51
|
Zeller MJ, Favorov O, Li K, Nuthanakanti A, Hussein D, Michaud A, Lafontaine DA, Busan S, Serganov A, Aubé J, Weeks KM. SHAPE-enabled fragment-based ligand discovery for RNA. Proc Natl Acad Sci U S A 2022; 119:e2122660119. [PMID: 35561226 PMCID: PMC9171761 DOI: 10.1073/pnas.2122660119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The transcriptome represents an attractive but underused set of targets for small-molecule ligands. Here, we devise a technology that leverages fragment-based screening and SHAPE-MaP RNA structure probing to discover small-molecule fragments that bind an RNA structure of interest. We identified fragments and cooperatively binding fragment pairs that bind to the thiamine pyrophosphate (TPP) riboswitch with millimolar to micromolar affinities. We then used structure-activity relationship information to efficiently design a linked-fragment ligand, with no resemblance to the native ligand, with high ligand efficiency and druglikeness, that binds to the TPP thiM riboswitch with high nanomolar affinity and that modulates RNA conformation during cotranscriptional folding. Principles from this work are broadly applicable, leveraging cooperativity and multisite binding, for developing high-quality ligands for diverse RNA targets.
Collapse
Affiliation(s)
- Meredith J. Zeller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Dina Hussein
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - Auréliane Michaud
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - Daniel A. Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - Steven Busan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
52
|
Abstract
Being able to effectively target RNA with potent ligands will open up a large number of potential therapeutic options. The knowledge on how to achieve this is ever expanding but an important question that remains open is what chemical matter is suitable to achieve this goal. The high flexibility of an RNA as well as its more limited chemical diversity and featureless binding sites can be difficult to target selectively but can be addressed by well-designed cyclic peptides. In this review we will provide an overview of reported cyclic peptide ligands for therapeutically relevant RNA targets and discuss the methods used to discover them. We will also provide critical insights into the properties required for potent and selective interaction and suggestions on how to assess these parameters. The use of cyclic peptides to target RNA is still in its infancy but the lessons learned from past examples can be adopted for the development of novel potent and selective ligands.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
53
|
Zhou Y, Jiang Y, Chen SJ. RNA-ligand molecular docking: advances and challenges. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1571. [PMID: 37293430 PMCID: PMC10250017 DOI: 10.1002/wcms.1571] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
With rapid advances in computer algorithms and hardware, fast and accurate virtual screening has led to a drastic acceleration in selecting potent small molecules as drug candidates. Computational modeling of RNA-small molecule interactions has become an indispensable tool for RNA-targeted drug discovery. The current models for RNA-ligand binding have mainly focused on the docking-and-scoring method. Accurate docking and scoring should tackle four crucial problems: (1) conformational flexibility of ligand, (2) conformational flexibility of RNA, (3) efficient sampling of binding sites and binding poses, and (4) accurate scoring of different binding modes. Moreover, compared with the problem of protein-ligand docking, predicting ligand binding to RNA, a negatively charged polymer, is further complicated by additional effects such as metal ion effects. Thermodynamic models based on physics-based and knowledge-based scoring functions have shown highly encouraging success in predicting ligand binding poses and binding affinities. Recently, kinetic models for ligand binding have further suggested that including dissociation kinetics (residence time) in ligand docking would result in improved performance in estimating in vivo drug efficacy. More recently, the rise of deep-learning approaches has led to new tools for predicting RNA-small molecule binding. In this review, we present an overview of the recently developed computational methods for RNA-ligand docking and their advantages and disadvantages.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Yangwei Jiang
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| |
Collapse
|
54
|
Aryee DNT, Fock V, Kapoor U, Radic-Sarikas B, Kovar H. Zooming in on Long Non-Coding RNAs in Ewing Sarcoma Pathogenesis. Cells 2022; 11:1267. [PMID: 35455947 PMCID: PMC9032025 DOI: 10.3390/cells11081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma (ES) is a rare aggressive cancer of bone and soft tissue that is mainly characterized by a reciprocal chromosomal translocation. As a result, about 90% of cases express the EWS-FLI1 fusion protein that has been shown to function as an aberrant transcription factor driving sarcomagenesis. ES is the second most common malignant bone tumor in children and young adults. Current treatment modalities include dose-intensified chemo- and radiotherapy, as well as surgery. Despite these strategies, patients who present with metastasis or relapse still have dismal prognosis, warranting a better understanding of treatment resistant-disease biology in order to generate better prognostic and therapeutic tools. Since the genomes of ES tumors are relatively quiet and stable, exploring the contributions of epigenetic mechanisms in the initiation and progression of the disease becomes inevitable. The search for novel biomarkers and potential therapeutic targets of cancer metastasis and chemotherapeutic drug resistance is increasingly focusing on long non-coding RNAs (lncRNAs). Recent advances in genome analysis by high throughput sequencing have immensely expanded and advanced our knowledge of lncRNAs. They are non-protein coding RNA species with multiple biological functions that have been shown to be dysregulated in many diseases and are emerging as crucial players in cancer development. Understanding the various roles of lncRNAs in tumorigenesis and metastasis would determine eclectic avenues to establish therapeutic and diagnostic targets. In ES, some lncRNAs have been implicated in cell proliferation, migration and invasion, features that make them suitable as relevant biomarkers and therapeutic targets. In this review, we comprehensively discuss known lncRNAs implicated in ES that could serve as potential biomarkers and therapeutic targets of the disease. Though some current reviews have discussed non-coding RNAs in ES, to our knowledge, this is the first review focusing exclusively on ES-associated lncRNAs.
Collapse
Affiliation(s)
- Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
| | - Utkarsh Kapoor
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
| | - Branka Radic-Sarikas
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
- Department of Pediatric Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
55
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
56
|
Haniff HS, Liu X, Tong Y, Meyer SM, Knerr L, Lemurell M, Abegg D, Aikawa H, Adibekian A, Disney MD. A structure-specific small molecule inhibits a miRNA-200 family member precursor and reverses a type 2 diabetes phenotype. Cell Chem Biol 2022; 29:300-311.e10. [PMID: 34320373 PMCID: PMC8867599 DOI: 10.1016/j.chembiol.2021.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/07/2021] [Accepted: 07/02/2021] [Indexed: 11/03/2022]
Abstract
MicroRNA families are ubiquitous in the human transcriptome, yet targeting of individual members is challenging because of sequence homology. Many secondary structures of the precursors to these miRNAs (pri- and pre-miRNAs), however, are quite different. Here, we demonstrate both in vitro and in cellulis that design of structure-specific small molecules can inhibit a particular miRNA family member to modulate a disease pathway. The miR-200 family consists of five miRNAs, miR-200a, -200b, -200c, -141, and -429, and is associated with type 2 diabetes (T2D). We designed a small molecule that potently and selectively targets pre-miR-200c's structure and reverses a pro-apoptotic effect in a pancreatic β cell model. In contrast, an oligonucleotide targeting the RNA's sequence inhibited all family members. Global proteomics and RNA sequencing analyses further demonstrate selectivity for miR-200c. Collectively, these studies establish that miR-200c plays an important role in T2D, and small molecules targeting RNA structure can be an important complement to oligonucleotides.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA,These authors contributed equally
| | - Xiaohui Liu
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA,These authors contributed equally
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Samantha M. Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden, 1, Gothenburg, Mölndal 431 83, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden, 1, Gothenburg, Mölndal 431 83, Sweden
| | - Daniel Abegg
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Haruo Aikawa
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alexander Adibekian
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D. Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA,To whom correspondence is addressed;
| |
Collapse
|
57
|
DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc Natl Acad Sci U S A 2022; 119:2114971119. [PMID: 35110406 PMCID: PMC8833215 DOI: 10.1073/pnas.2114971119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
Drug discovery generally investigates one target at a time, in sharp contrast to living organisms, which mold ligands and targets by evolution of highly complex molecular interaction networks. We recapitulate this modality of discovery by encoding drug structures in DNA, allowing the entire DNA-encoded library to interact with thousands of RNA fold targets, and then decoding both drug and target by sequencing. This information serves as a filter to identify human RNAs aberrantly produced in cancer that are also binding partners of the discovered ligand, leading to a precision medicine candidate that selectively ablates an oncogenic noncoding RNA, reversing a disease-associated phenotype in cells. Nature evolves molecular interaction networks through persistent perturbation and selection, in stark contrast to drug discovery, which evaluates candidates one at a time by screening. Here, nature’s highly parallel ligand-target search paradigm is recapitulated in a screen of a DNA-encoded library (DEL; 73,728 ligands) against a library of RNA structures (4,096 targets). In total, the screen evaluated ∼300 million interactions and identified numerous bona fide ligand–RNA three-dimensional fold target pairs. One of the discovered ligands bound a 5′GAG/3′CCC internal loop that is present in primary microRNA-27a (pri-miR-27a), the oncogenic precursor of microRNA-27a. The DEL-derived pri-miR-27a ligand was cell active, potently and selectively inhibiting pri-miR-27a processing to reprogram gene expression and halt an otherwise invasive phenotype in triple-negative breast cancer cells. By exploiting evolutionary principles at the earliest stages of drug discovery, it is possible to identify high-affinity and selective target–ligand interactions and predict engagements in cells that short circuit disease pathways in preclinical disease models.
Collapse
|
58
|
Arévalo DM, Anokhina VS, Swart OLR, Miller BL. Expanding the known structure space for RNA binding: a test of 2,5-diketopiperazine. Org Biomol Chem 2022; 20:606-612. [PMID: 34927652 PMCID: PMC8900054 DOI: 10.1039/d1ob01976g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the importance of RNA as a therapeutic target has become increasingly recognized, the need for new chemotypes able to bind RNA has grown in significance. We hypothesized that diketopiperazines (DKPs), common substructures in natural products and protein-targeting therapeutic agents, could serve as effective scaffolds for targeting RNA. To confirm this hypothesis, we designed and synthesized two analogs, one incorporating a DKP and one not, of compounds previously demonstrated to bind an RNA critical to the life cycle of HIV-1 with high affinity and specificity. Prior to compound synthesis, calculations employing density functional methods and molecular mechanics conformational searches were used to confirm that the DKP could present functionality in a similar (albeit not identical) orientation to the non DKP-containing compound. We found that both the DKP-containing and parent compound had similar affinities to the target RNA as measured by surface plasmon resonance (SPR). Both compounds were found to have modest but equal anti-HIV activity. These results establish the feasibility of using DKPs to target RNA.
Collapse
Affiliation(s)
- Diego M. Arévalo
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
| | - Viktoriya S. Anokhina
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Oliver L. R. Swart
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA,Department of Dermatology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
59
|
Identifying Inhibitors of −1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022; 14:v14020177. [PMID: 35215770 PMCID: PMC8876150 DOI: 10.3390/v14020177] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates −1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of −1 PRF in SARS-CoV-2 also inhibited −1 PRF in a range of bat CoVs—the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on −1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed −1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit −1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.
Collapse
|
60
|
Goebel GL, Hohnen L, Borgelt L, Hommen P, Qiu X, Lightfoot H, Wu P. Small molecules with tetrahydroquinoline-containing Povarov scaffolds as inhibitors disrupting the Protein-RNA interaction of LIN28-let-7. Eur J Med Chem 2022; 228:114014. [PMID: 34883291 DOI: 10.1016/j.ejmech.2021.114014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Inhibition of the RNA-binding protein LIN28 and disruption of the protein-RNA interaction of LIN28-let-7 with small molecules holds great potential to develop new anticancer therapeutics. Herein, we report the LIN28 inhibitory activities of a series of 30 small molecules with a tricyclic tetrahydroquinoline (THQ)-containing scaffold obtained from a Povarov reaction. The THQ molecules were structurally optimized by varying the 2-benzoic acid substituent, the fused ring at 3- and 4-positions, and the substituents at the phenyl moiety of the tetrahydroquinoline core. Among the tested compounds, GG-43 showed dose-dependent inhibition in an EMSA validation assay and low micromolar inhibitory activity in a fluorescence polarization-based assay measuring disruption of LIN28-let-7 interaction. Binding mode between GG-43 and the cold shock domain of LIN28 was proposed via a molecular docking analysis. The study provides one of the first systematic analyses on structural features that are required for LIN28 inhibition, and indicates the necessity to develop small molecules with new scaffolds as LIN28-targeting probes and therapeutic candidates. In parallel, this study demonstrates the polypharmacological nature of tricyclic THQ-containing scaffolds accessible through Povarov reactions.
Collapse
Affiliation(s)
- Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätstr. 150, Bochum, 44780, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Strasse 6, Dortmund, 44227, Germany
| | - Helen Lightfoot
- Safety & Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany.
| |
Collapse
|
61
|
Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond) 2022; 42:117-140. [PMID: 35019235 PMCID: PMC8822594 DOI: 10.1002/cac2.12254] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With the development of proteomics and epigenetics, a large number of RNA‐binding proteins (RBPs) have been discovered in recent years, and the interaction between long non‐coding RNAs (lncRNAs) and RBPs has also received increasing attention. It is extremely important to conduct in‐depth research on the lncRNA‐RBP interaction network, especially in the context of its role in the occurrence and development of cancer. Increasing evidence has demonstrated that lncRNA‐RBP interactions play a vital role in cancer progression; therefore, targeting these interactions could provide new insights for cancer drug discovery. In this review, we discussed how lncRNAs can interact with RBPs to regulate their localization, modification, stability, and activity and discussed the effects of RBPs on the stability, transport, transcription, and localization of lncRNAs. Moreover, we explored the regulation and influence of these interactions on lncRNAs, RBPs, and downstream pathways that are related to cancer development, such as N6‐methyladenosine (m6A) modification of lncRNAs. In addition, we discussed how the lncRNA‐RBP interaction network regulates cancer cell phenotypes, such as proliferation, apoptosis, metastasis, drug resistance, immunity, tumor environment, and metabolism. Furthermore, we summarized the therapeutic strategies that target the lncRNA‐RBP interaction network. Although these treatments are still in the experimental stage and various theories and processes are still being studied, we believe that these strategies may provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Zi-Ting Yao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yan-Ming Yang
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Miao-Miao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yan He
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Long Liao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Kui-Sheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Bin Li
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| |
Collapse
|
62
|
Liang Y, Miao S, Mao J, Devari S, Gonzalez M, Bong D. Screening of Minimalist Noncanonical Sites in Duplex DNA and RNA Reveals Context and Motif-Selective Binding by Fluorogenic Base Probes. Chemistry 2022; 28:e202103616. [PMID: 34693570 PMCID: PMC8758549 DOI: 10.1002/chem.202103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/12/2023]
Abstract
We hypothesize that programmable hybridization to noncanonical nucleic acid motifs may be achieved by macromolecular display of binders to individual noncanonical pairs (NCPs). As each recognition element may individually have weak binding to an NCP, we developed a semi-rational approach to detect low affinity interactions between selected nitrogenous bases and noncanonical sites in duplex DNA and RNA. A set of fluorogenic probes was synthesized by coupling abiotic (triazines, pyrimidines) and native RNA bases to thiazole orange (TO) dye. This probe library was screened against duplex nucleic acid substrates bearing single abasic, single NCP, and tandem NCP sites. Probe engagement with NCP sites was reported by 100-1000× fluorescence enhancement over background. Binding is strongly context-dependent, reflective of both molecular recognition and stability: less stable motifs are more likely to bind a synthetic probe. Further, DNA and RNA substrates exhibit entirely different abasic and single NCP binding profiles. While probe binding in the abasic and single NCP screens was monotonous, much richer binding profiles were observed with the screen of tandem NCP sites in RNA, in part due to increased steric accessibility. In addition to known binding interactions between the triazine melamine (M) and T/U sites, the NCP screens identified new targeting elements for pyrimidine-rich motifs in single NCPs and 2×2 internal bulges. We anticipate that semi-rational approaches of this type will lead to programmable noncanonical hybridization strategies at the macromolecular level.
Collapse
Affiliation(s)
- Yufeng Liang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210
| | - Shiqin Miao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210
| | - Jie Mao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210
| | - Shekaraiah Devari
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210
| | - Maricarmen Gonzalez
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210
| | - Dennis Bong
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
63
|
Kuepper A, McLoughlin NM, Neubacher S, Yeste-Vázquez A, Collado Camps E, Nithin C, Mukherjee S, Bethge L, Bujnicki JM, Brock R, Heinrichs S, Grossmann TN. Constrained peptides mimic a viral suppressor of RNA silencing. Nucleic Acids Res 2021; 49:12622-12633. [PMID: 34871435 PMCID: PMC8682738 DOI: 10.1093/nar/gkab1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.
Collapse
Affiliation(s)
- Arne Kuepper
- Chemical Genomics Centre of the Max Planck Society, Dortmund 44227, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund 44227, Germany
| | - Niall M McLoughlin
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Estel Collado Camps
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Lucas Bethge
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, Nijmegen 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
| | - Stefan Heinrichs
- University Hospital Essen, Institute for Transfusion Medicine, Essen 45147, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund 44227, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund 44227, Germany
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| |
Collapse
|
64
|
Zhao Y, Xiang J, Cheng H, Liu X, Li F. Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification. Biosens Bioelectron 2021; 194:113581. [PMID: 34461568 DOI: 10.1016/j.bios.2021.113581] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Precise microRNA (miRNA) analysis is significant importance for early disease diagnosis. Herein, a novel flexible photoelectrochemical (PEC) biosensor for miRNA determination was developed by employing CdS NPs-modified carbon cloth (CC) on polyimide (PI) film as photoelectric material to provide the PEC responses and an efficient four-stage reaction system as the target recognition and signal amplification unit to improve the analytical performance. In this PEC biosensor, the presence of target miR-21 would trigger the catalytic hairpin assembly (CHA) and the following hybridization chain reaction (HCR) to produce a long dsDNA labeled with numerous biotins, which would further capture a large amount of alkaline phosphatase (ALP) for catalyzing the generation of ascorbic acid (AA). As an efficient electron donor, AA could be oxidized by the photoelectrode, which would initiate a redox cycling amplification process to regenerate AA, resulting in the enhancement of the photocurrent response. Benefitting from the synergistic nucleic acid-based, enzyme catalytic, and chemical signal amplification strategies, the proposed biosensing strategy enabled ultrasensitive miRNA determination. As expected, the PEC biosensor performed satisfactory analytical performances with a linear range of 1 fM to 1 nM and the detection limit down to 0.41 fM. Furthermore, the PEC biosensing strategy exhibited recommendable selectivity, stability, flexibility, and practical applicability. Therefore, this sensing platform provides promising potential for application in bioassay and early diagnosis of disease.
Collapse
Affiliation(s)
- Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Junzhu Xiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Hao Cheng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
65
|
Hu G, Zhou HX. Binding free energy decomposition and multiple unbinding paths of buried ligands in a PreQ1 riboswitch. PLoS Comput Biol 2021; 17:e1009603. [PMID: 34767553 PMCID: PMC8612554 DOI: 10.1371/journal.pcbi.1009603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Riboswitches are naturally occurring RNA elements that control bacterial gene expression by binding to specific small molecules. They serve as important models for RNA-small molecule recognition and have also become a novel class of targets for developing antibiotics. Here, we carried out conventional and enhanced-sampling molecular dynamics (MD) simulations, totaling 153.5 μs, to characterize the determinants of binding free energies and unbinding paths for the cognate and synthetic ligands of a PreQ1 riboswitch. Binding free energy analysis showed that two triplets of nucleotides, U6-C15-A29 and G5-G11-C16, contribute the most to the binding of the cognate ligands, by hydrogen bonding and by base stacking, respectively. Mg2+ ions are essential in stabilizing the binding pocket. For the synthetic ligands, the hydrogen-bonding contributions of the U6-C15-A29 triplet are significantly compromised, and the bound state resembles the apo state in several respects, including the disengagement of the C15-A14-A13 and A32-G33 base stacks. The bulkier synthetic ligands lead to significantly loosening of the binding pocket, including extrusion of the C15 nucleobase and a widening of the C15-C30 groove. Enhanced-sampling simulations further revealed that the cognate and synthetic ligands unbind in almost opposite directions. Our work offers new insight for designing riboswitch ligands. Riboswitches are bacterial RNA elements that change structures upon binding a cognate ligand. They are of great interest not only for understanding gene regulation but also as targets for designing small-molecule antibiotics and chemical tools. Understanding the molecular determinants for ligand affinity and selectivity is thus crucial for designing synthetic ligands. Here we carried out extensive molecular dynamics simulations of a PreQ1 riboswitch bound to either cognate or synthetic ligands. By comparing and contrasting these two groups of ligands, we learn how the chemical (e.g., number of hydrogen bond donors and acceptors) and physical (e.g., molecular size) features of ligands affect binding affinity and ligand exit paths. While the number of hydrogen bond donors and acceptors is a key determinant for RNA binding affinity, the ligand size affects the rigidity of the binding pocket and thereby regulates the unbinding of the ligand. These lessons provide guidance for designing riboswitch ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
66
|
Ursu A, Baisden JT, Bush JA, Taghavi A, Choudhary S, Zhang YJ, Gendron TF, Petrucelli L, Yildirim I, Disney MD. A Small Molecule Exploits Hidden Structural Features within the RNA Repeat Expansion That Causes c9ALS/FTD and Rescues Pathological Hallmarks. ACS Chem Neurosci 2021; 12:4076-4089. [PMID: 34677935 DOI: 10.1021/acschemneuro.1c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The hexanucleotide repeat expansion GGGGCC [r(G4C2)exp] within intron 1 of C9orf72 causes genetically defined amyotrophic lateral sclerosis and frontotemporal dementia, collectively named c9ALS/FTD. , the repeat expansion causes neurodegeneration via deleterious phenotypes stemming from r(G4C2)exp RNA gain- and loss-of-function mechanisms. The r(G4C2)exp RNA folds into both a hairpin structure with repeating 1 × 1 nucleotide GG internal loops and a G-quadruplex structure. Here, we report the identification of a small molecule (CB253) that selectively binds the hairpin form of r(G4C2)exp. Interestingly, the small molecule binds to a previously unobserved conformation in which the RNA forms 2 × 2 nucleotide GG internal loops, as revealed by a series of binding and structural studies. NMR and molecular dynamics simulations suggest that the r(G4C2)exp hairpin interconverts between 1 × 1 and 2 × 2 internal loops through the process of strand slippage. We provide experimental evidence that CB253 binding indeed shifts the equilibrium toward the 2 × 2 GG internal loop conformation, inhibiting mechanisms that drive c9ALS/FTD pathobiology, such as repeat-associated non-ATG translation formation of stress granules and defective nucleocytoplasmic transport in various cellular models of c9ALS/FTD.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jared T. Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
67
|
Balaratnam S, Rhodes C, Bume DD, Connelly C, Lai CC, Kelley JA, Yazdani K, Homan PJ, Incarnato D, Numata T, Schneekloth Jr JS. A chemical probe based on the PreQ 1 metabolite enables transcriptome-wide mapping of binding sites. Nat Commun 2021; 12:5856. [PMID: 34615874 PMCID: PMC8494917 DOI: 10.1038/s41467-021-25973-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the class-I PreQ1 riboswitch aptamer covalently. For the most active probe (11), a diazirine-based photocrosslinking analog of PreQ1, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the probe. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to 11, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1, which is similar in structure to guanine, interacts with human RNAs.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Curran Rhodes
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Desta Doro Bume
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Colleen Connelly
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Christopher C. Lai
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - James A. Kelley
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Kamyar Yazdani
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Philip J. Homan
- grid.48336.3a0000 0004 1936 8075Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA ,grid.418021.e0000 0004 0535 8394Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Danny Incarnato
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Tomoyuki Numata
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi Fukuoka, 812-8582 Japan ,grid.208504.b0000 0001 2230 7538Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8566 Japan
| | - John S. Schneekloth Jr
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
68
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
69
|
Della Volpe S, Linciano P, Listro R, Tumminelli E, Amadio M, Bonomo I, Elgaher WAM, Adam S, Hirsch AKH, Boeckler FM, Vasile F, Rossi D, Collina S. Identification of N,N-arylalkyl-picolinamide derivatives targeting the RNA-binding protein HuR, by combining biophysical fragment-screening and molecular hybridization. Bioorg Chem 2021; 116:105305. [PMID: 34482166 DOI: 10.1016/j.bioorg.2021.105305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Hu proteins are members of the RNA-binding protein (RBP) family and play a pivotal role in the regulation of post-transcriptional processes. Through interaction with selected mRNAs, RBPs regulate their function and stability; as a consequence, RBP dysregulation can cause abnormal translation of key proteins involved in several pathologies. In the past few years, this observation has sparked interest to develop new treatments against these pathologies by using small molecules able to modulate RBP activity. Among the four Hu proteins, we have directed our efforts towards the isoform HuR, which is mainly involved in cancer, inflammation and retinopathy. Aimed at developing compounds able to modulate the stability of HuR-mRNA complexes, in the present work, we applied a biophysical fragment screening by assessing a library of halogen-enriched heterocyclic fragments (HEFLibs) via Surface Plasmon Resonance (SPR) and Saturation Transfer Difference (STD) NMR to select promising fragments able to interact with HuR. One selected fragment and a few commercially available congeners were exploited to design and synthesize focused analogues of compound N-(3-chlorobenzyl)-N-(3,5-dihydroxyphenethyl)-4-hydroxybenzamide (1), our previously reported hit. STDNMR spectroscopy, molecular modeling, and SPR offered further insight into the HuR-small molecule interaction and showed that fragment-based approaches represent a promising and yet underexplored strategy to tackle such unusual targets. Lastly, fluorescence polarization (FP) studies revealed the capability of the new compounds to interfere with the formation of the HuR-mRNA complex. This is, to our knowledge, the first fragment-based campaign performed on the Hu protein class, and one of the few examples in the larger RBP field and constitutes an important step in the quest for the rational modulation of RBPs and related RNA functions by small molecules.
Collapse
Affiliation(s)
- S Della Volpe
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.
| | - P Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - R Listro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - E Tumminelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - M Amadio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - I Bonomo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - W A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - S Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany.
| | - A K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.
| | - F M Boeckler
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany; Center for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - F Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| | - D Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - S Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
70
|
A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses. Viruses 2021; 13:v13081639. [PMID: 34452503 PMCID: PMC8402677 DOI: 10.3390/v13081639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent outbreaks of zoonotic coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have caused tremendous casualties and great economic shock. Although some repurposed drugs have shown potential therapeutic efficacy in clinical trials, specific therapeutic agents targeting coronaviruses have not yet been developed. During coronavirus replication, a replicase gene cluster, including RNA-dependent RNA polymerase (RdRp), is alternatively translated via a process called -1 programmed ribosomal frameshift (−1 PRF) by an RNA pseudoknot structure encoded in viral RNAs. The coronavirus frameshifting has been identified previously as a target for antiviral therapy. In this study, the frameshifting efficiencies of MERS-CoV, SARS-CoV and SARS-CoV-2 were determined using an in vitro −1 PRF assay system. Our group has searched approximately 9689 small molecules to identify potential −1 PRF inhibitors. Herein, we found that a novel compound, 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline (KCB261770), inhibits the frameshifting of MERS-CoV and effectively suppresses viral propagation in MERS-CoV-infected cells. The inhibitory effects of 87 derivatives of furo[2,3-b]quinolines were also examined showing less prominent inhibitory effect when compared to compound KCB261770. We demonstrated that KCB261770 inhibits the frameshifting without suppressing cap-dependent translation. Furthermore, this compound was able to inhibit the frameshifting, to some extent, of SARS-CoV and SARS-CoV-2. Therefore, the novel compound 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline may serve as a promising drug candidate to interfere with pan-coronavirus frameshifting.
Collapse
|
71
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
72
|
Das B, Murata A, Nakatani K. A small-molecule fluorescence probe ANP77 for sensing RNA internal loop of C, U and A/CC motifs and their binding molecules. Nucleic Acids Res 2021; 49:8462-8470. [PMID: 34358308 PMCID: PMC8421207 DOI: 10.1093/nar/gkab650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
Small-molecules interacting with particular RNAs and modulating their functions are vital tools for RNA-targeting drug discovery. Considering the substantial distribution of the internal loops involving two contiguous cytosines opposite to a single-nucleotide base (Y/CC; Y = C, U or A) within the biologically significant functional RNAs, developing small-molecule probes targeting Y/CC sites should provide profound insight into their functions and roles in biochemical processes. Herein, we report ANP77 as the small-molecule probe for sensing RNA internal loop of Y/CC motifs and molecules binding to the motifs. The Y/CC motifs interact with ANP77 via the formation of a 1:1 complex and quench the fluorescence of ANP77. The flanking sequence-dependent binding to C/CC and U/CC sites was assessed by fluorometric screening, provided the binding heat maps. The quenching phenomena of ANP77 fluorescence was confirmed with intrinsic potential drug target pre-miR-1908. Finally, the binding-dependent fluorescence quenching of ANP77 was utilized in the fluorescence indicator displacement assay to demonstrate the potential of ANP77 as an indicator by using the RNA-binding drugs, risdiplam and branaplam.
Collapse
Affiliation(s)
- Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
73
|
Levintov L, Vashisth H. Role of conformational heterogeneity in ligand recognition by viral RNA molecules. Phys Chem Chem Phys 2021; 23:11211-11223. [PMID: 34010381 DOI: 10.1039/d1cp00679g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ribonucleic acid (RNA) molecules are known to undergo conformational changes in response to various environmental stimuli including temperature, pH, and ligands. In particular, viral RNA molecules are a key example of conformationally adapting molecules that have evolved to switch between many functional conformations. The transactivation response element (TAR) RNA from the type-1 human immunodeficiency virus (HIV-1) is a viral RNA molecule that is being increasingly explored as a potential therapeutic target due to its role in the viral replication process. In this work, we have studied the dynamics in TAR RNA in apo and liganded states by performing explicit-solvent molecular dynamics (MD) simulations initiated with 27 distinct structures. We determined that the TAR RNA structure is significantly stabilized on ligand binding with especially decreased fluctuations in its two helices. This rigidity is further coupled with the decreased flipping of bulge nucleotides, which were observed to flip more frequently in the absence of ligands. We found that initially-distinct structures of TAR RNA converged to similar conformations on removing ligands. We also report that conformational dynamics in unliganded TAR structures leads to the formation of binding pockets capable of accommodating ligands of various sizes.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, USA.
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, USA.
| |
Collapse
|
74
|
Deb I, Wong H, Tacubao C, Frank AT. Quantum Mechanics Helps Uncover Atypical Recognition Features in the Flavin Mononucleotide Riboswitch. J Phys Chem B 2021; 125:8342-8350. [PMID: 34310879 DOI: 10.1021/acs.jpcb.1c02702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Estimating the binding energies of small molecules to RNA could help uncover their molecular recognition characteristics and be used to rationally design RNA-targeting chemical probes. Here, we leveraged the ability of the fragment molecular orbital (FMO) method to provide detailed pairwise energetic information to examine the interactions between the aptamer domain of the flavin mononucleotide (FMN)-responsive riboswitch and small-molecule ligands. After developing an efficient protocol for executing high-level FMO calculations on RNA-ligand complexes, we applied our protocol to nine FMN-aptamer-ligand complexes. We then used the results to identify "hot-spots" within the aptamer and decomposed pairwise interactions between the hot-spot residues and the ligands. Interestingly, we found that several of these hot-spot residues interact with the ligands via atypical CH···O hydrogen bonds and anion-π contacts, as well as (face-to-edge) T-shaped π-π interactions. We envision that our results should pave the way for the wider and more prominent use of FMO calculations to study structure-energy relationships in diverse RNA-ligand systems, which in turn may provide a basis for dissecting the molecular recognition characteristics of RNAs.
Collapse
Affiliation(s)
- Indrajit Deb
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hazel Wong
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Colleen Tacubao
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Chemistry Department, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
75
|
Targeting RNA structures in diseases with small molecules. Essays Biochem 2021; 64:955-966. [PMID: 33078198 PMCID: PMC7724634 DOI: 10.1042/ebc20200011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023]
Abstract
RNA is crucial for gene expression and regulation. Recent advances in understanding of RNA biochemistry, structure and molecular biology have revealed the importance of RNA structure in cellular processes and diseases. Various approaches to discovering drug-like small molecules that target RNA structure have been developed. This review provides a brief introduction to RNA structural biology and how RNA structures function as disease regulators. We summarize approaches to targeting RNA with small molecules and highlight their advantages, shortcomings and therapeutic potential.
Collapse
|
76
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
77
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
78
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
79
|
Vezina-Dawod S, Angelbello AJ, Choudhary S, Wang KW, Yildirim I, Disney MD. Massively Parallel Optimization of the Linker Domain in Small Molecule Dimers Targeting a Toxic r(CUG) Repeat Expansion. ACS Med Chem Lett 2021; 12:907-914. [PMID: 34141068 PMCID: PMC8201483 DOI: 10.1021/acsmedchemlett.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
RNA contributes to disease pathobiology and is an important therapeutic target. The downstream biology of disease-causing RNAs can be short-circuited with small molecules that recognize structured regions. The discovery and optimization of small molecules interacting with RNA is, however, challenging. Herein, we demonstrate a massively parallel one-bead-one-compound methodology, employed to optimize the linker region of a dimeric compound that binds the toxic r(CUG) repeat expansion [r(CUG)exp] causative of myotonic dystrophy type 1 (DM1). Indeed, affinity selection on a 331,776-member library allowed the discovery of a compound with enhanced potency both in vitro (10-fold) and in DM1-patient-derived myotubes (5-fold). Molecular dynamics simulations revealed additional interactions between the optimized linker and the RNA, resulting in ca. 10 kcal/mol lower binding free energy. The compound was conjugated to a cleavage module, which directly cleaved the transcript harboring the r(CUG)exp and alleviated disease-associated defects.
Collapse
Affiliation(s)
- Simon Vezina-Dawod
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alicia J. Angelbello
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kye Won Wang
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Ilyas Yildirim
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
80
|
Borgelt L, Li F, Hommen P, Lampe P, Hwang J, Goebel GL, Sievers S, Wu P. Trisubstituted Pyrrolinones as Small-Molecule Inhibitors Disrupting the Protein-RNA Interaction of LIN28 and Let-7. ACS Med Chem Lett 2021; 12:893-898. [PMID: 34136077 PMCID: PMC8201479 DOI: 10.1021/acsmedchemlett.0c00546] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Modulation of protein-RNA interaction (PRI) using small molecules is a promising strategy to develop therapeutics. LIN28 is an RNA-binding protein that blocks the maturation of the tumor suppressor let-7 microRNAs. Herein, we performed a fluorescence polarization-based screening and identified trisubstituted pyrrolinones as small-molecule inhibitors disrupting the LIN28-let-7 interaction. The most potent compound C902 showed dose-dependent inhibition in an EMSA validation assay, enhanced thermal stability of the cold shock domain of LIN28, and increased mature let-7 levels in JAR cells. The structure-activity relationship study revealed key structural features contributing to either PRI inhibition or stabilization of protein-protein interaction (PPI). The pyrrolinones identified in this study not only represent a new class of LIN28-binding molecules that diversify the limited available LIN28 inhibitors but also represent the first examples of small molecules that showed substituent-dependent PRI inhibitory and PPI activating activities.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Fu Li
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Pascal Hommen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Philipp Lampe
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Jimin Hwang
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Sonja Sievers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
81
|
Garner AL, Djuric SW. RNA: Opening New Doors in Medicinal Chemistry, a Special Issue. ACS Med Chem Lett 2021; 12:851-853. [PMID: 34141054 PMCID: PMC8201500 DOI: 10.1021/acsmedchemlett.1c00279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
82
|
Lin Z, Zou J, Liu S, Peng C, Li Z, Wan X, Fang D, Yin J, Gobbo G, Chen Y, Ma J, Wen S, Zhang P, Yang M. A Cloud Computing Platform for Scalable Relative and Absolute Binding Free Energy Predictions: New Opportunities and Challenges for Drug Discovery. J Chem Inf Model 2021; 61:2720-2732. [PMID: 34086476 DOI: 10.1021/acs.jcim.0c01329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Free energy perturbation (FEP) has become widely used in drug discovery programs for binding affinity prediction between candidate compounds and their biological targets. However, limitations of FEP applications also exist, including, but not limited to, high cost, long waiting time, limited scalability, and breadth of application scenarios. To overcome these problems, we have developed XFEP, a scalable cloud computing platform for both relative and absolute free energy predictions using optimized simulation protocols. XFEP enables large-scale FEP calculations in a more efficient, scalable, and affordable way, for example, the evaluation of 5000 compounds can be performed in 1 week using 50-100 GPUs with a computing cost roughly equivalent to the cost for the synthesis of only one new compound. By combining these capabilities with artificial intelligence techniques for goal-directed molecule generation and evaluation, new opportunities can be explored for FEP applications in the drug discovery stages of hit identification, hit-to-lead, and lead optimization based not only on structure exploitation within the given chemical series but also including evaluation and comparison of completely unrelated molecules during structure exploration in a larger chemical space. XFEP provides the basis for scalable FEP applications to become more widely used in drug discovery projects and to speed up the drug discovery process from hit identification to preclinical candidate compound nomination.
Collapse
Affiliation(s)
- Zhixiong Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Junjie Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Shuai Liu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China.,XtalPi Inc., 245 Main Street, Cambridge, Massachusetts 02142, United States
| | - Chunwang Peng
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Zhipeng Li
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Xiao Wan
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Dong Fang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Jian Yin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Gianpaolo Gobbo
- XtalPi Inc., 245 Main Street, Cambridge, Massachusetts 02142, United States
| | - Yongpan Chen
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Jian Ma
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Shuhao Wen
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China.,XtalPi Inc., 245 Main Street, Cambridge, Massachusetts 02142, United States
| | - Peiyu Zhang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Mingjun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| |
Collapse
|
83
|
Role and Perspective of Molecular Simulation-Based Investigation of RNA-Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules 2021; 26:molecules26113384. [PMID: 34205049 PMCID: PMC8199858 DOI: 10.3390/molecules26113384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.
Collapse
|
84
|
Abstract
RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.
Collapse
Affiliation(s)
- Farzad Zamani
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
85
|
Thavarajah W, Hertz LM, Bushhouse DZ, Archuleta CM, Lucks JB. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annu Rev Chem Biomol Eng 2021; 12:263-286. [PMID: 33900805 PMCID: PMC9714562 DOI: 10.1146/annurev-chembioeng-101420-014055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - David Z Bushhouse
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Chloé M Archuleta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA.,Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
86
|
Studying RNA-Protein Complexes Using X-Ray Crystallography. Methods Mol Biol 2021; 2263:423-446. [PMID: 33877611 DOI: 10.1007/978-1-0716-1197-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A wide range of biological processes rely on complexes between ribonucleic acids (RNAs) and proteins. Determining the three-dimensional structures of RNA-protein complexes is crucial to elucidate the relationship between structure and biological function. X-ray crystallography represents the most widely used technique to characterize RNA-protein complexes at atomic resolution; however, determining their three-dimensional structures remains challenging. RNase contamination can ruin crystallization experiments by degrading RNA in complex with protein, leading to sample heterogeneity, and the conformational flexibility inherent in both protein and RNA can limit crystallizability. Furthermore, the three-dimensional structure can be difficult to accurately model at the typical diffraction limit of 2.5 Å resolution or lower for RNA-protein complex crystals. At this resolution, phosphates, which are electron dense, and bases, which are large, rigid, and planar, tend to be well resolved and easy to position in the electron density map, whereas other features, e.g., sugar atoms, can be difficult to accurately position. This chapter focuses on methods that can be used to overcome the unique problems faced when crystallizing RNA-protein complexes and determining their three-dimensional structures using X-ray crystallography.
Collapse
|
87
|
miRNAs and lncRNAs as Novel Therapeutic Targets to Improve Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13071587. [PMID: 33808190 PMCID: PMC8036682 DOI: 10.3390/cancers13071587] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer onset and progression are promoted by high deregulation of the immune system. Recently, major advances in molecular and clinical cancer immunology have been achieved, offering new agents for the treatment of common tumors, often with astonishing benefits in terms of prolonged survival and even cure. Unfortunately, most tumors are still resistant to current immune therapy approaches, and basic knowledge of the resistance mechanisms is eagerly awaited. We focused our attention on noncoding RNAs, a class of RNA that regulates many biological processes by targeting selectively crucial molecular pathways and that, recently, had their role in cancer cell immune escape and modulation of the tumor microenvironment identified, suggesting their function as promising immunotherapeutic targets. In this scenario, we point out that noncoding RNAs are progressively emerging as immunoregulators, and we depict the current information on the complex network involving the immune system and noncoding RNAs and the promising therapeutic options under investigation. Novel opportunities are emerging from noncoding-RNAs for the treatment of immune-refractory tumors. Abstract Immunotherapy is presently one of the most promising areas of investigation and development for the treatment of cancer. While immune checkpoint-blocking monoclonal antibodies and chimeric antigen receptor (CAR) T-cell-based therapy have recently provided in some cases valuable therapeutic options, the goal of cure has not yet been achieved for most malignancies and more efforts are urgently needed. Noncoding RNAs (ncRNA), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate several biological processes via selective targeting of crucial molecular signaling pathways. Recently, the key roles of miRNA and lncRNAs as regulators of the immune-response in cancer have progressively emerged, since they may act (i) by shaping the intrinsic tumor cell and microenvironment (TME) properties; (ii) by regulating angiogenesis, immune-escape, epithelial-to-mesenchymal transition, invasion, and drug resistance; and (iii) by acting as potential biomarkers for prognostic assessment and prediction of response to immunotherapy. In this review, we provide an overview on the role of ncRNAs in modulating the immune response and the TME. We discuss the potential use of ncRNAs as potential biomarkers or as targets for development or clinical translation of new therapeutics. Finally, we discuss the potential combinatory approaches based on ncRNA targeting agents and tumor immune-checkpoint inhibitor antibodies or CAR-T for the experimental treatment of human cancer.
Collapse
|
88
|
Bis-3-Chloropiperidines Targeting TAR RNA as A Novel Strategy to Impair the HIV-1 Nucleocapsid Protein. Molecules 2021; 26:molecules26071874. [PMID: 33810333 PMCID: PMC8038054 DOI: 10.3390/molecules26071874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Specific RNA sequences regulate functions essential to life. The Trans-Activation Response element (TAR) is an RNA stem-bulge-loop structure involved in several steps of HIV-1 replication. In this work, we show how RNA targeting can inhibit HIV-1 nucleocapsid (NC), a highly conserved protein known to catalyze nucleic acid melting and strand transfers during reverse transcription. Our RNA targeting strategy consists of the employment of bis-3-chloropiperidines (B-CePs) to impair RNA melting through bifunctional alkylation. Specific interactions between B-CePs and TAR RNA were analytically investigated by gel electrophoresis and mass spectrometry, allowing the elucidation of B-CePs' recognition of TAR, and highlighting an RNA-directed mechanism of protein inhibition. We propose that B-CePs can freeze TAR tridimensional conformation, impairing NC-induced dynamics and finally inhibiting its functions in vitro.
Collapse
|
89
|
Ganser LR, Chu CC, Bogerd HP, Kelly ML, Cullen BR, Al-Hashimi HM. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep 2021; 30:2472-2480.e4. [PMID: 32101729 DOI: 10.1016/j.celrep.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
90
|
Ferger M, Ban Ž, Krošl I, Tomić S, Dietrich L, Lorenzen S, Rauch F, Sieh D, Friedrich A, Griesbeck S, Kenđel A, Miljanić S, Piantanida I, Marder TB. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry 2021; 27:5142-5159. [PMID: 33411942 PMCID: PMC8048639 DOI: 10.1002/chem.202005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Indexed: 11/24/2022]
Abstract
We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Željka Ban
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Ivona Krošl
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Sanja Tomić
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Lena Dietrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Ivo Piantanida
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
91
|
|
92
|
Liu D, Wan X, Shan X, Fan R, Zha W. Drugging the "undruggable" microRNAs. Cell Mol Life Sci 2021; 78:1861-1871. [PMID: 33052435 PMCID: PMC11073314 DOI: 10.1007/s00018-020-03676-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
As a naturally occurring class of gene regulators, microRNAs (miRNAs) have attracted much attention as promising targets for therapeutic development. However, RNAs including miRNAs have long been considered undruggable, and most efforts have been devoted to using synthetic oligonucleotides to regulate miRNAs. Encouragingly, recent findings have revealed that miRNAs can also be drugged with small molecules that directly target miRNAs. In this review paper, we give a summary of recently emerged small-molecule inhibitors (SMIs) and small-molecule degraders (SMDs) for miRNAs. SMIs are small molecules that directly bind to miRNAs to inhibit their biogenesis, and SMDs are bifunctional small molecules that upon binding to miRNAs induce miRNA degradation. Strategies for discovering SMIs and developing SMDs were summarized. Applications of SMIs and SMDs in miRNA inhibition and cancer therapy were also introduced. Overall, SMIs and SMDs introduced here have high potency and specificity in miRNA inhibition. We envision that these small molecules will pave the way for developing novel therapeutics toward miRNAs that were previously considered undruggable.
Collapse
Affiliation(s)
- Dejun Liu
- The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224001, China
| | - Xinqiang Wan
- Department of Gynaecology and Obstetrics, Yancheng City No.1 People's Hospital, Yancheng, 224001, China
| | - Xiangxiang Shan
- Department of Geraeology, Yancheng City No.1 People's Hospital, Yancheng, 224001, China
| | - Rengen Fan
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, 224001, China.
| | - Wenzhang Zha
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, 224001, China.
| |
Collapse
|
93
|
Manfredonia I, Incarnato D. Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem Soc Trans 2021; 49:341-352. [PMID: 33367597 PMCID: PMC7925004 DOI: 10.1042/bst20200670] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Coronaviruses (CoV) are positive-sense single-stranded RNA viruses, harboring the largest viral RNA genomes known to date. Apart from the primary sequence encoding for all the viral proteins needed for the generation of new viral particles, certain regions of CoV genomes are known to fold into stable structures, controlling several aspects of CoV life cycle, from the regulation of the discontinuous transcription of subgenomic mRNAs, to the packaging of the genome into new virions. Here we review the current knowledge on CoV RNA structures, discussing it in light of the most recent discoveries made possible by analyses of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Ilaria Manfredonia
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
94
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
95
|
Schmidt K, Weidmann CA, Hilimire TA, Yee E, Hatfield BM, Schneekloth JS, Weeks KM, Novina CD. Targeting the Oncogenic Long Non-coding RNA SLNCR1 by Blocking Its Sequence-Specific Binding to the Androgen Receptor. Cell Rep 2021; 30:541-554.e5. [PMID: 31940495 DOI: 10.1016/j.celrep.2019.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/30/2018] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators of numerous physiological processes and diseases, especially cancers. However, development of lncRNA-based therapies is limited because the mechanisms of many lncRNAs are obscure, and interactions with functional partners, including proteins, remain uncharacterized. The lncRNA SLNCR1 binds to and regulates the androgen receptor (AR) to mediate melanoma invasion and proliferation in an androgen-independent manner. Here, we use biochemical analyses coupled with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing to show that the N-terminal domain of AR binds a pyrimidine-rich motif in an unstructured region of SLNCR1. This motif is predictive of AR binding, as we identify an AR-binding motif in lncRNA HOXA11-AS-203. Oligonucleotides that bind either the AR N-terminal domain or the AR RNA motif block the SLNCR1-AR interaction and reduce SLNCR1-mediated melanoma invasion. Delivery of oligos that block SLNCR1-AR interaction thus represent a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Thomas A Hilimire
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Elaine Yee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
96
|
Current and Future Challenges in Modern Drug Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2114:1-17. [PMID: 32016883 DOI: 10.1007/978-1-0716-0282-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug discovery is an expensive, time-consuming, and risky business. To avoid late-stage failure, learnings from past projects and the development of new approaches are crucial. New modalities and emerging new target spaces allow the exploration of unprecedented indications or to address so far undrugable targets. Late-stage attrition is usually attributed to the lack of efficacy or to compound-related safety issues. Efficacy has been shown to be related to a strong genetic link to human disease, a better understanding of the target biology, and the availability of biomarkers to bridge from animals to humans. Compound safety can be improved by ligand optimization, which is becoming increasingly demanding for difficult targets. Therefore, new strategies include the design of allosteric ligands, covalent binders, and other modalities. Design methods currently heavily rely on artificial intelligence and advanced computational methods such as free energy calculations and quantum chemistry. Especially for quantum chemical methods, a more detailed overview is given in this chapter.
Collapse
|
97
|
The role of chemical biology in the fight against SARS-CoV-2. Biochem J 2021; 478:157-177. [PMID: 33439990 DOI: 10.1042/bcj20200514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023]
Abstract
Since late 2019, biomedical labs all over the world have been struggling to cope with the 'new normal' and to find ways in which they can contribute to the fight against COVID-19. In this unique situation where a biomedical issue dominates people's lives and the news cycle, chemical biology has a great deal to contribute. This review will describe the importance of science at the chemistry/biology interface to both understand and combat the SARS-CoV-2 pandemic.
Collapse
|
98
|
Seyler TM, Moore C, Kim H, Ramachandran S, Agris PF. A New Promising Anti-Infective Agent Inhibits Biofilm Growth by Targeting Simultaneously a Conserved RNA Function That Controls Multiple Genes. Antibiotics (Basel) 2021; 10:41. [PMID: 33406640 PMCID: PMC7824582 DOI: 10.3390/antibiotics10010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Combating single and multi-drug-resistant infections in the form of biofilms is an immediate challenge. The challenge is to discover innovative targets and develop novel chemistries that combat biofilms and drug-resistant organisms, and thwart emergence of future resistant strains. An ideal novel target would control multiple genes, and can be inhibited by a single compound. We previously demonstrated success against Staphylococcus aureus biofilms by targeting the tRNA-dependent regulated T-box genes, not present in the human host. Present in Gram-positive bacteria, T-box genes attenuate transcription with a riboswitch-like element that regulates the expression of aminoacyl-tRNA synthetases and amino acid metabolism genes required for cell viability. PKZ18, the parent of a family of compounds selected in silico from 305,000 molecules, inhibits the function of the conserved T-box regulatory element and thus blocks growth of antibiotic-resistant S. aureus in biofilms. The PKZ18 analog PKZ18-22 was 10-fold more potent than vancomycin in inhibiting growth of S. aureus in biofilms. In addition, PKZ18-22 has a synergistic effect with existing antibiotics, e.g., gentamicin and rifampin. PKZ18-22 inhibits the T-box regulatory mechanism, halts the transcription of vital genes, and results in cell death. These effects are independent of the growth state, planktonic or biofilm, of the bacteria, and could inhibit emergent strains.
Collapse
Affiliation(s)
- Thorsten M. Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 277010, USA;
| | - Christina Moore
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 277010, USA;
| | - Haein Kim
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; (H.K.); (S.R.)
| | - Sheetal Ramachandran
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; (H.K.); (S.R.)
| | - Paul F. Agris
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; (H.K.); (S.R.)
| |
Collapse
|
99
|
Kelly ML, Chu CC, Shi H, Ganser LR, Bogerd HP, Huynh K, Hou Y, Cullen BR, Al-Hashimi HM. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays. RNA (NEW YORK, N.Y.) 2021; 27:12-26. [PMID: 33028652 PMCID: PMC7749633 DOI: 10.1261/rna.076257.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/26/2020] [Indexed: 05/30/2023]
Abstract
Identifying small molecules that selectively bind an RNA target while discriminating against all other cellular RNAs is an important challenge in RNA-targeted drug discovery. Much effort has been directed toward identifying drug-like small molecules that minimize electrostatic and stacking interactions that lead to nonspecific binding of aminoglycosides and intercalators to many stem-loop RNAs. Many such compounds have been reported to bind RNAs and inhibit their cellular activities. However, target engagement and cellular selectivity assays are not routinely performed, and it is often unclear whether functional activity directly results from specific binding to the target RNA. Here, we examined the propensities of three drug-like compounds, previously shown to bind and inhibit the cellular activities of distinct stem-loop RNAs, to bind and inhibit the cellular activities of two unrelated HIV-1 stem-loop RNAs: the transactivation response element (TAR) and the rev response element stem IIB (RREIIB). All compounds bound TAR and RREIIB in vitro, and two inhibited TAR-dependent transactivation and RRE-dependent viral export in cell-based assays while also exhibiting off-target interactions consistent with nonspecific activity. A survey of X-ray and NMR structures of RNA-small molecule complexes revealed that aminoglycosides and drug-like molecules form hydrogen bonds with functional groups commonly accessible in canonical stem-loop RNA motifs, in contrast to ligands that specifically bind riboswitches. Our results demonstrate that drug-like molecules can nonspecifically bind stem-loop RNAs most likely through hydrogen bonding and electrostatic interactions and reinforce the importance of assaying for off-target interactions and RNA selectivity in vitro and in cells when assessing novel RNA-binders.
Collapse
Affiliation(s)
- Megan L Kelly
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Honglue Shi
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laura R Ganser
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kelly Huynh
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuze Hou
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
100
|
Miao S, Liang Y, Rundell S, Bhunia D, Devari S, Munyaradzi O, Bong D. Unnatural bases for recognition of noncoding nucleic acid interfaces. Biopolymers 2021; 112:e23399. [PMID: 32969496 PMCID: PMC7855516 DOI: 10.1002/bip.23399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The notion of using synthetic heterocycles instead of the native bases to interface with DNA and RNA has been explored for nearly 60 years. Unnatural bases compatible with the DNA/RNA coding interface have the potential to expand the genetic code and co-opt the machinery of biology to access new macromolecular function; accordingly, this body of research is core to synthetic biology. While much of the literature on artificial bases focuses on code expansion, there is a significant and growing effort on docking synthetic heterocycles to noncoding nucleic acid interfaces; this approach seeks to illuminate major processes of nucleic acids, including regulation of transcription, translation, transport, and transcript lifetimes. These major avenues of research at the coding and noncoding interfaces have in common fundamental principles in molecular recognition. Herein, we provide an overview of foundational literature in biophysics of base recognition and unnatural bases in coding to provide context for the developing area of targeting noncoding nucleic acid interfaces with synthetic bases, with a focus on systems developed through iterative design and biophysical study.
Collapse
Affiliation(s)
- Shiqin Miao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Yufeng Liang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Rundell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Debmalya Bhunia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Shekar Devari
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Oliver Munyaradzi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|