified genes were enriched in the neuro/intestinal developmental pathways, such as the Wnt signaling pathway. Finally, we verified that antibiotic treatment mostly recapitulated changes in m6A, and we further showed that the loss of heterozygosity of Mettl3 rescued m6A levels and the expression changes of some developmental genes in the fetal intestine that resulted from antibiotic treatment. Collectively, our data revealed that the maternal microbiome programs the m6A epitranscriptome of the mouse fetal brain and intestine.
Collapse
Affiliation(s)
- Zhuoyu Xiao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sun Liu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zengguang Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinru Cui
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hailan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qihuan Ren
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Laixin Xia, ; Zhijian Wang, ; Yuan Li,
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Laixin Xia, ; Zhijian Wang, ; Yuan Li,
| | - Yuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Laixin Xia, ; Zhijian Wang, ; Yuan Li,
| |
Collapse
|
79
|
Dantas Machado AC, Brown SD, Lingaraju A, Sivaganesh V, Martino C, Chaix A, Zhao P, Pinto AFM, Chang MW, Richter RA, Saghatelian A, Saltiel AR, Knight R, Panda S, Zarrinpar A. Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome. Cell Rep 2022; 40:111008. [PMID: 35793637 PMCID: PMC9296000 DOI: 10.1016/j.celrep.2022.111008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022] Open
Abstract
Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circadian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest. Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an important role in entraining peripheral circadian rhythms. We demonstrate the effect of diet and feeding rhythms on the ileal microbiome composition and transcriptome in mice. The dynamic rhythms of ileal microbiome composition and transcriptome are dampened in DIO. TRF partially restores diurnal rhythms of the ileal microbiome and transcriptome, increases GLP-1 release, and alters the ileal bile acid pool and farnesoid X receptor (FXR) signaling, which could explain how TRF exerts its metabolic benefits. Finally, we provide a web resource for exploration of ileal microbiome and transcriptome circadian data.
Collapse
Affiliation(s)
- Ana Carolina Dantas Machado
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Steven D Brown
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Vignesh Sivaganesh
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Peng Zhao
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, the Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, the Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Institute of Diabetes and Metabolic Health, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Institute of Diabetes and Metabolic Health, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; VA Health Sciences, San Diego, La Jolla, CA, USA.
| |
Collapse
|
80
|
Wang T, Rong X, Zhao C. Circadian Rhythms Coordinated With Gut Microbiota Partially Account for Individual Differences in Hepatitis B-Related Cirrhosis. Front Cell Infect Microbiol 2022; 12:936815. [PMID: 35846774 PMCID: PMC9283756 DOI: 10.3389/fcimb.2022.936815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis is the end stage of chronic liver diseases like chronic hepatitis B. In China, hepatitis B accounts for around 60% of cases of cirrhosis. So far, clinical and laboratory indexes for the early diagnosis of cirrhosis are far from satisfactory. Nevertheless, there haven’t been specific drugs for cirrhosis. Thus, it is quite necessary to uncover more specific factors which play their roles in cirrhosis and figure out the possible therapeutic targets. Among emerging factors taking part in the initiation and progression of cirrhosis, gut microbiota might be a pivot of systemic factors like metabolism and immune and different organs like gut and liver. Discovery of detailed molecular mechanism in gut microbiota and gut liver axis leads to a more promising prospect of developing new drugs intervening in these pathways. Time-based medication regimen has been proofed to be helpful in hormonotherapy, especially in the use of glucocorticoid. Thus, circadian rhythms, though haven’t been strongly linked to hepatitis B and its complications, are still pivotal to various pathophysiological progresses. Gut microbiota as a potential effective factor of circadian rhythms has also received increasing attentions. Here, our work, restricting cirrhosis to the post-hepatitis B one, is aimed to summarize how circadian rhythms and hepatitis B-related cirrhosis can intersect via gut microbiota, and to throw new insights on the development of new and time-based therapies for hepatitis B-related cirrhosis and other cirrhosis.
Collapse
Affiliation(s)
- Tongyao Wang
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingyu Rong
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chao Zhao
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
- *Correspondence: Chao Zhao,
| |
Collapse
|
81
|
Barreto HC, Abreu B, Gordo I. Fluctuating selection on bacterial iron regulation in the mammalian gut. Curr Biol 2022; 32:3261-3275.e4. [PMID: 35793678 DOI: 10.1016/j.cub.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Iron is critical in host-microbe interactions, and its availability is tightly regulated in the mammalian gut. Antibiotics and inflammation can perturb iron availability in the gut, which could alter host-microbe interactions. Here, we show that an adaptive allele of iscR, a major regulator of iron homeostasis of Escherichia coli, is under fluctuating selection in the mouse gut. In vivo competitions in immune-competent, immune-compromised, and germ-free mice reveal that the selective pressure on an iscR mutant E. coli is modulated by the presence of antibiotics, the microbiota, and the immune system. In vitro assays show that iron availability is an important mediator of the iscR allele fitness benefits or costs. We identify Lipocalin-2, a host's immune protein that prevents bacterial iron acquisition, as a major host mechanism underlying fluctuating selection of iscR. Our results provide a remarkable example of strong fluctuating selection acting on bacterial iron regulation in the mammalian gut.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Beatriz Abreu
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
82
|
Frazier K, Kambal A, Zale EA, Pierre JF, Hubert N, Miyoshi S, Miyoshi J, Ringus DL, Harris D, Yang K, Carroll K, Hermanson JB, Chlystek JS, Overmyer KA, Cham CM, Musch MW, Coon JJ, Chang EB, Leone VA. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe 2022; 30:809-823.e6. [PMID: 35439436 PMCID: PMC9281554 DOI: 10.1016/j.chom.2022.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
Gut microbial diurnal oscillations are important diet-dependent drivers of host circadian rhythms and metabolism ensuring optimal energy balance. However, the interplay between diet, microbes, and host factors sustaining intestinal oscillations is complex and poorly understood. Here, using a mouse model, we report the host C-type lectin antimicrobial peptide Reg3γ works with key ileal microbes to orchestrate these interactions in a bidirectional manner and does not correlate with the intestinal core circadian clock. High-fat diet is the primary driver of microbial oscillators that impair host metabolic homeostasis, resulting in arrhythmic host Reg3γ expression that secondarily drives abundance and oscillation of key gut microbes. This illustrates transkingdom coordination of biological rhythms primarily influenced by diet and reciprocal sensor-effector signals between host and microbial components, ultimately driving metabolism. Restoring the gut microbiota's capacity to sense dietary signals mediated by specific host factors such as Reg3γ could be harnessed to improve metabolic dysfunction.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Amal Kambal
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Elizabeth A Zale
- Infectious Diseases Division, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathaniel Hubert
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sawako Miyoshi
- Department of General Medicine, Kyorin University School of Medicine, Tokyo 1818611, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo 1818611, Japan
| | - Daina L Ringus
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dylan Harris
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Karen Yang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Katherine Carroll
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John S Chlystek
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Candace M Cham
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mark W Musch
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
83
|
Abstract
The immune system is highly time-of-day dependent. Pioneering studies in the 1960s were the first to identify immune responses to be under a circadian control. Only in the last decade, however, have the molecular factors governing circadian immune rhythms been identified. These studies have revealed a highly complex picture of the interconnectivity of rhythmicity within immune cells with that of their environment. Here, we provide a global overview of the circadian immune system, focusing on recent advances in the rapidly expanding field of circadian immunology.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lydia Kay Lutes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Coline Barnoud
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
84
|
Ratiner K, Shapiro H, Goldenberg K, Elinav E. Time-limited diets and the gut microbiota in cardiometabolic disease. J Diabetes 2022; 14:377-393. [PMID: 35698246 PMCID: PMC9366560 DOI: 10.1111/1753-0407.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, intermittent fasting (IF), including periodic fasting and time-restricted feeding (TRF), has been increasingly suggested to constitute a promising treatment for cardiometabolic diseases (CMD). A deliberate daily pause in food consumption influences the gut microbiome and the host circadian clock, resulting in improved cardiometabolic health. Understanding the molecular mechanisms by which circadian host-microbiome interactions affect host metabolism and immunity may add a potentially important dimension to effective implementation of IF diets. In this review, we discuss emerging evidence potentially linking compositional and functional alterations of the gut microbiome with IF impacts on mammalian metabolism and risk of development of hypertension, type 2 diabetes (T2D), obesity, and their long-term micro- and macrovascular complications. We highlight the challenges and unknowns in causally linking diurnal bacterial signals with dietary cues and downstream metabolic consequences and means of harnessing these signals toward future microbiome integration into precision medicine.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Hagit Shapiro
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Kim Goldenberg
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Eran Elinav
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
- Microbiome & Cancer Division, DKFZHeidelbergGermany
| |
Collapse
|
85
|
Zhen Y, Chen Y, Ge L, Wei W, Wang Y, Hu L, Loor JJ, Wang M, Yin J. The Short-Day Cycle Induces Intestinal Epithelial Purine Metabolism Imbalance and Hepatic Disfunctions in Antibiotic-Mediated Gut Microbiota Perturbation Mice. Int J Mol Sci 2022; 23:ijms23116008. [PMID: 35682688 PMCID: PMC9181120 DOI: 10.3390/ijms23116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Intestinal microbiota dysbiosis is related to many metabolic diseases in human health. Meanwhile, as an irregular environmental light–dark (LD) cycle, short day (SD) may induce host circadian rhythm disturbances and worsen the risks of gut dysbiosis. Herein, we investigated how LD cycles regulate intestinal metabolism upon the destruction of gut microbes with antibiotic treatments. The growth indices, serum parameters, concentrations of short-chain fatty acids (SCFAs), and relative abundance of intestinal microbes were measured after euthanasia; intestinal contents, epithelial metabolomics, and hepatic transcriptome sequencing were also assessed. Compared with a normal LD cycle (NLD), SD increased the body weight, spleen weight, and serum concentration of aspartate aminotransferase, while it decreased high-density lipoprotein. Meanwhile, SD increased the relative abundance of the Bacteroidetes phylum while it decreased the Firmicutes phylum in the gut of ABX mice, thus leading to a disorder of SCFA metabolism. Metabolomics data revealed that SD exposure altered gut microbial metabolism in ABX mice, which also displayed more serious alterations in the gut epithelium. In addition, most differentially expressed metabolites were decreased, especially the purine metabolism pathway in epithelial tissue. This response was mainly due to the down-regulation of adenine, inosine, deoxyguanosine, adenylsuccinic acid, hypoxanthine, GDP, IMP, GMP, and AMP. Finally, the transcriptome data also indicated that SD has some negative effects on hepatic metabolism and endocrine, digestive, and disease processes. Overall, SD induced an epithelial and hepatic purine metabolism pathway imbalance in ABX mice, as well as the gut microbes and their metabolites, all of which could contribute to host metabolism and digestion, endocrine system disorders, and may even cause diseases in the host.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
- Human and Animal Physiology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.C.); (L.G.); (W.W.); (Y.W.); (L.H.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
- Correspondence: (M.W.); (J.Y.)
| | - Junliang Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
- Correspondence: (M.W.); (J.Y.)
| |
Collapse
|
86
|
Litichevskiy L, Thaiss CA. The Oscillating Gut Microbiome and Its Effects on Host Circadian Biology. Annu Rev Nutr 2022; 42:145-164. [PMID: 35576592 DOI: 10.1146/annurev-nutr-062320-111321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microbial community colonizing the gastrointestinal tract, collectively termed the gut microbiota, is an important element of the host organism due to its impact on multiple aspects of health. The digestion of food, secretion of immunostimulatory molecules, performance of chemical reactions in the intestine, and production of metabolites by the microbiota contribute to host homeostasis and disease. Recent discoveries indicate that these major functions are not constantly performed over the course of a day, but rather undergo diurnal fluctuations due to compositional and biogeographical oscillations in the microbiota. Here, we summarize the characteristics and origins of diurnal microbiome rhythms as well as their functional consequences for the circadian biology of the host. We describe the major known pathways of circadian host-microbiome communication and discuss possible implications of altered diurnal microbiome rhythms for human disease. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lev Litichevskiy
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| |
Collapse
|
87
|
Blanco JR, Verdugo-Sivianes EM, Amiama A, Muñoz-Galván S. The circadian rhythm of viruses and its implications on susceptibility to infection. Expert Rev Anti Infect Ther 2022; 20:1109-1117. [PMID: 35546444 DOI: 10.1080/14787210.2022.2072296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Circadian genes have an impact on multiple hormonal, metabolic, and immunological pathways and have recently been implicated in some infectious diseases. AREAS COVERED We review aspects related to the current knowledge about circadian rhythm and viral infections, their consequences, and the potential therapeutic options. EXPERT OPINION Expert opinion: In order to address a problem, it is necessary to know the topic in depth. Although in recent years there has been a growing interest in the role of circadian rhythms, many relevant questions remain to be resolved. Thus, the mechanisms linking the circadian machinery against viral infections are poorly understood. In a clear approach to personalized precision medicine, in order to treat a disease in the most appropriate phase of the circadian rhythm, and in order to achieve the optimal efficacy, it is highly recommended to carry out studies that improve the knowledge about the circadian rhythm.
Collapse
Affiliation(s)
- José-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, Spain.,Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Amiama
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
88
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
89
|
Martínez-García JJ, Rainteau D, Humbert L, Lamaziere A, Lesnik P, Chamaillard M. Diurnal Interplay between Epithelium Physiology and Gut Microbiota as a Metronome for Orchestrating Immune and Metabolic Homeostasis. Metabolites 2022; 12:metabo12050390. [PMID: 35629894 PMCID: PMC9142987 DOI: 10.3390/metabo12050390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/10/2022] Open
Abstract
The behavior and physiology of most organisms are temporally coordinated and aligned with geophysical time by a complex interplay between the master and peripheral clocks. Disruption of such rhythmic physiological activities that are hierarchically organized has been linked to a greater risk of developing diseases ranging from cancer to metabolic syndrome. Herein, we summarize the molecular clockwork that is employed by intestinal epithelial cells to anticipate environmental changes such as rhythmic food intake and potentially dangerous environmental stress. We also discuss recent discoveries contributing to our understanding of how a proper rhythm of intestinal stem cells may achieve coherence for the maintenance of tissue integrity. Emerging evidence indicates that the circadian oscillations in the composition of the microbiota may operate as an important metronome for the proper preservation of intestinal physiology and more. Furthermore, in this review, we outline how epigenetic clocks that are based on DNA methylation levels may extensively rewire the clock-controlled functions of the intestinal epithelium that are believed to become arrhythmic during aging.
Collapse
Affiliation(s)
| | - Dominique Rainteau
- Centre de Recherche Saint-Antoine, CRSA, AP-HP.SU, Hôpital Saint Antoine, Département de Métabobolomique Clinique, Sorbonne Université, INSERM, F-75012 Paris, France; (D.R.); (L.H.); (A.L.)
| | - Lydie Humbert
- Centre de Recherche Saint-Antoine, CRSA, AP-HP.SU, Hôpital Saint Antoine, Département de Métabobolomique Clinique, Sorbonne Université, INSERM, F-75012 Paris, France; (D.R.); (L.H.); (A.L.)
| | - Antonin Lamaziere
- Centre de Recherche Saint-Antoine, CRSA, AP-HP.SU, Hôpital Saint Antoine, Département de Métabobolomique Clinique, Sorbonne Université, INSERM, F-75012 Paris, France; (D.R.); (L.H.); (A.L.)
| | - Philippe Lesnik
- Institut National de la Santé et de la Recherche Médicale (INSERM, UMR_S 1166-ICAN), Sorbonne Université, F-75012 Paris, France;
- Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Faculté de Médecine—Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, F-59019 Lille, France;
- Correspondence:
| |
Collapse
|
90
|
Frazier K, Leone VA. Host-microbe circadian dynamics: Finding a rhythm and hitting a groove in scientific inquiry. Cell Host Microbe 2022; 30:458-462. [PMID: 35421343 PMCID: PMC9720840 DOI: 10.1016/j.chom.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gut microbes are mediators of organismal-level circadian rhythms, responding to and transducing environmental cues. Gut microbes also exhibit rhythms, yet their contribution to a healthy microbiome remains unclear. We present our path to identifying host-microbe circadian dynamics related to health and outline a series of forward-thinking questions requiring further exploration.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
91
|
Skin immunity: dissecting the complex biology of our body's outer barrier. Mucosal Immunol 2022; 15:551-561. [PMID: 35361906 DOI: 10.1038/s41385-022-00505-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.
Collapse
|
92
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
93
|
Zhuang X, Edgar RS, McKeating JA. The role of circadian clock pathways in viral replication. Semin Immunopathol 2022; 44:175-182. [PMID: 35192001 PMCID: PMC8861990 DOI: 10.1007/s00281-021-00908-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
The daily oscillations of bi ological and behavioural processes are controlled by the circadian clock circuitry that drives the physiology of the organism and, in particular, the functioning of the immune system in response to infectious agents. Circadian rhythmicity is known to affect both the pharmacokinetics and pharmacodynamics of pharmacological agents and vaccine-elicited immune responses. A better understanding of the role circadian pathways play in the regulation of virus replication will impact our clinical management of these diseases. This review summarises the experimental and clinical evidence on the interplay between different viral pathogens and our biological clocks, emphasising the importance of continuing research on the role played by the biological clock in virus-host organism interaction.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Rachel S Edgar
- Faculty of Medicine, Imperial College London, London, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Chinese Academy of Medical Sciences (CAMS), Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
94
|
Kobayashi N, Abe K, Akagi S, Kitamura M, Shiraishi Y, Yamaguchi A, Yutani M, Amatsu S, Matsumura T, Nomura N, Ozaki N, Obana N, Fujinaga Y. Membrane Vesicles Derived From Clostridium botulinum and Related Clostridial Species Induce Innate Immune Responses via MyD88/TRIF Signaling in vitro. Front Microbiol 2022; 13:720308. [PMID: 35185840 PMCID: PMC8851338 DOI: 10.3389/fmicb.2022.720308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin complexes that cause botulism. Previous studies elucidated the molecular pathogenesis of botulinum neurotoxin complexes; however, it currently remains unclear whether other components of the bacterium affect host cells. Recent studies provided insights into the role of bacterial membrane vesicles (MVs) produced by some bacterial species in host immunity and pathology. We herein examined and compared the cellular effects of MVs isolated from four strains of C. botulinum with those of closely related Clostridium sporogenes and two strains of the symbiont Clostridium scindens. MVs derived from all strains induced inflammatory cytokine expression in intestinal epithelial and macrophage cell lines. Cytokine expression was dependent on myeloid differentiation primary response (MyD) 88 and TIR-domain-containing adapter-inducing interferon-β (TRIF), essential adaptors for toll-like receptors (TLRs), and TLR1/2/4. The inhibition of actin polymerization impeded the uptake of MVs in RAW264.7 cells, however, did not reduce the induction of cytokine expression. On the other hand, the inhibition of dynamin or phosphatidylinositol-3 kinase (PI3K) suppressed the induction of cytokine expression by MVs, suggesting the importance of these factors downstream of TLR signaling. MVs also induced expression of Reg3 family antimicrobial peptides via MyD88/TRIF signaling in primary cultured mouse small intestinal epithelial cells (IECs). The present results indicate that MVs from C. botulinum and related clostridial species induce host innate immune responses.
Collapse
Affiliation(s)
- Nobuhide Kobayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sachiyo Akagi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mayu Kitamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Aki Yamaguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sho Amatsu
- Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
95
|
Taleb Z, Carmona-Alcocer V, Stokes K, Haireek M, Wang H, Collins SM, Khan WI, Karpowicz P. BMAL1 Regulates the Daily Timing of Colitis. Front Cell Infect Microbiol 2022; 12:773413. [PMID: 35223537 PMCID: PMC8863668 DOI: 10.3389/fcimb.2022.773413] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Many physiological functions exhibit circadian rhythms: oscillations in biological processes that occur in a 24-hour period. These daily rhythms are maintained through a highly conserved molecular pacemaker known as the circadian clock. Circadian disruption has been proposed to cause increased risk of Inflammatory Bowel Disease (IBD) but the underlying mechanisms remain unclear. Patients with IBD experience chronic inflammation and impaired regeneration of intestinal epithelial cells. Previous animal-based studies have revealed that colitis models of IBD are more severe in mice without a circadian clock but the timing of colitis, and whether its inflammatory and regenerative processes have daily rhythms, remains poorly characterized. We tested circadian disruption using Bmal1-/- mutant mice that have a non-functional circadian clock and thus no circadian rhythms. Dextran Sulfate Sodium (DSS) was used to induce colitis. The disease activity of colitis was found to exhibit time-dependent variation in Bmal1+/+ control mice but is constant and elevated in Bmal1-/- mutants, who exhibit poor recovery. Histological analyses indicate worsened colitis severity in Bmal1-/- mutant colon, and colon infiltration of immune system cells shows a daily rhythm that is lost in the Bmal1-/- mutant. Similarly, epithelial proliferation in the colon has a daily rhythm in Bmal1+/+ controls but not in Bmal1-/- mutants. Our results support a critical role of a functional circadian clock in the colon which drives 24-hour rhythms in inflammation and healing, and whose disruption impairs colitis recovery. This indicates that weakening circadian rhythms not only worsens colitis, but delays healing and should be taken into account in the management of IBD. Recognition of this is important in the management of IBD patients required to do shift work.
Collapse
Affiliation(s)
- Zainab Taleb
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | | | - Kyle Stokes
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Marta Haireek
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Huaqing Wang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Stephen M. Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Waliul I. Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
96
|
Carvalho Cabral P, Tekade K, Stegeman SK, Olivier M, Cermakian N. The involvement of host circadian clocks in the regulation of the immune response to parasitic infections in mammals. Parasite Immunol 2021; 44:e12903. [PMID: 34964129 DOI: 10.1111/pim.12903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022]
Abstract
Circadian rhythms are recurring variations of physiology with a period of ~24 hours, generated by circadian clocks located throughout the body. Studies have shown a circadian regulation of many aspects of immunity. Immune cells have intrinsic clock mechanisms, and innate and adaptive immune responses - such as leukocyte migration, magnitude of inflammation, cytokine production and cell differentiation - are under circadian control. This circadian regulation has consequences for infections including parasitic infections. In the context of Leishmania infection, the circadian clock within host immune cells modulates the magnitude of the infection and the inflammatory response triggered by the parasite. As for malaria, rhythms within the immune system were shown to impact the developmental cycles of Plasmodium parasites within red blood cells. Further, host circadian rhythms impact infections by multicellular parasites; for example, infection with helminth Trichuris muris shows different kinetics of worm expulsion depending on time of day of infection, a variation that depends on the dendritic cell clock. Although the research on the circadian control of immunity in the context of parasitic infections is in its infancy, the research reviewed here suggests a crucial involvement of host circadian rhythms in immunity on the development and progression of parasitic infections.
Collapse
Affiliation(s)
| | - Kimaya Tekade
- Douglas Research Centre, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Sophia K Stegeman
- Douglas Research Centre, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Center, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
97
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
98
|
Risely A, Wilhelm K, Clutton-Brock T, Manser MB, Sommer S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat Commun 2021; 12:6017. [PMID: 34650048 PMCID: PMC8516918 DOI: 10.1038/s41467-021-26298-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Circadian rhythms in gut microbiota composition are crucial for metabolic function, yet the extent to which they govern microbial dynamics compared to seasonal and lifetime processes remains unknown. Here, we investigate gut bacterial dynamics in wild meerkats (Suricata suricatta) over a 20-year period to compare diurnal, seasonal, and lifetime processes in concert, applying ratios of absolute abundance. We found that diurnal oscillations in bacterial load and composition eclipsed seasonal and lifetime dynamics. Diurnal oscillations were characterised by a peak in Clostridium abundance at dawn, were associated with temperature-constrained foraging schedules, and did not decay with age. Some genera exhibited seasonal fluctuations, whilst others developed with age, although we found little support for microbial senescence in very old meerkats. Strong microbial circadian rhythms in this species may reflect the extreme daily temperature fluctuations typical of arid-zone climates. Our findings demonstrate that accounting for circadian rhythms is essential for future gut microbiome research.
Collapse
Affiliation(s)
- Alice Risely
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany.
| | - Kerstin Wilhelm
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Tim Clutton-Brock
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, UK
- University of Pretoria, Mammal Research Institute, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
| | - Marta B Manser
- University of Pretoria, Mammal Research Institute, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| |
Collapse
|
99
|
York A. Rhythmic resistance. Nat Rev Microbiol 2021; 19:618. [PMID: 34345041 DOI: 10.1038/s41579-021-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
Abstract
Research of animal microbiomes is demonstrating that these host-microbe partnerships are on a profound circadian rhythm. Recently in Cell, Brooks et al. (2021) report that host rhythms drive behaviors of specific microbiome members, which orchestrate a coordination of the innate immune system with the circadian clock.
Collapse
Affiliation(s)
- Margaret McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|